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Abstract

We establish the following, quite unexpected, re-

sult: replication of data for the computational Pri-

vate Information Retrieval problem is not neces-

sary. More speci�cally, based on the quadratic resid-

uosity assumption, we present a single database,

computationally-private information-retrieval scheme

with O(n�) communication complexity for any � > 0.

1 Introduction

1.1 Problem Statement and History

Private Information Retrieval (PIR) schemes allow a

user to retrieve information from a database while

maintaining the privacy of the queries from the

database. More formally, we view the data as an

n-bit string x from which the user wishes to obtain

the bit xi while keeping the index i private from

the database. The notion of PIR schemes was in-

troduced by Chor, Goldreich, Kushilevitz and Sudan

[CGKS-95] in an information theoretic setting. This
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means that the queries asked by the user give no in-

formation whatsoever about i. In this setting they

proved the following results:

� Every (information theoretic) PIR scheme with

a single-database requires 
(n) bits of communi-

cation (this matches the trivial upper bound in

which the user just asks for a copy of the entire

database in order to hide which particular bit it

is interested in).

� A way to get around the above impossibility re-

sult so as to reduce the communication complex-

ity to be sub-linear (in n) is by assuming that

the data is replicated in several sites which are

assumed not to communicate with one another.

Indeed, [CGKS-95] show that if the data is repli-

cated k � 2 times (i.e., in k replicated copies of

the database) then there are PIR schemes with

sub-linear communication complexity. For ex-

ample, there is a scheme with communication

complexity O(n1=3) for two non-communicating

database copies. Schemes with even smaller com-

munication complexity for bigger k are also given

in [CGKS-95] and some further improvements

appear in [Amb-97]. In other words, replication

of data seems to be a crucial ingredient for (in-

formation theoretic) PIR.

Recently, Chor and Gilboa [CG-97], Ostrovsky and

Shoup [OS-97], and Itkis [I-96], considered the no-

tion of Computational PIR (cPIR) schemes. In such

schemes the databases are restricted to perform only

polynomial-time computations and the privacy of the

user's requests is relaxed so that the identity of i

is only computationally hidden from the databases.

Naturally, the privacy in this case has to rely on

some intractability assumption. In this setting, the

above mentioned works show upper bounds which are



much better than what is known for (information the-

oretic) PIR schemes. For example, in [CG-97] it is

shown, based on the existence of one-way functions,1

that for every 0 < c < 1 there is a cPIR scheme

for k = 2 databases with communication complexity

O(nc). Again, all known cPIR schemes (as is the case

with all PIR schemes) assume that the data is repre-

sented in several databases, that do not communicate

with each another.

In this paper, we consider the following question:

Is the assumption of having several non-

communicating databases required for cPIR

schemes as well ?

1.2 Our Main Result

Surprisingly, we show that in the computational set-

ting one can get rid of the assumption about the repli-

cation of data which is in the heart of all previous

(PIR and cPIR) solutions. More precisely, we prove

the following:

MAIN THEOREM (Informal Statement) For every

c > 0 there exists a single-database cPIR scheme with

communication complexity O(nc), assuming the hard-

ness of deciding quadratic residuosity.

Moreover, our scheme has the following additional

properties:

1. The data is stored in the database in its plain

form (i.e. the string x itself). Hence there is no

need in pre-processing, storing auxiliary informa-

tion, or coordination between di�erent users. (In

particular this allows at the same time retriev-

ing information which do not require privacy and

hence has a smaller communication complexity

cost.)

2. The scheme is a single-round query-answer pro-

tocol (as opposed to multi-round protocols),

which is the common communication pattern in

the context of databases.
1A one-way function is a function that can be e�ciently

computed but cannot be inverted in polynomial time. One

could make stronger assumptions, e.g., the existence of a func-

tion that cannot be inverted in time 2
p
n, and introduce a

corresponding security parameter. We will do it later in the

technical part of this paper but for simplicity we will avoid

doing it in the introduction. In fact, the exact security of all

cPIR schemes can be analyzed, similar to the approach taken

in [L-96].

