
Real Algebraic Strategies for MetiTarski Proofs

Grant Olney Passmore1,2, Lawrence C. Paulson1, and Leonardo de Moura3

gp351@cam.ac.uk, lp15@cam.ac.uk, leonardo@microsoft.com

1 Computer Laboratory, University of Cambridge
2 LFCS, University of Edinburgh
3 Microsoft Research, Redmond

Abstract. MetiTarski [1] is an automatic theorem prover that can prove
inequalities involving sin, cos, exp, ln, etc. During its proof search, it
generates a series of subproblems in nonlinear polynomial real arithmetic
which are reduced to true or false using a decision procedure for the
theory of real closed fields (RCF). These calls are often a bottleneck: RCF
is fundamentally infeasible. However, by studying these subproblems, we
can design specialised variants of RCF decision procedures that run faster
and improve MetiTarski’s performance.

1 Introduction

MetiTarski [1] is an automatic theorem prover for special functions such as sin,
cos, exp and ln, with variables ranging over the real numbers.4 A typical problem
is a universally quantified first-order formula involving inequalities between real-
valued arithmetic expressions involving such functions; MetiTarski can prove
many nontrivial problems in seconds, such as the following problem drawn from
hybrid systems verification [6]:

∀ t ∈ (0,∞), v ∈ (0,∞)

((1.565 + 0.313 v) cos(1.16 t) + (0.01340 + 0.00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v + 10 ≥ 0

Internally, MetiTarski is a resolution theorem prover integrated with various
decision procedures for the theory of real-closed fields (RCF) [2,7,9]. MetiTarski
reduces its input problem to a series of logical combinations of polynomial in-
equalities, which are further reduced to true or false by an RCF decision pro-
cedure. Unfortunately, the RCF decision problem is hyper-exponential in the
number of variables [3]. The RCF tests typically dominate the overall processor
time, and thus far the success of our methods has been limited to problems in
less than six variables. In this paper, we show that by analysing the structure of

4 MetiTarski accepts first-order formulas over equations and inequalities, with terms
involving real arithmetic, including an open-ended axiomatised collection of special
functions. As this theory is undecidable, MetiTarski employs heuristic methods.

the RCF subproblems generated by MetiTarski, we can design specialised vari-
ants of RCF decision procedures. In many cases, RCF ceases to be a bottleneck,
and MetiTarski’s improved performance extends its practical reach.

MetiTarski requires axiom files that supply upper and lower bounds for the
special functions of interest. In some cases, these bounds are polynomials, typi-
cally truncated Taylor series. More often, they are rational functions (fractions
of polynomials) obtained from continued fraction approximations. MetiTarski
includes arithmetic simplification designed to help transform special function in-
equalities so as to isolate one particular special function occurrence. The general
resolution procedure, augmented with this simplification, automatically iden-
tifies relevant axioms, thereby replacing the special function occurrence by a
polynomial or rational function that is an upper or lower bound, as appropriate
for the context in which the special function occurs. In the case of a rational
function, the division operator is eliminated through use of an axiom relating
division with multiplication (again chosen by the general resolution mechanism).
At this point, a special function inequality has been replaced by one or more
polynomial inequalities.

The integration between resolution theorem proving and an RCF decision
procedure takes the form of a novel simplification rule. Resolution, like DPLL-
based SAT solving, is concerned with disjunctions of literals where a literal is an
atomic formula or its negation. These disjunctions of literals are called clauses.
When MetiTarski encounters a literal consisting of a polynomial inequality, it
asks an RCF decision procedure whether this literal can possibly be true, taking
into account its context. Formally, MetiTarski builds a conjunction combining
all known clauses that express polynomial inequalities with the negations of the
other literals in the clause. If this conjunction is logically inconsistent, then the
literal is equivalent to false and can be deleted from the clause [1].

MetiTarski also uses RCF decisions to discard freshly-generated clauses that
express nothing new, in the sense that their polynomial content is implied by
other known polynomial inequalities. This RCF-based redundancy test is not es-
sential, but it is a powerful heuristic nevertheless because it prevents the buildup
of logically superfluous but syntactically complex facts.

