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Abstract

This paper formulates and implements a finite deformation theory of bifurcation of elastoplastic solids to planar

bands within the framework of multiplicative plasticity. Conditions for the onset of strain localization are based on the

requirement of continuity of the nominal traction vector, and are described both in the reference and deformed con-

figurations by the vanishing of the determinant of either the Lagrangian or Eulerian acoustic tensor. The relevant

acoustic tensors are derived in closed form to examine the localization properties of a class of elastoplastic constitutive

models with smooth yield surfaces appropriate for pressure-sensitive dilatant/frictional materials. A link between the

development of regularized strong discontinuity and its unregularized counterpart at the onset of localization is also

discussed. The model is implemented numerically to study shear band mode bifurcation of dilatant frictional materials

in plane strain compression. Results of the analysis show that finite deformation effects do enhance strain localization,

and that with geometric nonlinearities bifurcation to shear band mode is possible even in the hardening regime of an

associative elastoplastic constitutive model.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Strain localization has attracted much research attention lately and is presently in the center of current

research interests in many areas of engineering due to its significant influence on the behavior of a vast

number of engineering materials. Specific examples demonstrating strain localization phenomena include

L€uuders bands and necking in metals, shear bands in paraffin, rock faults in marble and sandstone, shear

bands in soils, micro-cracking in concrete, and necking in polymers [1–8]. Generally considered a result of
material instability [9], strain localization plays a critical role in describing the failure and near-failure

responses of many engineering structures.
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Instabilities are influenced by existing defects or imperfections in a material that may be viewed other-
wise as homogeneous on a larger scale. However, accurate representation of these imperfections are difficult

if not impossible. In this paper, we view material instability as resulting from possible bifurcation of the

macroscopic, inelastic constitutive behavior. Here, the material in question permits the governing field

equations to be satisfied for an alternate field. Significant contributions toward the development of the

localization theory have been made by Hadamard [10], Hill [11], Thomas [12], and Mandel [13] within the

context of acceleration waves in elastoplastic solids.

A specific instability problem we seek to address concerns the bifurcation of a nonlinear continuum into

a planar band where either the velocity gradient field or the velocity field is discontinuous. Current work on
this topic has progressed at a very rapid pace, and now has addressed not only the case of elastoplastic

responses [14–16] but also the case of hypoplastic responses [17–20]. A complicating factor concerns the

incremental nonlinearity of the constitutive response which makes the bifurcation analysis less straight-

forward. Incremental nonlinearity could arise from the specific type of a constitutive response in which the

tangent operator may depend on the velocity gradient, and hence, on the direction of the imposed incre-

mental deformation. In elastoplasticity, incremental nonlinearity could arise at the inception of localization

from possible combination of plastic loading and elastic unloading on either side of the band.

A majority of research effort in bifurcation analysis has focused primarily on the geometrically linear
case where the deformation is infinitesimal. In general, any result derived from such analysis must be taken

with caution since geometric nonlinearities play a very crucial role in the theory of bifurcation [21]. It

suffices to recall the Euler buckling of columns to underscore this last statement [22]. In general, geometric

effects have a profound impact when the stresses are in the same order of magnitude as the tangential

moduli since they tend to destroy the symmetry of the tangent operator, and so are expected to enhance

strain localization.

Efforts to generalize the theory of shear band bifurcation to include geometric nonlinearities have been

hampered by the lack of well-structured finite deformation theory and algorithm that can be used for
general multipurpose numerical codes. The widely used finite deformation theory based on hypoelastic

formulation has been the subject of some controversy only settled in recent years [23], both on the theo-

retical formulation side as well as on the numerical implementation aspects. In localization analysis, where

the tangent operator is used directly to detect bifurcation, the lack of a unique objective stress rate to use in

the expression for the acoustic tensor renders the resulting bifurcation analysis questionable. Efforts also

have been made to cast the infinitesimal plasticity theory to the finite deformation regime via the use of the

generalized Lagrangian stresses and strains [24–26]. However, the formulation has not found much success

in computer codes, and to date no well-developed algorithm based on this approach is available [22].
Research on finite deformation elastoplasticity based on a multiplicative decomposition of the defor-

mation gradient has received much attention in the computational mechanics community in recent years

[23,27–30]. This formulation has a hyperelastic constitutive basis, and some versions are amenable to

computer implementation based on simple extensions of so-called return-mapping algorithms of the in-

finitesimal plasticity theory [30]. Unfortunately, efforts to utilize this approach to study shear band bi-

furcation are limited. The unregularized strong discontinuity formulation of Armero and Garikipati [31]

and the regularized strong discontinuity stability analyses of Larsson and co-workers [32,33] provide

critical starting points. However, they arrived at two different localization criteria for strong discontinuity
bifurcation in elastoplastic solids that have no semblance to each other, except in the perfectly plastic case.

In this paper we show that the difference between the two localization criteria lies in the postulated change

in the character of the constitutive response at the bifurcation point.

It is well known that predictions of shear bands as a bifurcation from homogeneous deformation are

strongly dependent on the constitutive description of homogeneous deformation. Unfortunately, two-

invariant plasticity models may be inadequate for predicting the bifurcation point. Holcomb and Rudnicki

[34] used a two-invariant plasticity model to predict the localization properties of Tennessee marble. They
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concluded that the model could not predict any localization in the axisymmetric case––they found the
required critical hardening modulus to be so negative that the model prediction never softened enough to

reach this value. In contrast, a post-test examination of the specimens revealed that localization in the form

of faulting did occur in most of the specimens. This problem is not restricted to their plasticity model but is

emblematic of other simplified constitutive hypotheses in general [35]. The absence of the third stress in-

variant may have contributed to the model�s poor prediction of the bifurcation point. In this paper, we

address this concern by using in some of the numerical examples a class of three-invariant plasticity models

with smooth yield surfaces to predict the localization properties of elastoplastic solids in the presence of

large deformation.

2. General formulation for shear band mode bifurcation

In this section we establish a general framework for finite deformation bifurcation analysis of inelastic

solids, focusing on the condition for the inception of a shear band in an initially homogeneously deforming

continuum. The notations and symbols used throughout this paper are as follows: bold-face letters denote

matrices and vectors; the symbol ��� denotes an inner product of two vectors (e.g. a � b ¼ aibi), or a single
contraction of adjacent indices of two tensors (e.g. c � d ¼ cijdjk); the symbol �:� denotes an inner product of

two second-order tensors (e.g. c : d ¼ cijdij), or a double contraction of adjacent indices of tensors of rank

two and higher (e.g. C : �e ¼ Cijkl�e
kl).

2.1. Shear band kinematics

Let / : B! B0 be a C1 configuration of B in B0, where B and B0 are general manifolds. The defor-

mation gradient F is the tangent of /, F ¼ T/, so that for any material point X in B we have the linear
transformation FðX Þ: TXB! T/ðX ÞB

0. In coordinate form,

FaAðX Þ ¼
o/a
oXA

ðX Þ () FðX Þ ¼ o/

oX
ðX Þ: ð2:1Þ

We recall the symmetric right and left Cauchy–Green deformation tensors, C and b, respectively, from

the relations

C ¼ F t � F; b ¼ F � F t: ð2:2Þ
In addition, four stress tensors are commonly encountered in the literature and will be used extensively

throughout this paper: the nonsymmetric tensor P ¼ first Piola–Kirchhoff, and the symmetric tensors

r ¼ Cauchy, s ¼ Kirchhoff (true), and S ¼ second Piola–Kirchhoff. They are related via the relationships

S ¼ F	1 � P ¼ F	1 � s � F	t ¼ JF	1 � r � F	t; ð2:3Þ

where J ¼ detðFÞ is the Jacobian.

