
Progress as Compositional Lock-Freedom

Marco Carbone ?1, Ornela Dardha2, and Fabrizio Montesi1

1 IT University of Copenhagen, Denmark
{carbonem,fmontesi}@itu.dk

2 University of Glasgow, United Kingdom
Ornela.Dardha@glasgow.ac.uk

Abstract. A session-based process satisfies the progress property if its
sessions never get stuck when it is executed in an adequate context. Pre-
vious work studied how to define progress by introducing the notion of
catalysers, execution contexts generated from the type of a process. In
this paper, we refine such definition to capture a more intuitive notion
of context adequacy for checking progress. Interestingly, our new catal-
ysers lead to a novel characterisation of progress in terms of the stan-
dard notion of lock-freedom. Guided by this discovery, we also develop a
conservative extension of catalysers that does not depend on types, gen-
eralising the notion of progress to untyped session-based processes. We
combine our results with existing techniques for lock-freedom, obtaining
a new methodology for proving progress. Our methodology captures new
processes wrt previous progress analysis based on session types.

1 Introduction

Progress is a fundamental property of safe programs in a language model. Intu-
itively, a program with the progress property should never get “stuck”, i.e., reach
a state that is not designated as a final value and that the language semantics
does not tell how to evaluate further [23]. Progress is well-understood in mod-
els such as the λ-calculus, and typically analysed in closed terms through type
systems. On the other hand, we have only recently begun to scratch the surface
of its meaning in models for concurrency. A basic property related to progress
in concurrency is deadlock-freedom: a process is deadlock-free if it can always
reduce unless it terminates [16]. In a deadlock-free process, some subprocesses
can get stuck. For instance, consider the following process in the π-calculus [18]:

P = (νx)
(
x?(y).0 | Ω)

where Ω is a diverging process executing an infinite series of internal actions.
Although the subterm x?(y).0 will never reduce, process P is deadlock-free. Fol-
lowing this observation, lock-freedom has been proposed as a stronger property
that requires every input/output action to be eventually executed under fair
process scheduling [15]: all communications must be reduced even if the whole
process diverges. Various static analyses, in particular many type systems, have
been proposed for ensuring deadlock- or lock-freedom [15–17, 5, 6].

? Research supported by the Danish Agency for Science, Technology and Innovation.

The aforementioned analyses are applied to closed processes, i.e., processes
that do not communicate with the environment. However, process models are
often used to capture open-ended systems where participants can join the sys-
tem dynamically [10, 20, 21, 19]. A recent line of work has begun investigating a
compositional formulation of progress for such systems, which are captured by
open processes missing some participants. An open process has then the progress
property if it can reduce within all adequate execution contexts, called catalysers,
that provide the missing participants [4, 8]. Interestingly, this compositionality
seems to lead back to the notion of lock-freedom, in that both notions inspect
the behaviour of subprocesses in a system. Thus, we ask:

What is the relationship between the notions of lock-freedom and progress for
open-ended systems?

Answering the question above would lead to a better understanding of the
progress property for concurrent systems. Ideally, it would allow techniques and
results obtained for one property to be applied to the other.

1.1 Contributions

We list our major contributions. Full proofs and definitions can be found in [3].

Progress through typed closure. We study progress and lock-freedom in the
π-calculus with sessions [25], by conservatively extending the notion of catalysers
based on session types [13, 25] (§ 3). We show that progress and lock-freedom
coincide for well-typed closed processes (§ 3, Theorem 2). Building on this result
we construct a procedure, called typed closure, that wraps an open process in
a special catalyser to transform it into a closed process. Typed closure allows
us to relate the progress and lock-freedom properties for well-typed processes: a
well-typed process has progress if and only if its typed closure is lock-free (§ 3,
Theorem 4), i.e., progress is a compositional form of the notion of lock-freedom.

Progress through untyped closure. We explore an alternative procedure for
closing a process that is not based on session types, but rather on the structure
of the process itself, called untyped closure (§ 4). Interestingly, we can show that
a process has progress if and only if its untyped closure is lock-free, yielding a
new characterisation of progress that can capture also untyped processes.

Progress through lock-freedom. We combine our results with existing tech-
niques for guaranteeing lock-freedom, obtaining a new methodology for prov-
ing progress in the π-calculus with sessions (§ 5). Specifically, we present how
Kobayashi’s type system for lock-freedom, from [15], can be reused for establish-
ing whether a process has progress. Our methodology captures new processes
wrt previous progress analysis based on session types (§ 5, Comparison).

2 The Model

In this section we introduce the π-calculus with sessions and its typing discipline,
from [25], which we will use as reference model for our investigation of progress.

2.1 The π-calculus with sessions

Syntax. The syntax of the π-calculus with sessions is given in Fig.1.