The search for a proof typically generates hundreds of calls to the RCF deci-
sion procedure, often with gigantic formulas. In earlier work, we used QEPCAD-
B [2] with a text-based interface, and in some cases formulas given to QEPCAD-
B were longer than 50,000 characters. QEPCAD-B works extremely well for uni-
variate problems, but it deteriorates rapidly with two or three variables. In such
cases, when proofs are found, hardly any processor time spent in the resolution
part of the proof search, and nearly all the time is spent in QEPCAD-B. A
smarter approach to RCF will allow us to tackle harder problems, and to im-
prove the speed at which we solve problems. We describe an approach to such
improvements below.

1.1 Motivating Hypotheses

The following hypotheses motivate our work:

1. By studying the structure of the sequences of RCF subproblems MetiTarski
generates during its proof search, we can devise specialised RCF proof meth-
ods which outperform general “off the shelf” RCF proof methods on these
sequences of RCF subproblems.

2. By making use of these specialised RCF proof methods during MetiTarski’s
proof search, we can significantly improve MetiTarski’s performance.

The results in this paper strongly support these hypotheses. Moreover, ex-
trapolating from the particular case of MetiTarski, we believe this work supports
a broader hypothesis: That a methodology of studying the structure of generated
subproblems and specialising decision methods to them can lead to substantial
gains for many similarly arranged combinations of automatic proof methods.

1.2 Overview of Contributions

Based upon detailed analysis of the RCF subproblems generated by MetiTarski,
we have made the following improvements:

1. A method for quickly recognising the satisfiability of generated ∃ RCF sub-
problems through retaining, during any given MetiTarski run, a history of
past models produced for satisfiable RCF subproblems. This improvement
works because ∃ RCF subproblems generated during MetiTarski proof search
very often have models in common with each other. To instrument this im-
provement, we communicate models between MetiTarski and the external
RCF decision methods it invokes. When a retained past model consists only
of rational points, we test the model against new ∃ RCF subproblems from
within MetiTarski alone.

2. We observe that the univariate polynomials appearing in RCF subproblems
generated by MetiTarski are almost always irreducible over Z[x]. Thus, at-
tempting to factor them, which is a step applied by default by most RCF
decision methods known to us, is almost always a waste of time. For the
∃ RCF decision procedure in the SMT solver Z3 [4], we observe that per
RCF instance, disabling univariate factorisation has only a small speed-up,
usually less than 0.02 seconds.5 However, for typical univariate RCF sub-
problems, this speed-up is anywhere from 40% - 90% of the total decision
method run time. As MetiTarski may generate many thousands of RCF sub-
problems during its search for a single proof, each of which may contain
tens of different polynomials, this speed-up nontrivially aggregates, leading
to serious gains.

Methodologically, these improvements were motivated by extensive compu-
tational study of the RCF subproblems generated during MetiTarski proofs.6

5 The Z3 program we use in this paper is a new unreleased version with nlsat, a novel
approach to making ∃ RCF decisions. It (and an accompanying paper [7]) may be
retrieved: http://cs.nyu.edu/~dejan/nonlinear/.

6 This collection of RCF subproblems consists of over 400,000 ∃ RCF sentences, each
occurring in MetiTarski’s search for a proof of one of≈ 800 special function inequality
benchmarks drawn from many mathematical, scientific and engineering sources.

http://cs.nyu.edu/~dejan/nonlinear/

The success of these methods is supported by extensive experimentation as well.
As we shall see, their combination allows MetiTarski to find proofs much more
quickly than it can with non-specialised “off the shelf” RCF proof methods.

2 Model Sharing

Given ϕ, a universally quantified boolean combination of special function in-
equalities, MetiTarski attempts to prove ϕ through a combination of resolution
and RCF reasoning. For the MetiTarski problems considered in this paper, these
generated RCF subproblems are always purely ∃. We will say an ∃ RCF sen-
tence F is satisfiable if it is true, i.e., if ∃r ∈ Rn s.t. QF (F)(r) holds, where
QF (F) is the quantifier-free matrix of F . We say F is unsatisfiable otherwise.
Let F1, . . . , Fk be the sequence of RCF subproblems generated by MetiTarski
during its search for a proof of ϕ. Then, the following hold:

1. Fi only contributes to a MetiTarski proof when Fi is unsatisfiable over Rn,
2. Many of the Fi share common subexpressions with each other.

