
International Journal of Physics, 2016, Vol. 4, No. 4, 78-84 
Available online at http://pubs.sciepub.com/ijp/4/4/2 
© Science and Education Publishing 
DOI:10.12691/ijp-4-4-2 

Stability of Dissipative Optical Solitons in  
the 2D Complex Swift-Hohenberg Equation  

P. Yoboue1, A. Diby2, O. Asseu1,3,*, A. Kamagate1 

1Ecole Supérieure Africaine des Technologies d’Information et de Communication (ESATIC), Abidjan, Côte d’Ivoire 
2Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire 

3Institut National Polytechnique Félix Houphouët Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire 
*Corresponding author: oasseu@yahoo.fr 

Abstract  This article deals with stationary localized solutions of the (2D) two-dimensional complex Swift-
Hohenberg equation (CSHE). Our approach is based on the semi-analytical method of collective coordinate 
approach. According to the parameters of the equation and a suitable choice of ansatz, the stationary dissipative 
solitons of the 2D CSHE equation are mapped. This approach allows to describe the influence of the parameters of 
the equation on the various physical parameters of the pulse and their dynamics. Finally, the major impact of spectral 
filtering terms on the dynamic of the solitons is demonstrated. 

Keywords: dissipative soliton, spatio-temporal, collective coordinate approach, Ginzburg-Landau equation, 
complex Swift-Hohenberg equation, spectral filtering 

Cite This Article: P. Yoboue, A. Diby, O. Asseu, and A. Kamagate, “Stability of Dissipative Optical Solitons 
in the 2D Complex Swift-Hohenberg Equation.” International Journal of Physics, vol. 4, no. 4 (2016): 78-84. doi: 
10.12691/ijp-4-4-2. 

1. Introduction 
Since several years, the stability domain of the spatio-

temporal dissipative soliton self-confined in the temporal 
and spatial dimensions remains a serious issue of 
nonlinear optics [1]. The choice of relevant nonlinearity 
for such self-confinement and ensure a stable solution are 
thorny. Furthermore, the relation between the 
dimensionality and nonlinear effect used is especially 
essential. 

It should be specified that dissipative systems in 
nonlinear optics admit stable solitons in one, two, and 
three dimensions [2]. These solitons can also be purely 
temporal, spatial or spatio-temporal. Dissipative soliton 
has been widely studied in nonlinear dissipative optics, 
from fundamental point of view and due to the clear 
physical meaning in particular application. Important 
applications are passively mode-locked laser systems and 
optical transmission lines. 

Indeed, the formation of this dissipative structure is 
much more complex than that of conservative systems, 
because in addition to the right balance between the 
dispersion and the nonlinearity, dissipative solitons 
exchange energy and (or) matter with an external source. 
They exist only when there is a continuous energy supply 
to the system. Whenever the energy supply is stopped, 
soliton “stops living.” Their shape, amplitude, velocity are 
all fixed and defined by the parameters of the system [3] 
rather than by the initial condition. 

The properties and conditions of their existence have 
been studied extensively [4,5]. The theoretical study of 
these soliton has recently received a boost during the past 

decade leading to an impressive number of works in 
several fields of nonlinear science [4,6,7,8]. However 
most of these stable soliton solutions studies use purely 
numerical approaches [9,10]. Solving numerically the 
equation for a given set of parameters and a given initial 
condition is an extremely lengthy and costly procedure, 
which can take up to several days in a standard PC. 

Alternative variational semi-analytical methods can 
overcome this difficulty [11]. These theoretical tools can 
perceive soliton solutions more efficiently and envisage 
their domains of existence with relative flexibility [12,13,14].  

Recently, it has been demonstrated in our previous 
works that the collective variable approach [15] is a useful 
tool and reduces significantly the computation time for 
predicting approximately the domains of existence of 
stable light bullets in the parameter space of the (3D) 
complex cubic-quintic Ginzburg-Landau equation [13]. 

This present work provides evidence for the stationary 
solutions of the (2D) complex Swift-Hohenberg equation, 
which, to our knowledge has not been enough reported in 
the literature. This equation is useful in the description of 
the dynamics of dissipative solitons in laser cavity in 
experimental situations. 