P,Q, . . . ::= x!〈v〉.P (output) | x?(y).P (input)
| x / {li.Pi}i∈I (selection) | x . {li : Pi}i∈I (branching)
| P | Q (parallel) | (νxy)P (restriction)
| recX.P (rec) | X (call)
| 0 (inaction)

v ::= x (var) | unit (unit)

Fig. 1. π-calculus with sessions, syntax.

P,Q range over processes, x, y over variables, and v over values. Values can be
either variables or the unit value unit, which abstracts basic values. An output
process x!〈v〉.P sends a value v on channel x and proceeds as process P ; the
input process x?(y).P receives a value on channel x, stores it in variable y and
proceeds as P . Process x/{li.Pi}i∈I is a generalisation of the standard selection
x / lj .Pj found in [13, 25]: it sends on channel x the selection of a label lj among
the labels in {li}i∈I , and then proceeds as the corresponding process Pj . This
generalised selection will be important for our characterisation of progress, in
§ 3. A label selection is received by a branching process x . {li : Pi}i∈I , which
offers a range of labelled alternatives on channel x followed by their respective
process continuations. Term (νxy)P binds two variables x and y in P as the two
respective endpoints of a session; when restricted together as in (νxy)P , we say
that x and y are co-variables. All the other terms are standard.

Semantics. We give semantics to the π-calculus with sessions in terms of the
reduction relation →, a binary relation over processes, defined by the rules in
Fig. 2. Rule (R-Com) is the rule for communication: the process on the left
sends a value v on x, while the process on the right receives the value on y and
substitutes the placeholder z with it. A key difference wrt the standard π-calculus
is that the subject of the output, x, and the subject of the input, y, are required
to be co-variables of each other, formalised by the external restriction (νxy).
A consequence of this is that communication happens only on bound variables.
Rule (R-Choice) models an internal choice, in which a process x/{li.Pi}i∈I non-
deterministically chooses one of its possible labelled continuations. Rule (R-Sel)
is similar to rule (R-Com), but in this case captures the communication of a
label selection. We require the label selected by the process on the left to be
among the labels offered by the process on the right. Rule (R-Rec) models the
recursion process reduction. The remaining rules and the structural congruence
≡ are standard (see [25] for a more complete explanation).

2.2 Typing the π-calculus with sessions

We report a typing discipline for typing sessions in processes, from [25].

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q | R)→ (νxy)(P | Q[v/z] | R)

(R-Choice) x / {li.Pi}i∈I → x / lj .Pj if j ∈ I
(R-Sel) (νxy)(x / lj .P | y . {li : Pi}i∈I | R)→ (νxy)(P | Pj | R) if j ∈ I
(R-Rec) P [recX.P/X]→ P ′ ⇒ recX.P → P ′

(R-Res) P → Q ⇒ (νxy)P → (νxy)Q

(R-Par) P → P ′ ⇒ P | Q→ P ′ | Q
(R-Struct) P ≡ P ′, P ′ → Q′, Q′ ≡ Q ⇒ P → Q

Fig. 2. π-calculus with sessions, semantics.

Types. The syntax of types is given in Fig. 3.

q ::= lin (linear) | un (unrestricted)

p ::= !T.U (send) | ?T.U (receive)
| ⊕{li : Ti}i∈I (select) | &{li : Ti}i∈I (branch)

T,U ::= q p (qualified pretype)
| end (termination) | 1 (unit type)
| µt.T (recursive type) | t (rec var)

Fig. 3. Session types, syntax.

Let q range over type qualifiers, p over pretypes, q p over qualified pretypes,
and T,U over types. Qualifiers are lin (for linear) or un (for unrestricted) and are
used respectively to distinguish between types for sessions, i.e., channels whose
pretype is executed exactly once, and standard channel types that can be used
any number of times in parallel. In the pretypes, !T.U and ?T.U are, respectively,
the types of a sending and receiving of a value of type T with continuation of type
U . Select and branch are sets of labelled session types indicating, respectively,
internal and external choice. A type T can be a qualified pretype q p; end, the
type of a terminated session; the unit type unit; a recursive type µt.T ; or, finally,
a type variable t. Recursive types are required to be contractive. Type equality in
recursive types is based on the regular infinite trees and we consider a recursive
type and its unfolding to be equal. In the rest of the paper, we implicitly assume
that the qualifier lin is used in every qualified pretype unless it is explicitly stated
otherwise. Also, we refer to types with a lin qualifier as session types.