From the first point, we see that time spent analysing the truth of satisfiable
RCF subproblems is ultimately time wasted for MetiTarski. Thus, it is desir-
able to have methods for quickly recognising and throwing away satisfiable Fi.
Combining this desire with the second point above, we are led naturally to the
following question:

Given a satisfiable RCF subproblem Fi and a subsequent satisfiable RCF
subproblem Fi+k, is it often the case that Fi and Fi+k have a model in
common?

As we will see, the answer to this question is a resounding yes. These ob-
servations lead to one of our key improvements to MetiTarski: By recording in
MetiTarski models that an RCF decision procedure has found for satisfiable Fi’s,
we can gain a tremendous speed-up by using these past models to quickly recog-
nise the satisfiability of subsequently generated RCF subproblems. The overhead
involved in communicating, storing and testing these models is far outweighed
by the savings made through avoiding invoking an RCF decision method.

2.1 MetiTarski Proof Search in More Detail

To motivate this model-sharing improvement to MetiTarski, let us study the
sequence of RCF subproblems generated during MetiTarski’s search for a proof
of a particularly simple special function inequality.7 In our benchmark set, this
problem is named max-sin-2 and is the following claim over R:

7 This problem can in fact be solved quickly by Mathematica directly, using some
recent methods it contains for computing with transcendental functions [10]. We
focus on this problem in our discussion of MetiTarski’s proof search for didactic
reasons.

∀x ∈ (−8, 5) max(sin(x), sin(x+ 4), cos(x)) > 0.

In searching for a proof of this theorem, MetiTarski will make use of axioms
it knows for sin, cos and max. With default settings, and without using any of
the enhancements we describe in this paper, MetiTarski finds a proof consisting
of 600 steps. Each step is either a resolution step, a substitution step, an arith-
metical simplification step, or an RCF decision step. This proof makes use of
three different lower bounds and three different upper bounds for cos, six dif-
ferent upper bounds and six different lower bounds for sin, and two definitional
axioms for max. For example, one of the sin lower bounds used is the following:8

cnf(sin_lower_bound_5_neg, axiom,

(0 < X |

~lgen(R, Y,

X - 1/6 * X ^ 3 + 1/120 * X ^ 5 - 1/5040 * X ^ 7 +

1/362880 * X ^ 9 - 1/39916800 * X ^ 11 +

1/6227020800 * X ^ 13 - 1/1307674368000 * X ^ 15 +

1/355687428096000 * X ^ 17 - 1/121645100408832000 * X ^ 19

+ 1/51090942171709440000 * X ^ 21) | lgen(R, Y, sin(X)))).

Many of the intermediate clauses used in the proof contain very large polynomials
with high coefficient bit-width and degree. When pretty-printed to a text file at
75 columns per line, this proof consists of 12,453 lines.

Let us now examine some properties of MetiTarski’s search for this proof.
The total number of RCF inferences used in the proof is 62. But how many
RCF subproblems were generated and sent to an RCF decision procedure in
search of this proof? This number is much higher: 2,776. Of these subproblems,
2,221 are satisfiable. Thus, over 80% of the RCF subproblems generated cannot
contribute anything towards MetiTarski’s proof. Deciding their satisfiability is a
waste of time. This waste can be large, as the RCF subproblems are often very
complicated. For instance, the set of all polynomials appearing in these 2,776
RCF subproblems has the following statistics: max total degree is 24, average
total degree is 3.53, max coefficient bit-width is 103, and average coefficient
bit-width is 21.03.

To get an idea of the expense involved in deciding these satisfiable RCF
subproblems generated by MetiTarski, let us examine them using Mathemat-
ica’s Reduce command. This command is one of the best and most sophisticated
general-purpose tools for deciding RCF sentences, containing highly-tuned im-
plementations of a vast array of approaches to making RCF decisions [8,9].

Using Mathematica’s Reduce to decide all of these 2,776 RCF sentences, we
see that 253.33 seconds is spent in total. Of that time, 185.28 seconds is spent
deciding the satisfiable formulas. Thus, over 70% of the total RCF time for Meti-
Tarski’s proof search is spent deciding formulas which in the end can contribute

8 Here lgen(R, X, Y) is a generalised inequality relation. It eliminates the need to
have separate instances of the axiom for < and ≤.

nothing to MetiTarski’s proof. Such results are typical. Table 1 analyses ten rep-
resentative problems. For each, it displays the effort (in terms of the number of
RCF problems and the time taken deciding them), followed by the subset of this
effort that is wasted on satisfiable problems and finally the percentage of wasted
effort, again in terms of the number of problems and the time taken. We list the
contents of these problems in Table 2. Clearly, quick methods for identifying and
discarding satisfiable RCF subproblems could greatly improve performance.