In the presence of a shear band the kinematics of the problem changes slightly, as shown in Fig. 1. Here,

B 
 Rnsd represents the reference configuration of a body with smooth boundary oB, and X represents the

position vector of any material point X in B. Let us consider a smooth manifold S0 
 B and denote points

in S0 by Y through the parameters n1, n2 so that

S0 ¼ fY ¼ bYY ðn1; n2Þjðn1; n2Þ 2 Bg; ð2:4Þ
where bYY : B! Rnsd is a smooth global parameterization. Thus, the unit normal to S0 is

N ¼ bNN ðn1; n2Þ ¼ bYY ;1 � bYY ;2=k bYY ;1 � bYY ;2k: ð2:5Þ
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The above parameterization for S0 provides a convenient normal parameterization in the (closed) shear

band domain D0 ¼S0 � ½0; h0� so that any material position vector bXX in the shear band is defined by the

mappingbXX ðn1; n2; jÞ ¼ bYY ðn1; n2Þ þ j bNN ðn1; n2Þ for 06 j6 h0: ð2:6Þ
Thus, if we denote the curvilinear basis f bYY ;1; bYY ;2; bNNg associated with the normal parameterization, then the

gradient of any function f ¼ f ðn1; n2; jÞ in D0 is ðof =ojÞ bNN . In addition, a second smooth surface bS0 is

produced by the set relationbS0 ¼ fY ¼ bXX ðn1; n2; h0Þjðn1; n2Þ 2 Bg ð2:7Þ
so that S0 and bS0 are opposite surfaces representing the boundaries of the finite shear band as defined in

the reference configuration. Throughout this paper, we will assume that the thickness parameter h0 is small,

and when h0 ¼ 0 then S0 ¼ bS0.

Next define the velocity field of any material point X in B by the ramp-like relation

VðX Þ ¼
V if j6 0;
V þ jsVt=h0 if 06 j6 h0;
V þ sVt if j P h0;

8<: ð2:8Þ

where V ¼ VðX Þ is a continuous velocity field, and sVt represents the relative velocity of bS0 to S0 induced

by the shear band deformation, see Fig. 2. We recall that the material velocity VðX Þ of point X is equal to

the spatial velocity vðxÞ of point x if the spatial point x is the same material point X in the reference

configuration, i.e., V t ¼ vt � /t for any time t. A similar remark may be made with respect to the relative

velocity vector, i.e., sVt ¼ svt. Assuming sVt is sufficiently uniform over bS0, then the corresponding time

derivatives of the deformation gradient tensor F outside and inside the shear band take the form

Fig. 1. Normal parameterization of shear band geometry with respect to reference and deformed configurations.
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_FF ¼
_FF in B nD0;
_FF þ ðsVt�NÞ=h0 in D0;

(
ð2:9Þ

where _FF ¼ GRADV , _FF ¼ GRADV , and D0 ¼S0 � ð0; h0Þ is the (open) shear band domain. Note that

whereas _FF is postulated to be possibly discontinuous on S0 (and bS0), F is still smooth and continuous

across the shear band before and at the moment of bifurcation. Evaluating just inside and just outside S0,

we obtain the relation

_FF1 ¼ _FF0 þ 1

h0

sVt�N : ð2:10Þ

Throughout this paper we will use the superscript symbols ‘‘1’’ and ‘‘0’’ to refer to points on S0 interpreted

to lie just inside and just outside the band, respectively.

The results presented above may be used to derive expressions for the spatial velocity gradient inside and

outside the shear band. Recalling the identity l ¼ _FF � F	1, and noting that F � F until the inception of
localization, we obtain from (2.9)

l ¼
�ll in /ðBÞ nD;
�ll þ ðsVt�N � F	1Þ=h0 in D;

�
ð2:11Þ

where �ll ¼ _FF � F	1 ¼ _FF � F	1
and D ¼ /ðD0Þ.

The expression for the velocity gradient inside the shear band can be rewritten in spatial form by a

similar reparameterization as follows. Consider the manifold S ¼ /ðS0Þ and denote points in S by y so
that

S ¼ fy ¼ byyðf1; f2Þjðf1; f2Þ 2 /ðBÞg; ð2:12Þ
where again, ŷy : /ðBÞ ! Rnsd is a smooth global parameterization. Thus, the unit normal to S is

n ¼ n̂nðf1; f2Þ ¼ ŷy;1 � ŷy;2=kŷy;1 � ŷy;2k; ð2:13Þ

and so any point x̂x in the shear band is defined by the mapping

x̂xðf1; f2; jÞ ¼ ŷyðf1; f2Þ þ jn̂nðf1; f2Þ for 06 j6 h; ð2:14Þ
where the thickness parameter h is again assumed to be small.

Fig. 2. Relative velocities and kinematics of motion of a material vector across a shear band.
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With this new normal parameterization the velocity field of any point x in /ðBÞ may be defined by the
ramp-like relation

vðxÞ ¼
�vv if j6 0;

�vvþ jsvt=h if 06 j6 h;
�vvþ svt if jP h;

8<: ð2:15Þ

where �vvt ¼ V t � /	1
t is the inverse mapping of the velocity field. Thus, with respect to a new curvilinear basis

fŷy;1; ŷy;2; n̂ng associated with this new parameterization the velocity gradients may be determined directly as

l ¼
�ll in /ðBÞ nD;
�ll þ ðsvt� nÞ=h in D:

�
ð2:16Þ

Evaluating just inside and just outside S, we obtain the relation

l1 ¼ l0 þ 1

h
svt� n ð2:17Þ

with superscripts ‘‘1’’ and ‘‘0’’ taking on the same meaning as before.

Comparing (2.11) and (2.16), we see that

N � F	1=h0 ¼ n=h; sVt ¼ svt � /: ð2:18Þ

This result has two geometric interpretations. First, take the scalar product of the first term of (2.18) with n
and assume that h is given. Thus, d‘ ¼ hn and a pull back to X gives

h0 ¼ N � F	1 � d‘ ¼ N � deLL: ð2:19Þ

Hence, h0 is the normal projection of the elemental length deLL to the surface S0. Now, assume that h0 is

given and let dL ¼ h0N . A push forward to x gives

h ¼ n � F � dL ¼ n � d~‘‘; ð2:20Þ

implying that h is now the normal projection of the elemental length d~‘‘ to S. A pictorial representation of

the shear band kinematics relating the operations indicated in (2.18)–(2.20) is shown in Fig. 2.

Remark 1. Nanson�s formula states that nda ¼ JF	t �N dA, where da and dA are infinitesimal surface areas

whose unit normals are n and N, respectively, and J is the jacobian [26]. Let dv ¼ hda, dV ¼ h0 dA, and note

that J ¼ dv=dV and ðF	t �NÞi ¼ ðN � F
	1Þi. By inserting these into the above formula, one recovers the first

term of (2.18).

In the limit of zero shear band thickness sVt becomes a velocity jump discontinuity, and the velocity

field takes the form

V ¼ V þ sVtHSðX Þ; HSðX Þ ¼
1 if X 2 Bþ;
0 if X 2 B	;

�
ð2:21Þ

where V is the continuous part of V, Bþ is the part of B in front of the band, and B	 is the part behind the

band, see Fig. 1. In this case, theory of distribution may be used to express _FF in the singular form

_FF ¼
_FF in B nS0;

_FF þ ðsVt�NÞdS \in S0";

(
ð2:22Þ
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where quotes are used in the phrase ‘‘in S0’’ since the shear band volume actually vanishes in the limit.

Thus,

_FF1 ¼ _FF0 þ ðsVt�NÞdS; ð2:23Þ

where dS is the Dirac delta symbol.

Similarly, in the limit of zero band thickness the velocity field can be defined as

v ¼ �vvþ svtHSðxÞ; HSðxÞ ¼
1 if x 2 /ðBþÞ;
0 if x 2 /ðB	Þ:

�
ð2:24Þ

In this case the velocity gradient reduces to the form

l ¼
�ll in /ðBÞ nS;
�ll þ ðsvt� nÞdS \in S"

�
ð2:25Þ

and

l1 ¼ l0 þ ðsvt� nÞdS: ð2:26Þ

We shall refer to the limiting case h ¼ h0 ¼ 0 as �strong discontinuity� [35], as opposed to the case where

h and h0 are small but finite which we shall refer to as �weak discontinuity�.