These additional properties are also shared by

[CGKS-95, Amb-97, CG-97] whereas [OS-97, I-96] are

multi-round schemes that use a special representation

for the data.

Ostrovsky and Shoup [OS-97] consider the ques-

tion of private writing into the database, both in

the information-theoretic and computational setting,

provided that there are several non-communicating

sites. Note that in the single-database model (i.e.

without replication) if the data is stored in its plain

form then private writing is impossible (since the

database can easily observe the changes in x).

On the other hand, if the data is stored in a

single database and is encrypted, with a key that

is held by the user (secretly from the database),

then the model becomes the oblivious RAM model

[G-87, Ost-90, GO-96]. (For more detailed discus-

sion see [OS-97]). We point out however that there

are some major di�erences between the two models;

hence, transforming any of the oblivious RAM solu-

tions into a cPIR scheme yields schemes that do not

satisfy the above-mentioned features of PIR schemes.

That is, in the oblivious RAM solutions the data

is stored in a special encrypted form; it requires a

pre-processing initialization step (for encrypting the

data); it requires the user (the \cpu" in the termi-

nology of RAM) to keep some state information (in

particular the encryption key); and �nally if there are

several users it requires them to coordinate their acts

so that each of them will have access to the encryp-

tion key and still this key must be hidden from the

database. If the database obtains this key (e.g., by

pretending to be a user) the privacy is lost. Thus, the

oblivious RAM techniques do not provide a solution

to the single-database computational PIR problem.

Finally, let us mention that the quadratic resid-

uosity assumption (QRA) is a widely used assump-

tion in cryptography. Starting from the pioneer-

ing work of Goldwasser and Micali [GM-84] and

later in numerous other papers; for example, see

[BBS-86, BC-86, BDMP-91].2 It remains an impor-

tant open problem to �nd a single database e�cient

cPIR scheme that relies on weaker intractability as-

2To the best of our knowledge, the fastest known algorithm

for deciding the quadratic residuosity modulo N problem is

to �rst factor N (and then the problem is easy). The best

algorithm for factoring known to-date runs in (heuristic) time

e
~
O(N1=3) (for further details see an excellent survey by Odlyzko

[Odl-95]).



sumptions.

Organization: In Section 2 we provide some nec-

essary de�nitions. Section 3 includes a simple scheme

whose communication complexity is still not as small

as guaranteed above. Later in Section 4 we use this

simple scheme to construct a more involved scheme

with the desired communication complexity. Finally,

in Section 5 we show several extensions and general-

izations of our result.

2 Preliminaries

In this section we give some de�nitions and facts

that are used in this paper. In Section 2.1 we in-

clude some facts from number-theory and state the

quadratic residuosity assumption, and in Section 2.2

we de�ne computational PIR. We provide formal def-

initions of this notion which are essential for later

providing a rigorous proof of privacy for our schemes.

(The reader may prefer to read �rst the description

of the schemes (Sections 3 and 4) and return to the

de�nitions before reading the proofs of privacy.)

2.1 Quadratic Residuosity Assump-

tion

We shall use in this work the intractability of the

Quadratic Residuosity problem. This problem

was �rst used in a cryptographic setting by Gold-

wasser and Micali [GM-84], and since then has found

many other (cryptographic) applications.3 Below we

recall this problem. (The reader is referred, for exam-

ple, to [BS-96] for a good reference on number theory

and to [M-90] for a reference on the quadratic resid-

uosity problem.)

Let N be a natural number. De�ne

Z?

N
= fxj1 � x � N; gcd(N; x) = 1g:

The quadratic residuosity predicate is de�ned as fol-

lows: QN (y) = 0 if 9w 2 Z?

N
such that w2 =

y mod N and QN (y) = 1 otherwise. We say that y is

QR (quadratic residue) mod N if QN (y) = 0 (i.e. y

is a \square") and we say that y is a QNR (quadratic

non-residue) if QN (y) = 1 (i.e., y is a \non-square").