Session Typing. We present now the session typing discipline for the π-calculus
with sessions, which avoids communication errors such as type mismatches and
race conditions. The syntax of typing environments is defined as:

Γ ::= ∅ | Γ, x : T

Θ ::= ∅ | Θ, X : Γ

un(Γ)
(T-Inact)

Θ;Γ ` 0

Θ;Γ1 ` P Θ;Γ2 ` Q
(T-Par)

Θ;Γ1 ◦ Γ2 ` P | Q

un(Γ)
(T-Var)

Θ;Γ, x : T ` x : T

Θ;Γ, x : T, y : T ′ ` P T⊥T ′

(T-Res)
Θ;Γ ` (νxy)P

Θ;Γ1 ` x : q?T.U Θ; (Γ2 + x : U), y : T ` P
(T-In)

Θ;Γ1 ◦ Γ2 ` x?(y).P

Θ;Γ1 ` x : q!T.U Θ;Γ2 ` v : T Θ;Γ3 + x : U ` P
(T-Out)

Θ;Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

Θ;Γ1 ` x : q&{li : Ti}i∈I Θ;Γ2 + x : Ti ` Pi ∀i ∈ I
(T-Brch)

Θ;Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

Θ;Γ1 ` x : q ⊕ {li : Ti}i∈I Θ;Γ2 + x : Ti ` Pi J ⊆ I
(T-Sel)

Θ;Γ1 ◦ Γ2 ` x / {lj .Pj}j∈J

Θ,X : Γ ;Γ ` P
(T-RecP)

Θ;Γ ` recX.P

Θ(X) = Γ
(T-RecV)

Θ;Γ ` X

Fig. 4. π-calculus with sessions, typing rules.

We adopt the standard convention that we can write Γ, x : T only if x does
not appear in Γ , and Θ, X : Γ only if X does not appear in Θ. Therefore, we
can write Γ, Γ ′ (or Θ,Θ′) only if the two environments have disjoint domains.
Typing judgements have the form Θ;Γ ` P , reading “process P is well-typed
using variables according to Γ and recursion variables according to Θ”. With
an abuse of notation, we also write Θ;Γ ` x : T for “x has type T in Γ”. We
report the typing rules in Fig. 4. Rule (T-Inact) states that the terminated
process 0 is well-typed under an unrestricted Γ , i.e., a Γ containing only types
qualified with un, and any Θ. Rule (T-Par) types the parallel composition of two
processes; it uses the split operator for typing environments ◦, which is defined
by the following equations, and is undefined otherwise.

∅ ◦ ∅ = ∅
Γ ◦ x : T = Γ, x : T if x /∈ dom(Γ)

(Γ, x : T) ◦ x : T = Γ, x : T if T is not a session type,

The operator ◦ ensures that each linearly-typed channel x occurs either in P
or in Q but never in both, to avoid races. Rule (T-Var) says that a variable
x has type T if the pair x : T is in the environment Γ . Rule (T-Res) states
that (νxy)P is well-typed if P is well-typed and the co-variables have dual

types. Type duality ⊥ is standard, as ⊥c in [12], and relates two types that
describe compatible behaviours (for example, inputs are matched with outputs
and selections are matched with compatible branchings). Rules (T-In) and (T-
Out) type, respectively, the receiving and the sending of a value; these rules deal
with both linear and unrestricted types. Rule (T-Brch) types an external choice
on channel x, checking that each branch continuation Pi follows the respective
type continuation in the type of x. Similarly, rule (T-Sel) types an internal
choice communicated on channel x by checking the possible continuations. The
operator + is used to update the type of a variable with the continuation type
in order to enable typing after an input (or branch) or an output (or select)
operation has occurred. Rules (T-RecP) and (T-RecV) are standard, and type
respectively a recursive process and a recursive process variable.

The type system above guarantees type preservation.

Theorem 1 (Preservation [25]). If Θ;Γ ` P and P → Q then Θ;Γ ` Q.

Remark 1 (Type Safety and Well-Formedness). In [25], type safety is defined
using an auxiliary definition of well-formedness. Intuitively, all enabled actions
in a well-formed process must be such that (i) guards of conditionals are boolean
values; (ii) unrestricted channels are used in the same way; (iii) actions on co-
variables form a redex. Well-formedness is then guaranteed to follow from well-
typedness, but only in the case of closed processes due to a technicality with
condition (i). In our setting without conditionals, condition (i) does not apply
and therefore well-typed processes are always well-formed.

3 Lock-freedom and Progress

3.1 Definitions

Lock-Freedom. Intuitively, a process is lock-free if any communication action
that becomes active during execution is eventually consumed. Below, we assume
that reduction sequences are fair, as formalised in [15].

Definition 1 (Lock-Freedom for Sessions). A process P0 is lock-free if for
any fair reduction sequence P0 → P1 → P2 → . . ., we have that

1. Pi ≡ (νx̃y)(x!〈v〉.Q | R), for i ≥ 0, implies that there exists n ≥ i such that

Pn ≡ (νx̃′y′)(x!〈v〉.Q | y?(z).R1 | R2) and Pn+1 ≡ (νx̃′y′)(Q | R1[v/z] | R2);
2. Pi ≡ (νx̃y)(x / lj .Q | R), for some i ≥ 0, implies that there exists n ≥ i

such that Pn ≡ (νx̃′y′)(x / lj .Q | y . {lk : Rk}k∈I∪{j} | S) and Pn+1 ≡
(νx̃′y′)(Q | Rj | S).

For simplicity, above we have omitted the dual cases for input and branching.