2.2. Localization condition

For simplicity, attention will be restricted to the usual quasi-static problem focusing on the initiation of

strain localization. In deriving the local equations of equilibrium for the problem at hand, our point of
departure is the weak form of the linear momentum balance [36]

Jð/; gÞ ¼
Z
B

ðGRADg : P 	 q0g � GÞdV 	
Z
oBt

g � tdA; ð2:27Þ

where q0G is the reference body force vector, t ¼ P � m is the nominal traction vector on oBt 
 oB, m is the

unit vector on oBt, and g is the weighting function. We assume the usual decomposition of boundaries,

oBt [ oB/ ¼ oB and oBt \ oB/ ¼ ;, where oB/ and oBt are the Dirichlet and Neumann boundaries,

respectively.
In the presence of a shear band defined by the surface eS0, we can use integration by parts and Gauss

theorem on the first term of J to obtainZ
BneS0

GRADg : PdV ¼ 	
Z
BneS0

g �DIVPdV þ
Z
eS0

g � ðsP �NtÞdAþ
Z
oBt

g � ðP � mÞdA; ð2:28Þ

where N is the unit normal vector to eS0 and sP �Nt is a possible jump in the nominal traction vector acrosseS0. Inserting into (2.27) and setting Jð/; gÞ ¼ 0, a standard argument yields

DIVP þ q0G ¼ 0 in B n eS0; ð2:29aÞ

P � m ¼ t on oBt; ð2:29bÞ
supplemented with the condition

sP �Nt ¼ sPt �N ¼ 0 on eS0: ð2:30Þ
This suggests the suitability of the nominal traction vector t for shear band mode bifurcation analysis.
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Let us now take the following linearization of J at configuration /�

LJ ¼ J� þ dJ; ð2:31Þ

where dJ is the usual variation of J. Here, we investigate shear band mode bifurcation to possibly initiate

at the configuration J� and seek a critical direction, or set of directions, allowing such bifurcation to occur

from among the bundle of possible variations dJ. For dead loading the variation of J takes the form

dJ ¼
Z
B

GRADg : A : dF dV 	
Z
oBt

g � dtdA; ð2:32Þ

where dF is the variation of the deformation gradient tensor, dt is the variation of the nominal traction

vector, and A is the first tangential moduli tensor defined explicitly by the relation

dP ¼ A : dF; A ¼ oP

oF
; AiAjB ¼

oPiA
oFjB

: ð2:33Þ

In the presence of a shear band we can again use integration by parts and Gauss theorem on the first term

of dJ as before. Inserting the result into (2.32) and setting dJ ¼ 0 yields the conditions

DIVðA : dFÞ ¼ 0 in B n eS0; ð2:34aÞ

ðA : dFÞ � m ¼ dt on oBt; ð2:34bÞ
supplemented with the condition

sA : dFt �N ¼ 0 on eS0: ð2:35Þ
If the tangent operator A is continuous across the band, then (2.35) specializes to ðA : sdFtÞ �N ¼ 0 oneS0, where sdFt is the jump in the variation of the deformation gradient. In this case, an equivalent ex-

pression for dF is facilitated by the rate _FF itself, whose jump across the shear band is s _FFt ¼ sVt�N=h0.

Thus, for the case of a continuous A, (2.35) results in the jump condition

1

h0

A � sVt ¼ 0; Aij ¼ NAAiAjBNB: ð2:36Þ

For h0 6¼ 0, nontrivial solutions to (2.36) exist if and only if

detA ¼ 0: ð2:37Þ
Eq. (2.37) is a necessary condition for shear band mode bifurcation at finite strain and requires the initial

vanishing of the determinant of so-called acoustic tensor A for some critical orientation N. This particular

form of the localization condition is the same as that presented by Bigoni [22]. Because N determines the

critical unit normal vector in the reference configuration, we shall refer to A as the Lagrangian acoustic

tensor.

In general, the constitutive operator A may depend on the mode of bifurcation and on the direction of

the imposed deformation, particularly when the model is incrementally nonlinear. To overcome the diffi-
culty associated with the possible nonlinearity of this constitutive operator, Hill [11] and Raniecki and

Bruhns [37] proposed linear comparison solids which provide lower bound solutions to the range of pos-

sible bifurcations. For localization into a planar band mode the nonlinearity of the constitutive operator A
arises from possible combinations of loading and unloading inside and outside the band, as well as on

vertex effects [16,38]. As shown in [39,40], the latter effects naturally lead to a noncoaxiality between the

principal stresses and principal plastic rates of deformation. In this paper we shall limit the discussion to

conventional co-axial plasticity models where the principal directions of the stresses and the plastic rates of

deformation coincide.
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2.3. Strong discontinuity bifurcation

The limiting case h ¼ h0 ¼ 0 has been termed �strong discontinuity� in the literature [31–33,35,41–46],

and has attracted much research attention lately because it facilitates a convenient finite element imple-

mentation within the framework of embedded discontinuity approaches. A peculiar feature of strong

discontinuity kinematics is the development of a singular deformation gradient field as the shear band

volume shrinks to zero. Bifurcation to such shear band mode requires appropriate interpretation of the

localization criteria, heretofore based on the requirement that the nominal traction rate be continuous
across the shear band, since strong discontinuity kinematics does not provide any finite volume ‘‘inside the

band’’ on which to apply such traction continuity criterion.

The problem becomes more evident if one considers the traction jump condition for the regularized model,

1

h0

A � sVt ¼ 0: ð2:38Þ

In an unregularized strongly discontinuous field h0 ¼ 0, and sVt becomes a finite velocity jump. Clearly,

nothing can be said of the nominal traction jump from (2.38), even if the determinant of A is forced to

vanish, since strong discontinuity kinematics produces an indeterminate condition on the left-hand side that

does not guarantee continuity of the nominal traction rate. A different interpretation of the localization

condition is thus in order.

Consider the discontinuous velocity field (2.21) with corresponding time-derivatives of the deformation
gradient, (2.22). At the moment of bifurcation the limiting nominal traction rate as h0 ! 0 on any material

point X ‘‘inside the shear band’’ is

_tt1ðX Þ ¼ lim
h0!0

ðA : _FFÞ �N jX ¼ ðA : _FFÞ �N jX þ ½A : ðsVt�NÞ� �N jXdS: ð2:39Þ

Now, in order for the nominal traction rate to be bounded, we must have

½A : ðsVt�NÞ� �N jX ¼ 0) detAðX Þ ¼ 0 ð2:40Þ
for some critical shear band orientation N . Thus, in the strong discontinuity limit the determinant con-

dition simply guarantees the boundedness of the nominal traction rate, and not necessarily the continuity of

the traction rate across the band.

Because the shear band volume vanishes in the limit, it suffices to establish continuity of the nominal

traction rates outside the two touching sides of the band, S0 ¼ bS0, see definitions (2.4) and (2.7). To this

end, let Xþ and X	 denote material point X interpreted as belonging to Bþ and B	 on opposite sides of S0,
respectively. The corresponding nominal traction rates are

_tt0ðXþÞ ¼ ðA : _FFÞ �N jXþ ; _tt0ðX	Þ ¼ ðA : _FFÞ �N jX	 : ð2:41Þ
Now, since A, _FF and N are all continuous at point X, then _tt0ðXþÞ ¼ _tt0ðX	Þ ¼ _tt0ðX Þ, and the nominal

traction rates on opposite sides of the band are continuous. As noted earlier, nothing can be said of the

nominal traction rate ‘‘inside the band,’’ _tt1ðX Þ, except that it is bounded, since the shear band volume
vanishes in the limit. Thus, the localization criteria for h 6¼ 0 apply equally well to the limiting case h ¼ 0

provided that the condition of traction continuity is interpreted in the above sense.