The problem is considered \hardest" when N is a

3The problem was originally considered (as one of the four

main arithmetic problems) by Gauss [G-01].

product of two distinct primes of equal length k=2;

thus the \hard set" (indexed by k) is

Hk = fN jN = p1�p2 where p1; p2 are k=2-bit primesg

If the factorization of N 2 Hk is known, comput-

ing QN (y) can be done in O(jN j3) time. Let
�
y

N

�
denote the Jacobi symbol. Recall that for all N

(i.e., even for N 2 Hk) the value of
�
y

N

�
can be

computed in time polynomial in jN j even without

knowing the factorization of N . For N 2 Hk, if�
y

N

�
= �1 then y is always a QNR while among

the y's such that
�
y

N

�
= +1 exactly half are QNRs

and half are QRs. Thus we consider only N 2 Hk

and only y's such that
�
y

N

�
= +1. Thus, de�ne

Z+1
N

4
= fy 2 Z?

N
j
�
y

N

�
= 1g. For any x; y in Z+1

N

their product xy is a QNR if exactly one of them is

a QNR; that is, QN (xy) = QN (x) � QN (y). Finally,

note that to pick a randomQR in Z+1
N

we just need to

pick a random r 2 Z?

N
and compute r2 (for doing this

one clearly does not need to know the factorization

of N ).

We are now ready to state the Quadratic Residuos-

ity Assumption,4 which informally states that there

is no family of polynomial-size circuits for computing

the predicate QN (y) that can do signi�cantly better

than \guessing". Formally,

Quadratic Residuosity Assumption (QRA):

For every constant c , and every family of polynomial-

size circuits Ck(�; �), there exists an integer K such that

for all k > K

Prob
N2RHk ; y2RZ+1

N
(Ck(N; y) = QN (y)) <

1

2
+

1

kc
;

where N 2R Hk; y 2R Z+1
N

denotes the experiment of

�rst drawing two k=2-bit primes p1; p2 and compute

N = p1 � p2, and then drawing y uniformly at random

from Z+1
N

.

In [GM-84] it is shown that the quadratic resid-

uosity problem is random self-reducible, and that

even given polynomiallymany (in jN j) quadratic non-
residues y1; : : : ; ypoly(jN j) it is still as di�cult to com-

pute QN (x) as without y's.

4This is a non-uniform version of the assumption. A uni-

form version (which is a weaker assumption) refers to algo-

rithms instead of families of circuits. We will provide the de-

tails of the uniform de�nition in the full version of this paper.



2.2 Computational PIR

We are now ready to de�ne a single database compu-

tational PIR. We shall follow similar de�nitions from

[CG-97, OS-97] and use the terminology of interac-

tive Turing Machines [GMR-85]. A computational

PIR scheme is a protocol for two players, a user U
and a database DB, which are limited to probabilis-

tic polynomial-time computations. They are formally

de�ned as follows:

� The \database", DB, is a probabilis-

tic polynomial-time interactive Turing machine

with a read-only input tape, a read-only random

tape, a work-tape, a write-only output tape and

two communication-tapes: a write-only commu-

nication tape for sending massages to U and a

read-only communication tape for receiving mes-

sages from U .

� The \user", U , is a probabilistic polynomial-time

interactive Turing machine with a read-only in-

put tape, a read-only random tape, a work tape,

a write-only output tape and two communication

tapes: a write-only communication tape to send

messages to DB and a read-only communication

tape to read messaged from DB.

A computational PIR (cPIR) protocol allows the user

to \read" (i.e., retrieve) a bit xi from the database

string x. Formally, the database, DB, is given on

its input tape a security parameter, 1k, and an n-

bit input string x. The user, U , has on its input

tape the same (as DB) security parameter 1k and an

instruction \read(i)" where 1 � i � n. The scheme

proceeds as follows:

1. The user, U , performs a polynomial time compu-

tation (utilizing its input tape, its random tape

and its work tape) and then writes a single mes-

sage (\query") q(i) on its write-only communi-

cation tape (i.e., it sends q(i) to the database).

2. The database reads its read-only communication

tape (to get the query q(i) from the user), per-

forms a polynomial time computation (utilizing

his input tape its work tape and its random tape)

and then writes a single message (an \answer")

a(x; q(i)) on its write-only communication tape.

