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Abstract

We describe how various sparse matrix and distribution formats can be handled using
the relational approach to sparse matrix code compilation� This approach allows for the
development of compilation techniques that are independent of the storage formats by viewing
the data structures as relations and abstracting the implementation details as access methods�

� Introduction

Sparse matrix computations are at the core of many computational science algorithms� A typical
application can often be separated into the discretization module� which translates a continuous
problem �such as a system of di�erential equations� into a sequence of sparse matrix problems� and
into the solver module� which solves the matrix problems� Typically� the solver is the most time�
and space�intensive part of an application and� quite naturally� much e�ort both in the numerical
analysis and compilers communities has been devoted to producing e�cient parallel and sequential
code for sparse matrix solvers� There are two challenges in generating solver code that has to be
interfaced with discretization systems�

� Di�erent discretization systems produce the sparse matrices in many di�erent formats�
Therefore� the compiler should be able to generate solver code for di�erent storage formats�

� Some discretization systems partition the problem for parallel solution� and use various
methods for specifying the partitioning �distribution�� Therefore� a compiler should be able
to produce parallel code for di�erent distribution formats�

In our approach� the programmer writes programs as if all matrices were dense� and then
provides a speci�cation of which matrices are actually sparse� and what formats	distributions are
used to represent them� The job of the compiler is the following� given a sequential� dense matrix

program� descriptions of sparse matrix formats and data and computation distribution formats�

generate parallel sparse SPMD code� 
�� and 

� have introduced a relational algebra approach

to solving this problem� In this approach� we view sparse matrices as database relations� sparse
matrix formats as implementations of access methods to the relations� and execution of loop nests
as evaluation of certain relational queries� The key operator in these queries turns out to be the
relational join� For parallel execution� we view loop nests as distributed queries and the process

�This research was supported by an NSF Presidential Young Investigator award CCR��������� NSF
Grant CCR ����	�� and ONR grant N���	�����	��	���

yA version of this report appears in the proceedings of Eighth SIAM Conference on Parallel Processing
for Scienti
c Computing

	



�

of generating SPMD node programs as the translation of distributed queries into equivalent local
queries and communication statements�

In this paper� we focus on how our compiler handles user�de�ned sparse data structures and
distribution formats� The architecture of the compiler is illustrated in Figure ��

SPMD translation
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Fig� �� Architecture of the Compiler

� SPMD translation phase takes an HPF�like parallel program description and translates it into
SPMD node programs� 

� describes this process as distributed query evaluation� Section �
shows how di�erent distribution formats are handled by the compiler�

� Join Scheduler and Join Implementer� described in detail in 
��� extract relational expressions
describing the computations that must be performed� and decide how these expressions should
be evaluated� The result is a high�level program� called a plan� in terms of abstract access
methods �AMs� to the relations�

Many sparse storage formats have a hierarchical structure� For example� the compressed row
format �
��� allows access �rst by row and then by column� The scheduler and implementer
use this information along with the information about the properties of the indices stored in
the matrix and the costs of the access methods in order to produce an optimized plan� Section
� explains how this information is provided to the compiler�

� Optimizer further optimizes the plan� The need for optimizations in�uences the design of
the interface between data structure descriptions and the compiler� We illustrate this on an
example in Section ��
�

� Code Generator translates the plan into low�level �e�g�� C or Fortran� code by instantiating

the calls to access methods� This is described in Section ��

In the rest of the paper� we describe how these phases of the compiler interface user�de�ned
data structures�

� Describing Relations to the Compiler

��� A Motivating Example

We use sparse matrix�vector multiplication as a running example�

DO i � �� n
DO j � �� n

Y �i� � Y �i� �A�i� j� �X�j�
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We assume that the matrix A is sparse and the vectors X and Y are dense� It is shown in 
�� that
execution of this loop can be viewed as evaluation of a relational query�

Q�i� j� vA� vy� vx� � �P

�
I�i� j� �� A�i� j� vA� �� Y �i� vy� �� X�j� vx�

�
���

with the predicate P de�ned as�

P
def
� NZ�A�i� j�� �NZ�X�j�� ���

In this query I�i� j� is the relation that represents the set of the iterations of the loop� A�i� j� vA�
is the relation that stores the values vA of the matrix A� X stores x� Y stores y� Conceptually�
the relations store both zeros and non�zeros� Although it might be the case that only non�zeros
are physically stored� The predicates NZ�A�i� j�� and NZ�X�j�� test if a particular array element
is indeed physically stored and has to be assumed to have a non�zero value� Notice that the NZ
predicate is true for all indices of a dense array� even if some values are numerically zero�

This query ��� contains two joins� on i and on j� The order of the nesting of the joins in the
�nal code depends on how the matrix A is stored� For example� if the matrix were stored using
compressed row format �CRS�� then the outer loop of the resulting code enumerates the rows �i�s�
and the inner loop walks within each row and searches into the vectors �Figure ��� On the other

DO i � �� n
DO hvA� ji � A�i� ��

vy � search Y for i
vx � search X for j
vy � vy � vA � vx

Fig� �� MVM for CRS format

DO j � �� n
DO hvA� ii � A��� j�

vy � search Y for i
vx � search X for j
vy � vy � vA � vx

Fig� �� MVM for CCS format

hand� if the matrix were stored using compressed column format �CCS� then the outer loop would
run over the column index �Figure ��� Our compiler generates the appropriate code based on the
fact that we can e�ciently �in O��� time� search the matrix A for the row i in the case of CRS
format or for the column j in the case of CCS format� and that the �dense� vectors can be quickly
searched�

Unlike previous work �
���� our compiler does not have the CRS or CCS formats �hard�wired��
It reasons about them based on a high�level description� which consists of�

� Description of the hierarchy of the indices� This di�erentiates between compressed row and
compressed column storage� All other things being equal� we prefer to enumerate rows before
columns in the former case� and columns before rows in the latter�

� Description of how e�ciently the data structure can be searched or enumerated� Suppose that
the matrix A in the example above contained rows with all elements being zero� We could
still store it in the �usual� CRS � that is store all n rows� Or we could store only non�zero
rows �we can call this �Compressed Compressed Row Storage� or CCRS�� This would save
space� but require more expensive searches�

� Description of the properties of the domains of indices� For example� in CRS the row index is
dense � all values from � to n are present� In CCRS the row index is sparse�

We now formalize these ideas�

��� Hierarchy of Indices

Assume that the matrix is a relation with three �elds named I � J and V where the I �eld corresponds
to rows� the J �eld corresponds to columns and the V �eld is the value� Table � illustrates
speci�cation of the hierarchy of indices for a variety of formats�
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Name Type
CRS TCRS � I � J � V
CCS TCRC � J � I � V
COORDINATE Tcoord � �I� J� � V
DENSE Tdense � I � J � V
INODE Ti�node � INODE � �� �I � J� � V
ELEMENT TFE � E �� �I � J� � V
PERMUTATION Tperm � �I � I ��

S
�I � � I�

Table �

Hierarchy of indices for various formats

In this notation the � operator is used to indicate the nesting of the �elds within the structure�
For example� I � J � V in the Compressed Row Storage �CRS� format 
�� indicates that we have
to access a particular row before we can enumerate the column indices and values� and that within
a row� we can search on the column index to �nd a particular value� The notation �I� J� in the
speci�cation of the coordinate storage indicates that the matrix is stored as a ��at� collection of
tuples�

The � operator indicates that the indices can be enumerated independently� as in the dense
storage format�
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Fig� �� I�node storage format