2.4. Tangent operators

The two-point tensor A can be related to other tangential moduli tensors used in nonlinear continuum

mechanics. Here, we are interested in a rate constitutive equation relating the Kichhoff stress rate tensor to

the spatial velocity gradient via the relation

_ss ¼ a : l; ð2:42Þ
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where a is a fourth-order spatial tangential moduli tensor. Denoting the tangential moduli CABCD ¼ oSAB=
oCCD, where CCD is the component of the right Cauchy–Green deformation tensor C , then we readily obtain

the following analytical expression for a

a ¼ cþ s� 1þ s� 1; cijkl ¼ 2FiAFjBFkCFlDCABCD; ð2:43Þ

where ðs� 1Þijkl ¼ sjldik and ðs� 1Þijkl ¼ sildjk. The above expression can readily be verified by substituting

directly into (2.42) to obtain

_ss ¼ c : d þ l � sþ s � l t; ð2:44Þ

where d ¼ symðlÞ is the rate of deformation tensor, and c : d � c : l after noting the minor symmetry of c
with respect to the indices k and l, cf. Eq. (38.4) of [47].

Since s ¼ P � F t, time differentiation gives

_ss ¼ P � _FF t þ _PP � F t: ð2:45Þ

The first term on the right-hand side yields

P � _FF t ¼ P � ðl � FÞt ¼ ðs� 1Þ : l ð2:46Þ

while the second term gives

_PP � F t ¼ ðA : _FFÞ � F t ¼ a : l: ð2:47Þ
We note that a is a spatial tangential moduli tensor obtained from the push-forward transformation

aikjl ¼ FkAFlBAiAjB: ð2:48Þ
Combining these results with (2.42) gives

a ¼ a	 s� 1 ð2:49Þ
from which the tensor A can be recovered from the pull-back transformation

AiAjB ¼ F 	1
Ak F

	1
Bl aikjl: ð2:50Þ

2.5. Alternative expression for localization condition

Substituting (2.50) into the expression for the Lagrangian acoustic tensor in the second term of (2.36)

and using (2.18) gives

Aij ¼ NAF 	1
Ak aikjlNBF

	1
Bl ¼

h0

h

	 
2

nkaikjlnl: ð2:51Þ

The jump condition (2.36) may then be written in the alternative form

h0

h2
a � svt ¼ 0; aij ¼ nkaikjlnl: ð2:52Þ

For h 6¼ 0 and h0 6¼ 0, nontrivial solutions to (2.52) exist if and only if

det a ¼ 0: ð2:53Þ
Eq. (2.53) provides an equivalent localization condition for the emergence of a shear band. Since the unit

vector n is reckoned with respect to the current configuration, we shall refer to a as the Eulerian acoustic

tensor.
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Remark 2. The Lagrangian and Eulerian acoustic tensors are related by the expression

A ¼ h0

h

	 
2

a: ð2:54Þ

The localization condition presented in [22] is based on the Lagrangian formulation and uses the same

symbol A for the Lagrangian acoustic tensor. The localization condition described in [32,33] is based on the

Eulerian formulation and uses the symbol q for the Eulerian acoustic tensor a. Note from (2.54) that the

vanishing of the determinants of the two acoustic tensors occurs at the same time, i.e., det a ¼ 0 whenever
detA ¼ 0 and vice versa, yielding the critical shear band normals N and n that are either pull-back or push-

forward of each other via Nanson�s formula.

3. Bifurcation of elastoplastic solids

In this section we describe a finite deformation version of the infinitesimal plasticity theory. The for-

mulation is based on multiplicative plasticity proposed in [48] and later developed extensively in [47]. A key
aspect of the formulation is the development of an elastoplastic constitutive operator aep for use in the

analysis of planar band bifurcation of elastoplastic solids.

3.1. Multiplicative plasticity in rate form

Following [44], we assume a multiplicative decomposition of the deformation gradient into elastic and

plastic parts, F ¼ Fe � Fp. As shown in [47], the Kirchhoff stress tensor s and the second Piola–Kirchhoff

stress tensor S are related from a thermodynamical principle by the equation

s ¼ Fe � S � Fet; ð3:1Þ
where the overline on S denotes a description relative to the intermediate configuration, see Fig. 3. In terms

of the elastic right Cauchy–Green deformation tensor C e ¼ Fet � Fe, the tensor S may be written for a

hyperelastic material as S ¼ 2ow=oC e, where w ¼ wðC eÞ is the stored energy function [36].

Differentiating (3.1) with respect to time yields

_ss ¼ ae : le; ð3:2Þ
where le :¼ _FFe � Fe	1 is the elastic component of the spatial velocity gradient,

ae ¼ ce þ s� 1þ s� 1; ce
ijkl ¼ 2F e

iAF
e
jBF

e
kCF

e
lDC

e

ABCD ð3:3Þ

and C
e

ABCD ¼ oSAB=oCe
CD. The velocity gradient l ¼ _FF � F	1 follows from the multiplicative decomposition as

[49]

_FF � F	1|fflfflffl{zfflfflffl}
l

¼ _FFe � Fe	1|fflfflfflfflffl{zfflfflfflfflffl}
le

þFe � _FFp � Fp	1 � Fe	1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lp

: ð3:4Þ

Hence, (3.2) now becomes

_ss ¼ ae : ðl 	 lpÞ: ð3:5Þ
We next assume a convex elastic domain E defined by a smooth yield surface F in stress space s

E ¼ fðs; qÞ 2 S � R1þ jFðs; qÞ6 0g; ð3:6Þ
where S is the space of symmetric rank-two tensors and q is a stress-like plastic internal variable de-

scribing the �size� of the yield surface in Kirchhoff stress space. For the case of zero plastic spin (see [49]

for a discussion of the relevance of the plastic spin) the antisymmetric part of lp vanishes, and so
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lp ¼ symðlpÞ :¼ dp, where dp is the plastic rate of deformation tensor. Assuming a smooth plastic potential

function Q in the same Kirchhoff stress space, the flow rule writes

lp ¼ dp ¼ _kk
oQ

os
; ð3:7Þ

where _kk is a nonnegative plastic multiplier satisfying the Kuhn–Tucker complementarity conditions

_kk P 0; Fðs; qÞ6 0; _kkFðs; qÞ ¼ 0: ð3:8Þ
If Q is an isotropic function of stresses, then the principal stresses are coaxial with the principal plastic rates

of deformation, leading to a so-called coaxial flow theory of plasticity [39,40].

We now proceed with the development of the elastoplastic constitutive model. For brevity we write the

stress gradients as f ¼ oF=os and q ¼ oQ=os. For plastic yielding the consistency condition writes

_FF ¼ f : ae : ðl 	 _kkqÞ 	 _kkH ¼ 0; ð3:9Þ
where H is the plastic modulus: hardening for H > 0, softening for H < 0, and perfect plasticity for

H ¼ 0. Solving for the plastic multiplier gives

_kk ¼ 1

v
f : ae : l; v ¼ f : ae : qþH: ð3:10Þ

Inserting the result into (3.5) yields

_ss ¼ aep : l; ð3:11Þ
where

aep ¼ ae 	 ap; ap ¼ 1

v
ae : q� f : ae ð3:12Þ

Fig. 3. Unloaded (or intermediate) configuration relative to reference and current configurations at onset of localization. Note:

deformations are assumed to remain compatible up until the onset of localization.
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is the desired elastoplastic tangential moduli tensor. The above form of the rate constitutive equation is

remarkably similar to that used in the infinitesimal theory.

Remark 3. If instead of w ¼ wðC eÞ we assume a stored energy function of the form bww ¼ bwwðbeÞ, where

be ¼ Fe � Fet is the elastic left Cauchy–Green deformation tensor, then the corresponding elastic constitutive

equation is [30]

s ¼ 2
obww
obe � be:

Time differentiation of this equation gives

_ss ¼ 1
2
u : _bbe () _ssij ¼ 1

2
uijkl

_bbe
kl;

where u is a rank-four tangential stress-deformation tensor with components

uijkl ¼ 2
obww
be
il

djk

 
þ obww
obe

ik

djl

!
þ 4be

ja

o2bww
obe

aiob
e
kl

:

Again, this leads to an elastic rate constitutive equation of the form (3.2), with

ae
ijkl ¼ sildjk þ 2

obww
obe

ik

be
jl þ 4be

ja

o2bww
obe

aiob
e
kb

be
bl

as the elastic tangent constitutive tensor.