3. The user reads the \answer" a(x; q(i)) sent by

the database.5 Then, U performs a polynomial-

5A more general de�nition may allow a more involved in-

teractive protocol between U andDB, consisting of polynomial

time computation using the DB answer and its

work tape (which contains information stored

from Step 1). At the end of this computation

U outputs a single bit on its output tape (which

should be xi).

The communication complexity of the cPIR problem

is measured as a function of n (the length of the

data string x) and the security parameter k. We say

that the cPIR protocol has communication complex-

ity CC(n; k) if for any data string x of length n and

security parameter k, and any request i, it is always

the case that jq(i)j+ ja(x; q(i))j � CC(n; k). A cPIR

scheme must satisfy both correctness and privacy con-

straints:

� Correctness { For any input length n, and for

any n-bit input string x given to DB (i.e., the

content of the database), for any security pa-

rameter 1k and for any user request instruction

\read(i)", the output of U must be xi.

� Privacy { Informally, computational privacy

means that the database cannot distinguish,

with non-negligible probability, the di�erence

between any two distributions of requests q(i)

and q(j). Formally, for all constants c, for all

database length n, for any two 1 � i; j � n, and

for all polynomial-size families of circuits Ck(�)
there exists an integer K such that for all k > K

j
h
Prob

coins-of-U
(Ck(q(i)) = 1)

i

�
h
Prob

coins-of-U
(Ck(q(j)) = 1)

i
j

<
1

(max(k; n))c
4
= �(k; n) :

(In our context usually k � n; e.g., k = n� for

some 0 < � < 1.)

REMARKS: Notice, again, that the above de�ni-

tion is non-uniform.6 Additionally, note that our

de�nition of computational privacy, as in [CG-97,

OS-97], is de�ned in terms of indistinguishability of

(in k and n) number of rounds, where each \round" consists

of a single message sent from U to DB and a single message

back to U. However, since all our protocols are single-round

protocols, we shall use this simpler formulation.
6We postpone the uniform de�nitions until the full version

of the paper, but remark that all our results can be extended

to the uniform model as well.



user's requests. A computationally equivalent def-

inition could consider indistinguishability of two se-

quences of requests; i.e., where the user has a sequence

i1; : : : ; it of indices it wishes to retrieve from x. In ad-

dition, as in the case of \probabilistic encryption", we

can also de�ne computational privacy in terms of \se-

mantic privacy" (see [GM-84]), where, informally, se-

mantic privacy means that whatever a polynomially-

bounded adversary A can compute from the queries

sequence, it can compute without it. As with proba-

bilistic encryption, one can show that computational

privacy in terms of indistinguishability implies se-

mantic privacy as well.

3 The Basic Scheme

In this section we present a single database

cPIR scheme whose communication complexity is

O(n0:5+c), for any c > 0. This is not as low as

promised in our main theorem, but note that it is

already better than the 
(n) lower bound for the in-

formation theoretic case [CGKS-95]. In the next sec-

tion we will use this scheme as a starting point for

our more e�cient schemes.

For describing our basic scheme we view the

database x as a s� t matrix of bits, denoted M . The

user, is interested in retrieving privately the bit xi of

the database which is the (a; b) entry of the matrix

M . The basic scheme works as follows:

1. The user starts by picking at random a k-bit

number N 2 Hk (i.e., it picks at random two

k=2-bit primes and multiplies them). The user

sends N to DB (but keeps its factorization se-

cret).

2. The user chooses uniformly at random t numbers

y1; : : : ; yt 2 Z+1
N

such that yb is a QNR and yj ,

for j 6= b, is a QR. It sends these t numbers to

DB (total of t � k bits).

3. The database, DB, computes for every row r a

number zr 2 Z?

N
as follows: It �rst computes (in

Z?

N
)

wr;j =

�
y2j if Mr;j = 0

yj if Mr;j = 1

and then it computes

zr =

tY
j=1

wr;j :

The observation here is that if j 6= b then Wr;j

is always a QR, while if j = b then Wr;j is QR

i� Mr;j = 0 (and it is a QNR otherwise). There-

fore, zr is a QR i� Mr;b = 0 (and it is a QNR

otherwise).