Consider the i�node storage format shown in Figure �� This format is used in the BlockSolve
library �
���� It exploits the fact that in many physical simulations� there are many rows of a sparse
matrix with the same non�zero structure �� Each set of rows with identical structure is called an
inode� The non�zero values in the rows of an inode can be stored as dense matrices� and the row
and column indices are stored just once� How do we specify such format� The problem here is that
a new INODE �eld is introduced in addition to the row and column �elds� Fields like inode number
which are not present in the dense array are called external �elds� An important property that we
need to convey is that inodes partition the matrix into disjoint pieces� We denote it by the �� symbol
subscript in Ti�node� This will di�erentiate the i�node storage format from the format often used in
Finite Element analysis 
��� In this format the matrix is represented as a sum of element matrices�
The element matrices are stored just like the inodes� and the overall type for this format is TFE in
Table �� where E is the �eld of element numbers� Our compiler is able to recognize the cases when
the matrix is used in additive fashion and does not have to be explicitly constructed�

Some formats can be seen as providing several alternative index hierarchies� Suppose we have a
permutation relation P �i� i�� which is stored using two integer arrays� PERM and INVP� i� � PERM�i�
is the value of the permuted index� INVP�i�� provides the inverse of the permutation� The index
hierarchy for such format is shown in the table�

�Each row has di�erent values of course�
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Below is the grammar for building index hierarchy speci�cations�

T �� V
��� F

��� F �op T
��� F � F � F � � � � � T

��� �F� F� F� � � � � � T
��� T

�
T ���

where the terminal V indicates an array value �eld� and F indicates an array index �eld�

��� Access Methods

Access methods describe how the indices can be searched and enumerated for each term in the
hierarchy� F � P � T � Let P be a product type P � �I� � � � �� In�� Then the following methods
should be provided by an implementation�

hb� hki � Search�xk�

fhxk� hkig � Enum��

t � Deref�hh�� � � � � hni�

where xk is the value of the index of type Ik� b is a boolean �ag indicating whether the value
was found or not and hk is the handle used to dereference the result� which can conceptually be a
relation� as well� Usually� the handle is an integer o�set into an underlying array or a pointer�

Notice that we can separately search and enumerate the components of the product term� For
example� an implementation of the i�node storage would provide a way to enumerate all column
indices and all row indices� Also notice that the Enum�� method returns a set of tuples�

If P is of tuple type P � �I�� � � � � In� then only one set of functions need be provided�

hb� hi � Search�x�� � � � � xn�

fhx�� � � � � xn� hig � Enum��

t � Deref�h�

��� Properties of Indices and Access Methods

Notice that dense format and format for individual i�nodes have the same hierarchy I � J � One
di�erence that we need to capture is that searches into a dense matrix are cheaper� Also� a dense
matrix stores all �i� j� pairs within the �� � � � n�� �� � � � n� square� we know that for a certain range
of the indices the Search�� always succeeds� We also need to know whether the indices can be
enumerated in a particular order� This is used� for example� in deciding which join method to
apply� merge join �
��� requires indices to be sorted� In order to enable certain optimizations� we
need to know the types of the handles� In particular� we need to know if the handles �ll a particular
range of integers� We also need to recognize the case when a call to Deref�� is just an array access�

Overall� the following characteristics of the indices and access methods are required by the
compiler�

� Cost of searching� We di�erentiate between O��� lookups� O�log n� binary searches and O�n�
linear searches�

� Ordering of indices� Ordered or Unordered

� Range of the indices� Dense or Sparse� Notice that O��� lookup does not necessarily imply
that an index is dense� a sparse array can be stored using a hash table�

� Type and range of handles� We di�erentiate between a range of integers and a general
�pointer��

� Arity of dereference� We di�erentiate between the result being a singleton or a relation�

� Kind of dereference� We di�erentiate between a �general case� and the case when Deref�� is
only an array access�






��� Summary

To summarize the discussion so far�

� Each format is represented by its index hierarchy�

� Access methods are provided for each level in the hierarchy�

� Access methods and indices are characterized by the cost of searching and by the properties
of the index and handle domains�

We now use an example to illustrate how this protocol is used in optimizations�

��� An Extended Example

Let us consider sparse matrix�vector product when the i�node format �Figure �� is used to store the
matrix� The join scheduler and join implementer �described in 
��� produce an unoptimized plan

DO hin� hini � Enum�A�
Rinode � Deref�A� hin�
DO hi� hii � Enumi�Rinode� in�

DO hj� hji � Enumj�Rinode� in�
vA � Deref�Rinode� hhi� hji�
vx � Deref�X� Search�X� j��
vy � Deref�Y� Search�Y� i��
vy � vy � vA � vx

Fig� �� Unoptimized plan for the i�node storage

for this computation shown in Figure �� An important optimization� which is performed in the
BlockSolve package� is to gather the values of X used in each i�node into a dense vector� This way
the computation in the inner loops becomes a dense matrix�vector multiplication and can be done
very e�ciently� How does our framework facilitate this optimization�

We know from the description of the access methods that for each i�node the handle hx takes
on a range of integral values� say � � � �Min� This allows us to replace the fragment in Figure 
 by
the fragment in Figure �� The �rst loop gathers the values of X and the second loop is the copy of
the original computation with the use of vx replaced by the reference to the temporary array� The
code for scattering X if it were assigned to in the original loop is similar�

DO hj� hji � Enumj�Rinode� in�
vx � Deref�X� Search�X� j��
� � � vx � � �

ENDDO

Fig� �� Before gather optimization

In our example� we can gather X and scatter Y to obtain the optimized plan in Figure �� Since
we know that the dereference into an inode by hhi� hji is a simple dense array access� we can actually
pattern match this fragment and call the best matrix�vector multiplication routine available�

� Code Generation

How does the compiler translate the output of the Optimizer phase � the plan � into C or Fortran
code� In particular� how are the calls to Search	Enumerate	Dereference access methods are
translated� The simplest solution would be to write a run�time library of for each data structure
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Allocate real array tmp�� �Min�
DO hj� hji � Enumj�Rinode� in�

tmp�hj� � Deref�X� Search�X� j��
ENDDO
DO hj � ��Min

� � � tmp�hj� � � �
ENDDO

Fig� �� After gather optimization

DO hin� hini � Enum�A�
Rinode � Deref�A� hin�

Allocate tmpx�� �M
j
in� to gather X

Allocate tmpy�� �M
i
in� to scatter Y

DO hj� hji � Enumj�Rinode� in�
tmpx�hj� � Deref�X� Search�X� j��

ENDDO
DO hi � ��M i

in

DO hj � ��M j
in

tmpy�hi�� tmpy�hi� � Deref�Rinode� hhi� hji� � tmpx�hj�
ENDDO

ENDDO
DO hi� hii � Enumi�Rinode� in�

Deref�Y� Search�Y� i�� � tmpy�hi�
ENDDO

ENDDO

Fig� �� Optimized plan for the simpli�ed BlockSolve format

and then translate the calls to access methods into actual function calls� The only complication is
that one call to the Enum�� method has to be translated into three function calls� to open the stream
of tuples� to advance the stream and to check for the end of stream�

The problem with this solution is that we would have to rely on the ability of the underlying
C or Fortran compiler to inline these function calls� because function call overhead is unacceptable�
In our approach� each access method is a macro� which is then expanded by the compiler into the
actual code�

We illustrate this on an example� Consider a sparse matrix stored in CCS format using three
arrays� COLP� VALS and ROWIND� The array section VALS�COLP�j� � � � �COLP�j � �� � ��� stores the
non�zero values of the j�th column and the array section ROWIND�COLP�j� � � � �COLP�j������� stores
the row indices of the non�zero elements of the j�th column� The macros for the enumeration of row
indices within a column and for the dereference of the values would expand the following fragment
of a plan�

j � ����
Rcolumn � Deref�A� Search�A� j��
DO hi� hi � Enumi�Rcolumn�

���i���
vA � Deref�Rcolumn� h�
���vA���

into the actual Fortran code�
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Fig� 	� Partitioning of a matrix by row

j � ���
DO ii � COLP�j�� COLP�j � ��� �

���ROWIND�ii����
vA � VALS�ii�
���vA���

This approach enables us to generate code which is very similar to hand�written codes�

� Handling Data Structures for Parallel Code

The main idea of 

� is to view distributes arrays �matrices� as distributed relations which are built
out of local storage fragments� For example� suppose we have a matrix A distributed by row� Let i
be the global row index and j be the global column index� On each processor we just have a matrix�
which has the same column index as the global matrix and it has a new local row index i�� This is
illustrated in Figure �� There is a one�to�one relationship between the global index i and the pair
hp� i�i of the processor index and the local row index�

If we view the global matrix as a relation with i� j and value �elds and each local matrix as a
relation with i�� j and value �elds� then the following fragmentation equation holds�

A�i� j� v� � �i�j�v�
�
p

��i� p� i�� �� A�p��i�� j� v�� ���

where � is the relational algebra projection operator �
���� A�p� is the relation that stores the local
matrix and ��i� p� i�� captures the relationship between the local and global indices�

Now the query ��� for the computation in sparse matrix�vector multiplication becomes a
distributed query with each relation distributed among the processor according to ���� The task
of SPMD translation phase is to translate the distributed query� like ���� into a sequence of local
queries and communication statements� The details can be found in 

��

In this paper� we show some examples of di�erent distribution schemes that can be uniformly
represented in our framework� Notice that the fragmentation relation � is a distributed relation
itself� In the simplest case it can be represented by a closed�form formula� this happens when we use
block	cyclic distributions which can be translated into systems of linear equalities and inequalities

���

Now let us turn to various ways of specifying irregular distributions� the relation ��i� p� i��
cannot be represented in closed form� and has to be stored� One way of storing it is to have on each
processor an array F of global row indices indexed by the local index i� � i � F �i��� If we think of
this array as storing a local fragment F �p��i� i�� of �� then we write down the fragmentation equation
for � itself�

��i� p� i�� �
�
p

F �p��i� i�� ���

Another way of storing ��i� p� i�� is to partition it block�wise across processors based on index i� i�e��
a tuple hi� p� i�i is stored on the processor q � i�B for some block size B� This scheme is called
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paged translation table �
����� We can write this scheme as�

��i� p� i�� � �i�p�i�

��
q

���i� q� i��� �� ��q��i��� q� i��

�
�
�

The fragmentation relation �� describes the paged �blocked� partitioning of the relation ��
���i� q� i��� 	 q � i�B � i�� � i mod B�

By viewing distributions as �globally distributed� relations� we can represent many di�erent
distribution formats� How is this di�erent from the alignment	distribution speci�cation of HPF�
First of all� HPF compilers have a certain set of distribution formats �hard�wired�� Second�
alignment	distribution speci�cation in HPF only speci�es a map from global index to processor
number� A particular local storage format �and the relationship with the local index� is implicit in
this scheme� This simpli�es the job of a user� but is less �exible in interfacing other codes �such as
discretization and partitioning systems��

Current research compilers have di�erent compilation paths for regular and irregular distribu�
tions �
����� We believe that our SPMD translation algorithm can be used as a pass in an HPF
compiler after the compiler has generated the speci�cation for local storage� This way regular and
irregular distributions can be handled uniformly�

� Conclusions and Future Work

We have shown how various sparse matrix and distribution formats can be handled using the
relational approach to sparse matrix code compilation� Currently� our techniques are only applicable
to DOALL loops and loops with reductions� the compiler only needs to �nd the best way to
enumerate over the data structures without worrying about the legality of such enumeration� We
have extended these techniques to loop with dependencies for a restricted case of Compressed
Hyperplane Storage �
���� and we are currently working on generating code with dependencies for a
wider range of data structures�
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