Remark 4. The Jaumann derivative of the Kirchhoff stress computed with the elastic spin tensor is given by

s
r ¼ _ss	 we � sþ s � we; we ¼ skewðleÞ:

For isotropic yield function F with stress gradient f ¼ oF=os, we get

f : _ss ¼ f : s
r
�
þ we � s	 s � we

�
� f : s

r

since f : ðx � s	 s � xÞ ¼ 0 for any anti-symmetric tensor x [39]. The Jaumann derivative has been used

artificially in the constitutive formulation of [31,47] leading to a slightly different form of the elastoplastic

rate constitutive equation. However, as demonstrated above, the simplicity of the infinitesimal theory is

easily recovered from the proposed formulation even without using the Jaumann derivative.

3.2. Constitutive formulation in the presence of a planar band

To present the underlying idea more clearly we shall use the form (2.8) or (2.15) for the case of finite

shear band thickness; the limiting case of zero band thickness is handled in a similar manner. Let us assume

the following conditions to hold in the neighborhood of S ¼ /ðS0Þ at the onset of localization:

f : ae : l0

�
þ 1

h
ðsvt� nÞ

�
> 0; f : ae : l0 > 0; ð3:13Þ

where l0 ¼ �ll is the velocity gradient outside the band. This case describes the case of plastic yielding on both

sides of the band at bifurcation [15,16].
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Plastic loading implies that the true stress rate inside the band may be written in the form

_ss1 ¼ ae : �ll

�
þ 1

h
ðsvt� nÞ 	 _kkq

�
: ð3:14Þ

Inserting into the consistency condition (3.9), we obtain

_FF ¼ f : ae : �ll

�
þ 1

h
ðsvt� nÞ 	 _kkq

�
	 _hh ¼ 0; ð3:15Þ

where _kk > 0 is the nonnegative plastic multiplier and _hh ¼ _kkH is the rate of hardening/softening of the yield

function inside the band. We note that _hh and H have the same sign, and so

_hh ¼ _kkH :
> 0 ) hardening;
¼ 0 ) perfect plasticity;
< 0 ) softening:

8<: ð3:16Þ

It is important to recognize that the band thickness h is typically many orders of magnitude smaller that

the dimensions of the structure, and that we are dealing with a problem with two extreme scales. The

multiscale nature of the problem is reflected in the form of the plastic multiplier _kk, which can be solved from

(3.15) as

_kk ¼ _kkþ _
kk=h; ð3:17Þ

where _kk and
_
kk are both regular functions given by

_kk ¼ 1

v
f : ae : �ll;

_
kk ¼ 1

v
f : ae : ðsvt� nÞ ð3:18Þ

and v is given in (3.10). Thus,
_
kk=h� _kk for small h. Accordingly, the stress rate inside the band reflects the

multiscale nature of the problem, and now takes the form

_ss1 ¼ aep : �ll

�
þ 1

h
ðsvt� nÞ

�
¼ aep : l1; ð3:19Þ

where l1 is the velocity gradient inside the band and aep is the elastoplastic constitutive operator defined in
(3.12). Since aep is continuous across the band, it may be used directly in (2.49) and in the subsequent

developments of Section 2 leading to the relevant expressions for the elastoplastic acoustic tensors.

3.3. Stress rate at localization

The eigenvalue problem determines the unit normal vector n (or N) to the band as well as the unit

eigendirection svt=ksvtk, but not the magnitude of the jump vector svt itself. Thus, at the onset of

localization it is not possible to determine the stress rate _ss1 even if h is prescribed in (3.19). However, it is
possible to determine the character of _ss1 at bifurcation. This can be seen from the consistency condition at

the bifurcation point,

_FF ¼ f : _ss1 	 _hh ¼ 0; _hh ¼ ð _kkþ _
kk=hÞH; ð3:20Þ

where H ¼Hcr at bifurcation. Since _kk > 0, it follows that: (a) if bifurcation occurs in the hardening regime

(H > 0), then f : _ss1 > 0 and the angle between f and _ss1 is acute; (b) if bifurcation occurs in the softening

regime (H < 0), then f : _ss1 < 0 and the angle between f and _ss1 is obtuse; and (c) for the case of perfect

plasticity (H ¼ 0), then f : _ss1 ¼ 0 and _ss1 is orthogonal to f . More importantly, note that both f and H are

regular functions, so for a vanishing h both j _hhj and k_ss1k increase without bounds.
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Fig. 4 shows the implications of (3.20) to localization in the context of a uniaxial compression test. Here,
the axial load P in the specimen is plotted as a function of the imposed boundary displacement d. At lo-

calization in the softening regime, and for a vanishing band thickness h, the instantaneous slope of the load-

displacement curve bifurcates abruptly to negative infinity; for localization in the hardening regime the

slope changes instantaneously to positive infinity. For the case of perfect plasticity, _hh ¼ 0, and the stress

increment is theoretically constrained to lie on the fixed yield surface. Note that �hardening� and �softening�
are defined herein based on the sign of H and not on the actual slope of the load-displacement response

curve. The tangent to the �homogeneous� load-displacement response curve at the bifurcation point cor-

responds to the trivial solution where svt ¼ 0.
The formation of a nearly vertical slope signifying rapid loss of strength due to strain localization (the

case H < 0 in Fig. 4) is backed up by experimental evidence. Holcomb and Rudnicki [34] inferred strain

localization in Tennessee marble from the nearly vertical downward slope of the overall load-displacement

curve exhibited by the specimen at some point in its load-displacement history (see Fig. 7 of [34]). If the

plastic modulus H inside the band is to vary continuously with the imposed deformation, then any finite

increment of imposed compression d (no matter how small) would bring about a total loss of strength P;

however, this is not always the case, and instead a gradual loss of strength at post-localization is commonly

observed in practice. In order to capture the gradual loss of strength after bifurcation, the plastic modulus
must thus change instantaneously to the form

H!Hdh ¼ OðhÞ; ð3:21Þ
where Hd < 0 is a regular function, i.e., H must switch to a negative number of order h. In this case, the

rate of change of the size of the yield function now becomes

_hh ¼ ð _kkþ _
kk=hÞHdh ¼ _kkHdhþ

_
kkHd  

_
kkHd; ð3:22Þ

which is a regular function, thus allowing the yield strength inside the band to decrease gradually. Note in
(3.22) that the component _kk has no influence on _hh in the strong discontinuity limit.

3.4. Strong discontinuity in the hardening regime

On the other hand, infinite rates of stresses and hardening at the bifurcation point (the case H > 0 in

Fig. 4) are not observed in practice although their manifestation could have been obscured by an irregular

Fig. 4. Stress rates for vanishing band thickness h in a uniaxial compression test. For bifurcation in the softening regime the in-

stantaneous slope of the load-displacement curve is negative infinity; in the hardening regime the slope is positive infinity.
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variation of the plastic modulus. The plastic modulus also could have switched character right at the
moment of bifurcation preventing such infinite rates from ever occurring. A criterion for the onset of strong

discontinuity in which the plastic modulus is assumed to take the form (3.21) right at the moment of bi-

furcation has gained acceptance in recent years [31,35,42–46,50]. As discussed below, this approach alters

the final form of the localization condition.

Assume that at the moment of bifurcation the plastic modulus switches character as given in (3.21). The

consistency condition inside the band then writes

_FF ¼ f : ae : �ll

�
þ 1

h
ðsvt� nÞ 	 _kkq

�
	 _kkHdh ¼ 0: ð3:23Þ

Solving for _kk ¼ _kkþ _
kk=h yields

_kk ¼ 1evv f : ae : �ll;
_
kk ¼ 1evv f : ae : ðsvt� nÞ; ð3:24Þ

whereevv ¼ f : ae : qþHdh: ð3:25Þ
Note that evv ! f : ae : q in the strong discontinuity limit. The stress rate now becomes

_ss1 ¼ eaaep : �ll

�
þ 1

h
ðsvt� nÞ

�
; ð3:26Þ

where

eaaep ¼ ae 	 1evv ae : q� f : ae: ð3:27Þ

Going back to the consistency condition (3.23), we now write

_FF ¼ f : _ss1 	 ð _kkHdhþ
_
kkHdÞ ¼ 0: ð3:28Þ

As h! 0, _hh ! _
kkHd ¼ bounded, and so the stress rate inside the band remains bounded even in the strong

discontinuity limit.