2. Materials and Methods 

2.1. Theory of dissipative Soliton in  
Swift-Hohenberg System 

One of the main properties of wave is that they tend to 
spread out as they evolve. The principal cause for this is 
that distinct frequency; that are superposed to create the 
wave packet, propagate with different velocities and (or) 
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in different directions. It knows that generally the 
nonlinear effects accelerate the spreading of the wave. 
Nevertheless, under certain conditions, nonlinearity may 
compensate the linear effects. The resulting balanced 
localized pulse or beam of light, which propagates without 
decay, is generally known as soliton. Therefore, optical 
solitons are localized waves that propagate stably in 
nonlinear media with dispersion, diffraction or both. 

Originally, the terminology soliton was reserved for 
conservative systems and particular set of integrable 
solutions existing as a result of the delicate balance 
between dispersion (diffraction) and nonlinearity. 

However, similar classes of stable self-sustained 
structures can be found for a wide range of physical 
systems far from equilibrium. The term dissipative system 
has been used by Nicolis and Prigogine [16] to describe 
these systems far from equilibrium. As a new paradigm of 
nonlinear waves, solitons in real dissipative environments 
are known as dissipative soliton [4]. The dissipative 
soliton has different characteristics than those of 
conservative systems. They are attracting a significant 
surge of research activities on their spatial (temporal) 
complexity during the last years, particularly for systems 
modelled by the cubic quintic complex Ginzburg-Landau 
equations [4,5]. Apart from the balance between 
dispersion (diffraction) and nonlinearity, the separate 
balance between gain and loss is essential for the pattern 
formation of the dissipative soliton. This second balance is 
very crucial, and gives the dissipative soliton a markedly 
different dynamic from that of conservative solitons. The 
shape, amplitude and widths of the dissipative soliton are 
fixed, depend drastically on the system parameters [17] 
and may evolve stationary, periodically, or even 
chaotically [10,18,19]. One of the generic equations 
describing the dynamics of dissipative solitons and that 
we have intensely studied is the complex Cubic-quintic 
Ginzburg-Landau equation model [4,20,21]. This equation 
could be applied to the modeling of a wide-aperture laser 
cavity with a saturable absorber in the short pulse regime 
of operation. The model includes the effects of two-
dimensional transverse diffraction of the beam, 
longitudinal dispersion of the pulse, and its evolution 
along the cavity. The spectral filter of this model is 
restricted to the term of second order and can only 
describe a spectral response with a single maximum. 

However, experiences indicate that the gain spectrum is 
usually wide and can have multiple peaks. 

To be more realist we need to add others terms of 
higher-order spectral filtering to the complex Cubic-
quintic Ginzburg-Landau equation (CGLE), this lead to 
the complex Swift-Hohenberg equation (CSHE). 

The complex Swift-Hohenberg equation is useful to 
describe soliton propagation in optical systems with linear 
and nonlinear gain and spectral filtering such as 
communication links with lumped fast saturable absorbers 
or fiber lasers with additive-pulse mode-locking or 
nonlinear polarization rotation. It is clear that the higher 
order of the spectral filter is extremely essential to analyze 
the generation of more complex impulse. 

According to this equation, we will investigate the 
steady state of the 2D stationary solutions. It describes as 
well quantitatively as qualitatively many nonlinear effects 
which occur during the propagation and can be read in this 
normalized form [4,22]: 
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where 𝜇, 𝛿, 𝛽, 𝐷, 𝜈, 𝛾, 𝛾2and 𝜀 are real constants. Without 
the additive term 𝛾2𝜓𝑡𝑡𝑡 this equation is the same as the 
CGLE one. The physical meaning of each term depends 
on the real problem which must be examined. In optics, 
this equation describes the laser systems [23,24], optical 
regeneration for optical fibre transmission systems with 
soliton signals [25], nonlinear cavities with an external 
pump [26] and the parametric Oscillator [27]. When 
applied to the propagation of the pulses in a laser system, 
as is the case in our study 𝜓 = 𝜓(𝑟, 𝑡, 𝑧) represents the 
normalized optical envelope and is function of three real 
variables. With t the retarded time in the frame moving 
with the pulse, z is the propagation distance or the cavity 
round-trip number. And finally r �r = �x2 + y2� 
represents the transverse coordinate, taking account of the 
spatial diffraction effects. 

The left-hand side contains the conservative terms: 
namely, 𝐷 = +1(−1) which is for the anomalous (normal) 
dispersion propagation regime and ν which represents, if 
negative, the saturation coefficient of the Kerr nonlinearity. 
In the following, the dispersion is anomalous, and ν  is 
kept relatively small. The right-hand-side of equation (1) 
includes all dissipative terms: 𝛿, 𝜀,𝛽  and 𝜇  are the 
coefficients for linear loss (if negative), nonlinear gain (if 
positive), spectral filtering (if positive) and saturation of 
the nonlinear gain (if negative), respectively. And finally 
𝛾2 represents the higher-order spectral filter term, which is 
very important in this present study. 