Progress. Before giving the formal definition of progress, we first need to in-
troduce some auxiliary definitions. We start with the definition of characteristic
process, which is the simplest process that can inhabit a type:

Definition 2 (Characteristic Process). Given a type T , its characteristic
process LT Mxg is inductively defined on the structure of T as:

(inVal) Lq?1.UMxg = x?(y).LUMxg
(outVal) Lq!1.UMxg = x!〈unit〉.LUMxg

(inSess) Lq′?(qp).UMxg = x?(y).(LUMxg | LqpMyg)

(outSess) Lq′!(qp).UMxg = (νzw)(x!〈z〉.(LUMxg | LqpMwg))

(inSum) Lq&{li : (qipi)i}i∈IMxg = x . {li : LqipiMxg}i∈I
(outSum) Lq ⊕ {li : (qipi)i}i∈IMxg = x / {li : LqipiMxg}i∈I

(end) LendMxg = 0

(recVar) LtMxg = g(t)

(rec) Lµt.T Mxg = recX.LT Mxg,{t7→X}

Above, the characteristic process LT Mxg is a process that implements type T on
session channel x; function g maps type variables for recursion in T to the
recursion variables in the process that implements them. The definition above is
a refinement of that in [4, 8], with two modifications. The first is an extension to
recursive processes. The second is that our rule (OutSum) produces a process
that may select any label among those reported in the selection type. Previous
work, instead, limited the characteristic process to selecting only the first label.
We will show that this difference directly refines our definition of progress.

We now define catalysers, execution contexts that contain only restrictions
and characteristic processes:

Definition 3 (Catalyser). A catalyser C [·] is a context such that:

C [·] ::= [·] | (νxy)C [·] | C [·] | LqpMxg
Example 1. The following context C [·] is a catalyser obtained by composing the
characteristic processes P1 and P2 respectively of the types T1 = un ?(!1.end).un end
and T2 = lin ⊕ {l1 : end, l2 : !1.end}:

C [·] = (νwx)(νuy)([·] | P1 | P2)

P1 = x?(z).(z!〈unit〉.0 | 0)

P2 = y / {l1.0, l2.y!〈unit〉.0} ut
The duality operator ./ is a relation over processes with respective co-actions.

Definition 4 (./). The duality ./{x,y} is defined as follows:

x!〈v〉.P ./{x,y} y?(z).Q

x / {li.Pi}i∈I ./{x,y} y . {li : Qi}i∈I
As last auxiliary definition for progress, we define evaluation contexts. An

evaluation context (or context, for short) E [·] is a process with holes such that:

E [·] ::= [·] | P | (νxy)E [·] | E [·] | E [·] | recX.E [·]

We are now ready to give the formal definition of progress.

Definition 5 (Progress). A process P has progress if for all catalysers C [·]
such that C [P] is well-typed, C [P] →∗ E [R] (where R is an input or an output)
implies that there exist C′ [·], E ′ [·][·] and R′ such that C′ [E [R]]→∗ E ′ [R][R′] and
R ./{x,y} R

′ for some x and y such that (νxy) is a restriction in C′ [E [R]].

Remark 2. Our formulation of progress is inspired by [4, 8]. However, our catal-
ysers are different when it comes to selection. Consider the following example:

P = x .

{
l1 : 0,
l2 : (νy1y2)(y1!〈unit〉.y2?(z).0)

}
Process P above offers branches l1 and l2 on x. If l2 is chosen, then P gets stuck
into a deadlock. In previous works, P has progress since only the first branch is
checked (l1 in our example). This is unsatisfactory, because P may be composed
with other systems that select branch l2, and then get stuck. Instead, process P
does not satisfy Definition 5 since all branches are checked by our characteristic
processes (Definition 2, rule (outSum)).

3.2 Properties

We now move to presenting the relationship between progress and lock-freedom.
For well-typed closed terms, i.e., well-typed processes with no free variables,
the properties of lock-freedom and progress coincide. Intuitively, this is because
closed processes cannot interact with catalysers and the latter are always lock-
free by construction. We formalise this aspect in the theorem below.

Theorem 2 (Lock-freedom ⇔ Closed Progress). Let P be a well-typed
closed process. Then, P is lock-free if and only if P has progress.

We now switch to a more general setting, i.e., processes that can be open.
Differently than in the case of closed terms, the definitions of lock-freedom and
progress do not coincide for open terms. For example, consider the process:

P = x!〈unit〉.x?(z).0 (1)

Process P above has progress, since we can find a catalyser for reducing it, but
it is not lock-free as it does not respect Definition 1.

Even if progress and lock-freedom do not coincide for open terms, we can still
formally relate the two properties. The key idea for reaching this objective is to
wrap an open term using catalysers until all sessions are closed, a procedure we
call typed closure. We formally define typed closure below.