Table 1. RCF Subproblem Analysis for Ten Typical Benchmarks

Problem All RCF SAT RCF % SAT

secs # secs # secs

CONVOI2-sincos 268 3.28 194 2.58 72% 79%

exp-problem-9 1213 6.25 731 4.11 60% 66%

log-fun-ineq-e-weak 496 31.50 323 20.60 65% 65%

max-sin-2 2776 253.33 2,221 185.28 80% 73%

sin-3425b 118 39.28 72 14.71 61% 37%

sqrt-problem-13-sqrt3 2031 22.90 1403 17.09 69% 75%

tan-1-1var-weak 817 19.5 458 7.60 56% 39%

trig-squared3 742 32.92 549 20.66 74% 63%

trig-squared4 847 45.29 637 20.78 75% 46%

trigpoly-3514-2 1070 17.66 934 14.85 87% 84%

Now, given our previous discussions, it is natural to ask the following: How
many of these satisfiable RCF subproblems share models with each other? Ob-
taining an exact answer to this question is certainly computationally infeasible.
However, we can obtain a lower bound. We will do this in the following simple
way: Whenever the RCF procedure decides a formula to be satisfiable, we will
ask it to report to us a model satisfying the formula, and we will store this model
within a model history data-structure in MetiTarski. Note that these models may
in general contain irrational real algebraic points. Whenever we encounter a new
RCF subproblem, we will first check, within MetiTarski, whether this RCF sub-
problem is satisfied by any rational model we have recorded within the model
history.

Performing this experiment, we see that at least 2,172 of the 2,221 satisfiable
RCF subproblems share a common model with a previously generated SAT RCF
subproblem. Moreover, only 37 separate rational models were used to satisfy all
of these 2,172 formulas. Note that these numbers are very much lower bounds,
as we (i) only consider the particular models previously recorded (i.e., perhaps
Fi and Fi+k share a model, but this common model is different than the one we
have recorded for Fi), and (ii) we have only considered common rational models.

In Table 3, we show this type of model sharing analysis for the same collection
of ten benchmark problems encountered previously. For each MetiTarski prob-

Table 2. Typical MetiTarski Benchmarks

CONVOI2-sincos

∀ t ∈ (0,∞), v ∈ (0,∞)

((1.565 + 0.313 v) cos(1.16 t) + (0.01340 + 0.00268 v) sin(1.16 t)) e−1.34 t

− (6.55 + 1.31 v) e−0.318 t + v + 10 ≥ 0

exp-problem-9

∀x ∈ (0,∞)

1− e−2 x

2x (1− e−x)2
− 1

x2
≤ 1

12

log-fun-ineq-e-weak

∀x ∈ (0, 12), y ∈ (−∞,∞)

xy ≤ 1

5
+ x ln(x) + ey−1

max-sin-2

∀x ∈ (−8, 5)

max(sin(x), sin(x+ 4), cos(x)) > 0

sin-3425b

∀x ∈ (0,∞), y ∈ (−∞,∞)

(x < y ∧ y2 < 6)⇒ sin(y)

sin(x)
≤ 10−4 +

y − 1
6
y3 + 1

120
y5

x− 1
6
x3 + 1

120
x5

sqrt-problem-13-sqrt3

∀x ∈ (0, 1)

1.914

√
1 + x−

√
1− x

4 +
√

1 + x+
√

1− x
≤ 0.01 +

x

2 +
√

1− x2

tan-1-1var-weak

∀x ∈ (0, 1.25)

tan(x)2 ≤ 1.75 10−7 + tan(1) tan(x2)

trig-squared3

∀x ∈ (−1, 1), y ∈ (−1, 1)

cos(x)2 − cos(y)2 ≤ − sin(x+ y) sin(x− y) + 0.25

trig-squared4

∀x ∈ (−1, 1), y ∈ (−1, 1)

cos(x)2 − cos(y)2 ≥ − sin(x+ y) sin(x− y)− 0.25

trigpoly-3514-2

∀x ∈ (−π, π)

