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Abstract

This thesis develops a semantic model of inheritance and investigates its applications for

the analysis and design of programming languages. Inheritance is a mechanism for incre-

mental programming in the presence of self-reference. This interpretation of inheritance

is formalized using traditional techniques of fixed-point theory, resulting in a compo-

sitional model of inheritance that is directly applicable to object-oriented languages.

Novel applications of inheritance revealed by the model are illustrated to show that in-

heritance has wider significance beyond object-oriented class inheritance. Constraints

induced by self-reference and inheritance are investigated using type theory and yield a

formal characterization of abstract classes and a demonstration that the subtype rela-

tion is a direct consequence of the basic mechanism of inheritance. The model is proven

equivalent to the operational semantics of inheritance embodied by the interpreters of

object-oriented languages like Smalltalk. Concise descriptions of inheritance behavior in

several object-oriented languages, including Smalltalk, Beta, Simula, and Flavors, are

presented in a common framework that facilitates direct comparison of their features.
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Chapter 1

Introduction

This thesis presents a model of inheritance and investigates its applications for the

analysis and design of programming languages. The notion of inheritance investigated

here was introduced by Simula, and was later developed in the languages Smalltalk,

Flavors, Beta, etc. Although these languages have been in use for over a decade, there

has not been a clear consensus on what inheritance is and how it should be modeled.

One reason for this lack of consensus is that there are several different contexts in

which inheritance has a different meaning from in object-oriented languages. The most

notable example is knowledge representation, where inheritance is form of relationship or

inference rule that allows default reasoning. Although formal models are being developed

for inheritance in knowledge-representation systems, they are not immediately suitable

for explaining inheritance in object-oriented programming. Recognizing this fact is an

important step in separating out the different notions of inheritance currently in use.

Each notion of inheritance should be given an interpretation that is natural in its own

domain. The model of inheritance presented here is firmly based on traditional forms of

programming-language analysis. Once this is done, comparison of the formal models of

different notions of inheritance may then prove fruitful.

1.1 The Inheritance Model

Inheritance is a mechanism for incremental programming in the presence of self-reference.

Incremental programming is the definition of new program units by modifying existing

ones. A special mechanism is needed for this task because there is a subtle interaction

between modification and self-reference when modification is achieved by derivation of

a new structure resembling the original. The problem is that this new structure is a

different entity from the original, yet modification makes sense only if the changes and

the original are considered a single conceptual unit. Inheritance solves this problem by

allowing the modification to be distinct from the original while enforcing a contextual

binding of self-reference. This is done by changing self-reference in the original to refer
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to the modification when the original is referenced by the modification, as illustrated

below:

-client P �
��6

Self-reference

-client M - P

Modification

-client M - P �
��6

Inheritance

The intuitive explanation of the purpose of inheritance is one of the major contributions

of this work.

Collections of named attributes, or records, are developed as a useful framework for

describing modification. Records are useful because modifications may be expressed

as collections of attributes to be added or replaced. A mechanism is introduced for

describing record combination functions that allow different forms of replacement or

addition to records.

For continuity with previous work, the manipulation of self-reference during inheri-

tance is best described within the context of a traditional analysis of self-reference, like

fixed-point semantics. The concept of a generator is introduced to describe the speci-

fications, or templates, used in fixed-point theory to analyze self-referential definitions.

In the traditional use of fixed-point theory only the fixed points of generators are of

interest; generators are not used in any other way.

Inheritance is defined as generator derivation, in which self-reference of the derived

generator is used as the binding for self-reference in the inherited generators. Several

different forms of generator composition are examined, and this leads to a general mech-

anism for wrapper combination that allows the modification to refer to the result of the

combination. The sharing of self-reference is facilitated by the introduction of distribu-

tive operators, which act as primitive inheritance combinators. Different mechanisms for

the modification of record generators are then developed, based on distributive record

combination. A framework for multiple inheritance is also built using the model. Gen-

eralizations of inheritance that do not require the disciplined sharing of self-reference

are proposed.

The model of inheritance serves a number of purposes. Perhaps most surprisingly, it

demonstrates that inheritance is an intuitively understandable mechanism that cannot

be expressed directly in conventional languages. In addition, it makes formal analysis and

evaluation of inheritance possible, by means of the many well-developed tools associated

with fixed-point theory and denotational semantics.

1.2 Applications of Inheritance

The use of the inheritance model is illustrated in a diverse set of applications. The first

example is an abstract explanation of the traditional use of inheritance for derivation
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of classes of objects. This is followed by a novel form of derivation involving recursive

constructors of objects (i.e. self-referential classes) in which the new constructor is strik-

ingly different from the original. A solution is presented to the long-standing unsolved

problem of “memoization”, in which a general procedure that memoizes another func-

tion is sought. A solution is also sketched to the problem of deriving a modified copy

of an entire class hierarchy. Many of the techniques involved in these discussions are

currently outside the range of existing systems and languages.

1.3 Type Theory of Inheritance

Type theory is used to analyze the constraints that arise during self-reference and inheri-

tance. The basic constraint is that self-reference in a definition must be compatible with

the kind of structure being defined. This constraint is reflected in fixed-point theory,

because the fixed-point operator is defined only on generators whose result type (range)

is a subtype of its formal parameter type (domain), a condition that guarantees compat-

ibility of self-reference. This constraint provides a direct characterization of “abstract

classes” in object-oriented languages: they represent generators that do not have a fixed

point, and hence do not have a behavior for instances.

Additional constraints arise during inheritance, primarily due to the sharing of self-

reference. Since self-reference in the inherited structure is changed to refer to the mod-

ifications, the modifications must be compatible with the original self-reference if the

inheritor is to be consistent. However, even when type-constraints are satisfied, inheri-

tance may be considered a fundamental violation of encapsulation because of the change

of self-reference. A new notion of encapsulation is proposed that includes a contract on

the recursive behavior of a structure.

1.4 Correctness of the Model

Evidence is given for the correctness of the model by showing that it is equivalent

to the kind of inheritance used in real object-oriented languages. In these languages,

inheritance is defined by a method search or lookup algorithm. To demonstrate that the

it is correct, a semantics of message-sending based on the denotational model is devised

and proven equivalent to the traditional operational semantics based on method lookup.

The concept of a method system is introduced to bridge the gap between the minimal

context of the generator inheritance model and the fairly special-purpose context of

object-oriented languages. A method system may be understood as a snapshot of the

context of an object-oriented program. A simple language for expressing methods is

defined, including self-reference and super-reference, but excluding instance variables,

assignment, and other aspects not relevant to method lookup. The proof proceeds by
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demonstrating that the denotational and operational definitions of an ‘interpreter’ or

semantics for method systems are equivalent.

1.5 Inheritance in Denotational Semantics

The model is used to give a denotational semantics for a simple language with classes

and inheritance. This language and its analysis serves as a framework in which to define

the semantics of inheritance in object-oriented languages in later chapters. The primary

novelties in this semantics are the use of an explicit domain of generators and a loos-

ening of the conventional restrictions on the use of the fixed-point function in standard

semantics. These conventions are what prevented previous semantic frameworks from

providing a natural semantics for inheritance.

The framework serves as a general context in which inheritance mechanisms in object-

oriented languages are analyzed and compared. Each language’s characteristic class

declaration and instantiation syntax is added to the framework and semantic definitions

are added to provide a semantics which captures the essential aspects of inheritance in

the language while omitting irrelevant details. The resulting semantic definitions are

easily compared and contrasted. However, in extracting inheritance for study, other

features of the languages are given very abstract treatment or even modified to fit into

the common framework. The semantic sketches demonstrate the essential similarity of

inheritance in these languages while clarifying their significant differences.

1.6 Inheritance in Simula

Simula was the first object-oriented language, but includes a number of features that

were dropped from later languages. The semantics of Simula are complicated by its use of

qualification, which allowed direct access to all ancestors, and by the optional and weak

nature of the virtual specification. Instances also had an imperative that specified their

initial behavior and could invoke specialized imperatives through the inner command.

1.7 Inheritance in Smalltalk

Smalltalk is in many ways a simplification of Simula, based primarily upon the attribute

concept. All methods are considered virtual and qualification is restricted to allow only

relative access to the first ancestor. The imperative was dropped in favor of metaclasses

for object initialization. Inheritance occurs uniformly at both the class and metaclass

level. The semantics of Smalltalk retains this regularity by modeling metaclasses as

generators that contain the class generator.
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1.8 Inheritance in Beta

Beta was also derived from Simulabut, unlike Smalltalk, it extended the inner construct

uniformly to attributes, resulting in a degree of “definitional power” that prevents basic

behavior from being redefined. Instead of replacing inherited attributes, a subclass

attribute must be explicitly invoked from the corresponding original attribute via inner.

The semantics reveals that the Beta inheritance hierarchy grows in the opposite direction

from the Smalltalk hierarchy.

1.9 Inheritance in Flavors

Flavors, an object-oriented extension to Lisp, introduced the concept of multiple inher-

itance. There are two major problems in multiple inheritance: resolution of conflicts

in what is inherited and management of duplicate functionality from repeated ances-

tors. Flavors introduced method combination to resolve conflicts and linearization to

remove duplicate ancestors. Though these features do solve these problems; they do

so only at the cost of reduced compositionality. However, one of the more common

uses of linearization and method combination, the mixin convention, is dependent upon

exactly this non-compositionality. In the discussion of Flavors, a more compositional

formulation for mixins is proposed.

1.10 Related Work

The most widely accepted analysis of inheritance is Cardelli’s explanation of inheritance

as a subtype relation [6]. Yet it is easy to show that subtyping is insufficient to explain

the mechanism of inheritance in object-oriented languages. On the other hand, the

subtype relation is a direct consequence of the model of inheritance introduced here.

Thus the inheritance model presented here explains the presence of Cardelli’s subtype

relation, while subtyping alone is insufficient to explain inheritance.

The first full denotational semantics of a language with inheritance was presented by

Kamin [14] almost twenty years after the concept was introduced. This unusually long

delay is an indication of the novelty of inheritance and its incompatibility with tradi-

tional techniques in denotational semantics. No other complete denotational semantics

exists for a language with inheritance, though several attempts have been made [22]

[31] [32]. Kamin’s semantics, though a fairly accurate description of Smalltalk, is not

compositional in its treatment of inheritance.

Essentially the same model of inheritance presented in this thesis was developed in-

dependently by Reddy [23]. The model was illustrated only for Smalltalk, however, and

was not developed to the degree of generality achieved here.
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Chapter 2

The Inheritance Model

This chapter motivates an interpretation of inheritance as a mechanism for incremen-

tal programming in the presence of self-reference, and develops a formal model for this

mechanism using techniques from traditional fixed-point semantics. Incremental pro-

gramming is the definition of new program units by specifying how they differ from

existing ones. Incremental programming differs from structured programming, which

also involves hierarchical construction of programs, in allowing modification of existing

program units, in addition to simply referencing or using them as they are. Thus incre-

mental programming provides a new form of component reuse [3], useful when an existing

component almost satisfies current requirements; incremental programming allows the

component to be changed slightly rather than entirely rewritten.

Inheritance, as a mechanism for incremental programming, is necessary because of a

subtle interaction between the process of modification and self-reference in the original

structure. To support this claim, the concepts of modification and self-reference are

investigated separately, and then their interaction is illustrated. This leads to an intuitive

explanation of inheritance and a formal model.

2.1 Modification

Modification, in the everyday sense, is a process of destructive change. As applied to

information structures, which can be freely copied and reused by any number of clients,

modification takes on a less destructive character and is expressed by a process of deriva-

tion. Derivation of a modified structure is achieved by placing a new structure between

the original structure and its clients. This mediating structure provides new behavior in

some cases and uses the original behavior in other situations. The modification is non-

destructive in that the original only appears to be changed. Derivation is illustrated by

the following picture, in which the arrows represent invocation or reference. The client

invokes the modification, M , and the modification invokes the original, P .
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-client M - P

Derivation

Perhaps the simplest and most general mechanism for derivation is function appli-

cation. Under this interpretation, M is a function that computes some new structure

when applied to the original structure. Thus M(P ) would represent the derived value.

This model is attractive in its generality, but is perhaps too general: since M can be

any function at all, little can be said about what kind of modifications it is making. A

more structured analysis of modification is developed below.

2.1.1 Records

It is useful to formalize the notion of modification by introducing records. A record is

an association of names to values, and is a very general representation for compound

structure. Records are useful because they allow modification to be described as a

collection of attributes to be added or replaced to achieve the modification. Records

are also useful for more specific discussions of inheritance in object-oriented languages,

because they are a good representation for objects.

A record is a finite mapping from labels to values [6]. The record concept as used

here is essentially equivalent to modules [2], environments [18], labeled products, etc.

However, a record may simply be viewed as a collection of named attributes. A field

name that lacks a value is assumed to be mapped to the undefined value ⊥.

The association of a label to a value is called a component of the record. A record

with labels x1, . . . , xn and values v1, . . . , vn is written

[x1 7→ v1, . . . , xn 7→ vn ]

The value associated with a label x in a record m is m(x); the notation m.x will also be

used occasionally.

The domain of a record is the set of labels it defines:

dom(m) = {x|m(x) 6= ⊥}

Restriction of a record m to the set of attributes X is expressed by m|X:

m|X = λx . if x ∈ X then m.x else ⊥

2.1.2 Record Combination

The modification of records is formalized as record combination. It is useful to say that

the original structure and the modifications are both records and that their combination
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represents the modifications carried out upon the original. A combination of two records

is a record whose components are taken from two other records. A record combination

function is a binary function on records that computes the combination of its arguments.

Record combination functions are not necessarily commutative.

For example, the records [x1 7→ v1, x2 7→ v2 ] and [x2 7→ v′2, x3 7→ v3 ] may be

combined in a number of ways to produce a new record. One possible combination is:

[x1 7→ v1, x3 7→ v3 ] .