Definition 6 (Typed Closure). Let Γ ` P . Then, the typed closure of P ,
denoted by tclose(P), is the process C [P] where

C [·] = (νx̃y)
(

[·] |
∏

∀xi:Ti∈Γ

LTiM
yi
∅
)

Above, all xi in x̃y correspond exactly to the domain of Γ . Typed closure is the
identity for closed processes, since those are typed with empty environments.

Example 2. Consider the previous open process P in (1):

P = x!〈unit〉.x?(z).0

P can be typed with environment Γ = x : !1.?1.end. Its typed closure is then:

tclose(P) = (νxy)(P | y?(w).y!〈unit〉.0) ut
Typed closure preserves typability:

Proposition 1 (Closure preserves typability). If Γ ` P then ∅ ` tclose(P).

We are now going to present one of the major properties in our technical
development, which will be crucial in establishing our main results: a process
has progress if and only if its typed closure reduces to terms where actions
at the top level can always be matched with their respective co-actions in a
parallel subterm. Intuitively, this is because the catalysers in the typed closure
of a process are exactly all those ones needed for further reducing the process as
required by the definition of progress (Definition 5).

Lemma 1 (From Closure to Progress). Let P be well-typed. Then, P has
progress if and only if tclose(P) →∗ E [R] (where R is an input or an output
process) implies that there exist E ′ [·][·] and R′ such that E [R]→∗ E ′ [R][R′] and
R ./{x,y} R

′ for some x and y such that (νxy) is a restriction in E [R].

Thanks to Lemma 1, we are able to establish that checking progress for a
process P is equivalent to checking the progress property for its closure:

Theorem 3 (Closure Progress⇔ Progress). If P is well-typed then tclose(P)
has progress if and only if P has progress.

We are finally able to link progress and lock-freedom in the general case of
open processes: a well-typed process has progress if and only if its typed closure
is lock-free. This is an immediate consequence of Theorem 2 and Theorem 3.

Theorem 4 (Progress ⇔ Closed Lock-Free). If P is well-typed then P has
progress if and only if tclose(P) is lock-free.

4 Untyped Closure

4.1 Definitions

So far, we have investigated the notion of progress and its connection with lock-
freedom by building on top of the typing discipline for the π-calculus with ses-
sions. Typing is useful for defining the adequate contexts for checking progress,
namely our catalysers. In this section, we show that adequate contexts can be
defined without the need for a typing discipline. Such contexts are based solely
on the structure of processes, and lead to a more general notion of progress.
Below, we introduce the notion of co-process:

Definition 7 (Co-Process). Given a process P , its co-process co[P]f is in-
ductively defined as:

co[x?(y).P]f =


co[P]f if x 6∈ dom(f)

(νzw)(fx!〈z〉.co[P]f,y 7→w) if x ∈ dom(f), y is a channel, z, w fresh

fx!〈unit〉.co[P]f otherwise

co[x!〈v〉.P]f =

{
co[P]f if x 6∈ dom(f)

fx?(y).co[P]f otherwise

co[(νxy)P]f = co[P]f
(
if x, y 6∈ dom(f)

)
co[X]f = X

co[recX.P]f = recX.co[P]f co[P | Q]f = co[P]f | co[Q]f co[0]f = 0

co[x . {li : Pi}i∈I]f =

{
fx / {li : co[Pi]f}i∈I if x ∈ dom(f)

t co[Pi]f otherwise

co[x / {li.Pi}i∈I]f =

{
fx . {li : co[Pi]f}i∈I if x ∈ dom(f)

t co[Pi]f otherwise

Roughly, the co-process co[P]f of a process P is P with all its actions replaced
with respective compatible co-actions. The function f is a renaming for variables.
Intuitively, we use it for mapping free variables in P , which identify the open
communication endpoints in P , to their respective co-variables in co[P]f . For an
input x?(y).P , its co-process is: the co-process of the continuation P if x is not
in f ; the output of a fresh variable z if y is used as a channel in P (we distinguish
channels in inputs using standard sorting from the π-calculus, omitted here); the
output of a unit value otherwise. The rule for outputs is similar. For a restriction
(νxy)P , we check that the restricted names are not in f since their actions are
already matched inside P . The cases of recursion, parallel, and the terminated
process are simply homomorphisms. We assume that in co[P]f , any occurrence
of recursion calls not guarded by actions, e.g., recX.X, are replaced with 0.
Branching and selection are defined similarly to inputs and outputs whenever
the subject of the communication is in f . Otherwise, since we cannot predict
which choice will be made at run-time, we make use of the auxiliary operator t
to merge the behaviours in the different branches. We formally define t below.

Definition 8 (Merge). The merge operator t is defined by the equations below.

x . {l̃ : P , l̃′ : P ′} t x . {l̃ : Q, ˜l′′ : P ′′} = x . { ˜l : P tQ, l̃′ : P ′, ˜l′′ : P ′′}

x / {l̃ : P , l̃′ : P ′} t x / {l̃ : Q, ˜l′′ : P ′′} = x / { ˜l : P tQ}

P tQ = P if P ≡ Q

We say that P and Q are mergeable, written P♣Q, whenever P tQ is defined.