4. DB sends z1; : : : ; zs to the user (total of s�k bits).

5. The user considers only the number za, corre-

sponding to the row of M which contains the

bit it is interested in. This number is a QR i�

Ma;b = 0 (and it is a QNR otherwise). Since U
knows the factorization of the number N it can

e�ciently check whether za is a QR and by this

retrieve the bit Ma;b.

Correctness: Follows immediately from the de-

scription of the scheme.

Communication Complexity: The communica-

tion in this scheme consists of s+ t+1 k-bit numbers

(N; y1; : : : ; yt; z1; : : : ; zs). Pick s = t =
p
n and the

communication complexity is:

(2
p
n+ 1) � k:

Therefore, even if we use the weak assumption that

the security parameter, k, equals nc, for some con-

stant c > 0, we get a communication complexity of

n
1
2
+c. This is already better than the 
(n) lower

bound proved in [CGKS-95] for the single-database

case in the information theoretic setting!

Privacy: The proof is by contradiction. Suppose,

towards a contradiction, that for some indices i and

i0 the database can distinguish the queries on index i

from the queries on index i0. We will use this assump-

tion to construct a circuit to compute the quadratic

residuosity predicate. In our matrix notation we de-

note i = (a; b) and i0 = (a0; b0). Obviously, by the

description of the protocol b 6= b0 (as otherwise the

protocol works in an identical way and there is no

way to distinguish). The fact that the database can

distinguish these two indices implies that there exists

an algorithm (more precisely, a family of polynomial-

time circuits), B, such that if B gets queries from the

distribution of queries generated by the user on index

i then B outputs 1 with some probability p, while if

B gets queries from the distribution generated on in-

dex i0 then B outputs 1 with probability, say, p + �.



By the construction, in the �rst case the distribution

consists of a number N uniformly picked fromHk and

then t numbers from Z+1
N

which are all QRs except

for the number in position b which is a QNR. The

second distribution is similar except that the QNR is

located in position b0.
We now describe (a circuit) C that, on input N; y

(chosen according to the \hard distribution"; i.e.,

N 2R Hk; y 2R Z+1
N

) computes the quadratic resid-

uosity predicate with probability at least 1=2 + �=2.

The idea is to construct a sequence as expected by

the distinguisher B.

1. Pick t�2 random QRs and place them in all the

positions except b and b0.

2. Pick at random one of the positions b or b0. Place
y in this position and another random QR in the

other.

3. Run B on the above sequence. If the chosen

position is b0 output the same value as B; if the

chosen position is b 
ip B's output.

Let us �rst compute the probability that C outputs

1 on input N; y such that y is a QR modulo N . In

this case, no matter what position is chosen in Step 2

the input to B is a sequence of t random QRs in

Z+1
N

. On such an input there is some probability q

that B outputs 1. The probability that C outputs 1

in this case is 1=2 � q + 1=2 � (1 � q) = 1=2. Now we

compute the probability that C outputs 1 on input

N; y such that y is a QNR modulo N . In this case

the sequence generated contains a single QNR either

in position b or in position b0. By the assumptions

on B the probability that C outputs 1 in this case is

1=2 � (p + �) + 1=2 � (1 � p) = 1=2 + �=2. Note that

this is slightly di�erent than what we need (since on

a QR we are supposed to output 1 with probability

less than 1=2). This is easily solved by adding a �rst

step in which with probability �=4 we output 0 and

stop.

To conclude, we have just proved the following theo-

rem:

Theorem 1: Under the QRA, for every c > 0, there

exists a cPIR scheme with communication complexity

O(n0:5+c).

4 The Recursive Scheme

In this section we de�ne a more complicated

computational-PIR scheme, with lower communica-

tion complexity. We emphasize that the new (re-

cursive) scheme, can still be implemented in a single

round (that is, the user sends a query, gets an answer,

and retrieve from it the desired bit).