Two records conflict on a label if that label is defined in both records. The conflicting

labels of two records m1 and m2 are dom(X) ∩ dom(Y ). In the example above, x2 is

the only label in conflict. The definition of conflict is syntactic in that it concerns only

what labels are defined by the records, and not their values. Semantic conflict is also a

useful notion: two records conflict semantically on a label if they give different values

to the label. However, this assumes that it is possible to compare values for equality,

which is not always a sound assumption, either theoretically or practically.

The primary issue in defining a combination function is how to resolve conflicts. The

basic approaches are to prohibit conflicts, to make an asymmetric choice, or to compose

the values in some way. The final choice depends to a large degree on the type of values

in the record. In the example above, the conflict on x2 is resolved by omitting the

conflicting label from the resulting combination.

Record combination functions will be denoted by ⊕? where ? is a conflict resolution

function that is applied to the pair of values for each label in conflict. Given records m

and n, record combination is defined as:

m⊕? n = λ s .

m(s) s ∈ dom(m)− dom(n)

n(s) s ∈ dom(n)− dom(m)

m(s) ? n(s) otherwise

Various candidates for ∗ include ⊥, the function that always returns bottom, l = λ ab . a

and r = λ ab . b, which select their first and second argument respectively, and ◦ for

function composition.

Information on combination functions is summarized in Table 2.1. In the rest of this

thesis, ⊕ without a subscript represents ⊕l. Other combination functions are of course

possible, especially if more complex structures are contained in the records.

2.2 Self-Reference

Self-reference occurs when a structure is defined in terms of itself. This technique is

used frequently in programming, in recursive procedures, functions, data types, etc. In

the picture below, a self-referential structure is shown as a “black box” with an arrow
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s ∈ X − Y s ∈ X ∩ Y s ∈ Y −X

Strict (m⊕⊥ n)(s) m(s) ⊥ n(s)

Left preferential (m⊕ n)(s) m(s) m(s) n(s)

Right preferential (m⊕r n)(s) m(s) n(s) n(s)

Composing (m⊕◦ n)(s) m(s) m(s) ◦ n(s) n(s)

Applicative (m⊕· n)(s) ⊥ m(s)(n(s)) n(s)

Table 2.1: Record combination functions.

pointing from inside to the outside of the box. Self-reference is a form of invocation just

like client invocation.

-client P �
��6

Self-reference

2.2.1 Fixed-point Semantics

The fixed-point semantics of recursive programs, developed by Scott[24], provides the

mathematical setting for the inheritance model. Thorough introductory explanations

are given by Stoy[27], Gordon[12], and Scott[24]. To see the use of fixed points in the

analysis of recursive programs, consider the following definition of the factorial function:

fact = λn . if n = 1 then 1 else n× fact(n− 1)

The identifier fact is equated with a function definition in which “fact” appears. In the

body of the definition, fact is a bound variable that represents the value of the complete

definition. Thus the definition is self-referential.

The use of the symbol fact to represent self-reference is just a syntactic convention.

The following definition uses an alternative notation (common in object-oriented lan-

guages) in which self-referential is represented by a special symbol, self:

fact = λn . if n = 1 then 1 else n× self(n− 1)

The intent of such definitions is to specify the meaning, or denotation, of the identifier

fact. This denotation is a function. But there is no guarantee that any function satisfying

the above equation exists, and even less that there is a unique one. This problem is

solved by fixed-point analysis, which indicates how to construct the denotation of these

self-referential definitions. By using fixed-point techniques, the recursive definition is
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transformed into a non-recursive form. Within an appropriate domain, the value of this

non-recursive definition is guaranteed to exist and is also unique.

First, the body of the function is converted into an explicit abstraction, or function,

in which the parameter self is substituted for fact:

FACT = λ self . λ n . if n = 1 then 1 else n× self(n− 1)

FACT is a functional, or mapping from functions to functions; its definition is not

recursive, because ‘FACT’ does not appear in its body. The formal parameter self

represents the function to call in order to compute the factorial of numbers less than n,

if needed. The original definition of fact may now be given in terms of FACT:

fact = FACT (fact)

But now fact is defined as a value that is unchanged when FACT is applied. Such a value

is called a fixed point of FACT. Under certain conditions, it is possible to compute a

unique fixed point, the least fixed point, of any function by using the fixed-point function,

fix. The fixed-point function has the property that if f = fix(F ), then F (f) = f .

The conditions that must hold for fix to work are almost always satisfied in the case of

functionals derived from program definitions.

Although fixed-point semantics is necessary for the analysis of recursive definitions

that produce infinite structures like the factorial function, it also works for degener-

ate recursive definitions specifying finite structures that could just as easily be defined

without recursion.

To illustrate, assume a pair constructor 〈l, r〉 and pair selectors left and right. The

following definition is self-referential but not essentially recursive:

p = 〈3, left(p) + 1〉

Clearly, p = 〈3, 4〉. The fixed-point analysis of this definition proceeds in the same

manner as for fact : first, a functional is defined in which the recursive reference is an

explicit parameter:

P = λ self . 〈3, left(self) + 1〉

Then p = P (p) and p = fix(P ). It is easy to verify that p = 〈3, 4〉 is the only pair for

which 〈3, 4〉 = P (〈3, 4〉).

The term “recursive” might be expected to apply only when the fixed-point function

is required; however, it is not always clear whether on not there is an equivalent value

expressed without fixed points. Thus there is little difference between recursion and self-

reference. The term “recursive” will be used primarily to describe a value defined by a

fixed point. “Self-referential” has a more syntactic connotation, describing a definition

that refers to what is being defined.
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Technically, the notion of “self-reference” applies only to definitions, not to the denota-

tions being defined, since denotations have no internal, hidden structure. For example,

it is the definition of factorial that is self-referential, not the factorial function itself

(which is, for example, a flat collection of ordered pairs). Analogously, the denotation p

above is simply a pair of integers.

However, the use of self-reference in a definition can express important dependencies

in the value being defined. These dependencies are often transferred directly to the

computational implementation of the definition. The only possible representation of

infinite structures like the factorial function is as self-referential procedures. Thus a

value may reasonable be considered self-referential if it was defined self-referentially.

2.2.2 Generators

The concept of a generator is introduced to refer to the functions whose least fixed

points specify the meaning of recursive definitions. Introducing a special name for the

arguments of the fixed-point operator is justified by the special conditions which are

imposed on a function in that context.

Definition 1 A function intended to specify a fixed point whose formal parameter rep-

resents self-reference is called a generator.

The functionals FACT and P in the factorial and pair examples above are generators.

Generators are often expressed with the variable self or s as the formal parameter.

Thus a generator has the form

G = λ self . body

where self may occur freely in body. Intuitively, self-reference is ‘unbound’ in a generator,

as illustrated on the left below, while self-reference in its fixed point is connected back

to the generator, as illustrated to the right.

�
?self

Generator

-client �
��6

Fixed point

Any function can be considered as a generator, since it is the context of use within

the fixed-point operator that motivates this description. Thus generators can be distin-

guished from other functions only by the use for which they are intended.

11



To illustrate, consider the following record generator representing a pair of values

where the second depends upon the first:

G1 = λ self . [ base 7→ 7, square 7→ self.base ∗ self.base ]

The fixed point of this generator is the record

m1 = fix(G1) = [ base 7→ 7, square 7→ 49 ]

The value of attribute square in m1 is m1(square) = 49.

Although any function is a generator, not every generator has a fixed point. If the

generator makes use of itself in ways that are incompatible with the structure it creates,

then the generator fails to specify a valid value. Conditions governing when a generator

has a fixed point are developed in Section 4.1.

A generator may play two roles: (1) it may be fixed to specify a recursive object,

and (2) it may be modified to define a new generator. The first role is the traditional

use of generators as they occur in fixed-point semantics. The second role is unique to

inheritance.

2.3 Inheritance

The motivation for inheritance is an interaction between self-reference and modifica-

tion. To see why, consider the naive attempt below to modify a self-referential value by

derivation:

-client M - P �
��6

Naive derivation and self-reference

It is clear that this derivation has not simulated the effect of destructive modification,

because self-reference is used to refer to parts of the original structure that should have

been modified.

Since non-destructive modification by derivation allows the modifications to be sep-

arate from its original, special measures must be taken to ensure that self-reference is

handled properly. In short, self-reference in the original must be changed to refer to the

modifications. This is the mechanism of inheritance:

-client M - P �
��6

Inheritance
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This interaction illustrates why a special mechanism is required to achieve modification

of self-referential structures: because self-reference must be updated to complete the

derivation. This process is an essential aspect of inheritance in object-oriented languages.

Most programming languages cannot express this form of derivation, and even object-

oriented languages provide it only for certain kinds of structures. Thus inheritance is a

truly novel and fundamental mechanism for constructing programs.

2.3.1 A Formal Model of Inheritance

The interpretation of inheritance presented above is formalized using generators. The

essential observation is that the manipulation of self-reference can be modeled as an

operation on generators.

Definition 2 Inheritance is the derivation of a new generator from one or more existing

generators, in such a way that the formal parameter of the derived generator (represent-

ing self) is passed to all of the inherited generators.

Examples of inheritance are given in Chapter 3.

The new generator inherits from the original generators. The original generators are

called parents; the derived generator is called the child. When there is no chance of

ambiguity, the corresponding fixed points may also be called the parent and child. The

child is derived by single inheritance if it only has one parent and by multiple inheritance

if it has more than one.

Since generators are closely related to self-referential definitions, the effect of inher-

itance can be understood as an operation on definitions. In this context, inheritance

corresponds to textually embedding an existing definition inside a new definition, when

using the syntactic convention of representing self-reference by the keyword self. Since

the same identifier is used to represent self-reference in the inherited definition and the

definition in which it is embedded, self-reference is shared between them. This interpre-

tation served as the original definition of inheritance for the language Simula [8].

The effect of inheritance can also be understood at the level of the values defined

by self-referential definitions. In this case the changes effected by inheritance represent

a pervasive modification of the value, because it affects every reference to the original

value, including self-reference within the value itself.

One significant consequence of the process of inheritance is that the fixed point of a

child must resemble the fixed point of its parent generator. This is because self-reference

in the parent, which originally referred to the parent fixed point, is changed to refer to

the child fixed point during inheritance. Since both parent and child fixed points must

satisfy this same self-reference, they must resemble each other at least to the degree

specified by the parent self-reference. This consequence of inheritance is investigated

further in Chapter 4.
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2.3.2 Distributive Combination

The mechanism of distributive combination is introduced as a concise notation to express

the manipulation of self-reference that is necessary to achieve inheritance. Given a func-

tion for combination of values, the corresponding function for combining generators is

provided by distributive combination: a common binding for self-reference is distributed

to both generators, and their values are combined. The result is a new generator that

inherits from both of the original ones.

Any binary operator can be converted into a distributive form. Given a binary op-

erator ∗, the distributive operator ∗ is a binary operator on generators, defined by

supplying the same self-reference to the two generators and combining their results with

∗. The distributive version of ∗ is defined as:

G1 ∗ G2 = λ s .G2(s) ∗G2(s)

This ‘boxed’ form ∗ of an operator ∗ is called distributive because (G1 ∗ G2)(x) =

G2(x) ∗G2(x). The distributive combination of two generators is illustrated below.

G1

�
�
�
- ∗ G2

�
�
�
- = ∗G1

%
G2

%�

�
�
-

The distribution function converts binary operators to distributive operators; it

may be viewed as a ternary function that takes a binary function and two arguments

and constructs the distributive combination of the arguments using the binary function.

Thus is a general mechanism for expressing distributive operators.

To illustrate distributive record combination, the generator G1 defined on Page 11 is

combined with another (trivial) generator that defines a different value for base:

G2 = λ self . [ base 7→ 2 ]

The distributive combination of G2 and G1, using the preferential combination function

⊕ (the same as ⊕l) is:

G1 ⊕ G2 = λ self . G2(self)⊕G1(self)

= λ self . [ base 7→ 2 ] ⊕ [ base 7→ 7, square 7→ self.base ∗ self.base ]

= λ self . [ base 7→ 2, square 7→ self.base ∗ self.base ]

The fixed point of the resulting generator is [ base 7→ 2, square 7→ 4 ] .

Distributive operators compose naturally, permitting a single self to be distributed to

all constituent expressions. For example, (a ∗ b) + c represents λ s . (a(s)∗b(s))+c(s).
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Distribution can also be nested to distribute a second parameter over the arguments:

G1 · G2 = λ s . (G1(s) · G2(s))

= λ s . λ t .G1(s)(t) ·G2(s)(t)

2.4 Varieties of Inheritance

2.4.1 Wrapping

Wrapping is a general form for inheritance that derives from handling self-reference

within the interpretation of modification as function application. The concept of a

wrapper1 is introduced to describe a modifying function that is applied in such a way

that it can refer to the result of the modification. Wrappers are the basic general form

for modifying self-referential structures.

Definition 3 A wrapper is a function designed to modify a self-referential structure

in a self-referential way; it has two parameters, one representing self-reference and the

other representing the superstructure being modified.

Thus a wrapper is a function of the form λ self . λ super . body , where self and super may

occur free in body.

The application of a wrapper to a generator involves binding together self-reference

in the wrapper and the generator, and then applying the wrapper modification to the

value of the generator. Given a generator G and a wrapper W , a new generator W · G
is derived using the distributive application function · defined as follows:

W · G = λ self .W (self)(G(self))

The wrapper application function · is the distributive version of application, where ·
is used to express application: f · x = f(x). Written out as a lambda expression, · is

the S combinator used in algebraic models of the λ-calculus:

· = λ a . λ b . λ s . a(s)(b(s))

Note that the result of this application is a generator. The effect of applying the

wrapper W to a generator G is illustrated below, where the curved arrows represent

self-reference. Self-references in W and G are bound together though the variable self,

signified by the joining of the arrows out of W and G. The arrow from W to G represents

the application of W to G.