Using co-processes, we can define a new closure independent from types.

Definition 9 (Untyped Closure). The untyped closure of P , uclose(P), is:

(νx̃fx)(P | co[P]f)

where dom(f) = fn(P).

Example 3. Untyped closure is not always defined. For example,

P = (νxx′)
(
x . {l1 : y / l3, l2 : y!〈v〉} | x′ / {l1 : y′ . l3, l2 : y′?(z)}

)
cannot be expressed as P ≡ (νx̃y)(Q | co[Q]f) because the merge operation
given in Definition 8 cannot be defined. This is because y and y′ perform once a
selection and once an output, which cannot be merged together. ut

For well-typed processes, untyped closure preserves typability:

Proposition 2. If P is well-typed, then uclose(P) is well-typed.

4.2 Adequacy of untyped closure

We conclude this section by showing that untyped closure is a conservative exten-
sion of typed closure, i.e., it preserves the same connection between lock-freedom
and progress for well-typed processes. Technically, for well-typed processes, un-
typed closure and typed closure have equivalent behaviours. First, we show that
for a typed process, the reductions of its untyped closure can mimic the reduc-
tions of its typed closure and vice versa. Below, we denote with tclose0(P) the
typed closure of P generated using the simplest output typing of P , namely if
Γ `0 P then all carried types in the output types of Γ are equal to end.

Lemma 2. Let P be well-typed. Then, uclose(P)→ ♣uclose(P ′) iff tclose0(P)→
tclose0(P ′).

As a consequence of Lemma 2, we obtain that the untyped closure of a well-
typed process is lock-free if and only if its typed closure is lock-free.

Theorem 5. Let P be well-typed. uclose(P) is lock-free iff tclose(P) is lock-free.

Proof (Sketch). By Lemma 2, we observe that if two processes can be merged
then they are related by a strong typed bisimulation (cf. [5]). Then, the thesis
follows by observing that tclose(P) is closed under reductions, and uclose(P) is
closed under reductions up-to strong bisimulation (merging). ut

From Theorem 4 in § 3.2, and Theorem 5 we conclude:

Corollary 1. Let P be well-typed. If uclose(P) is lock-free, then P has progress.

5 Progress through static analysis for lock-freedom

Our technical development reduced the problem of checking whether a process
has progress to the problem of checking whether its closure (typed or untyped)
is lock-free. A direct consequence of this result is that static analysis for lock-
freedom can be lifted to static analysis for progress. In this section we show an
example of how to apply this methodology, by using the typing discipline for
lock-freedom in the standard π-calculus by Kobayashi [15].

The π-calculus. We report the syntax of the standard π-calculus [18] where
standard choice is replaced by the case v of {li (xi) . Pi}i∈I constructor:

P,Q ::= x!〈ṽ〉.P | x?(ỹ).P | P | Q | 0 | (νx)P
| case v of {li (xi) . Pi}i∈I | X | recX.P

v ::= x | unit | l v

The differences wrt to the syntax of the π-calculus with sessions are that restric-
tion is now on a single variable and that there are no constructs for branching
and selection. Values include variables and the unit value, as in the π-calculus
with sessions, and also the labelled values l v, used in the case process.

We report below the main reduction rules:

(Rπ- Com) x!〈ṽ〉.P | x?(z̃).Q→ P | Q[ṽ/z̃]

(Rπ- Case) case lj v of {li (xi) . Pi}i∈I → Pj [v/xj] j ∈ I

The main difference wrt the π-calculus with sessions is that communications
happen when sending and receiving actions have the same subject (the variable
used as a channel for sending or receiving a value), and not when the two ac-
tions in question have different subjects that were linked by a shared restriction.
Moreover, the communicating channels need not be restricted. For simplicity, we
omit all the other rules, as well as the definition of the structural congruence
relation ≡ between standard π-calculus processes.

Kobayashi’s Typing for Lock-Freedom. We briefly introduce Kobayashi’s
type system for checking lock-freedom in the standard π-calculus, from [15]. The
syntax of types is defined as.

(actions) α ::= ? | !

(usage types) U ::= 0 | αoc .U | U1 | U2 | U1&U2 | t | µt.U

(channel types) T ::= [T̃] U | 〈li : Ti〉i∈I | 1

Types T include channel types [T̃] U , the variant type 〈li : Ti〉i∈I , and the unit

type 1. In a channel type [T̃] U , T̃ are the types of the values transmitted over
the channel and U is a usage type, describing how the channel is used. Usage
types are similar to session types. Usage 0 describes a channel that cannot be
used anymore (we will often omit it when not necessary); usage αoc .U describes
a channel used for an input action (when α = ?) or output action (when α = !),

and then used according to U . The annotations o and c, called tags, are natural
numbers that indicate respectively the obligation and capability of an action,
described below. Usage U1 | U2 describes a channel used according to U1 and
U2 in parallel. Usage U1&U2 describes a channel used according to either U1 or
U2. Usages µt.U and t indicate standard recursive types.