2 | sin(x)|+ | sin(2x)| ≤ 9

π

lem considered, we show (i) the number of SAT RCF subproblems generated,
(ii) the number of those problems which could be recognised to be SAT using the
simple rational model-sharing described above, (iii) the number of different ra-

Table 3. Model Sharing Lower Bounds for Ten Typical Benchmarks

Problem # SAT # SAT by MS # Q Models # Successful

CONVOI2-sincos 194 168 9 7

exp-problem-9 731 720 11 7

log-fun-ineq-e-weak 323 305 24 18

max-sin-2 2,221 2,172 37 37

sin-3425b 72 64 8 6

sqrt-problem-13-sqrt3 1403 1350 26 21

tan-1-1var-weak 458 445 13 9

trig-squared3 549 280 15 11

trig-squared4 637 497 21 16

trigpoly-3514-2 934 4 4 2

tional models stored in MetiTarski’s model history, and (iv) the number of those
models which were successfully shared between at least two RCF subproblems
(the successful models in the model history). We see that with the exception of
trigpoly-3514-2, a very large majority of the SAT RCF subproblems can be
recognised to be satisfiable through the use of past rational models. We have
found the vast majority of our benchmark problems to exhibit behaviour con-
sistent with the first nine problems in the table. We note that of those problems
considered, trigpoly-3514-2 is the only one involving π, which is approximated
by MetiTarski using rational upper and lower bounds. Perhaps the presence of
π in the problem has something to do with why its rational model sharing lower
bounds are so much lower than the rest.

Clearly, there is much potential for improving MetiTarski through using past
models of SAT RCF subproblems to quickly recognise subsequent SAT RCF
subproblems. However, we have found that in some cases, the cost of finding a
suitable model in our model history can be quite high. This is due to the fact
that evaluating very large RCF formulas upon rational numbers of very large
bit-width can become expensive (even if somewhat sophisticated approaches to
polynomial sign determination are employed).

To efficiently apply this model-sharing technique in the context of Meti-
Tarski’s proof search, we have found it necessary to seek some heuristic methods
for prioritising the models based upon their success rates in recognising SAT
RCF subproblems. Through experimentation, we have found that prioritising
models based upon recent success to be most useful. We store all rational mod-
els within MetiTarski, but maintain at any time a list of the ten most successful
models, ordered descendingly by how recently they have been successfully ap-
plied to recognise a SAT RCF subproblem. When a new RCF subproblem is
encountered, we first try the prioritised models in order. If that fails, then we
try the remaining models in our model history, this time in an order based solely
upon success rate.

3 Univariate Factorisations

RCF decision procedures typically devote a significant effort to factoring polyno-
mials, effort that is wasted if a polynomial is irreducible. In our case, it has turned
out that most of the polynomials generated by MetiTarski are irreducible. This is
presumably because most of the polynomials we use to bound special functions
are themselves irreducible. Frequently, a bound is the ratio of two polynomi-
als; MetiTarski will then multiply both sides by the denominator. The resulting
simplifications do not necessarily have to yield another irreducible polynomial;
empirically, however, this usually happens.

Of the well-known transcendental functions, polynomials involved in their
bounds used by MetiTarski only have very simple factors, if they have any at
all. In the case of the functions sin(X) and tan−1(X), this factor is simply X,
which is unsurprising because their value is zero when X = 0. Similarly, for the
function ln(X), some polynomials have X − 1 as a factor. On the other hand,
bounds for the function sqrt(X) have many non-trivial factors. Note that the
square root bounds are derived using Newton’s method, while most other bounds
come from Taylor series or continued fractions.

Table 4. Factorisation in RCF Subproblems for Typical Univariate Benchmarks

Problem # Factor # Irreducible % Runtime

asin-8-sqrt2 7791 5975 (76.7%) 22.4%

atan-problem-2-sqrt-weakest21 65304 63522 (97.3%) 55.4%

atan-problem-2-weakest21 9882 8552 (86.5%) 2.2%

cbrt-problem-5a 88986 61068 (68.6%) 38.6%

cbrt-problem-5b-weak 138861 25107 (18.0%) 53.1%

cos-3411-a-weak 150354 138592 (92.1%) 53.9%

ellipse-check-2-weak2 5236 3740 (71.4%) 88.7%

ellipse-check-3-ln 1724 1284 (74.4%) 86.7%

ellipse-check-3-weak 12722 9464 (74.3%) 77.9%

Table 4 analyses a representative set of MetiTarski problems. For each, it
displays the number of times the factorisation subprocedure is invoked in Z3,
the number of times the polynomial argument is irreducible, the percentage of
irreducible polynomials, and the percentage of runtime spent in the factorisation
subprocedure.9