1The term “wrapper” comes from Flavors, where it describes a method that is combined in a way
similar to that described here. The notion of wrapper used in this thesis is perhaps closer to Flavors’
“mixins”, as described in Section 10.5, but “mixin” does not have the right connotations.
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2.4.2 Record Inheritance

Wrapper record inheritance uses record wrappers to provide an explicit format for mod-

ifying record generators. A wrapper specifies changes to its parent as additional or

modified components, and has explicit access to the original attributes in the parent.

The two generators combined during wrapper inheritance are the wrapped parent and

the original parent. In this way, any changes specified by the wrapper may replace

corresponding attributes in the original parent. All other components of the parent are

simply transferred to the child. The structure of records as compound objects makes

possible this refinement of the notion of modification. The combination function chosen

determines what kind of changes the wrapper is allowed to make.

A record wrapper is a binary function on records. Its first argument represents self-

reference, its second argument represents the record being modified. A record wrapper

specifies the self-referential components to be combined with the parent record.

A record wrapper is applied to a record generator to produce a new record genera-

tor. The wrapper uses the resulting record and the parent record, and resulting record

is the combination of the wrapper and the parent. Record wrapper application with

combination function ⊕ is defined by the infix operator � as follows:

W � P = (W · P ) ⊕ P

The inheritance function is the distributive form of the operator w� p = (w · p)⊕ p =

w(p) ⊕ p, which might be used for modifying a record. The box operator distributes

uniformly over the binary operators for application and addition (see Section 2.3.2).

With this construction, it is possible for the wrapper to access all of the components of

the parent definition. The effect of this definition is illustrated in Figure 2.1. Note that

the multiple occurrences of P do not indicate that the parent is “instantiated” twice.

On the contrary, P is simply an variable that denotes the unique value of the parent

generator, and it is this value that is referred to twice.

2.4.3 Selective Record Inheritance

Selective inheritance is a restricted form of record combination inheritance in which the

modification components can access only the corresponding component in the parent,

not arbitrary components. A different kind of modification record is used during selective

inheritance: it contains functions that are composed with the corresponding functions

in the parent. A selective modification is a record of transformation functions on a

domain. The modification associates with each label a function on the corresponding
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Figure 2.1: Record inheritance with combination.

parent attribute, and is suitable for combination with ⊕◦. Selective record inheritance

is defined by the infix form M ⊕◦ P .

Selective inheritance is used in the semantics of Beta given in Chapter 9.

2.5 Multiple Inheritance

Multiple inheritance is a generalization of single inheritance that allows multiple parents

to be involved in the construction of the child. The definition of wrappers must be

extended to provide for multiple inheritance. In this formalization, the wrapper is re-

sponsible for resolution of all conflicts among its parents, as well as the explicit transfer

of their properties into the result. An n-wrapper W is a wrapper that uses n parents to

construct a child.

The parents are placed in a tuple of size n. The manipulation of tuples containing

generators is facilitated by defining the application of a tuple as a function: the value

of a tuple applied to an argument is a tuple consisting of each element applied to the

argument:

〈f1, . . . , fn〉(a) = 〈f1(a), . . . , fn(a)〉
Multiple inheritance is similar to single inheritance except that the parent type of the

wrapper is taken as a tuple. A child C of multiple inheritance of parents G1, . . . , Gn

and wrapper W is:

C = W · 〈G1, . . . , Gn〉
= λ self .W (self)(〈G1(self), . . . , Gn(self)〉)

This characterization of multiple inheritance, while not complete, provides a framework

in which more complex forms may be studied. The wrappers themselves are the focus for
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further development, for it is through them that issues relating to resolution of conflicts

among parents or automatic combination of parents must be addressed. Development

of more sophisticated inheritance mechanisms within this framework requires the addi-

tion of a layer of structure within the self-referential values whose generators are being

derived.

2.5.1 Strict Multiple Record Inheritance

Strict multiple record inheritance provides strict combination of multiple parent gener-

ators followed by record wrapping. To perform multiple inheritance automatically, the

parents are first combined into a single generator. In this case, the parents are combined

strictly by ⊕⊥ so that conflicting symbols are removed. The result of this combination

is then wrapped by a record wrapper, that is applied to the original list of parents,

rather than their strict combination, to allow explicit access to each parents’ original

attributes. Since conflicts among the parents are converted into error values, errors are

transferred to the resulting generator unless they are overridden by the wrapper. A child

C of multiple inheritance of parents G1, . . . , Gn and wrapper W is:

W �n 〈P1, . . . , Pn〉 = (W · 〈P1, . . . , Pn〉) ⊕ (P1 ⊕⊥ · · · ⊕⊥ Pn)

Obviously, other constructions for multiple inheritance are possible.

2.6 Generalized Inheritance

The restriction that self-reference must be shared among all generators during inheri-

tance may be relaxed to allow more general forms of ‘inheritance’. In the most general

sense, a derived generator is simply a function of the original generator. For example,

given the generator G and some appropriate function M , a new generator G′ may be

derived by G′ = M(G). This proposal has no immediate applications, since meaningful

operations on generators do not seem likely. Thus it seems reasonable to include the

binding of self-reference in the derivation mechanism, as in the forms of inheritance de-

fined in previous sections that require self-reference to be passed intact directly to the

parent generator.

However, an intermediate position is possible between these strict forms and the gen-

eralization presented above. A potentially useful generalization of inheritance is defined

by allowing modification of the self-reference passed to the inherited generators, as well

as the exterior modification described above. This is achieved by composing two func-

tions around the parent generator. For example, given two modification functions M

and P and a generator G, a generator may be defined by G′ = M ◦G ◦ P . In this case

the actual parameter of G modifies the self-reference of the derived generator before it

is passed to the inherited generator G. Thus all self-reference within G will invoke a

modified self. Such internal pervasive modification is illustrated below.
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This form may prove useful in adapting the interface through which an inherited

generator refers to self so that it conforms to the derived generator’s external interface.

This technique is illustrated in Section 3.2. It may also be useful in renaming of methods,

because the internal reference to the original names must be changed at the same time

the external names are changed.
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Chapter 3

Examples of Inheritance

3.1 Object Inheritance

Inheritance is traditionally used for incremental derivation of the methods for classes

of objects. The objects illustrated in this section are simplifications of the objects in

full object-oriented languages; they are immutable in that they do not have changeable

state. A more complete analysis of inheritance for mutable objects is given in Chapters

6-10.

Objects are naturally modeled as records containing functions that represent methods

or operations. These methods constitute a collection of mutually recursive definitions.

A class is a constructor that creates objects with similar methods. Record generator

combination, as introduced in Section 2.4.2, is used to achieve inheritance.

The following example illustrates how to use fixed points to describe the behavior

of objects. The example involves a simple class of ‘points’. The locations of points are

specified by their x and y components. The distFromOrig method computes their distance

from the origin. The closerToOrg method takes another point object and returns the

one that is closer to the origin.

class Point(a, b)

method x = a

method y = b

method distFromOrig = sqrt(self.x2 + self.y2)

method closerToOrg(p) = (self.distFromOrig < p.distFromOrig)

The class Point can be represented as a function that creates objects. Self-reference

in Point may be explained using fixed-point techniques. A function Point is defined

to construct points and supply them with appropriate functions to represent methods.

Since points are self-referential, they are explained as the fixed point of the “generator”

of the methods. Point is a function that takes the coordinates of the new point and

returns a generator whose fixed point is a point.
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Point(a, b) = λ self .

[ x 7→ a,

y 7→ b,

distFromOrig 7→ sqrt(self.x2 + self.y2),

closerToOrg 7→ λ p . (self.distFromOrig < p.distFromOrig) ]

A point at (3, 4) is created by

p = fix(Point(3, 4))

This point is equivalent to the following record:

p = [ x 7→ 3,

y 7→ 4,

distFromOrig 7→ 5,

closerToOrg 7→ λ p . (5 < p.distFromOrig) ]

The closerToOrg function takes a single argument that is assumed to be a point.

Actually, it need only be a record with a distFromOrig method whose value is a number.

Inheritance allows a new class to be defined by adding or replacing methods in an

existing class. For example, the Point class may be inherited in defining a class of

circles. Circles have a different notion of distance from the origin. This definition gives

only the differences between circles and points:

class Circle(a, b, r)

inherit Point(a, b)

method radius = r

method distFromOrig = max(super.distFromOrig - self.radius, 0)

This form of inheritance can be modeled as generator modification. There are three

aspects to this process: (1) the addition or replacement of methods, (2) the redirection

of self-reference in the original generator to refer to the modified methods, and (3) the

binding of super in the modification to refer to the original methods.

The modifications effected during class inheritance are naturally expressed as a record

of methods to be combined with the inherited methods. The modifications are not

simply a record, however, because they may be defined in terms of the original methods

(via super). In addition, the modifications may make self-references to the resulting

structure. Thus a modification is naturally expressed as a function of two arguments,

one representing self and the other representing super, that returns a record of locally

defined methods. Such functions were called wrappers in Section 2.4.1. A wrapper

contains just the information in the subclass definition:

21



CircleWrapper = λ a, b, r .

λ self . λ super . [ radius 7→ r

distFromOrig 7→ max(0, super.distFromOrig - self.radius)

]

The other aspect of inheritance that must be formalized is the change of self-reference

in inherited methods. The methods to be inherited are contained in a generator, a func-

tion whose argument is used for self-reference in the methods. The result of inheritance

should be a new class definition, that is, a new generator.

The generator that represents the class Circle can now be defined by wrapper appli-

cation of CircleWrapper to Point:

Circle = λ a, b, r .CircleWrapper(a, b, r) � Point(a, b)

The resulting generator is equivalent to the following one, which is exactly what one

might write if circles had been defined without using inheritance:

Circle = λ a, b, r .

λ self . [ x 7→ a,

y 7→ b,

radius 7→ r

distFromOrig 7→ max(0, sqrt(self.x2 + self.y2) - self.radius),

closerToOrg 7→ λ p . (self.distFromOrig < p.distFromOrig) ]

Note that distFromOrig has changed in such a way that closerToOrg will use the notion

of distance for circles instead of the original one for points. Thus inheritance has achieved

a consistent modification of the point class.

3.2 Function Inheritance

An additional level of inheritance is required when the constructor function itself is

recursive. In the previous example, the parent class Point was simply combined with

some new definitions to produce the child class Circle. When the Point constructor is

itself a recursive function, an additional mechanism is needed. Consider a class of points

with a move method:

MovingPoint = λx, y . λ self .

[ x 7→ x,

y 7→ y,

move 7→ λ d . fix(Point(self.x + d.x, self.y + d.y))

distFromOrg 7→ ...

closerToOrg 7→ ... ]
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In this example the constructor is self-referential, in addition to the self-reference in

the points themselves. To illustrate inheritance in of recursive constructors, a class of

moving circles is defined by analogy with the example in the previous section.

Since the constructor is recursive, inheritance should be used to derive a modified

constructor. To perform inheritance, it is necessary to consider the generator of the

Point constructor:

MovingPoint = λmake-self . λ x, y . λ obj-self .

[ x 7→ x,

y 7→ y,

move 7→ λ d . fix(make-self(obj-self.x + d.x, obj-self.y + d.y))

distFromOrg 7→ ...

closerToOrg 7→ ... ]

The two levels of recursion are identified by the bindings of make-self and obj-self.

Inheritance of the constructor is important because points have the ability to make

other points; a modified kind of point should call the modified constructor when it

wants to make a version of itself. If the new constructor is not derived using inheritance,

then when a circle was moved it would become an ordinary point. The wrapper for this

example is the same as in the previous section.

The constructor for moving circles must take three arguments: x, y, and r. Note

in the following definition that MovingPoint takes as its first argument the function

that moving point instances use to create new points. Since these instances should

make moving circles instead of just moving points, the new constructor being defined is

supplied. This definition is a first cut at the solution:

MovingCircle = λ a, b, r .

CircleWrapper(a, b, r) � MovingPoint(MovingCircle)(a, b)

The fault in this definition is that MovingPoint expects its argument to take two

parameters, x and y. However, MovingCircle requires three arguments, including the

radius value. The inherited methods in the the moving point generator know only that

a point is moving and knows nothing about circles. Assuming that the new radius is

the same as the old, the following definition adapts the recursive call so that the radus

is supplied. In addition, it defines a new constructor generator, as is more proper:

MovingCircle = λmake-self . λ a, b, c .

let make-super = MovingPoint(λ a′, b′ .make-self(a′, b′, r)) in

CircleWrapper(a, b, r) � make-super(a, b)
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It would also be possible to have the radius change during a move, so that it would

depend upon the new location, the distance moved, etc. In any case, this expression is

equivalent to the following one, which is clearly what is desired:

MovingCircle = λmake-self . λ a, b, r . λ obj-self .

[ x 7→ a,

y 7→ b,

move 7→ λ d . fix(make-self(obj-self.x + d.x, obj-self.y + d.y, r))

distFromOrg 7→ ...

closerToOrg 7→ ...

]

This example illustrates the generalization of inheritance described in Section 2.6: the

new constructor generator does not pass self directly to its parent; it is modified by the

adapting function that calls the modified constructor with the original radius.

3.3 Procedure Inheritance

Procedure inheritance allows the definition of modified forms of an existing procedure,

such that recursion in the original procedure is redirected to invoke the modified form.

Procedure inheritance is significant because it provides elegant solutions to problems

that have no good solution in traditional programming languages. Yet it is a simple

matter to introduce inheritance into traditional languages and immediately increase

their expressive power.