We describe the intuition behind reasoning with tags in usage types (see [15]
for a full description). The tags o and c are abstract representations of time
steps and describe dependencies between the usage of channels, corresponding
to how actions on channels are interleaved in processes. Intuitively, an obligation
o denotes a guarantee that its action will become available at most in time o,
while a capability c denotes a requirement that a compatible co-action becomes
available at most in time c. This information is crucial to ensure that processes
do not get stuck, and it is checked to be consistent by Kobayashi’s typing rules.
As an example, we consider the rules for typing input and restriction:

Γ, ỹ : T̃ `LF P
(LF-In)

x : [T̃] ?0c ;Γ `LF x?(ỹ).P

Γ, x : [T̃] U `LF P rel(U)
(LF-Res)

Γ `LF (νx)P

Rule (LF-In) states that the x?(ỹ).P is well-typed if x is a channel used in
input with obligation 0. Moreover, the operator ; raises (increases by one) the
obligations of the other channels in Γ in the conclusion of the rule, in order to
reflect that actions inside process P are prefixed by an input action and will
thus become available later. Rule (LF-Res) is the key rule for establishing lock-
freedom; it states that the restriction of a name x in process P is well-typed if x
is used reliably in P . The notion of reliability of a usage is as follows. A usage U
is said to be reliable, denoted with rel(U), if after any step, whenever it contains
an action (input or output) having capability tag c, it also contains the co-action
with an obligation tag at most c. This means that the guarantee that the action
will become available is at most the requirement for its availability (we refer the
reader to [15] for the formal definition of rel(U)).

Kobayashi’s type system guarantees lock-freedom:

Theorem 6 (Lock-Freedom [15]). If Γ `LF P and rel(Γ), then P is lock-free.

Above, rel(Γ) checks rel(U) for all the usage types in Γ .
From the above theorem, we immediately get the following corollary:

Corollary 2. ∅ `LF P implies that P is lock-free.

Encoding. Processes in the π-calculus with sessions can be translated to equiv-
alent processes in the standard π-calculus, using the encoding J−Kf presented
in [9]. Intuitively, such encoding transforms each action on sessions in the orig-
inal process into an action on a linear channel in the standard π-calculus. We
report a selection of the rules defining J−Kf in Fig. 5.

The parameter f renames the variables involved in a communication in order
to simulate the structure of sessions using linear channels that are used exactly
once. For example, in (E-Output) a new channel c is created and sent along

Jx!〈v〉.P Kf = (νc)fx!〈v, c〉.JP Kf,x7→c (E-Output)

Jx?(y).P Kf = fx?(y, c).JP Kf,x7→c (E-Input)

Jx . {li : Pi}i∈IKf = fx?(y). case y of {li (c) . JPiKf,x7→c}i∈I (E-Branching)

J(νxy)P Kf = (νc)JP Kf,x7→c,y 7→c (E-Res)

Fig. 5. π-calculus with sessions, encoding to standard π-calculus.

with the original value v. The function f is then updated by mapping x to the
new channel c, which is used in the continuation process. On the other hand,
the process produced by rule (E-Input) performs the dual action by receiving
the value of the communication and the new channel. (E-Branching) encodes
the branching process by using the case process, after the guard of the case is
received in input. Rule (E-Res) encodes the restriction (νxy) as (νc).

The encoding J−Kf is semantically correct:

Theorem 7 (Operational Correspondence [9]). Let P be a process in the
π-calculus with sessions. Then:

– If P → P ′ then ∃Q such that JP Kf → Q and Q ↪→ JP ′Kf , where ↪→ denotes
a structural congruence extended with a case normalisation;

– If JP Kf →≡ Q then, ∃ P ′ such that (νxy)P → (νxy)P ′ and Q→n≡ JP ′Kf ′ ,
where fx = fy, n ∈ {1, 2} and f ′ is f updated after the reduction.

From lock-freedom in the π-calculus to progress for sessions. We can
finally present how to use our results in combination with Kobayashi’s typing
system for lock-freedom. First, from Theorem 7 we get that:

Corollary 3. P in the π-calculus with sessions is lock-free iff JP Kf is lock-free.

From our Corollaries 1 and 3, we can lift Kobayashi’s analysis to progress in the
π-calculus with sessions:

Theorem 8 (Typing Progress). Let P be a well-typed process in the π-calculus
with sessions. If ∅ `LF Juclose(P)Kf , then P has progress.

Comparison. We conclude this section by comparing our approach with other
static analysis for guaranteeing the progress property for session-based calculi in
the literature [11, 4, 22]. For readability reasons, we omit some empty processes
and restrictions of unused channels.