Since H inside the band is postulated to have switched character at bifurcation, the elastoplastic con-

stitutive operator a is no longer continuous across the band. Let baa be the constitutive operator outside the

band relating the rate of the Kirchhoff stress to the corresponding velocity gradient, i.e.,

_ss0 ¼ baa : �ll: ð3:29Þ
Note that baa ¼ aep if the material outside the band is yielding plastically, and baa ¼ ae if it is unloading

elastically. From the chain rule, we obtain the time derivative of P0 ¼ s0 � F	t as

_PP0 ¼ bAA : _FF; ð3:30Þ
where bAA is the first tangential elasticity tensor evaluated just outside the band, with componentsbAAiAjB ¼ F 	1

Ak F
	1
Bl baa ikjl; baaikjl ¼ baaikjl 	 s0

ildjk: ð3:31Þ
Similarly, inside the band we have

_PP1 ¼ eAAep : _FF

�
þ 1

h0

ðs _//t�NÞ
�
; ð3:32Þ

where eAAep is the tangential moduli tensor with components
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eAAep
iAjB ¼ F 	1

Ak F
	1
Bl eaaep

ikjl; eaaep
ikjl ¼ eaaep

ikjl 	 s1
ildjk: ð3:33Þ

The localization condition (2.30) now writes

ð _PP1 	 _PP0Þ �N ¼ 0 on eS0 ð3:34Þ
or

½ðeAAep 	 bAAÞ : _FF� �N þ 1

h0

eAA � s _//t ¼ 0; eAAij ¼ NAeAAep
iAjBNB: ð3:35Þ

Note in this case that the localization condition depends on the band thickness h0.

The limiting condition of strong discontinuity is of special interest since it allows the solution to continue

beyond the bifurcation point using well-developed finite element enhancement procedures [31,35,42–46,50].

As h0 ! 0 the first term in (3.35) remains a regular function while the second term increases without

bounds. Thus, for the jump in the traction rate to remain bounded we must haveeAA � s _//t ¼ 0) detðeAAÞ ¼ 0; ð3:36Þ
where eAA is now the limiting elastic-perfectly plastic acoustic tensor obtained by setting h ¼ 0 in (3.25). Note
that the above localization condition is true irrespective of whether the material outside the band is loading

plastically or unloading elastically. A spatial counterpart of the localization condition may be derived by

rewriting the jump condition (3.34) in the form (after skipping some details)

½ðeaaep 	 baaÞ : �ll� � nþ 1

h
eaa � s _//t ¼ 0; eaaij ¼ nkeaaep

ikjlnl: ð3:37Þ

Again, as h! 0 the first term remains a regular function while the second term increases without bounds,

unless we seteaa � s _//t ¼ 0) detðeaaÞ ¼ 0: ð3:38Þ
The determinant condition is required for a nontrivial solution to exist.

Eqs. (3.36) and (3.38) are equivalent expressions describing condition for the onset of strong disconti-

nuity localization. According to the consistency condition (3.28), the stress rate _ss1 and the rate of hard-

ening/softening of the yield surface _hh remain bounded as h! 0. This condition is the same as that used in
the unregularized strong discontinuity formulation of [31,35,42–46,50]. In reality it may be argued that the

band thickness is always finite, in which case the localization condition based on a regularized strong

discontinuity approach [14–16,33,41] may be used. However, we should recognize the fact that the differ-

ence in the scale still results in a very steep slope of the load-displacement response curve at localization. In

[51] a procedure is adopted in which both the unregularized and the regularized localization conditions are

checked and whichever comes first defines the strong discontinuity bifurcation point. Effectively, this

procedure allows an accelerated softening response to occur at localization, but not an accelerated hard-

ening response.

3.5. Elastoplastic constitutive operators in spectral form

Alternative analytical expressions may be developed for the elastoplastic constitutive operators aep andeaaep compatible with the algorithmic calculations required by the finite deformation theory. The key is to

write the Kirchhoff stress tensor in spectral form

s ¼
X3

A¼1

bAm
ðAÞ; mðAÞ ¼ nðAÞ � nðAÞ; ð3:39Þ
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where b ¼ fb1; b2; b3g
t

are the principal values of s, and the nðAÞ�s and mðAÞ�s are the corresponding

eigendirections and eigenbases, respectively. Because of the assumed isotropy in the elastic response, the

trial elastic left Cauchy–Green deformation tensor used in the product formula algorithm of multiplicative

plasticity also takes the spectral form

be tr ¼
X3

A¼1

cAm
ðAÞ; cA ¼ k2

A; ð3:40Þ

where the cA�s are the principal values of be tr and the kA�s are the trial elastic principal stretches. We denote

the principal elastic logarithmic strains as ee ¼ fee
1; e

e
2; e

e
3g

t
, where ee

A ¼ lnðkAÞ.
There are at least two ways of linearizing (3.39) to obtain the rate form _ss ¼ a : l. The first approach is to

construct directly the principal values bA and the spectral directions (or eigenbases) mðAÞ, and then derive the

tangential spin by closed-form linearization, see [30]. This approach does not require the evaluation of the
individual eigenvectors nðAÞ, but the expression for the tangent operator a is quite lengthy. The second

approach is to extract the principal values bA and the eigenvectors nðAÞ, either in closed form or by nu-

merical iteration, and utilize the spin of principal axes to develop an analytical expression for a similar to

that presented in [26]. The advantages and disadvantages of the two approaches are discussed in [52,53].

The two approaches theoretically lead to the same tangent operator a, and in this paper we shall use the

second approach because it leads to a more compact expression [54,55],

a ¼
X3

A¼1

X3

B¼1

aABmðAÞ �mðBÞ þ
X3

A¼1

X
B6¼A

bB 	 bA
cB 	 cA

cBm
ðABÞ�

�mðABÞ þ cAm
ðABÞ �mðBAÞ�; ð3:41Þ

where aAB ¼ obA=oeB and mðABÞ ¼ nðAÞ � nðBÞ.
The tangent operator a is �algorithmic� in the sense that it is used in conjunction with Newton iteration to

advance the solution in discrete load increments, and thus reflects the nature of the algorithm used. Our
goal is to construct the constitutive operators aep and eaaep devoid of the effect of the numerical algorithm

from the above algorithmic tangent operator. The elastoplastic constitutive operator is the limit

aep ¼ lim
be tr!be

a; ð3:42Þ

where be ¼ Fe � Fet is the current (converged) elastic left Cauchy–Green deformation tensor. Note that bA,
cA and nðAÞ are already being evaluated at each iteration, and thus do not have to be re-calculated, thereby

motivating the aforementioned goal. The continuum limit of aAB is the elastoplastic constitutive matrix in
principal axes,

aep
AB ¼ ae

AB 	
1

X

X3

I¼1

ae
AI

oQ

obI

 ! X3

J¼1

oF

obJ
ae
JB

 !
; ð3:43Þ

where

X ¼
X3

I¼1

X3

J¼1

oF

obI
ae
IJ

oQ

obJ
þH ð3:44Þ

and ae
IJ is the Hessian elastic matrix given in the next section. As noted earlier, the iterative solution already

calculates the algorithmic tangent operator a at each iteration; thus one only needs to replace the algo-

rithmic tangent matrix aAB by the elastoplastic constitutive matrix aep
AB to form the constitutive operator aep.