Memoization is a good example of the power of procedure inheritance. A function is

memoized by converting it into a procedure owning a table in which previously com-

puted function values are stored. The procedure is used in place of the function; it

computes function values on demand and stores them in the table, but simply returns

any previously computed values.

The difficulty of “memoization” is well-known [1, p. 69]:

Memoising also presents another interesting challenge to the designers of

functional programming languages. Ideally one would like to be able to

define a higher order function that takes a function as argument and yields

a more efficient version of the function as a result. It is easy enough to

write down the rules for transforming the functions, but to implement the

transformation requires access to the structure of the function.

They resort to copying code and modifying it textually. Although their “ideal case” is

impossible to implement, it is possible to write a higher-order function that operates on

the generator of a function to produce a more efficient version. It is significant that only
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limited access to the structure of a function is needed; the only access needed is to the

recursive structure of the function.

The difficulty of the general memoization problem in conventional programming lan-

guages stems from the problem of recursion in the function being memoized. A naive

attempt at memoization by simply defining a procedure that invokes the function on

demand fails when the function is recursive. Since a recursive function makes calls di-

rectly to itself, it does not take advantage of the memos containing stored results when

invoked by naive memoization. Conventional programming languages cannot express

internal use of memos without radically changing the organization of the program. The

most common way to make recursion in the function use the memos is to copy the

function definition and edit its definition, intermixing the memoization with the orig-

inal function behavior. This approach introduces unwanted redundancy and increases

the maintenance costs of the resulting systems. Another choice is to rewrite the func-

tion to take an additional formal parameter representing the function to call to perform

recursion. If the original function has the form

F = λx . . . . F (e) . . . ,

then the rewrite has the form

G = λ f . λ x . . . . f(f)(e) . . . ,

and the original function call G(a) is simulated by G(G, a). (This option amounts to

simulating the fixed-point construction of specialization by self-application [10] and is

closely related to delegation [17].) This technique is prone to errors that are hard to

detect and often involves violating a language’s type system, since it requires the use of

self-application.

The memoization of a function F is easily expressed by using inheritance:

private

T = new Table

in

F’ = inherit F in fun(v)

if has(T, v) then

get(T, v)

else

set(T, v, super(v))

Function specialization allows the evolution and modification of a recursive function

without physically changing the original.
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3.4 Data-Type Inheritance

The types found in programming languages like Pascal may also be constructed using

inheritance, a possibility noted by Borning and Ingalls [4]. Data-structure inheritance

allows an existing recursive data structure to be specialized, typically by adding fields to

the record representing a node in the recursive structure. All levels of this data structure

are specialized, because recursive pointers refer to the specialized definition.

Consider the following tree type:

type Tree = record left, right : ↑tree end;

Integer trees inherit the structure of Tree and add a value field to each node:

type IntTree = inherit Tree &

record value : Integer end;

The combination function is Cardelli’s & operator [7] for concatenation of two record

types. The resulting definition of IntTree is equivalent to the following definition without

inheritance, in which self-reference to Tree in the parent definition is changed semanti-

cally to IntTree in the child:

type IntTree = record left, right : ↑ IntTree;

value : Integer end;

Inheritance may be used to modify a function and the data structures on which it

operates in parallel. A function that handles several different cases may be extended by

inheritance to handle more cases. The new cases which the function handles may also

be added by inheriting the original data structure definition. The result is a parallel

specialization of data and functionality.

For example, an evaluator of a simple expression language, where expressions are

encoded in the following data structure is:

SumExp ::= Value of Integer | Sum of SumExp × SumExp

The function

SumEval : Exp →Integer

evaluates expressions in Exp as follows:

SumEval = fun(var t : SumExp)

case t of

Value : fun(i) i

Sum : fun(t1, t2) SumEval(t1) + SumEval(t2)

endcase
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To add a product case to the structure of expressions, a new data structure is defined

that inherits from SumExp:

ProdExp = inherit SumExp & Product of ProdExp × ProdExp

The evaluation function for ProdExp’s is defined by inheriting the behavior of SumEval

and adding a case to handle products:

ProdEval = inherit SumEval by

fun(var t : ProdExp)

case t of

Product : fun(t1, t2) ProdEval(t1) * ProdEval(t2)

others: super(t)

endcase

3.5 Hierarchy Inheritance

A more novel use of inheritance is in the derivation of modified hierarchies or other graph

structures. The links between nodes in the graph are interpreted as self-references from

within the graph to itself. By inheriting the graph and modifying individual nodes, any

access to the original nodes is redirected to the modified versions.

For example, in object-oriented programming, a complete class hierarchy may be in-

herited, while new definitions are derived for some internal classes. The result of this

inheritance is a modified class hierarchy with the same basic structure as the original,

but in which the behavior of all classes modified that depend upon the classes explic-

itly changed is modified. The resulting hierarchy may be grafted back into the larger

structure.

This problem was first proposed by Lieberman [17] in the form of a class hierarchy

containing the definitions of a number of graphical shapes representing planar regions,

as illustrated in Figure 3.1. A color display is introduced into the system and it becomes

useful to have a similar shape hierarchy for colored shapes, which differ from black-and-

white shapes only in having additional fields and methods to handle color operations.

One solution to this problem is to edit the shape class and add the necessary defi-

nitions. Although this has the unfortunate property of destroying the black-and-white

hierarchy, it might be possible to view black-and-white as a special case of the new color

hierarchy.

The second solution depends upon multiple inheritance and allows both color and

black-and-white hierarchies to exist at the same time. The alternative, given a language

with multiple inheritance, is to define a class ColorShape that inherits from Shape and

then manually construct subclasses under ColorShape analogous to the subclasses of

Shape. The operation that must be performed is to create a class Color X for each
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Figure 3.1: A shape hierarchy.

descendent X of Shape, such that Color X inherits both X and the color version Color P

any parent P of X. (The problem of duplicate ancestors that arise in this construction

are ignored here.) The resulting parallel hierarchy is shown in Figure 3.2. If multiple

inheritance is not available, as in Smalltalk, then it is necessary to copy the code for

each descendent of Shape.

A more elegant solution is to allow ‘horizontal’ inheritance of the entire shape hierar-

chy. What is needed is the ability to collect these classes into a unit. This subhierarchy,

called BW, is a mapping from class names to definitions; it is a class environment.

When a class definition like Polygon specifies that it is a subclass of Shape, this should

be interpreted as being a subclass of BW.Shape.

Letting with represent the preferential combination function ⊕, the color hierarchy

could be defined as

hierarchy Color

inherit BW

with

class Shape inherit super.Shape

{additional features of color shapes}

28



Color
Square

Color
Circle

@
@

@
@

@@I

�
�

�
�

��� 6

Square Circle
@

@
@

@
@

@@I

�
�

�
�

�
��� 6

6
�������1

Color
Parallelogram

Color
Equilateral

Color
Ellipse

�
�

�
�

���

@
@

@
@

@@I 6

Parallelogram Equilateral Ellipse
�

�
�

�
�

���

@
@

@
@

@
@@I 6

6 6
�������1

Color
Polygon

Color
Curve

�
�

�
�

�
�

��>

@
@

@
@

@@I

Polygon Curve
�

�
�

�
�

�
�

��>

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Qk

6
�������1

Color
Shape

Shape

6

Figure 3.2: A derived shape hierarchy.

The combination function on hierarchies would be designed to specialize each class

in the parent hierarchy by the corresponding class definition in the hierarchy special-

ization. Thus Color.shape would automatically inherit BW.shape. The inheritance of

sub-hierarchies depends upon the fact that recursive environments can be decomposed

into collections of smaller recursive bindings, that are then combined into a larger re-

cursive binding.
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Chapter 4

Type Theory and Inheritance

4.1 Typing Generators

Examining the types of generators leads to an understanding of the external and internal

interfaces of a self-referential definition, and the constraints on their use. Since the

results of this application are of practical value when using inheritance, but have little

significance for type theory, this presentation is informal and brief. There is more that

can be said about the interaction between type theory and inheritance that will have to

await further research.

Since generators are functions, they have types of the form σ → τ . The formal

parameter of a generator represents self-reference, and hence the type σ of the formal

parameter represents the type of self-reference that the generator makes. The range τ

of a generator is the type of result the fixed point operation creates. The self-reference

type σ represents the assumptions the generator makes about its fixed point, because it

is as a value in the self-reference type that the result of a generator refers to itself. In

the illustration below, the result-type τ describes the external interface of the generator

fixed point, while the self-reference type σ describes the internal reference from within

the definition to the external interface:

τ G $self

?
σ

4.2 Generator Consistency

The typing of generators provides strong constraints on the existence of fixed points. As

mentioned in Section 2.2.2, not all generators are valid specifications of a fixed point.

A generator fails to have a fixed point if its references to itself do not match its result

type. The typing constraints are defined in terms of subtyping [6, 19].
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A generator is consistent if it has a fixed point. The relationship between σ and τ

determines whether a generator is consistent. If τ is a subtype of σ, then any value of

type τ can be used as a value in σ, and any generator that can be given the type σ → τ

is consistent.

Generator consistency provides a formal characterization of ‘abstract classes’ in object-

oriented languages. An abstract class is one in which some components have been left

undefined, yet may be referenced from within the class definition. Since any instance

of such a class might invoke an undefined method, a general convention is adopted that

instances should not be created for abstract classes.

The consistency condition provides a formal argument that abstract classes must not

have instances. Since abstract classes represent inconsistent generators, and the fixed

point is not defined on generators that are not consistent, no instances can be created

of an abstract class. This is because instantiation relies upon the fixed point operator

to provide the behavior of the instance.

It is significant that an inconsistent generator in most languages is classified as an

error: if a recursive function on integers calls itself with a value that is in the union type

of integer or boolean, then the function is simply an error. Although such a function

definition does not define a valid function, it could be inherited in such a way that

functionality is added to complete the definition. Thus inconsistent generators should

be thought of as incomplete or partial descriptions of recursive behavior that can be

used as a template and completed later in different ways.

4.3 Typing for Inheritance

When applied to inheritance, type theory defines conditions on the validity of generator

derivation. Since the self-reference of a derived generator is passed to the generators it

inherits, type constraints are propagated from parents to children.

According to the definition of inheritance, when a generator C inherits from a gener-

ator P , the formal argument of C is ‘distributed’ to P . This means that C must have

the form:

C = λ self . · · ·P (self) · · ·

If P has been determined to have type σ → τ , then it follows immediately that the

argument type of C must be a subtype of σ. This is the basic constraint induced by

inheritance:

The type of self-reference of an inheritor must be a subtype of the type

of self-reference of its parents.

If the child generator, in addition, is to be consistent, then its type C : σ′ → τ ′ must

satisfy σ′ subtype τ ′. Then, by transitivity, for a child to be consistent its external
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interface τ ′ must be a subtype of its parent’s self-reference type σ. This is the basic,

minimal constraint imposed by inheritance. Note that it is not necessary for the child

external interface to be a subtype of the parent external interface.

When applied to function inheritance, the type constraints on inheritance demonstrate

that functions can be generalized. A recursive function f of type σ → τ can be extended

using inheritance to a function f ′ of type σ′ → τ as long as σ ≤ σ′, which indicates

that the new type σ′ is more general than σ. The generator Gf of f , which satisfies

f = fix(Gf ), has type (σ → τ) → (σ → τ). A wrapper W of f has type

W : (σ′ → τ) → (σ → τ) → (σ′ → τ)

And the inheritance f ′ = fix(W · Gf ) denotes a valid function only when σ ≤ σ′.

4.4 Encapsulation

Inheritance seems to be a breach of traditional encapsulation and security because refer-

ences to self cause multiple exits from the syntactic definition of the parent. The effect

is that an inheritor is dependent upon the implementation of its parent, not just on

the parent interface. If the pattern of references the parent makes to itself is changed,

the inheritor is able to detect this change. The traditional notion that data abstraction

allows for substitution by behaviorally compatible implementations must be modified in

the case of inheritance: recursive behavior must be included in our notion of interface

contracts.

Inheritance imposes a responsibility on implementors of a class to use its abstract

interface properly. If an operation is provided externally to perform some action, then

the methods of the class must call that operation whenever they need to achieve the

effects of the action. Breaking this rule by ‘optimizing’ an operation — doing it on the

sly without calling the correct abstract operator — is disastrous when combined with

inheritance because operations done on the sly cannot be specialized.

Requiring that a record must use its own recursive interfaces properly effects instance

variable encapsulation. The standard technique for encapsulating instance variables

involves defining a pair of access/assign methods. Inside class methods, however, the

variables are usually accessed and assigned directly; the abstract variable interface is

bypassed for ‘efficiency’. Bypassing the abstract interface prevents variable access from

being abstract like other attribute access. However, it is not sufficient for variables to be

accessed directly from the parent, as suggested in [25]. Bypassing the virtual interface

by a direct access to the parent prevents variable access from being specialized like other

virtual attributes. Instance variables shouldn’t appear in an abstract interface, but if

they do, then only virtual access functions should be invoked.

In defining a wrapper, a choice must be made whether to access an attribute from

the parent, from self, or locally. In the definition of a wrapper attribute x, the parent
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x component may be used to achieve the previous functionality of attribute x. The

definition may perform recursion by accessing the virtual x component. Access to other

components besides y should always be through the virtual y component, in order to

permit proper use of redefined values. If the attribute y is not redefined, it will access

the parent y component anyway.

Local access, which performs the effect of a z operation but does not use the virtual

z component, should be used only when the operation is not properly viewed as an

abstract use of the z operation. It is almost impossible to justify using an operation in

any way but its abstract form. Choosing whether to access a virtual, parent, or local

attribute should not be confounded with the virtual/non-virtual decision, which makes

the attribute itself virtual or local.