For univariate benchmarks, we observed that the overhead of polynomial
factorisation is quite significant. Moreover, our RCF procedure in Z3 does not
seem to benefit from factorisation as a preprocessing step even when polynomials
can be factored. Consider the problem instances ellipse-check-2-weak2 and

9 These experiments were performed on an Intel Core i7-2620M 2.70GHz with 8GB
RAM running Windows 7 64-bit.

ellipse-check-3-weak from Table 4. MetiTarski creates respectively 803 and
1569 RCF subproblems for these instances. The RCF procedure in Z3 spends
respectively 88.69% and 77.95% of the runtime in the polynomial factorisation
subprocedure. Although each instance can be solved in less than 20 milliseconds,
a signficant amount of time can be saved by disabling the factorisation subpro-
cedure. The experimental results in Sect. 4 demonstrate that this indeed the
case.

4 Experimental Results

We have compared four separate MetiTarski runs using different RCF decision
procedures: QEPCAD, Mathematica, Z3 and finally our specially modified ver-
sion of Z3 incorporating the reduced factorisation strategy (cf. Sect. 3) and pri-
oritised model-sharing (cf. Sect. 2).10 We have allowed up to 120 seconds per
problem, using a Perl script to count how many theorems were proved in 10, 20,
. . . , 120 seconds processor time (the total of the time spent in proof search and
RCF calls). These experiments used a subset of 409 problems taken from our full
set of 853 problems. This subset omits trivial problems (defined as those that
can be proved in less than one second). It also omits the existential problems, of
which there are 39, because none of the new methods work for them.11 Figure 1
displays our results:12

For runtimes up to about 60 seconds, the graphs show a clear advantage for
Z3 as modified using Strategy 1, but even unmodified Z3 does very well. By
120 seconds, all four runs appear to converge. This conclusion is not quite accu-
rate, as the different decision procedures are succeeding on different problems.
Mathematica does particularly well on problems with three or more variables.
QEPCAD cannot prove many of these, but it does very well on univariate prob-
lems. As more processor time is allowed, Mathematica is able to prove more
theorems that only it can prove, giving it an advantage.

We also compared the four decision procedures in terms of the number of
problems for which they find the fastest proof. We use a threshold in this com-
parison, counting a proof only if it is faster by a given margin (10%, 50% or
100%, respectively) than all other proofs found; these results appear in Figure 2.

With a threshold of 10% faster, Z3 modified by Strategy 1 dramatically out-
performs all other decision procedures. Its advantage decreases rapidly as this
threshold is increased, while Mathematica’s score largely holds steady. The sit-
uation is complicated by unique proofs: 18 theorems are proved by one system

10 These experiments were performed on a 2×2.4 GHz Quad-Core Intel Xeon PowerMac
with 10GB of 1066 MHz DDR3 RAM using QEPCAD-B 1.62, Mathematica 8.0.1
and Z3 4.0. This same machine and Mathematica installation were used for the
experiments in Sect. 2.

11 The extension to MetiTarski allowing existentially-quantified problems must be seen
as experimental. It only works on trivial problems such as ∀y ∃x sinhx > y.

12 There is a web resource for this paper containing the MetiTarski source code, bench-
marks and related data: http://www.cl.cam.ac.uk/~gp351/cicm2012/.

http://www.cl.cam.ac.uk/~gp351/cicm2012/

0 20 40 60 80 100 120
0%

10%

20%

30%

40%

50%

60%

70%
Z3 + Strategy 1

Z3

QEPCAD

Mathematica

Fig. 1. Theorems Proved (by percentage of the total)

only, and of these, Mathematica proves 15. (QEPCAD-B proves one, while mod-
ified Z3 proves two.) Mathematica’s superiority for higher-dimensional problems
(each theorem that it uniquely proves has at least two variables, generally more)
gives it an advantage as the threshold is increased, because a unique proof will
always be counted as the fastest. If the threshold is pushed high enough, only
unique proofs will be counted, and here Mathematica has an inbuilt advantage.
Modified Z3 remains top even with the threshold of 200% faster (which means
three times faster). Mathematica finally wins at four times faster, with 17 prob-
lems against 8 for modified Z3, but these are mostly unique proofs rather than
faster proofs.