The elastic-perfectly plastic constitutive operator eaaep can be constructed using the same procedure but with

H set to zero. Thus, the constitutive operators aep and eaaep do not have to be re-constructed completely but

may simply be derived from information that the iterative solution already provides.
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4. Finite strain localization of dilatant frictional materials

4.1. Preliminaries

In this section we present three plasticity models used in the bifurcation analyses. We recall the stress

invariants of the Kirchhoff stress tensor,

I1 ¼ b1 þ b2 þ b3; I2 ¼ b1b2 þ b2b3 þ b1b3; I3 ¼ b1b2b3: ð4:1Þ

In addition, the following stress invariant (not independent of the above three) is also useful

J2 ¼
1

6
ðb1

h
	 b2Þ

2 þ ðb2 	 b3Þ
2 þ ðb1 	 b3Þ

2
i
: ð4:2Þ

We consider a free energy function of the form

W ¼ UðeeÞ þWeðnÞ; ð4:3Þ

where UðeeÞ is the stored energy function that is quadratic in the principal elastic logarithmic stretches,

UðeeÞ ¼ 1
2
k½ee

1 þ ee
2 þ ee

3�
2 þ l½ðee

1Þ
2 þ ðee

2Þ
2 þ ðee

3Þ
2�; ð4:4Þ

k and l are the Lam
ee parameters, and WpðnÞ is the energy contribution of the plastic variable n that also has

a quadratic form,

wpðnÞ ¼ 1
2
Hn2: ð4:5Þ

For simplicity, we assume that the Lam
ee parameters k and l, as well as the plastic modulus H are all

constant.
The principal Kirchhoff stresses are linear functions of the elastic logarithmic stretches,

bA ¼
oU
oee
A

¼ k trðeÞ þ 2lee
A; ð4:6Þ

where

trðeeÞ ¼ lnðk1k2k3Þ ¼ ln½detðFeÞ� ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðbeÞ

p
¼ lnðJ eÞ: ð4:7Þ

The Hessian matrix ae
AB ¼ r2

ABðUÞ takes the form

ae
AB ¼

kþ 2l k k
k kþ 2l k
k k kþ 2l

24 35 ð4:8Þ

so that the principal Kirchhoff stresses can also be written as

bA ¼
X3

B¼1

ae
ABe

e
B: ð4:9Þ

The Hessian matrix ae
AB is used to construct the constitutive operators described in Section 3.5.

4.2. Plasticity models

Three plasticity models are considered in the following.

Model 1. Quadratic logarithmic Drucker–Prager model
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A two-invariant nonassociated Drucker–Prager model in Kirchhoff stress space is given by the yield
function [56]

F ¼
ffiffiffi
3

2

r
J2 	

ffiffiffi
3

p
½A	 BI1=3� ¼ 0 ð4:10Þ

and plastic potential function

Q ¼
ffiffiffi
3

2

r
J2 	

ffiffiffi
3

p
½A	 bI1=3�; ð4:11Þ

where AP 0 and BP 0 are cohesion-like and friction-like parameters of the yield function, and bP 0 is a

parameter associated with the plastic dilatancy of the model. If we denote the stress-like plastic variable by

q :¼
ffiffiffi
3

p
A, then oF=oq ¼ oQ=oq ¼ 	1, and the model is associative with respect to hardening; further, if

b ¼ B then we have the case of associative plasticity.

Model 2. Quadratic logarithmic Lade–Duncan model

A yield surface in Kirchhoff stress space that is a function of the first and third stress invariants is given

by Lade and Duncan [57] as

F ¼ ðk1I3Þ1=3 	 I1 ¼ 0; ð4:12Þ
where k1 P 27 is a plastic internal variable characterizing the friction angle of the material. The minimum

value of k1 ¼ 27 corresponds to the yield surface degenerating to the hydrostatic axis. Clearly, the yield

surface passes through the stress space origin describing a �cohesionless� material. Nonassociativity is in-

voked by taking a plastic potential function of the form

Q ¼ ðk2I3Þ1=3 	 I1; ð4:13Þ
where k2 reflects the material�s plastic dilatational response. The inequality k2 < k1 ensures a positive plastic

dissipation [5]. Lade and Duncan originally formulated the model allowing for k1 and k2 to vary with plastic
work. Here, however, we assume that these parameters are constant (perfect plasticity) so that the free-

energy function (4.3) remains valid. A more realistic formulation of the model is possible, see [55].

Model 3. Quadratic logarithmic Matsuoka–Nakai model
A yield surface in Kirchhoff stress space that is a function of all three stress invariants is given by

Matsuoka and Nakai [58] as

F ¼ ð�kk1I3Þ1=3 	 ðI1I2Þ1=3 ¼ 0; ð4:14Þ
where �kk1 P 9 is a plastic internal variable similar in meaning to the parameter k1 of the Lade–Duncan

model. The minimum value of �kk1 ¼ 9 corresponds to the yield surface coinciding with the hydrostatic axis.

The yield surface also passes through the stress space origin, and thus characterizes a cohesionless material.

A similar plastic potential function may be postulated,

Q ¼ ð�kk2I3Þ1=3 	 ðI1I2Þ1=3
; ð4:15Þ

where �kk2 < �kk1. For simplicity, we also assume in the analysis that �kk1 and �kk2 are constant (perfect plasticity).

Fig. 5 compares the three yield surfaces on the octahedral plane relative to the Mohr–Coulomb yield

surface. Both the Drucker–Prager and Lade–Duncan yield surfaces can be made to pass through either the

compression or tension corners of the Mohr–Coulomb surface, but not through all six corners. On the

other hand, the three-invariant Matsuoka–Nakai model passes through all six corners of the Mohr–

Coulomb surface. As required by the dilatant and frictional nature of the material, all yield surfaces de-

fine a cone that opens outward toward the negative hydrostatic axis. Analytical relationships among the
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Lade–Duncan parameter k1, the Matsuoka–Nakai parameter �kk1, and the Mohr–Coulomb friction angle

parameter / are available, see [54,55]. The stress-point integration algorithm is based on a product formula

that utilizes a return mapping in principal Kirchoff stress space [30]; the derivatives of the three-invariant

constitutive models are all given in [54,55].

4.3. Plane strain simulations

For plane strain condition on the plane ðx1; x2Þ the unit normal vector to the shear band reduces to the

form n ¼ fn1; n2; 0g. Taking n1 ¼ cos h and n2 ¼ sin h, where h is the angle that the vector n makes with

respect to the x1-axis, the determinant of the Eulerian acoustic tensor becomes

detðaÞ ¼ a11a22 	 a12a21: ð4:16Þ
This determinant function is plotted versus the angle h to detect the onset of strain localization.

A specific example concerns the vertical compression of a rectangular specimen of dilatant frictional

material. For analysis purposes the finite element mesh is shown in Fig. 6 and consists of 150 constant

strain triangles. The level of mesh refinement is not an issue here since the state of stress is homogeneous

before and until the moment of bifurcation. Vertical compression is prescribed through the top nodes, and

the initial vanishing of the determinant is examined with increasing nominal vertical strain, DL=L0. For the

record, the mesh is 1 m wide and 3 m tall (L0 ¼ 3 m). The following material parameters were held constant

throughout the simulations: Drucker–Prager parameter A ¼ 17 kPa, Poisson�s ratio m ¼ 0:40. The re-
maining parameters were varied as indicated in the figures.

Results of the localization analysis with the Drucker–Prager model are summarized in Figs. 7–11, where

the determinant functions are plotted versus the angle h at first localization. In each figure are plotted four

determinant functions, two for large strain calculations and two for small strain, where each set of cal-

culations examined the vanishing of the determinant of both the elastoplastic and the elastic-perfectly

Fig. 5. Plasticity models: (a) Mohr–Coulomb yield surface in principal Kirchhoff stress space; (b) Drucker–Prager representation on

octahedral plane; (c) Lade–Duncan; and (d) Matsuoka–Nakai yield surfaces (viewed from positive hydrostatic axis).
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plastic acoustic tensors. Nominal vertical strains at first localization are indicated in the box inserted in each
figure. Note in all cases that localization is predicted sooner by the finite deformation model.