Selective inheritance is a good form of inheritance because it enforces proper use of

abstract and virtual interfaces.
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Chapter 5

Correctness of the Model

This chapter demonstrates that the inheritance model developed in Chapter 2 charac-

terizes inheritance as used in object-oriented programming languages: a semantics of

message-sending based on the generator combination is devised and proven equivalent

to the traditional operational semantics based on method lookup. The task is simplified

by formulating the proof using method systems, an abstraction of the state of an object-

oriented program consisting of only those aspects relevant to message sending. Other

significant aspects of object-oriented languages are abstracted away, including instance

variables, assignment, and object creation. This content of this chapter benefited from

the efforts of Jens Palsberg Jorgensen, who helped in developing a rigorous proof of the

correctness theorem.

5.1 Method Systems

Method systems are a simple formalization of object-oriented programming that support

semantics based upon both the denotational and the operational models of inheritance.

Method systems encompass only those aspects of object-oriented programming that

are directly related to inheritance or method determination. As such, many important

aspects are omitted, including instance variables, assignment, and object creation.

A method system may be understood as part of a snapshot of an object-oriented

system. It consists of all the objects and relationships that exist at a given point during

execution of an object-oriented program. The basic ontology for method systems includes

instances, classes, and method descriptions, which are mappings from message keys to

method expressions. Each object is an instance of a class. Classes have an associated

method description and may inherit methods from other classes. These (flat) domains

and their interconnections are defined in Table 5.1 and a method system is illustrated

in Figure 5.1.

The syntax of method expressions is defined by the Exp domain which defines a

restricted language used to implement the behavior of objects. For simplicity, methods
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Method System Domains

Instances i ∈ Instance

Classes c ∈ Class

Message Keys m ∈ Key

Primitives f ∈ Primitive

Methods e ∈ Exp := self | super | arg

| e1 m e2 | f(e1, . . . , eq)

Method System Operations

Class of an instance class : Instance → Class

Superclass of a class parent : Class → (Class + ?)

Methods of a class methods : Class → Key → (Exp + ?)

Table 5.1: Method system domains and their interconnections.

all have exactly one argument, referenced by the symbol arg within the body of the

method. Self-reference is denoted by the symbol self, which may be returned as the

value of a method, passed as an actual argument, or sent additional messages. A subclass

method may invoke the previous definition of a redefined method with the expression

super. Message-passing is represented by the expression e1 m e2, in which the message

consisting of the key m and the argument e2 is sent to the object e1. Finally, primitive

values and computations are represented by the expression f(e1, . . . , eq). If q = 0, then

the primitive represents a constant.

class gives the class of an instance. Every instance has exactly one class, although a

class may have many instances.

parent defines the inheritance hierarchy which is required to be a tree. For any class c,

the value of parent(c) is the parent class of c, or else ⊥? if c is the root. ? is a one-point

domain consisting of only ⊥?. The use of (Class + ?) allows us to test monotonically

whether a class is the root. Note that + denotes “separated” sum, so that the elements

of (Class + ?) are (distinguished copies of) the elements of Class, the element ⊥?, and

a new bottom element. All the injections into sum domains are omitted; the meaning

of expressions, in particular ⊥?, is always unambiguously implied by the context.

methods specifies the local method expressions defined by a class. For any class c and

any message key m, the value of (methods c m) is either an expression or ⊥? if c doesn’t

define an expression for m. Let us assume that the root of the inheritance hierarchy

doesn’t define any methods. Note that inheritance allows instances of a class to respond

to more than the locally defined methods.

In the following two sections the method system is given both a conventional method

lookup semantics and a denotational semantics. Both define the result of sending a
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Figure 5.1: A method system.

message to an instance.

5.2 Method Lookup Semantics

The method lookup semantics given in Figure 5.2 closely resembles the implementa-

tion of method lookup in object-oriented languages like Smalltalk [11]. It is given in a

denotational style due to the abstract nature of method systems. A more traditional

operational semantics is not needed because of the absence of updatable storage.

The domains used to represent the behavior of an instance are defined in Table 5.2.

A behavior is a mapping from message keys to functions or ⊥?. This is clearly con-

trasted with the methods of a class, which are given by a mapping from message keys

to expressions or ⊥?. Thus a behavior is a semantic entity, while methods are syntactic.

Another difference between the behavior of an instance and its class’s methods is that

the behavior contains a function for every message the class handles, while methods

associate an expression only with messages that are different from the class’s parent. In

the rest of this paper, ⊥ (without subscript) denotes the bottom element of Behavior.

The semantics also uses an auxiliary function root which determines whether a class

is the root of the inheritance hierarchy (see Table 5.2). Boolean is the flat three-point

domain of truth values. [f, g] denotes the case analysis of two functions f defined on Df
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Number

a ∈ Value = Behavior + Number

s, p ∈ Behavior = Key → ((Value → Value) + ?)

root : Class → Boolean

root(c) = [λ cp ∈ Class . false, λ v ∈ ? . true](parent c)

Table 5.2: Semantics domains and an auxiliary function.

and g defined on Dg, mapping x ∈ Df +Dg to f(x) if x ∈ Df or to g(x) if x ∈ Dg.

send : Instance → Behavior

send(i) = lookup(class i) i

lookup : Class → Instance → Behavior

lookup(c) i = λm ∈ Key . [λ e ∈ Exp . do(e) i c,
λ v ∈ ? . if root(c)

then ⊥?

else lookup(parent c) i m
](methods c m)

do : Exp → Instance → Class → Value → Value

do[[ self ]] i c a = send(i)

do[[ super ]] i c a = lookup(parent c) i

do[[ arg ]] i c a = a

do[[ e1 m e2 ]] i c a = do[[ e1 ]] i c a m (do[[ e2 ]] i c a)

do[[ f(e1, . . . , eq) ]] i c a = f(do[[ e1 ]] i c a, . . . , do[[ eq ]] i c a)

send - lookup

�
�
?

- do

�
�
?

� ��66

Figure 5.2: The method lookup semantics and its call graph.

Sending a message m to an instance i is performed by looking up the message in the

instance’s class. The lookup process yields a function that takes a message key and an

actual argument and computes the value of the message send.
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Performing message m in a class c on behalf of an instance i involves searching the

sequence of class parents until a method is found to handle the message. This method

is then evaluated. In lookup, the instance and message remain constant, while the class

argument is recursively bound to each of the parents in sequence. At each stage there are

two possibilities: (1) the message key has an associated method expression in class c, in

which case it is evaluated, and (2) the method is not defined, in which case a recursive

call is made to lookup after computing the parent of the class. The tail-recursion in

lookup would be replaced by iteration in a real interpreter.

Evaluation of methods is complicated by the need to interpret occurrences of self

and super. The do function has three extra arguments, besides the expression being

evaluated: the original instance i that received the message whose method is being

evaluated, the class c in which the method was found, and an actual argument a. The

expression self evaluates to the behavior of the original instance. The expression super

requires a continuation of the method search starting from the superclass of the class in

which the method occurs. The expression arg evaluates to a. The expression e1 m e2
evaluates to the result of applying the behavior of the object denoted by e1 to m and

the meaning of the argument e2.

One important aspect of the method-lookup semantics is that it is not “local”, in the

following sense: the system of functions is essentially mutually recursive, because do

contains calls to send and lookup.

5.3 Denotational Semantics

The denotational semantics based on generator modification given in Figure 5.3 uses two

additional domains representing behavior generators and wrappers, defined in Table 5.3.

The definition of ⊕ is also given in Table 5.3, by case analysis.

Generator = Behavior → Behavior

Wrapper = Behavior → Behavior → Behavior

⊕ : (Behavior×Behavior) → Behavior

r1 ⊕ r2 = λm ∈ Key . [λ f ∈ Value → Value . r1(m), λ v ∈ ? . r2(m)](r1(m))

Table 5.3: Semantic domains and ⊕.

The behavior of an instance is defined as the fixed point of the generator of its class.

The generator specifies a self-referential behavior, and its fixed point is that behavior.

The generator of the root class produces a behavior in which all messages are undefined.
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behave : Instance → Behavior

behave(i) = fix(gen(class i))

gen : Class → Generator

gen(c) = if root(c)
then λ s ∈ Behavior . λm ∈ Key .⊥?

else wrap(c) � gen(parent c)

wrap : Class → Wrapper

wrap(c) s p = λm ∈ Key . [λ e ∈ Exp . eval(e) s p, λ v ∈ ? .⊥?](methods c m)

eval : Exp → Behavior → Behavior → Value → Value

eval[[ self ]] s p a = s

eval[[ super ]] s p a = p

eval[[ arg ]] s p a = a

eval[[ e1 m e2 ]] s p a = eval[[ e1 ]] s p a m (eval[[ e2 ]] s p a)

eval[[ f(e1, . . . , eq) ]] s p a = f(eval[[ e1 ]] s p a, . . . , eval[[ eq ]] s p a)

behave - gen

�
�
?

- wrap - eval

�
�
?

Figure 5.3: The denotational semantics and its call graph.

The generator of a class that isn’t the root is created by modifying the generator

of the class’s parent. The modifications to be made are found in the wrapper of the

class, which is a semantic entity derived from the block of syntactic method expressions

defined by the class. These modifications are effected by the inheritance function � .

The function wrap computes the wrapper of a class as a mapping from messages to

the evaluation of the corresponding method, or to ⊥?. A wrapper has two behavioral

arguments, one used for self-reference, and the other for reference to the parent behavior

(i.e. the behavior being ‘wrapped’). These arguments may be understood as representing

the behavior of self and the behavior of super. In the definitions, the behavior for self is

named s and the one for super is named p.

A method is always evaluated in the context of a behavior for self (represented by s)

and super (represented by p). The evaluation of the corresponding expressions, self and

super, is therefore simple. The evaluation of the other expressions is essentially the same

as in the method lookup semantics.

Note that each of the functions in the denotational semantics is recursive only within

itself: there is no mutual recursion among the functions, except that which is achieved
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by the explicit fixed point.

5.4 Equivalence

The method-lookup semantics and the denotational semantics are equivalent because

they assign the same behavior to an instance. This proposition is captured by Theorem 1.

Theorem 1 send = behave

The proof of the theorem uses an “intermediate semantics” defined in Figure 5.4

and inspired by the one used by Mosses and Plotkin [21] in their proof of limiting

completeness. The semantics uses n ∈ Nat, the flat domain of natural numbers.

send′ : Nat → Instance → Behavior

send′i = ⊥
send′ni = lookup′n(class i) i n > 0

lookup′ : Nat → Class → Instance → Behavior

lookup′c i = ⊥
lookup′nc i = λm ∈ Key . [λ e ∈ Exp . do′ne i c,

λ v ∈ ? . if root(c)
then ⊥?

else lookup′n(parent c) i m
](methods c m)

n > 0

do′ : Nat → Exp → Instance → Class → Value → Value

do′e i c a = ⊥
do′n[[ self ]] i c a = send′n−i n > 0

do′n[[ super ]] i c a = lookup′n(parent c) i n > 0

do′n[[ arg ]] i c a = a n > 0

do′n[[ e1 m e2 ]] i c a = do′n[[ e1 ]] i c a m (do′n[[ e2 ]] i c a) n > 0

do′n[[ f(e1, . . . , eq) ]] i c a = f (do′n[[ e1 ]] i c a, . . . , do′n[[ eq ]] i c a) n > 0

Figure 5.4: The intermediate semantics.

The intermediate semantics resembles the method-lookup semantics but differs in that

each of the syntactic domains of instances, classes, and expressions has a whole family of

semantic equations, indexed by natural numbers. The intuition behind the definition is

that send′ni allows (n−1) evaluations of self before it stops and gives ⊥. send′ni is defined

in terms of send′n−i via lookup′n and do′n because the self expression evaluates to the
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result of send′n−i, which allows one less evaluation of self. (The values of (lookup′c i)

and (do′e i c a) are irrelevant; let them be ⊥.)

The following four lemmas state useful properties of the intermediate semantics.

Lemma 1 do′ne i c a = eval(e) (send′n−i) (lookup′n(parent c) i) a n > 0

Proof: By induction on the structure of e, using the definitions of do′ and eval. The

base case is proved as follows:

do′n[[ self ]] i c a = send′n−i = eval[[ self ]] (send′n−i) (lookup′n(parent c) i) a

do′n[[ super ]] i c a = lookup′n(parent c) i = eval[[ super ]] (send′n−i) (lookup′n(parent c) i) a

do′n[[ arg ]] i c a = a = eval[[ arg ]] (send′n−i) (lookup′n(parent c) i) a

The induction step is proven as follows.

do′n[[ e1 m e2 ]] i c a

= do′n[[ e1 ]] i c a m (do′n[[ e2 ]] i c a)

= eval[[ e1 ]] (send′n−i) (lookup′n(parent c) i) a m

(eval[[ e2 ]] (send′n−i) (lookup′n(parent c) i) a)

= eval[[ e1 m e2 ]] (send′n−i) (lookup′n(parent c) i) a

do′n[[ f(e1, . . . , eq) ]]) i c a

= f(do′n[[ e1 ]] i c a, . . . , do′n[[ eq ]] i c a)

= f(eval[[ e1 ]] (send′n−i) (lookup′n(parent c) i) a

, . . . , eval[[ eq ]] (send′n−i) (lookup′n(parent c) i) a)

= eval[[ f(e1, . . . , eq) ]] (send′n−i) (lookup′n(parent c) i) a

QED

Lemma 2 lookup′nc i = gen(c) (send′n−i) n > 0

Proof: By induction on the number of ancestors of c, using the definitions of gen, � ,

⊕, and wrap, Lemma 1, and the definition of lookup′. In the base case, where c is the

root, both sides evaluate to (λm ∈ Key .⊥?) because c doesn’t define any methods.