 
Figure 1. Evolution of the spectral response in the case of the complex 
Cubic-quintic Ginzburg-Landau equation (in circle) and of the complex 
Swift-Hohenberg equation (in solid curve). The other parameters appear 
inside the figure 

In order to have stable pulses in the frequency domain, 
𝛾2 must be positive and 𝛽 can have both sign (positive or 
negative) contrary to the case of the CGLE equation 
where 𝛽 must be strictly positive. If 𝛽 is greater than zero, 
we obtain a spectral response with a single maximum, on 
the other hand ( 𝛽  less than zero) we have now two 
maxima. To support this comments, the effect of the 
spectral filter is shown in Figure 1. It is described by the 
following transfer function: 

 ( ) ( )2 4
2 .T expω δ βω γ ω= − −  (2) 
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The circle curve shows the spectral response in the case 
of the complex Cubic-quintic Ginzburg-Landau equation 
CGLE (with  𝛾2 = 0 ), it is a Gaussian curve with 
amplitude 𝛿  and width  𝛽 . This curve has a single 
maximum. In the case of the complex Swift-Hohenberg 
equation (CSHE), the response of spectral filter is much 
affected and depends on three parameters with γ2 positive. 
This situation gives a spectral response with two distinct 
maximums. In this work we will carefully investigate this 
situation where γ2 is nonzero. 

The parameter values are chosen according to that the 
width and height of the two spectral responses are not too 
different. However, as the spectral response is different, it 
goes without saying that the (2D) two-dimensional 
dissipative soliton in both case are different profiles for 
the same value of the cubic gain 𝜀. 

2.2. Stability Study  
Our study, really, is to examine the stationary soliton of 

the 2D complex Swift-Hohenberg equation by semi-
analytical approach, as far as we knew this has not been 
done previously. More specifically, our major goal is to 
provide an approximate mapping of the regions of existence 
of stable and unstable solutions in the parameter space of 
the equation (1), as we have done previously with the 3D 
complex Cubic-quintic Ginzburg-Landau equation one [13]. 

To achieve this goal, we use the collective variable 
approach, which helps to simplify the characterization of 
the pulse by use of a low dimensional equivalent 
mechanical system based on a finite number of degrees of 
freedom. Each degree of freedom can then be described by 
means of a coordinate called the collective variable. 
Indeed, the propagation of the pulse describes not only the 
pulse as a collective entity (localized in time and space) 
but also all other localized or non-localized excitations, 
such as noise or radiation, which are always more or less 
present in the real system. For a better understanding of 
these dynamic processes, it is important to develop 
analytical approaches to help to bring the dynamics of the 
pulse to that of a simple mechanical system with only a 
small number of degree of freedom. 

The mean idea in the collective variable approach is to 
associate collective variables with the pulse’s parameters 
of interest for which equations of motion may be derived. 
One may introduce 𝑁  collective variables, 𝑧  dependent; 
say 𝑋𝑖 with𝑖 = 1, 2, . . ,𝑁, in a way such that each of them 
can correctly describe a fundamental parameter of the 
pulse (amplitude, width, chirp …) [15,28]. To this end, 
one can decompose the field 𝜓(𝑥,𝑦, 𝑡, 𝑧) in the following way: 

 ( ) ( ) ( )1 2, , , , , ,nr t z f x x x t q z tψ = … +  (3) 

where 𝑓 the ansatz function is a function of the collective 
variables and is chosen to draw, at best, the configuration 
of the pulse. And 𝑞(𝑧, 𝑡) is a residual field that represents 
all other excitations in the system (noise, radiation, dressing 
field, etc.) [15]. The choice of the trial function that introduces 
the collective variables in the theory is important for the 
success of the technique. After choosing the ansatz function 
one can pursue the process of characterization of the pulse 
by neglecting the residual field. This approximation is 
called the bare approximation [15]. In this way one can 
consider the fact that the pulse propagation can be 
completely characterized that the ansatz function. 

By neglecting the residual field ( 𝑞 = 0 ) the bare 
approximation, as is the case in most practical studies [10], 
we chose a Gaussian function as ansatz function that is 
given by the following: 
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So, here we are assuming that all the pulses are purely 
Gaussian with spatial and temporal chirp and do not 
consider other forms of pulses. 