The main observation is as follows: consider Step 4

of the basic scheme. In this step the user sends s k-

bit numbers z1; : : : ; zs to the user. The user is only

interested in one of these numbers, za, however it

cannot tell this information (the index a) to DB as

this will violate the privacy constraint. It is therefore

natural to view these k numbers as a s � k bit string

and let the user and database use a cPIR scheme, so

that the user will get the k bits of this string which

are of interest for him. More formally, denote by S1
the basic scheme de�ned above. Now, the scheme

S`, is recursively de�ned as follows. Denote by n`

the number of bits we have when executing S` (on

the top level, denoted L, we have nL = n). Let t`
be the number of columns in the matrix used by the

scheme S` to represent the string (and s` = n`=t`).

We obtain S` by replacing Step 4 of the basic scheme

by:

4?. U and DB execute k times the scheme S`�1. In

each of these executions the user gets one of the

bits of za out of a string of length n`�1 = k � s`
held by the database. After these k executions,

the user has the number za that allows him re-

constructing the desired bit, as in Step 5 of the

basic scheme.

Note that although the string from which we retrieve

bits becomes smaller in the recursion, we still need to

use the same security parameter 1k given as an input

(typically, k will be chosen as a function of n, the size

of the original database). On the other hand, Step 1

can be executed only once, and we can use the same

N in all levels of the recursion.

The next step is to observe that this new version

of Step 4 can be further improved. This is because

when applying k times the scheme S`�1 for retrieving

the number za out of the information held by DB
it is clear that in the �rst use of S`�1 the user will

retrieve the most signi�cant bit of za, in the second

use of S`�1 it will retrieve the second most signi�cant

bit of za and so on. Hence in each of these executions

the database can be smaller in a factor of k. Thus we



get:

4??. U and DB execute k times the scheme S`�1. In

the d-th execution the user gets the d-th most

signi�cant bit of za out of a string of length

n`�1 = s` held by the database (that contains

the d-th bit of each of z1; : : : ; zs`). After these

k executions, the user has the number za that

allows him reconstructing the desired bit, as in

Step 5 of the basic scheme.

Finally, if we look at any level j of the recursive

scheme, then in all executions of Sj we are inter-

ested in the same index of the strings from which

we retrieve (this index depends on i, the index of x

retrieved in the upper level of the scheme, and on j).

Therefore we also make the following modi�cation:

� For each level j of the recursion, U sends a sin-

gle query (consisting of tj numbers). This query

serves in all invocations of Sj as the message of

Step 2 of the scheme.

Correctness: Follows immediately from the de-

scription of the scheme.

Communication Complexity: First, we choose,

for every `, the same value t` = n1=(L+1) as our pa-

rameter. This implies, that if on the top level we use

the scheme SL on the database of size nL = n then

by induction (on ` = L;L� 1; : : : ; 1):

n` = n
`+1
L+1 :

Next, if we look at the recursion and \open" it then

we observe that, in the upper level, U sends a query to

DB which prepares k strings based on this query (but

does not send any bit); then, in the next level, U again

sends a query, based on it DB prepares from each

string it had k new strings (all together k2 strings)

and so on. Finally in the last level of the recur-

sion the user again sends a query based on which

the database prepares k new strings for each string it

had in the previous level (all together kL strings of

length n1=(L+1)). With this view we already see that

even the recursive scheme can be implemented as a

single query-answer round scheme. It is also quite

simple now to analyze the communication complex-

ity: for each of the L levels of the recursion the user

sends n1=(L+1) numbers of k bits each. The database

replies only in the last level when it has to send kL

strings of length n1=(L+1). All together, the commu-

nication complexity is

n1=(L+1) � (kL + L � k):

If we use, the scheme SL for L = O(
p
logn= logk)

(this value of L makes n
1

L+1 and kL equal) we get a

complexity of 2O(
p

logn�logk). For example, if k = nc

we get complexity of nO(
p
c) and if k = logc n we get

complexity7 of 2O(
p

logn log logn).

Privacy: The proof is similar to the proof of the

basic scheme although it is slightly more delicate.