Then assume that the lemma holds for parent(c). The following proof of the induction

step uses the definition of gen (c isn’t the root), the definition of � , the induction

hypothesis, the definitions of ⊕ and wrap, the properties of case analysis, Lemma 1, and

the definition of lookup′ (c isn’t the root).

gen(c) (send′n−i)

= (wrap(c) � gen(parent c)) (send′n−i)

= (wrap(c) (send′n−i) (gen(parent c) (send′n−i)))⊕ (gen(parent c) (send′n−i))
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= (wrap(c) (send′n−i) (lookup′n(parent c) i))⊕ (lookup′n(parent c) i)

= λm ∈ Key . [λ f ∈ Value → Value . f,
λ v ∈ ? . lookup′n(parent c) i m

](wrap(c) (send′n−i) (lookup′n(parent c) i) m)

= λm ∈ Key . [λ f ∈ Value → Value . f,
λ v ∈ ? . lookup′n(parent c) i m

]([λ e ∈ Exp . eval(e) (send′n−i) (lookup′n(parent c) i),

λ v ∈ ? .⊥?

](methods c m))

= λm ∈ Key . [λ e ∈ Exp . eval(e) (send′n−i) (lookup′n(parent c) i),

λ v ∈ ? . lookup′n(parent c) i m
](methods c m)

= λm ∈ Key . [λ e ∈ Exp . do′ne i c,
λ v ∈ ? . lookup′n(parent c) i m

](methods c m)

= lookup′nc i

QED

Lemma 3 send′ni = (gen(class i))n(⊥)

Proof: By induction on n, using Lemma 2 and the definition of send′. In the base case,

where n = 0, both sides evaluate to ⊥. Then assume that the lemma holds for (n−1),

where n > 0. The following proof of the induction step uses the associativity of function

composition, the induction hypothesis, Lemma 2, and the definition of send′.

(gen(class i))n(⊥)

= gen(class i) ((gen(class i))n−1(⊥))

= gen(class i) (send′n−i)

= lookup′n(class i) i

= send′ni

QED

Lemma 4 send′, lookup′, and do′ are monotone functions of the natural numbers with

the usual ordering.

Proof: From lemma 3 it follows that send′ is monotone. If n ≤ m, then lookup′nc i =

gen(c) (send′n−i) v gen(c) (send′m−i) = lookup′mc i using lemma 2, the monotonicity

of send′, and lemma 2 again. Finally, do′ is monotone by lemma 1, the monotonicity of

send′ and lookup′ and lemma 1 again.

QED
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Lemma 4 expresses that the family of send′n’s is an increasing sequence of functions.

interpret : Instance → Behavior

interpret =
⊔

n(send′n)

The following three propositions express the relations among the method-lookup se-

mantics, the intermediate semantics, and the denotational semantics.

Proposition 1 interpret = behave

Proof:

interpret(i) =
⊔
n

(send′ni)

=
⊔
n

(gen(class i))n(⊥)

= fix(gen(class i))

= behave(i)

By the definition of interpret, Lemma 3, the fixed-point theorem, and the definition of

behave.

QED

Proposition 2 send w behave

Proof: The following facts have proofs that are analogous to those of Lemma 1 and

Lemma 2 (the proofs are omitted).

1. do(e) i c a = eval(e) (send(i)) (lookup(parent c) i) a

2. lookup(c) i = gen(c) (send(i))

From the definition of send and the second fact,

send(i) = lookup(class i) i = gen(class i) (send(i)).

Hence send(i) is a fixed point of gen(class i). The definition of behave expresses that

behave(i) is the least fixed point of gen(class i); thus send(i) w behave(i).

QED

Proposition 3 send v interpret
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Proof: The functions defined in the method-lookup semantics are mutually recursive.

Their meaning is the least fixed-point of the generator g defined in the obvious way, as

outlined below.

D = (Instance → Behavior)

×(Class → Instance → Behavior)

×(Exp → Instance → Class → Value → Value)

Define the generator g : D → D for the functions send, lookup, and do:

g(s, l, d) = (λ i ∈ Instance . l(class i) i, . . . , . . .)

Now it is proven by induction in n that

gn(⊥D) v (send′n, lookup′n, do′n)

In the base case, where n = 0, the inequality holds trivially. Then assume that the

inequality holds for (n−1), where n > 0. The following proof of the induction step uses

the associativity of function composition, the induction hypothesis, and Lemma 4:

gn(⊥D) = g(gn−1(⊥D)) v g(send′n−, lookup′n−, do′n−) v (send′n, lookup′n, do′n)

Now

(send, lookup, do) = fix(g) =
⊔
n

gn(⊥D) v
⊔
n

(send′n, lookup′n, do′n)

and in particular

send v
⊔
n

(send′n) = interpret

QED

Proof of Theorem 1: Combine Propositions 1–3.

QED

This demonstrates that the operational semantics based on method lookup and the

denotational semantics based on generator combination are simply different representa-

tions of the same function. Equivalence of the operational and denotational semantics

is evidence that the denotational definition is valid. At least for this system, the deno-

tational definition does not seem to be much simpler; it may even be argued that it is

a great deal more complex, because it requires an understanding of fixed points. One

advantage of the denotational definition however, is its direct connection to the standard

semantics of programming languages via fixed-point analysis.
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Chapter 6

Denotational Semantics with

Generators

This chapter illustrates the analysis of class inheritance within the framework of deno-

tational semantics. A simple language is defined, similar to Gordon’s TINY [12] but

with classes and inheritance, and its denotational semantics is presented. This Chapter

shows that inheritance can be explained using the standard techniques of denotational

semantics. The essential change from previous work on the semantics of classes [28] [13]

is the introduction of a domain of class generators as the denotations of class definitions.

This domain allows inheritance to be defined as a transformation on class generators.

The shift to explicit generators is significant, for previous attempts to use standard se-

mantics without explicit generators to analyze inheritance in object-oriented languages

have required the use of ‘syntactic valuations’ [31], non-compositional denotations [14],

or significant restrictions on the language [22].

6.1 Abstract Syntax

The abstract syntax of the simple inheritance language is given in Table 6.1. Declarations

are assumed to be mutually recursive. However, in the variable declaration var I= E,

which creates a new storage cell containing the value of E, the expression cannot refer to

other identifiers defined in the recursive scope of I. Tennent [28] and Hoare [13] discuss

ways of avoiding this problem.

The class declaration is derived directly from Smalltalk. The declaration class I I′ D

defines a class named I that inherits from its parent class named I′. A predefined class

Base is used when no other parent is desired. Each instance of the class is an instantiation

of the declaration D. This is typically a declaration of the form private D1 in D2, where

D1 represents the hidden local state of each instance (typically a collection of variable

declarations) and D2 represents the external attributes of the instances (typically a

collection of procedures). For example, the following is a pair of class definitions in this
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Identifiers: I ∈ Ide

Basic constants: B ∈ Bas

Binary operators: O ∈ Opr

Programs: P ∈ Prog ::= E

Declarations: D ∈ Dcl ::=

V variables

M procedures/classes

private D1 in D2 local declaration

Λ empty

Variables: V ∈ Var ::=

var I = E variables

V1; V2

Λ empty

Complex Constants: M ∈ Proc ::=

proc I(~I ) E procedures/functions

class I I′ D classes

D1; D2 mutual recursive binding

Λ empty

Expressions: E ∈ Exp ::=

I identifiers

B basic constants

new E object creation

E1.E2 field/method selection

E1 O E2 binary operator

E(~E) function/procedure application

let D in E local declaration

E1 := E2 assignment

E1; E2 sequence

if E1 then E2 else E3 conditional

while E1 do E2 iteration

Table 6.1: Abstract syntax of simple inheritance language.
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language:

class Counter Base

private

value

in

proc increment()

value := value + 1;

proc limit(bound)

while value < bound do

self.increment();

class StepCounter

inherit Counter

private

step

in

fun increment;

for i := 1 to step do super.increment;

Unlike Smalltalk, methods may refer only to variables declared in the same class

definition, not to inherited variables.1 The pseudovariables self and super provide access

to the methods of the class and of the superclass respectively. Methods in a class instance

are accessed by the expression E1.E2.

6.2 Semantic Domains

The semantic domains for the analysis of the simple language are defined in Table 6.2.

A semantic domain may have an associated Greek letter that acts as a general meta-

variable for values of that domain. Subscripts are used when more than one variable

in a domain is needed. The empty or null value in a domain with meta-variable ν is

denoted ν∅. For example, ρ, the generic environment variable Env, is used to represent

the empty environment ρ∅. The domain definitions form a system of recursive domain

equations, whose solution provides an appropriate lattice structure for the identification

of fixed points [24].

One of the major premises of standard semantics is that environments, which define

the static denotation of identifiers, are cleanly differentiated from stores, which contain

dynamically updatable locations. With these two concepts, variables are understood as

1Little extra effort is necessary to allow access to parent variables (see Chapter 8).
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Numbers Number

Booleans β ∈ Boolean

Locations ι ∈ Loc

Answers Ans

Storable values µ ∈ Sv = Boolean + Number + Fun + Env

+ Env + {unbound}
Denotable values δ ∈ Dv = Sv + Loc + Cla + Dv∗

Stores σ ∈ Sto = Loc → (Sv + {unused})
Environments ρ ∈ Env = Ide → (Dv + {undefined})
Specialized environments ρ ∈ EnvD = Ide → (D + {undefined})
Environment generators γ ∈ Generator = Env → Env

Command continuations θ ∈ Cc = Sto → Ans

Generic continuations Cont(D) = D → Cc

Expression continuations κ ∈ Ec = Cont(Dv)

Functions φ ∈ Fun = Ec → Ec

Commands ϑ ∈ Cmd = Ec → Cc

Declaration continuations χ ∈ Dc = Cont(Generator)

Classes ζ ∈ Cla = Cont(Dc)

Wrappers Wrapper = Env → Env → Env

Table 6.2: Semantic domains for inheritance.

denoting locations, while locations index a value in the store. The domains of denotable

and storable values are also differentiated. Typically the storable values are a subset of

the denotable values; in a language without pointers, locations are not storable (though

they are denotable). The content of these domains determines the expressive power

of the language in question: the domain of denotable values determines what kinds of

structures can be bound to identifiers and thus referred to from within the program;

while the domain of storable values determines what kinds of structures may stored and

manipulated during the dynamic computation sequence of programs.

The storable domain consists of basic constants, abstractions, and environments

(which represent record values). These values may be manipulated dynamically by

placing them in the store. The denotable values include all these but have in addition

the domain of locations and classes. Locations represent places in the store where the

value of variables may be found. A variable always denotes a location; the value of the

variables is found in the store. Pointer variables are not supported, because locations

are not storable.

The environment and store, as a mapping from identifiers or locations to values, are

treated as records and updated using the preferential record-combination functions de-

48



fined in Section 2.1.1. This combination function is essentially equivalent to the function

divert commonly used in denotational semantics. Though somewhat unconventional, the

use of ⊕ is justified because it provides uniformity, in that the same operations and no-

tation are used wherever the environment/store/record concept appears. In addition, it

facilitates the introduction of inheritance mechanisms into standard semantics.

The semantic domains also include a number of continuation domains which are used

to represent the meaning of pieces of programs. A continuation is a function that

represents ‘the rest of the program’. A command continuation is passed the current

state of the store, on which it performs the rest of the computation of the program.

Parameterized continuations require another value to be passed in addition to the store;

this value often represents the result of a previous computation, which the continuation

needs to resume computation.

In addition to the conventional domains of standard semantics discussed above, a do-

main of environment generators is introduced. The explicit domain of generators makes

inheritance possible. However, environment generators also provide an elegant solution

to the problem of mutual recursion. The traditional declaration continuation accepts

a ‘little environment’, making mutual recursion difficult to specify, because allocation

of variables is intermixed with recursive constants. This problem is solved by passing

environment generators to declaration continuations instead.

Classes are denoted by continuations that allocate storage for instances, and pass the

resulting environment generator of external identifiers to the continuation argument.

6.3 Semantic Clauses

The translation from syntactic to semantic domains is defined by the following semantic

clauses. Range checking on domains has been omitted, but is indicated mnemonically

the choice of variables.

Although environment generators are used in the semantics, environments are still

passed to the valuations as in conventional semantics. These ‘static’ environments rep-

resent the external context of the declaration, while the generator’s bound environment

variable represents only identifiers in the same mutually recursive scope. Other arrange-

ments are possible.

P : Prog → Ans

P[[E ]] = clet δ = E[[E ]]( [ Base 7→ λχ . χ(γ∅) ] ) in
print–answer(δ)

An expression representing a program is evaluated in an initial environment and is

provided with a continuation that converts the value of the expression into an answer
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in Ans. The initial environment contains a definition for the class Base that serves

as the starting-point for inheritance. The Base class does not define any variables or

methods. The value λχ . χ(γ∅) : Cla is a function of a subclass continuation to which

the parent attributes are normally passed. Since Base defines no attributes, it passes a

null generator.

D : Dcl → Env → Dc → Cc

D[[ class I I′ D ]]ρχ = χ(λ ρ′ . [ I 7→ λχ′ . clet γ = ρ(I′) in
clet ω = W[[D ]](ρ′ ⊕ ρ) in

χ′(ω � γ) ] )
W : Dcl → Env → Cont(Wrapper) → Cc

W[[D ]]ρχ = clet ω = D[[D ]]ρ in
χ(λ ρs . λ ρp . ω([ [ self 7→ ρs, super 7→ ρp ] ]))

A class declaration takes the class environment generator, adds to it the class being

defined, and passes the result to the rest of the program. The denotation of the class

definition is the composition of the parent class denotation, retrieved by ρ(I′), with the

local attributes of the class, allocated by W[[D ]]. Since class denotations are allocators,

this has the effect of first allocating the parent, resulting in a method generator γ that is

passed to the subclass allocator, which allocates the subclass declaration and combines

its methods with the parent method generator.