In such case, the field is necessarily 𝜓(𝑟, 𝑡, 𝑧) = 𝑓, with 
𝑡, 𝑟 the spatial and temporal variables along 𝑡 and 𝑟 axis 
respectively. 𝐴 ,  𝑤𝑡 , 𝑤𝑟 ,  𝑐𝑡 ,  𝑐𝑟 , and 𝑝  represents the 
collective variables. Stands for soliton amplitude, √2𝑙𝑛2 𝑤𝑡 
and  √2𝑙𝑛2 𝑤𝑟  represent the temporal and spatial widths 
respectively. 𝑐𝑡/(2𝜋) is the parameter of the chirp along 𝑡 
axis, 𝑐𝑟/(2𝜋) the parameter of the spatial chirp and 𝑝 is 
the global phase that evolves along with propagation. 
When a stationary regime is reached, the phase becomes a 
linear function of the propagation distance 𝑧. 

After this choice of the ansatz function, variational 
analysis could be carried out by neglecting the residual 
field (the bare approximation). Applying the bare 
approximation to the 2D CSHE, consists in substituting 
the field 𝝍  by the given trial function 𝒇  (𝝍 = 𝒇)  and 
projecting the resulting equations in the following direction: 
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A jet of six differential equations which govern the 
evolution of the optical pulse parameters propagating in 
space and time is obtained: 
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It is important to point out that these equations give no 
explicit information with regard to the different solutions 
of the equation CSHE (1) and their stability. Thereby, they 
give us the first idea on the dynamic of the light pulse. 
They simply reveal in detail the influence of each equation 
CSHE (1) parameters on the various physical parameters 
of the soliton. 

Thus, one’s can clearly see that spectral filter 
coefficients (𝛽 and 𝛾2) affect the amplitude of the pulse, 
its temporal width, temporal chirp and the global phase. 
However, these parameters have no formal effect on the 
spatial variables. The temporal (𝑤𝑡 ) and spatial widths (𝑤𝑟) 
also depend on the nonlinear gain (𝜀) and its saturation (𝜇). 
As expected, the terms of spectral filtering coefficients (𝛽 
and 𝛾2) and dispersion term (𝐷) affect the temporal width 
and have no action on the radial component. 

Similarly, the spatial 𝑐𝑟 and temporal 𝑐𝑡 chirp parameters 
are influenced in the same way by the Kerr term saturation 
of the optical nonlinearity (ν), but the temporal term is 
also affected by the terms of spectral filtering coefficients 
(𝛽  and  𝛾2 ) and dispersion term  (𝐷) . Finally, not any 
parameters of the soliton are influenced by (𝑝), the global 
phase, but are governed by the second order spectral filter 
term (𝛾2). 

In this way, the equation of propagation of the optical 
wave is transformed into a system of differential equations, 
describing the evolution of the physical parameters of the 
pulse (amplitude, width...) during the propagation.  

This approach provides the basic parameters of the 
fixed points, and a mapping of different types of solutions, 
thereby reducing by several orders of magnitude the 
volume of calculation required usually. 

The fixed points (FPs) of the system are found by 
imposing the left-hand side of equation (5) to be zero 
(�̇� = 0 with 𝑋  =  𝐴 , 𝑤𝑡 , 𝑤𝑟 , 𝑐𝑡 , 𝑐𝑟 , 𝑝). The threshold of 
existence of FPs can be estimated by the relation  𝜀𝑠 ≈
2�𝛿𝜇 . If 𝜀 > 𝜀𝑠 , we have in general both stable and 
unstable fixed points.  

The stability of FPs is determined by the analysis of the 
eigenvalues 𝜆𝑗  (𝑗  =  𝐴 , 𝑤𝑡 , 𝑤𝑟  ,  𝑐𝑡 ,  𝑐𝑟 , 𝑝 ) of the matrix 
𝑀𝑖𝑗 = 𝜕�̇�𝑖/𝜕𝑥𝑗. 

The stability criterion is as follows: if the real part of at 
least one of the eigenvalues is positive, the corresponding 
FP is unstable. Hence, to have stable FP, the real parts of 
all the eigenvalues of the matrix 𝑀𝑖𝑗 must be negative. 

The stable fixed points correspond to stationary 
solutions of the 2D complex Swift-Hohenberg equation (1). 