Our data suggest another question: how is it that QEPCAD-B so often out-
performs Mathematica, especially on univariate problems? Mathematica has
much better algorithms for real algebraic numbers, and is generally more up-
to-date. Overheads outside of Mathematica’s core RCF decision procedure are
presumably to blame. At present, we do not know whether these overheads are
concerned with parsing, preprocessing or something else altogether.

5 Future Work

We see many ways this work might be improved and extended. First, we would
like to better understand how the lineage of RCF subproblems (i.e., the clauses
from which the RCF subproblems were generated) influences model sharing. If
two SAT RCF subproblems share a common ancestry, is it more likely that
they might share a model? This seems likely. It seems plausible that lineage-
based methods for prioritising which stored models we should try may yield
serious efficiency improvements. It would also be very interesting to incorporate
machine learning into this process. Second, we would like to make use of irrational
real algebraic models in our model-sharing machinery. Currently, only rational
models are used to recognise SAT RCF subproblems from within MetiTarski.

0

30

60

90

120

150

Z3 + Str 1Z3QEPCADMathematica

0

10

20

30

40

50

60

70

80

Z3 + Str 1Z3QEPCADMathematica

0

10

20

30

40

50

60

Z3 + Str 1Z3QEPCADMathematica

(10% faster)

(50% faster)

(100% faster)

Fig. 2. Number of Fastest Proofs (by the Given Threshold) Per Run

One approach which interests us involves using retained real algebraic models to
guide an RCF proof procedure towards certain regions of Rn. This may involve
combining techniques based upon interval constraint propagation and paving [5]
to guide the manner in which Z3 explores its search space, for instance.

6 Conclusion

We have shown that through detailed analysis of the RCF subproblems generated
during MetiTarski’s proof search, we can devise specialised variants of RCF
decision procedures that greatly outperform general-purpose methods on these
problems.

The approach described here is applicable to the design of any expensive
proof procedure. Given a sufficiently large corpus of representative problems,
the general-purpose procedure can be tuned, which should yield dramatically
better results. This principle also applies when proof procedures are combined:
the subsidiary proof engine should not be viewed as a black box, but should be
refined by analysing the generated problems given to it. It follows that expensive
proof procedures should offer easy customisation so that their users can try such
refinements with the least effort.

Acknowledgements. The research was supported by the Engineering and Physical
Sciences Research Council [grant numbers EP/I011005/1 and EP/I010335/1].
We thank the referees for their helpful suggestions which improved our paper.

References

1. B. Akbarpour and L. Paulson. MetiTarski: An Automatic Theorem Prover for
Real-Valued Special Functions. Journal of Automated Reasoning, 44(3):175–205,
Mar. 2010.

2. C. W. Brown. QEPCAD-B: A System for Computing with Semi-algebraic Sets via
Cylindrical Algebraic Decomposition. SIGSAM Bull., 38:23–24, March 2004.

3. J. H. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential.
J. Symb. Comput., 5:29–35, 1988.

4. L. de Moura and N. Björner. Z3: An efficient SMT solver. In TACAS’08, 2008.
5. L. Granvilliers and F. Benhamou. RealPaver: An Interval Solver using Constraint

Satisfaction Techniques. ACM Trans. on Mathematical Software, 32:138–156, 2006.
6. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid sys-

tems. In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in
Computer Science, pages 190–203. Springer, 2008.

7. D. Jovanovic̀ and L. de Moura. Solving Nonlinear Arithmetic. In IJCAR’12, 2012.
8. A. Strzebonski. Solving Systems of Strict Polynomial Inequalities. Journal of

Symbolic Computation, 29(3):471 – 480, 2000.
9. A. Strzebonski. Cylindrical Algebraic Decomposition using Validated Numerics.

Journal of Symbolic Computation, 41(9):1021 – 1038, 2006.
10. A. Strzebonski. Real Root Isolation for Tame Elementary Functions. In Proceed-

ings of the 2009 international symposium on Symbolic and algebraic computation,
ISSAC ’09, pages 341–350, New York, NY, USA, 2009. ACM.

	Real Algebraic Strategies for MetiTarski Proofs