The methods of the class are converted into a wrapper. The environment ρs repre-

sents self-reference within the methods and is bound to self, while ρp represents parent

methods and is bound to super. These two symbols are available within the method

body. The method wrapper is then combined with the parent generator and passed to

the continuation.

D : Dcl → Env → Dc → Cc

D[[M ]]ρχ = χ(λ ρ′ .M[[M ]]((ρ′|B[[M ]])⊕ ρ))

D[[V ]]ρχ = clet ρ′ = V[[V ]] in
χ(λ ρ . ρ′)

D[[D1; D2 ]]ρχ = clet γ1 = D[[D1 ]]ρ in
clet γ2 = D[[D2 ]]ρ in

χ(γ1 ⊕⊥ γ2)

D[[ private D1 in D2 ]]ρχ = clet γ = D[[D1 ]]ρ in
D[[D2 ]](fix(γ)⊕ ρ)χ

D[[ Λ ]]ρχ = χ(γ∅)
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The generator representing a mutually recursive declaration has its self-reference en-

vironment limited to only those identifiers bound in the declaration. This prevents a

violation of block structure in which an identifier in the outside environment could be

rebound during inheritance. The valuation B returns the set of identifiers bound in a

declaration.

Two additional valuations are used to separate the interpretation of variables and

allocation from the interpretation of procedures and mutual recursion:

V : Var → Cont(Env) → Cc

V[[ var I = E ]]ρκ = E[[E ]]ρ(store{λ ι . κ( [ I 7→ ι ] )})
V[[V1; V2 ]]κ = clet ρ1 = V[[V1 ]] in

clet ρ2 = V[[V2 ]] in
κ(ρ1 ⊕ ρ2)

M : Dcl → Generator

M[[ proc I(~I ) E ]] = λ ρ . [ I 7→ λκ~δ .E[[E ]]( [~I 7→ ~δ ] ⊕ ρ)κ ]

M[[M1; M2 ]] = M[[M1 ]] ⊕⊥ M[[M2 ]]

Preferential combination ⊕ is used for extending an environment with new identifiers

that may override existing ones, while strict combination ⊕⊥ is used to combine the

‘little environments’ in a series declaration to prevent multiple definition of an identifier

in a single declaration.

E: Exp→Env→Ec→Cc

E[[ I ]]ρκ = if ρ[[ I ]] = undefined then error else lookupκ(ρ[[ I ]])

E[[B ]]ρκ = κ(B[[B ]])

E[[ new E ]]ρκ = clet ζ = E[[E ]]ρ in
clet γ = ζ in

κ(fix(γ))
E[[E1.E2 ]]ρκ = clet ρ′ = E[[E1 ]]ρ in

E[[E2 ]](ρ′ ⊕ ρ)κ
E[[E1 O E2 ]]ρκ = clet δ1=E[[E1 ]]ρ in

clet δ2=E[[E2 ]]ρ in
κ(O[[O ]]δ1δ2)

E[[E(~E) ]]ρκ = clet φ = E[[E ]]ρ in

clet ~δ = ~E[[ ~E ]]ρ in

φκ~δ
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E[[ let D in E ]]ρκ = clet γ = D[[D ]]ρ in
E[[E ]](fix(γ)⊕ ρ)κ

E[[E1 := E2 ]]ρκ = clet ι = E[[E1 ]]ρ in
clet δ = E[[E2 ]]ρ in

update(κδ)(ι, δ)
E[[E1; E2 ]]ρκ = clet δ = E[[E1 ]]ρ in

E[[E2 ]]ρκ

~E[[E ‖ ~E ]]ρκ = clet δ = E[[E ]]ρ in

clet ~δ = ~E[[ ~E ]]ρ in

κ(δ‖~δ)
~E[[ 〈〉 ]]ρκ = κ(〈〉)

These definitions are for the most part conventional standard semantics. The valuation

O : Opr → Dv → Dv → Dv that associates functions with primitive operators is left

unspecified. The most significant difference is that the fixed point of a class is taken

when instances are created by new, rather than when the class is declared. Thus the

fixed point is associated with instantiation rather than declaration. In addition, the

let construct must take a fixed point before combining the local declaration with the

environment.

The following auxiliary definitions are the standard functions for manipulating stores:

error : Cc

lookup : Cont(Dv) → Cont(Loc)

lookupκ = λ ι . λ σ . if σ(ι) = unused then errorσ else κ(σ(ι))σ

update : Cc → Cont(Loc× Sv)

updateθ = λ ι, µ . λ σ . θ( [ ι 7→ µ ] ⊕ σ)

rv : Cont(Sv) → Cont(Dv)

rvκ = λ δ . if δ ∈ Loc then lookupκδ else κδ

lv : Cont(Loc) → Cont(Dv)

lvκ = λ δ . if δ ∈ Loc then clet ι = new in
update(κι)(ι, δ)

else κδ

store : Cont(Loc) → Cont(Dv)

store = rv ◦ lv
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Chapter 7

Inheritance in Simula

A Simula class consists of a declaration and an imperative. The declaration defines the

attributes possessed by instances of the class. The imperative is an expression that is

evaluated when an instance is created; it provides the primary behavior of the class. Thus

a Simula class may be viewed as a combination of the block and procedure concepts.

Simula introduced inheritance, or subclassing, by allowing new classes to be built upon

a prefix class. A subclass was viewed as textually extending its prefix. The subclass

inherits all the attributes of its prefix, while its imperative is invoked from the prefix

imperative with the inner statement. Textual concatenation is complicated by allowing

the subclass to redefine attributes defined in its prefix; in addition, attributes may be

identified as virtual in the prefix, in which case redefined attributes will be used by the

prefix.

Attributes may be accessed from outside the instance by a reference to the instance.

A reference may be qualified by a class name (which must be one of the superclasses

of the instance), to allow access to an instance as if it were an instance of one of its

superclasses. Thus qualification resembles a form of coercion on references. Qualification

is useful because a subclass may redefine the procedures or functions of its superclass,

and qualification is necessary to access the occluded definition from within a subclass.

Redefinition of non-virtual attributes does not affect the behavior of superclasses that

use the redefined identifier; superclasses continue to reference the occluded definition.

Virtual attributes, however, have only one accessible definition for all levels of classes,

which is that given by the last redefinition. Thus a superclass references the redefined

version of a virtual attribute. Virtual attributes are said to be qualification-independent.

Simula also provides mechanisms for coroutine programming; these are not be exam-

ined here, however, as they have little impact on the inheritance mechanism.

7.1 Syntax

The syntax for discussing Simula is given in Table 7.1. The declaration
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Classes Class ::= I’ class I virtual ~I D E

Expressions E ∈ Exp ::= this | inner

Table 7.1: Simula syntax.

I’ class I virtual ~I D E

defines a class named I with prefix class I′. It defines local attributes D and has an

imperative E. It declares the attributes ~I to be virtual. The virtual attributes of a class

are the virtual attributes of its prefix unioned with the locally declared virtual identifiers;

once an identifier is virtual, it is virtual in all subclasses.

The attributes declared by a class, together with all those of its prefixes, may be used

in both attribute expressions and the imperative. However, only the last redefinition of

any attribute can be accessed directly by name.

The keyword this, a predefined reference variable, is used to access attributes ac-

cording to the class in which they were defined. Using the name of a prefix class p, An

occluded definition of an attribute a given in a prefix class p is accessed by the expression

this.p.a. As mentioned above, this cannot yield previous definitions of virtual attributes

because they are qualification-independent; hence this is not directly analogous to super

in Smalltalk.

inner is used in an imperative to invoke a subclass imperative, if there is one. If inner

is used when no subclass exists, then it has no effect. Although inner is technically a

statement in Simula, its conversion to an expression, for the sake of uniformity, has little

effect upon its use.

Class parameters have been omitted; however, their introduction poses few problems,

being merely a combination of the procedure and class mechanisms.

A Simula class definition is presented below. The class Counter has three attributes:

the integer value, an increment procedure, and a procedure limit that increments the

value until it is not less than the bound argument. Its imperative just initializes the

value to zero.

class Counter

integer value;

virtual increment;

procedure increment();

value := value + 1;

procedure limit(bound);

while value < bound do

this.increment();
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References Ref = Ide → Env

Denotable values δ ∈ Dv = Sv + Loc + Cla + Cmd

Table 7.2: Additional Simula domains.

begin

value := 0

inner

end

The following class is an extension of Counter that allows increments other than one:

Counter class StepCounter

integer step;

procedure increment;

value := value + step;

begin

step := 1;

inner

end

Note that increment cannot be defined to invoke the increment function of the parent

class Counter, as can be done in Smalltalk and Flavors. This is because because virtuals

are independent of qualification, so that this.Counter.increment within class StepCounter

would still refer to the redefined increment.

7.2 Domains

Simula requires additional domains for references and imperatives as defined in Table 7.2.

A reference provides access to the attributes of an instance at each level of its prefixing.

To access an attribute, a reference is first qualified by a class name to select the prefix

level, and then the attribute name is used to select the desired value. Thus a reference

is a mapping from class identifiers to attribute identifiers to values; using the notion of

records or environments, it is an environment of environments. Since environments are

already included in the domain of denotable values and since environments may contain

environment values, introducing a reference domain is not strictly necessary.

A command is a partially evaluated expression. It resembles a function but does not

require an argument value. Commands are used to represent imperatives, which are

stored in the standard environment under the keyword symbol inner, so they must be

included in the domain of denotable values.
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Class behavior S, P, C ∈ Behavior = [

Imperative imp : Cmd → Cmd

Attributes attr : Env

Attribute definitions def : Env

Virtual identifiers virt : Ide∗

Qualified reference this : Ref

]

Class specifications G ∈ Inst = Behavior → Behavior

Class-spec continuations ψ ∈ InstCont = Cont(Inst)

Classes ζ ∈ Cla = Cont(InstCont)

Table 7.3: Simula domains

The denotation of a Simula class has several interdependent components. Besides a

parameterized imperative and the environment of attributes, it is necessary to include

the set of virtual identifiers and a complete reference used to interpret the pseudovariable

this. Domains for representing these structures are defined formally in Table 7.3.

The basic attributes of a class are given in the domain of class behavior, Behavior,

which is expressed as a record type indexed by the special symbols imp, attr, def, virt

and this. The imperative imp is a function on commands to allow parameterization by

a subclass imperative (the formal parameter of the imperative represents inner). The

attribute environment attr contains the denotation of identifiers available for use within

the class, which may be changed by redefinition of virtuals. The attribute definition

environment, on the other hand, contains the values defined by the class. Clearly attr

and def differ only when virtuals are redefined.

7.3 Semantics

The semantics of inheritance is developed as a system of equations that specify the mean-

ing of a subclass in terms of the parent behavior and syntax of the subclass definition.

The parent behavior P has components Pimp, Pdef , Pvirt, Pattr and Pthis. Self-reference

is provided by the variable S, of which only the attributes Sattr are used. By empolying

these structures, the child components Cimp, Cdef , Cvirt, Cattr and Cthis are developed as

a system of equations.

The variable γ represents the result of the local class declaration D[[D ]]ρ. By us-

ing the notation of continuations, the system of equations is defined in the context of

clet γ = D[[D ]]ρ in
· · ·

.

The attributes defined by a class are those declared by the class, evaluated in an
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environment of class identifiers, combined with the parent’s defined attributes:

Cdef = γ(ρ′)⊕ Pdef

The environment supplied to the subclass declaration contains all the attributes de-

fined in the class along with the binding of the special symbol this:

ρ′ = [ this 7→ Cthis ] ⊕ Cattr

The attributes made available by a class are the virtual attributes (limited to just

those virtuals available at this level) combined with the attributed defined by the class:

Cattr = Sattr |Cvirt ⊕ Cdef

The virtual attributes names of a class are just those declared in the class plus those

of the parent:

Cvirt = ~I ∪ Pvirt

this is interpreted by adding an association of the class name with the attributes of

the class to the interpretation of this in the parent:

Cthis = [ I 7→ Cattr ] ⊕ PthisR

The imperative of the subclass is the composition of the superclass imperative with

the imperative part defined in the subclass. This has the effect of binding inner in the

parent to the subclass imperative, while allowing for the possibility of future binding of

any inner statements appearing in the subclass:

Cimp = λϑ . Pimp(E[[E ]]( [ inner 7→ ϑ ] ⊕ ρ′))

The subclass imperative is bound as a command to inner in the environment. The

inner statement is evaluated by invoking the value from the environment:

E[[ inner ]]ρκ = ρ(inner)κ

A class is instantiated to produce a generator whose fixed point is a complete be-

havioral specification of the instance. From this the imperative is selected and applied

to a null command to specify an empty inner. The continuation expecting a reference

to the new instance is passed the reference component this. The resulting command

continuation takes control after the imperative is complete:

E[[ new E ]]ρκ = clet ζ = E[[E ]]ρ in
clet G = ζ in

let C = fix(G) in
Cimpθ∅(κ(Cthis))
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The base class Prefix represents the null class definition from which all other classes

inherit. It has no attributes, all its environments are empty, and it provides a null

imperative:

Prefiximp = λφκ . φ(κ)

The complete semantic valuation for Simula class declarations, composed of the parts

outlined above, is defined as follows:

A[[ I′ class I virtual ~I D E ]]ρ =

clet ζ = E[[ I′ ]]ρ in
clet G = ζ in

clet γ = D[[D ]]ρ in

[ I 7→ (λS . λP .C) · G ]

where Cimp = λϑ . Pimp(E[[E ]]( [ inner 7→ ϑ ] ⊕ ρ′))

Cattr = Sattr |Cvirt ⊕ Cdef

Cdef = γ(ρ′)⊕ Pdef

Cvirt = ~I ∪ Pvirt

Cthis = [ I 7→ Cattr ] ⊕ Pthis

ρ′ = [ this 7→ Cthis ] ⊕ Cattr

The fact that so much information is required to describe Simula classes and inheri-

tance fully indicates that classes are not very well encapsulated.