In addition, the fundamental parameter which helps to 
control the state of the solution and study its stability is 
the total energy Q given by the following equation: 
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For the dissipative system, the total energy gives us the 
main information about the soliton dynamics. It’s not 
conserved but evolves in accordance with the so-called 
balance equation. When a stationary solution is reached, 
the total energy converges to a constant value. However, 
the soliton, is a pulsating one, the total energy is an 
oscillating function of z. And finally, when we have 
unstable solutions, energy tends to infinity. 

2.3. (2D) CSHE Stationary Dissipative Soliton 
The stationary solutions of the 2D complex Swift-

Hohenberg equation exist in finite regions in the 
parameter space. Nevertheless, it would be extremely 
difficult to map in extensor these regions in the all 
dimensional parameter in which we operate. For this 
raison, we restrict ourselves to fix all the parameters 
except for two which vary. By setting key parameters and 
by individually varying the nonlinear gain (𝜀)  and the 
Kerr term saturation of the optical nonlinearity (ν), we 
have revealed in the (𝜈, 𝜀) plane, the stationary solution of 
the 2D complex Swift-Hohenberg equation. By 
investigating the parameter regions situated in the 
neighbourhood of the parameters 𝐷 = 𝛾 = 1, 𝛽 = −0.3, 
𝛿 = −0.5, 𝜇 = −0.1 and  𝛾2 = 0.05, with an initial pulse 

 ( )
2 2

, ,0 2.86
0.7 1.36
t rr t expψ

 
= − −  

 
 (7) 

and by individually varying 𝝂 from -0.3 to -0.16 and 𝜺 
from 0.49 to 0.57, so for each value pair (𝝂, 𝜺)  the 
Newton-Raphson allows to look for the fixed point and we 
study its stability. Thus one’s can easily realize the 
cartography of the solution of the equation (1). Figure 1 
shows the mapping of the solutions for the range of 
selected values. The dotted lines correspond to the fixed 
points which represent the stationary solution of the 2D 
complex Swift-Hohenberg equation. It can be noticed that 
this stability area is very narrow with low value of the 
nonlinear gain(𝜺), therefore highly sensitive. That implies 
that a small change 𝜺 of can have a real impact on the 
system. Thus, all the solitons parameters (amplitude, 
width, chirp...) stay stationary throughout propagation. 
The total energy of the system also has the same dynamic 
which does not change at all, during propagation for these 
values considered. Besides the stationary domain, we have 
instable fixed points which can be dived in two categories: 
the limit-cycle attractor and the instable solutions. Here, 
our main interest is to study the dynamic of the pulse in 
the dotted line domain. 

 
Figure 2. cartography of the solutions of the 2D complex Swift-
Hohenberg equation in the (𝝂,𝜺) plane. The stable fixed points regions 
in dotted lines represents the domain of stationary solitons of the 
equation. Other CSHE parameters appear inside the figure 

This first analysis shows that the 2D complex Swift-
Hohenberg equation stationary solutions exist in the space 
of selected parameters. In this way, it is more revealing to 
map the area of stability in space of the spectral filters 
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namely in the (𝛽,  𝛾2) plane. For this, the star point (see 
Figure 2) in the stability domain of the Figure 2 
corresponding to 𝜈 = −0.22 and 𝜀 = 0.524 is considered. 
From this point, the stable solutions in (𝛽,  𝛾2) plane for 
the selected values 𝜈, 𝛿, 𝛾, 𝐷, 𝜇 and 𝜀 are maped. 

The Figure 3 summarizes this result. The dotted lines 
represent the stationary solutions. As will be seen from 
this cartography, the stationary solutions of the 2D 
complex Swift-Hohenberg equation exist for both positive 
and negative values of  𝛾2; the same holds true for 𝛽. This 
stability domain is wide with sensitive value of 𝛾2. 

This first interesting results illustrate that the stationary 
dissipative solutions of the 2D complex Swift-Hohenberg 
equation can be found for any signs of the parameters 𝛽 
and  𝛾2 . Based on those results, the dynamics of the 
dissipative soliton depending on the signs of spectral filter 
and its high-order term (same signs or opposite signs) are 
carefully examined. 

Accordingly, four points marked with a star, a circle, a 
square and a triangle are chosen (Figure 3). 