The general trend is as follows. Where the plastic modulus is positive (hardening), the vanishing of the

determinant of the elastic-perfectly plastic acoustic tensor comes first; where the plastic modulus is negative

(softening), the determinant of the elastoplastic acoustic tensor comes first. The discrepancy between the

small and finite deformation bifurcation analyses is magnified at larger strains; for example, a nominal

vertical strain of 12.7% is necessary for the finite deformation model to predict bifurcation in Fig. 10,

whereas the small strain model required a much larger nominal vertical strain of 33% to initiate localiza-

tion. An extreme case is shown in Fig. 11 where the finite deformation model predicted bifurcation for the
case of hardening plasticity with associative plastic flow, whereas bifurcation is not possible with the in-

finitesimal formulation.

Figs. 12–14 show plots of the determinant function versus the angle h using the three-invariant plasticity

models of Lade–Duncan and Matsuoka–Nakai (note that the Lade–Duncan model may also be written in

Fig. 6. Finite element mesh for plane strain compression simulations showing potential shear band orientations: (a) reference con-

figuration; (b) current configuration.

Fig. 7. Determinant function versus shear band orientation for plane strain compression problem, Drucker–Prager model: E ¼ 10; 000

kPa; H=E ¼ 0:01; B ¼ 0:495; b ¼ 0:300. Small strain formulation bifurcated at DL=L0 ¼ 1:5%.
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terms of all three stress invariants, making it a three-invariant plasticity model as well, see [57]). The elastic

constants were assumed as E ¼ 2000 kPa and m ¼ 0:30. Because the models are applicable to cohesionless

materials such as sand, it was necessary to put the material under a confining pressure first before applying
the vertical compression, and in the simulations we used a confining pressure of 67 kPa. Assuming a friction

angle of 30�, we calculated the Lade–Duncan parameters as k1 ¼ 38:11 for yield surface passing through the

tension corners of the Mohr–Coulomb yield surface, and k1 ¼ 41:67 for yield surface passing through the

compression corners; for the Matsuoka–Nakai model, we calculated �kk1 ¼ 11:67 for the same friction angle,

see [54,55]. An associative flow rule was assumed in the simulations.

Results of the analyses also show the extreme case of bifurcation being predicted by the large defor-

mation model when a small strain formulation would predict a stable plastic response throughout. The

critical orientations of about 31� and 149� for the unit normal vector n indicate a shear band oriented at 59�

Fig. 8. Determinant function versus shear band orientation for plane strain compression problem, Drucker–Prager model: E ¼ 2000

kPa; H=E ¼ 0:01; B ¼ 0:495; b ¼ 0:300. Small strain formulation bifurcated at DL=L0 ¼ 7:4%.

Fig. 9. Determinant function versus shear band orientation for plane strain compression problem, Drucker–Prager model: E ¼ 500

kPa; H=E ¼ 	0:02; B ¼ 0:495; b ¼ 0:300. Small strain formulation bifurcated at DL=L0 ¼ 23:0%.
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relative to the horizontal axis, which coincides with the axis of the minor principal compressive stress. This
shear band orientation agrees with the expression 45�þ /=2 ¼ 60� commonly used in engineering practice,

although it must be noted that the parameters k1 and �kk1 were used in the simulations and not the value of

the friction angle /. In further agreement with the analysis, the determinants of the elastoplastic and the

elastic-perfectly plastic acoustic tensors vanish at the same time for the case of perfect plasticity.

Remark 5. Shear band orientations in the reference configuration may be obtained as follows. Consider the

following finite element approximation for the deformation gradient in a typical finite element Xe:

F ¼ 1þ ou

oX
; u ¼

Xnen

A¼1

NAd
e
A; X ¼

Xnen

A¼1

NAX
e
A;

Fig. 10. Determinant function versus shear band orientation for plane strain compression problem, Drucker–Prager model: E ¼ 500

kPa; H=E ¼ 0:02; B ¼ 0:495; b ¼ 0:300. Small strain formulation bifurcated at DL=L0 ¼ 33:0%.

Fig. 11. Determinant function versus shear band orientation for plane strain compression problem, Drucker–Prager model: E ¼ 500

kPa; H=E ¼ 0:10; B ¼ b ¼ 0:300. Small strain formulation did not bifurcate.
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where NA are the element shape functions, de
A are the element nodal displacements, Xe

A are the element nodal

reference coordinates, and nen is the number of element nodes. Let n be the unit normal to S determined

from the Eulerian acoustic tensor a; then m ¼ n� e3 is the unit tangent to S. The pull back M ¼ F	1 �m
gives the tangent to S0 (not necessarily of unit length because of the stretching), and N ¼ e3 �M=ke3 �Mk
describes the unit normal vector to S0. Clearly, the same vector N can be determined directly from the

Lagrangian acoustic tensor A. The pertinent vectors are shown in Fig. 6.

In summary, we can make the following conclusions based on the above results. The unregular-
ized strong discontinuity bifurcation model of [31,35,42–46,50] prevents the stress rate and the rate of

Fig. 12. Determinant function versus shear band orientation for plane strain compression problem, elastic-perfectly plastic Lade–

Duncan model with associative flow rule: E ¼ 2000 kPa; m ¼ 0:3; k1 ¼ 38:11 (/ ¼ 30� with yield surface passing through tension

corners). Small strain formulation did not bifurcate.

Fig. 13. Determination function versus shear band orientation for plane strain compression problem, elastic-perfectly plastic Lade–

Duncan model with associative flow rule: E ¼ 2000 kPa; m ¼ 0:3; k1 ¼ 41:67 (/ ¼ 30� with yield surface passing through compression

corners). Small strain formulation did not bifurcate.
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hardening/softening of the yield function to increase without bounds by postulating the plastic modulus to
switch character at localization. However, this criterion is valid only in the limiting strong discontinuity

case, and for a finite band thickness the complete localization condition that approaches this unregularized

limit is given either by (3.35) or (3.37). On the other hand, the regularized strong discontinuity bifurcation

model of [14–16,33,41] is valid only for a finite band thickness. In the unregularized limit this criterion

predicts an infinite stress rate and an infinite rate of hardening/softening of the yield function except in the

perfectly plastic case. Because of the difference in the character of the assumed constitutive response at the

bifurcation point, the localization criteria predicted by the unregularized and the regularized models are

different except in the special case of perfect plasticity.

5. Closure

The problem of shear band mode bifurcation of elastoplastic solids has been investigated incorporating

geometric nonlinearities. Conditions for the onset of strain localization are based on the requirement of

continuity of the nominal traction vector, and are described in the reference and deformed configurations

by the vanishing of the determinant of the Lagrangian and Eulerian acoustic tensors. Results of the analysis
show that finite deformation effects do enhance strain localization, and that bifurcation is possible even in

the hardening regime of an associative plasticity model. This may be attributed to the additional stress

terms that destroy the symmetry of the tangent operators even in the ideal case of associative plasticity.

Bifurcation analysis is a crucial step in strain localization modeling. In finite element analysis the bi-

furcation point identifies the critical stage of the solution at which the element interpolations may be en-

hanced to capture the post-localization response. Unfortunately, predictions of shear bands as a bifurcation

from homogeneous deformation are strongly dependent on the constitutive description of homogeneous

deformation. Although we have incorporated finite deformation effects and all three stress invariants in an
attempt to improve on the kinematical and constitutive descriptions of the material/structural response, the

present paper still deals only with co-axial flow theory of plasticity. Noncoaxial plastic flow induced, for

example, by vertex yielding, and the incremental nonlinearity in the constitutive response remain two of the

more intriguing aspects of the theory yet to be incorporated in routine strain localization analysis.

Fig. 14. Determinant function versus shear band orientation for plane strain compression problem, elastic-perfectly plastic Matsuoka–

Nakai model with associative flow rule: E ¼ 2000 kPa; m ¼ 0:3; k1 ¼ 11:67 (/ ¼ 30�). Small strain formulation did not bifurcate.
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