Example 4. The following process is lock-free and has progress:

(νa1a2)
(
a1!〈unit〉 | (νb1b2)

(
b1!〈unit〉 | b2?(y).a2?(z)

))
However, it is rejected by [22], since the type system presented therein does not
distinguish between obligation and capability tags, but uses a single tag instead.
If we consider its encoding in the π-calculus, we obtain the following process

(νa)
(
a!〈unit〉 | (νb)

(
b!〈unit〉 | b?(y).a?(z)

))

This process is accepted by Kobayashi’s type system with types a :!01 | ?10 and
b :!00 | ?00 and therefore our initial process has progress. ut

Example 5. Consider the session process

(νa1a2)(νb1b2)
(
a1?(x). b1!〈x〉. b1?(y). a1!〈y〉 | a2!〈unit〉. b2?(z). b2!〈unit〉. a2?(z)

)
This process satisfies the progress property, but it is rejected by the type systems
in [1] and [4]. This is because, in the two processes in parallel, there is a circular
dependency between channels that such type systems cannot handle. Let us now
consider its encoding in the π-calculus, given as the process:

(νa)(νb)

a?(x, c1). (νc2)
(
b!〈x, c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
a!〈unit, c1〉. b?(z, c2). c2!〈unit〉. c1?(z)

)
This process is correctly recognised as having progress by our technique, since
it is well-typed in Kobayashi’s type system. ut

6 Conclusions and Future Work

In this paper we studied the relationship between the notions of progress and
lock-freedom in the π-calculus with sessions, proving that they are strongly
linked: progress can be thought of as a generalisation of lock-freedom to open
processes. We have shown how to characterise progress using session types (typed
closure) or the structure of processes (untyped closure). Our results can be used
to lift static analyses for lock-freedom to the progress property. For example, we
showed that reusing Kobayashi’s type system [15] captures new interesting cases
of processes that have progress that could not be recognised by previous work.

Future Work. As future work, we plan to extend our approach to multiparty
sessions [14, 7]. For the multiparty setting, we need to investigate an extension of
the encoding in [9] to a setting where sessions are established between more than
two peers and messaging is asynchronous. It is not clear whether Kobayashi’s
usage types are expressive enough for handling such situations.

The works in [2, 26] use linear logic to type processes in the π-calculus with
sessions. While these works guarantee lock-freedom, we conjecture that their
techniques can be reused for progress, similarly to what we have done with
Kobayashi’s type system. We leave such an investigation as future work.

Kobayashi’s type system comes with the reference implementation TyPi-
Cal [24]. We are currently implementing a tool that allows to write processes in
the π-calculus with sessions, checks that they are well-typed, and then uses the
encoding in [9] for generating π-calculus code that can be analysed in TyPiCal.

References

1. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, pages 418–433, 2008.

2. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, pages 222–236, 2010.

3. M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom,
2014. http://www.dcs.gla.ac.uk/~ornela/my_papers/CDM-Extended.pdf.

4. M. Carbone and S. Debois. A graphical approach to progress for structured com-
munication in web services. In Proc. of ICE’10, pages 13–27, 2010.

5. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst., 34(2):8, 2012.

6. M. Carbone and F. Montesi. Deadlock-freedom-by-design: multiparty asyn-
chronous global programming. In POPL, pages 263–274, 2013.

7. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Global progress for dynamically
interleaved multiparty sessions (long version), 2008. http://www.di.unito.it/

~dezani/papers/cdy12.pdf.
8. M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global progress for

dynamically interleaved multiparty sessions. Mathematical Structures of Computer
Science, To Appear.

9. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In D. D.
Schreye, G. Janssens, and A. King, editors, PPDP, pages 139–150. ACM, 2012.

10. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In Proc. of
POPL, pages 435–446. ACM, 2011.

11. M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On Progress for Structured
Communications. In TGC, volume 4912 of LNCS, pages 257–275. Springer, 2007.

12. S. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Infor-
matica, 42(2-3):191–225, Nov. 2005.

13. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines
for structured communication-based programming. In ESOP’98, volume 1381 of
LNCS, pages 22–138, Heidelberg, Germany, 1998. Springer-Verlag.

14. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In Proc. of POPL, volume 43(1), pages 273–284. ACM, 2008.

15. N. Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159,
2002.

16. N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, pages
233–247, 2006.

17. N. Kobayashi and D. Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5), 2010.

18. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, Sept. 1992.

19. F. Montesi and M. Carbone. Programming services with correlation sets. In
ICSOC, pages 125–141, 2011.

20. F. Montesi and N. Yoshida. Compositional choreographies. In CONCUR, pages
425–439, 2013.

21. OASIS. Web Services Business Process Execution Language. http://docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.
22. L. Padovani. From lock freedom to progress using session types. In Proc. of

PLACES, 2013.
23. B. C. Pierce. Types and programming languages. MIT Press, 2002.
24. TYPICAL. Type-based static analyzer for the pi-calculus. http://www-kb.is.s.

u-tokyo.ac.jp/~koba/typical/.
25. V. T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
26. P. Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.