Again, we assume towards a contradiction that there

exists a distinguisher which for some i and i0 can dis-

tinguish the distribution of queries q(i) from the dis-

tribution of queries q(i0) with � probability. If we

\open" the recursion, as is done above, then we ob-

serve that the query sent by the user is just a num-

ber N followed by a (�xed-length) sequence of num-

bers z1; z2; : : : ; z� from Z+1
N

(by the above calcula-

tions � = L � n1=(L+1)). For an index i denote by Ii
the subset of f1; : : : ; �g of all positions that contain

QNRs (by the protocol, for every index i the sub-

set Ii is �xed and it is independent of the random

choices made by the user). Moreover, as in the pre-

vious proof, i and i0 must be such that Ii 6= Ii0 (as

otherwise, if in all steps of the recursion i and i0 be-
long to the same column of the matrix, then by the

de�nition of the protocol the user behaves the same

on both i and i0 and they are indistinguishable).

As before, we denote by B the distinguisher be-

tween q(i) and q(i0). That is, B is a circuit such that

if B gets queries from the distribution of queries gen-

erated by the user on index i then B outputs 1 with

some probability p, while if B gets queries from the

distribution generated on index i0 then B outputs 1

with probability, say, p+ �. We construct a circuit C

to compute the quadratic residuosity predicate. C on

input N; y works as follows:

1. Pick at random one of the subsets Ii or Ii0 . In

every position not in the chosen set put a random

QR from Z+1
N

. In every position which in the

7As mentioned, the currentlybest known algorithmfor solv-

ing the quadratic residuosity problem runs in time 2
~
O(N1=3).

Hence, it might be reasonable to use k = logc n, for su�ciently

large constant c, as a security parameter. The standard as-

sumption, that the problem cannot be solved in polynomial

time, allows using only k = n
c, for arbitrarily small constant

c.



chosen set put the product of y and a random

QR.

2. Run B on the above sequence. If the chosen set

is Ii0 output the same value as B; if the chosen

position is Ii 
ip B's output.

The observation is that if y is a QR then the whole

sequence consists of � numbers which are all QRs. On

the other hand, if y is a QNR then the resulted se-

quence is distributed as are the queries in q(i) or q(i0)
(depending on the choice made at Step 1). With this

observation the calculation of probabilities proceeds

exactly as in the proof for the basic scheme.

To conclude, we have just proved the following theo-

rem:

Theorem 2: Under the QRA, for every c > 0, there

exists a cPIR scheme with communication complexity

O(nc).

5 Extensions and Generaliza-

tions

In this section we brie
y mention several extensions

of the PIR problem (we defer the details to the full

version of the paper). In all these extensions PIR

schemes (and more speci�cally single-database PIR

schemes, as the one provided by the current work) can

serve as building blocks for more powerful protocols.

5.1 Additional Security for the User

Consider, for example, the site that maintains all the

US patents and suppose that some user wishes to read

a certain patent without the database getting any in-

formation about the identity of the patent that the

user retrieves. Such a user can use a PIR scheme for

this operation. However, a malicious database oper-

ator can mount the following attack to infer whether

the user is after the j-th patent in the database: the

database operator can replace the j-th patent/entry

in its database with \garbage" and then, after exe-

cuting the PIR scheme, see if the user \protests". In

this case, the database operator can deduce that the

j-th patent was the patent that the user wanted to

retrieve.

This experimentation attack can be defeated if the

user can obtain a certi�cate that the database pro-

vided wrong information, which can then be used

to \sue" the database operator. To this end, the

database can sign (using a variety of representation-

e�cient signatures) his messages, which can then be

used to prove the database misbehavior in case of un-

expected data.

In addition, In case when the database data comes

from a trusted third party, the database entries can

be augmented, in a natural way, with an authentica-

tion mechanism, where the user can read not only the

entry but the authentication as well.

Moreover, the database operator can publish (say,

in the New-York Times) a root of a commitment tree

(based on cryptographic hash-functions), and then

the user can retrieve (using PIR schemes), not just

an entry, but an entire (logarithmic length) path

from the root to the desired entry, where again the

database signs all the messages that it sends to the

user. Thus, the user gets a communication-e�cient

certi�cate that the data is in correspondence with the

committed value, or a certi�cate that the database

has either committed to a wrong data or mis-behaved

during the protocol execution. Notice that all this can

be done in one round.