 
Figure 3. cartography of the solutions of the 2D complex Swift-
Hohenberg equation in the (𝜷,  𝜸𝟐) plane. The stable fixed points regions 
in dotted lines represents the domain of stationary solitons of the 
equation. Other CSHE parameters appear inside the figure 

 
Figure 4. (up) evolution of the total pulse energy of the stationary dissipative soliton, and (below) the spectral filter response in case 𝜷 < 0 and  𝜸𝟐 > 0 

The star in the figure corresponds to the case where 
these parameters are of opposite signs [𝛽 = −0.3 (negative) 
and  𝛾2 = 0.05 (positive)]. The characteristics of such a 
pulse are represented by the Figure 4. The transfer 
function of the spectral filtering of that stationary soliton 
with 𝛽  positive and  𝛾2  negative has two maxima. The 
total energy of that soliton after a short oscillation remains 
constant over long distances. This dynamic characterizes a 
stationary solution. 

When the spectral filtering and its high-order term are 
of the same negative signs [ 𝛽 = −0.3  (negative) and 
 𝛾2 = −0.05 (positive)] represented by a circle in Figure 3, 
the transfer function also has two maxima at its ends but 
with no central pulse. So these solutions do not have the 
same profile and features as in the situation described 
previously. The solution is still stationary as shown by the 
evolution of the total energy, but has less energy than the 
previous one due to the value of 𝛾2. This situation is well 
summarized in Figure 5. 

 
Figure 5. (up) evolution of the total pulse energy of the stationary dissipative soliton, and (below) the spectral filter response in case 𝜷 < 0 and  𝜸𝟐 < 0 

In case where the spectral filtering and its high-order 
term are of the same positive signs [𝛽 = 0.05 (positive) 
and  𝛾2 = 0.05  (positive)] represented by a square in 
Figure 3 the transfer function has only a single maximum. 
The soliton dynamic is not changed; it is still stationary 
but has energy much lower than that of the first two cases 
treated. The Figure 6 draws these behaviours.  

The last case studied corresponds to the scenario where 
the spectral filtering and its high-order term are of 
opposite signs [ 𝛽 = 0.02  (positive) and  𝛾2 = −0.03 
(negative)] represented by a triangle in Figure 3. Here, the 
transfer function of the spectral filtering of the pulse 
shown in Figure 7 has the same behaviour as that of the 
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circle. The optical soliton has the same dynamic as the previous case, but with even lower energy. 

 
Figure 6. (up) evolution of the total pulse energy of the stationary dissipative soliton, and (below) the spectral filter response in case 𝜷 > 0 and  𝜸𝟐 > 0 

 
Figure 7. (up) evolution of the total pulse energy of the stationary dissipative soliton, and (below) the spectral filter response in case 𝜷 > 0 and  𝜸𝟐 < 0 

It appears from the different scenarios studied that the 
spectral filtering and its high-order term parameters (𝛽 
and  𝛾2 ) have a great influence on the dynamics of the 
spectral response. It is certainly true that if stationary 
solutions regardless the signs of 𝛽  and  𝛾2  are obtained, 
they have a real impact on the spectral response of the 
pulse. 

So when the high-order term is greater than zero 
( 𝛾2 > 0) and no matter the sign of the spectral filtering, 
the spectral response has one or two distinct maxima. 

However, in the scenario where the high-order term is 
less than zero ( 𝛾2 < 0) the spectral response has the same 
behavior with zero central pulse for any signs of 𝛽. 

These results clearly show that in the cases of 
experimental; the choices of the spectral filtering and its 
high-order term (𝛽 and 𝛾2) are very crucial according to 
the shape of the spectrum. 

3. Conclusion 
At the end of our study, we have demonstrated, for the 

first time to our knowledge, the stationary dissipative 
solutions of the 2D complex Swift-Hohenberg equation 
with our collective variable approach. Particularly, the 
regions of existence of stationary dissipative soliton in the 
(𝜈, 𝜀)  and  (𝛽,  𝛾2)  planes are shown. It has been also 
shown that the validity of these studies is based on a 
careful selection of the ansatz function. 

Our results reveal the essential character of the spectral 
filtering and its high-order term parameters (𝛽  and  𝛾2 ). 
Our study shows that it is possible to observe the 
stationary dissipative solutions of the 2D complex Swift-
Hohenberg equation, whatever the signs of 𝛽  and  𝛾2 . It 
has been also shown that theses parameters have a real 
impact on the spectral response. 

The collective variable approach is very efficient to 
obtain stable stationary solutions when a suitable trial 
function is chosen. This technique is incomparably 
quicker than direct numerical computations. 

This work can be extensive and we are confident that 
these applications will numerous in the fields of physics, 
chemistry and biology as described by the complex Swift-
Hohenberg equation. 
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