5.2 Additional Security for the

Database

In a PIR scheme, the database should have no

idea which bit (or a sequence of bits) the user re-

trieves. Yet, if this is a �nancial enterprise, it also

wishes to make sure that the user does not get,

say two entries, for the price of one. This ques-

tion was originally posed by Gertner, Ishai, Kushile-

vitz and Malkin [GIKM-97] mainly for information-

theoretic PIR (with multiple databases), but the

same concern applies in a single database computa-

tion setting as well. We remark that in the single-

database computational-PIR setting we can employ

zero-knowledge techniques to handle this problem as

well. In particular, our main protocol can be modi�ed

in such a way that when the user follows the protocol

as prescribed it gets only a single bit, and then the

user can prove to the database, in a zero-knowledge

fashion that his query is well-formed (e.g., it has the

\correct" number of QRs and QNRs etc). The com-

munication complexity of such a protocol is propor-

tional to the original query size plus the communica-

tion complexity of a zero-knowledge proof, which is

polynomially related to the query size (both for in-

teractive and non-interactive zero-knowledge). Since



our protocol requires O(n�) bits of communication for

arbitrary � > 0, the resulting protocol also needs only

O(n�
0

) communication.

5.3 Membership Queries

Suppose that the database contains n `-bit \strings"

s1; : : : ; sn. The user has some string s and he wishes

to �nd an address i such that si = s or to learn

that such an address does not exist, without revealing

to the database the value of s. This problem is a

generalization of the PIR problem because, given x,

the database can create a list of all entries j such

that xj = 1 (each such entry is a string of length

` = logn). Then, the user can retrieve the bit xi by

checking if i is one of these strings.

This problem can be solved by appropriately com-

bining the use of perfect hash-functions to hash the

strings into a hash table in a 1-1 manner and PIR

schemes for reading values from this hash-table. In

particular, note that the database can choose a hash

function h that is 1-1 on the strings s1; : : : ; sn and

send its name (which is \short") to the user. Now

the strings can be stored indexed by their hash-value,

hence reducing the problem to PIR. We remark that

this problem, and some extensions of it, was also in-

dependently studied and solved (using the same tech-

niques) by Chor, Gilboa and Naor [CGN-97].

6 Conclusions and Open Prob-

lems

We have established that in the computational set-

ting, replication of data is not necessary in or-

der to retrieve, in a private and communication-

e�cient manner, information from a database. With

the additional security for the database (i.e., where

the user gets only one bit out of n bits) the PIR

model can be re-formulated as one-out-of-n Oblivious

Transfer protocol, a generalization of the well-known

one-out-of-two Oblivious Transfer (
�
2
1

�
-OT) primitive

[R-81, EGL-85] which plays an important role in cryp-

tographic protocol design. Hence, we hope that our

single-database computational PIR will be useful for

the design of other cryptographic protocols.

Many problems remain open. How do we re-

duce the intractability assumptions? Impagliazzo

and Rudich [IR-89] show that implementing oblivi-

ous transfer based on general one-way functions (i.e.

without trapdoor) is hard to do using black-box re-

ductions. However, we do not know how to achieve

communication-e�cient cPIR even assuming general

one-way trapdoor permutations (while standard
�
2
1

�
-

OT can be implemented based on any trapdoor one-

way permutations [GMW-87]). How can this be done

in cPIR setting? Basing cPIR solutions on other al-

gebraic problems could also be of interest; for exam-

ple, based on our paper, Man [M-97] shows how to

replace the quadratic residuosity problem in our pro-

tocol by the shortest lattice vector problem. Can one

base it on other algebraic assumptions? Additionally,

even assuming that our security parameter is poly-

logarithmic in n, we only achieve 2O(
p

logn log logn)

communication complexity. It seems plausible that,

assuming poly-logarithmic security parameter, one

can achieve poly-logarithmic communication com-

plexity, but this also remains open.
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