7.4 Example

The translation of the Counter class introduced above is sketched in this section.

Cimp = λϑ . λ κ . update(ϑκ)(ι1, 0)

Cthis = [ Counter 7→ Cattr ]

Cattr = Sattr |{increment} ⊕ Cdef

ρ′ = [ this 7→ Cthis ] ⊕ Cattr

Cdef = [ value 7→ ι1,

increment 7→ E[[ value := value + 1 ]]ρ′,

limit 7→ λκδ .E[[ while value < bound do increment ]]( [ bound 7→ δ ] ⊕ ρ′)κ ]

Cvirt = {increment}

The fixed point of this class construct, which specifies the behavior of instances, is

illustrated below:
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Cimp = λϑ . λ κ . update(ϑκ)(ι1, 0)

Cthis = [ Counter 7→ Cattr ]

Cattr = [ value 7→ ι1,

increment 7→ E[[ value := value + 1 ]]ρ′,

limit 7→ λκδ .E[[ while value < bound do increment ]]( [ bound 7→ δ ] ⊕ ρ′)κ ]

ρ′ = [ this 7→ Cthis ] ⊕ Cattr

The inheritance of Counter to define StepCounter is demonstrated below. In these

definitions, the references to P in the denotation of a class must be bound to the com-

ponents of Counter listed above, while C ′ is used to refer to the new class components.

The local declarations of StepCounter consist of a variable step and a new implementation

of increment, which must replace the old implementation because increment is virtual.

These definitions appear in the C ′
def component. In addition, the imperative is extended

to initialize step.

C ′
imp = λϑ . λ κ . update(update(ϑκ)(ι2, 1))(ι1, 0)

C ′
this = [ StepCounter 7→ C ′

attr

Counter 7→ Cattr ]

C ′
attr = Sattr |{increment} ⊕ C ′

def

ρ′ = [ this 7→ C ′
this ] ⊕ C ′

attr

C ′
def = [ step 7→ ι2,

increment 7→ E[[ value := value + step ]]ρ′,

limit 7→ λκδ .E[[ while value < bound do increment ]]( [ bound 7→ δ ] ⊕ ρ′)κ ]

C ′
virt = {increment}

The fixed point of the StepCounter class, which specifies the behavior of instances, is

illustrated below:

C ′
imp = λϑ . λ κ . update(update(ϑκ)(ι2, 1))(ι1, 0)

C ′
this = [ StepCounter 7→ C ′

attr

Counter 7→ Cattr ]

C ′
attr = [ step 7→ ι2,

increment 7→ E[[ value := value + step ]]ρ′,

limit 7→ λκδ .E[[ while value < bound do increment ]]( [ bound 7→ δ ] ⊕ ρ′)κ ]

ρ′ = [ this 7→ C ′
this ] ⊕ C ′

attr
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Chapter 8

Inheritance in Smalltalk

Smalltalk [11] can be understood as a simplification and reformulation of the basic

concepts of Simula, adapted for use in an interpreted language. The fact that Smalltalk is

a simpler language is reflected in its semantics, which is described naturally by generator

combination.

Smalltalk introduced the concept of metaclasses to further the uniform application

of the ‘classes as objects’ philosophy. The primary use of a metaclass is to define class

variables, providing a state that is shared by instances, and class methods, which are

typically specialized constructors or instance initializers.

The semantics of Smalltalk is presented in two stages corresponding roughly to the

two stages in the development of Smalltalk, released in 1976 and 1980. The first phase

introduces class inheritance and the second phase demonstrates how essentially the same

inheritance mechanism can be used to define the semantics of metaclasses. This analysis

explains metaclasses in a uniform manner and exposes the symmetry between classes

and metaclasses.

8.1 Smalltalk Without Metaclasses

8.1.1 Syntax

A simple syntax is introduced to represent Smalltalk programs without metaclasses. The

informal meaning of the syntactic forms, and especially the scoping rules, are defined

in Table 8.1. A program is a list of class definitions followed by an expression. The

class definitions form a mutually recursive declaration, thus all class names are visible

everywhere in the program.

A class declaration includes the name I of the class, the name of the parent class I′,

the instance variables V, and the methods M. Instance variables are treated specially

because they can be referenced in any descendant of the class in which they are defined.

The class declaration may redefine any method defined in the parent, but instance vari-
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Programs: Prog ::= C P | E

Classes: Class ::= class I I′ V M

Expressions: Exp ::= new I | self | super

Table 8.1: Smalltalk syntax without metaclasses.

ables cannot be redefined. Inheritance ensures that parent methods invoke the redefined

versions of methods.

The variables self and super are treated specially in the semantics. Self is used to access

other methods declared in M, because the method names themselves are not directly

included in the environment in which method expressions are evaluated. Super is used

to refer to the methods declared by the parent class I′ when a method is redefined.

The expression new I is used to create instances of the class I.

A coding of the Counter example is given below that closely resembles its encoding in

Smalltalk. Comments are given in italics.

class Counter

inherit Base

variables

value

methods

proc increment()

value := value + 1;

proc limit(bound)

while value < bound do

self.increment();

class StepCounter

inherit Counter

variables

step

methods

proc increment;

for i := 1 to step do

super.increment;
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Instance specifications P,C ∈ Inst = Env ×Generator

Instance continuations ψ ∈ InstCont = Cont(Inst)

Classes ζ ∈ Cla = Cont(InstCont)

Wrappers Wrapper = Env → Env → Env

Table 8.2: Semantic domains for Smalltalk.

8.1.2 Domains

The domains used for interpreting Smalltalk without metaclasses are defined in Table 8.2.

Class denotations ζ are designed to provide for both creation of instances and inheritance.

Their primary purpose, instance creation, is achieved by applying the class denotation to

a continuation that expects a completed instance specification. An instance specification

is a pair consisting of an environment that maps variables to their locations and a

generator of method behavior. The instance is derived by simply taking the fixed point

of the generator.

To achieve inheritance, the instance specifications must be extended. This is done by

adding more instance variables and modifying the method behavior generator.

Since parent instance variables can be referenced in any descendant, an instance spec-

ification has an environment of parent variables in addition to the generator of parent

functionality. If implicit access to parent variables were prohibited, as suggested by Sny-

der [25], then instance specifications could omit the parent variable environment, and

the denotational semantics would be simplified to some degree, as shwon in Chapter 6.

8.1.3 Semantics

A Smalltalk program is a mutually recursive binding of identifiers to class definitions.

The program valuation P builds the generator of this recursive binding by combining

the generators from each class definition. The expression that starts the computation is

then evaluated in the environment built from this generator. The initial environment γi

contains a definition for the class Base, which does not define any variables or methods.

P : Prog → Generator → Cc

P[[C P ]]γ = P[[P ]](γ ⊕⊥ C[[C ]])

P[[E ]]γ = E[[E ]](fix(γi ⊕⊥ γ))(print-answer)(σ∅)

γi : GeneratorCla

γi = λ ρ . [ Base 7→ λψ . ψ(ρ∅, γ∅) ]
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The valuation C specifies the meaning of a class definition. The environment in which

a class is evaluated contains the denotation of all other classes in the program. The result

of a class declaration is a little environment consisting of a binding for just the class

being declared. The value of this binding is the composition of the allocator of the

parent, taken from the class environment by ρ(I′), with the local declarations of the

class.

C : Class → Generator

C[[ class I I’ V M ]]ρ = [ I 7→ ρ(I′) ◦A[[V M ]]ρ ]

The valuation A defines the contribution of a class definition to the overall meaning of

a class as a function on class specification continuations. It uses continuations because

it must modify the store in allocating local variables.

The continuation argument ψ expects a specification of the new instance up to the

level of this class definition; the continuation may extend the specification if it is part

of a subclass, or it may simply build a complete instance from the specification. The

process of extension is defined here, in the semantics of class definitions, while building

an instance takes place in the semantics of the expression [[ new I ]].

The result of the local declaration valuation A is a class specification continuation

that takes the parent class variables ρp and method generator γ. These are extended

with the locally defined variables and methods, by allocating the local variables with V

and combining the local wrapper with the parent method generator. The complete set

of local variables and the resulting generator are passed to ψ.

A : Var×Proc → Env → InstCont → InstCont

A[[V M ]]ρψ = λ (ρp, γp) . clet ρv = V[[V ]] in
let ρ′ = ρv ⊕⊥ ρp in

ψ(ρ′,W[[M ]](ρ′ ⊕ ρ) � γp)

The methods of the class are converted into a wrapper by the valuation W as defined

in Section 2.4.2. The environment ρs represents self-reference within the methods and

is bound to self, while ρp represents parent methods and is bound to super.

Note that the methods are evaluated in an environment in which only self, super, the

instance variables, and the class identifiers are bound, but not the names of the other

methods. This is because the normal evaluation fix(M[[M ]]) of a mutually recursive

function binding is not used; instead the generator is converted so that self is used to

access the recursive fields.
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W : Proc → Env → Wrapper

W[[M ]]ρ = λ ρs . λ ρp .M[[M ]]( [ self 7→ ρs, super 7→ ρp ] ⊕ ρ)

The new expression constructs an instance from the specification produced by invoking

a class denotation. The instance variables are discarded and the fixed point of the

method generator is used to denote the new instance.

E[[ new I ]]ρκ = clet ρ′, γ = ρ(I) in
κ(fix(γ))

8.1.4 Example

The semantics is illustrated by sketching the interpretation of the Counter example

given in Section 8.1.1. The valuation of this program example results in an environment

ρc in which the symbols Counter and StepCounter are bound. The structure of this

environment is illustrated below. Letting M1 represent the declaration of methods in

the class, the expression bound to Counter would be:

ρc(Counter)

= λψ . clet ρv = V[[ value ]] in
ψ(ρv, bindselfM[[M1 ]]ρv)

This simply means that Counter is bound to a function that takes a continuation, allo-

cates a variable value and then passes this variable and a generator of the methods in

M1 to the continuation.

The function bindsuper is used to convert a generator that expects the parent record

to be bound to the symbol super, as described in the previous section, into a wrapper:

bindsymG = λ s . λ p .G( [ sym 7→ p ] ⊕ s)

The second class declaration inherits from the first: it defines a continuation to which

the Counter denotation is applied. This continuation allocates another variable, step,

and then combines the generator from Counter with the wrapper specified by the local

methods. The binding of StepCounter is yet another continuation function, similar to

the one given above, to which the resulting variable environment and wrapped generator

are passed. M2 represents the declaration of methods in StepCounter.
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ρc(StepCounter) =

λψ . ρc(Counter)

(λ (ρp, γp) . clet ρv = V[[ step ]] in
let ρ′ = ρv ⊕⊥ ρp in

ψ(ρ′, bindself(bindsuperM[[M2 ]])ρv � γp))

By expanding the value of ρc(Counter), an essentially equivalent class denotation can

be given that does not involve inheritance:

ρc(StepCounter) =

λψ . clet ρv = V[[ value,step ]] in

ψ(ρv, bindself(bindsuperM[[M2 ]])ρv � bindselfM[[M1 ]]ρv)

8.2 Smalltalk With Metaclasses

8.2.1 Metaclasses

In Smalltalk-80, metaclasses were introduced to make possible the uniform interpretation

of classes as objects: metaclasses represented the class of a class. The result was a useful

(though sometimes confusing) symmetry. Metaclasses also solved the practical problem

of object initialization that was caused by dropping the imperative of Simula. The new

statement of Simula became a message sent to a class object requesting the creation of a

new instance. Since all messages are handled by the class of the receiver, the metaclass

handles the new message and performs initialization after creating a basic instance.

Metaclasses also specify the local ‘class’ variables of their instance (which is a class).

Metaclasses have exactly one instance, so there is a one-to-one correspondence between

classes and metaclasses. In fact, a class and its associated metaclass are defined together

in a single construct. Though carefully fitted into a symmetric framework, metaclasses

and classes do not actually have much in common in their intent and purpose.

8.2.2 Metaclass Syntax

The syntax for a Smalltalk class and its associated metaclass is a simple extension of

the syntax of a simple class:

Classes: Class ::= class I I′ Vm Mm Vi Mi

The additional variables Vm and methods Mm represent class variables and class

methods that define metaclass behavior.
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8.2.3 Metaclass Semantics

A metaclass is just a class constructor. The metaclass contains all structures neces-

sary to create instances of the class; hence the new expression and the class generator

become components of the metaclass. The generator is stored in the metaclass as a

special attribute named inst. The new method has the effect of creating an instance by

instantiating self.inst.

Unlike normal constructors, a metaclass is used only once to construct a single class.

Thus each class variable specified in M′
1 is allocated once and shared by all subclasses of

the class. A metaclass is like a class that is immediately instantiated and in addition has

a inst field that is handled specially. The template must be expanded in an environment

in which all class variables are defined, and then be combined with inheritance to the

template of the super-metaclass. Thus two levels of inheritance must occur: inheritance

of metaclass methods and variables, and then inheritance of class variables and methods.

A class/metaclass declaration is elaborated by first accessing the parent class specifi-

cation from the class environment. The class definition is then examined to produce a

new class variable environment and class wrapper. The wrapper is combined with the

parent generator and passed to the declaration continuation.

C : Class → Env → Cont(Env) → Cc

C′[[ class I I′ Vm Mm Vi Mi ]]ρκ = let (ρ′, γ) = ρ(I′) in
clet (ρ′′, ω) = A′[[Vm Mm Vi Mi ]]ρ

′ in

κ [ I 7→ (ρ′′, ω � γ) ]

The metaclass aspects of the declaration are handled by allocating the locally defined

variables and then producing a wrapper for the methods. The class-specific declarations

are simply handled within the wrapper.

A′ : Var×Proc×Var×Proc → Env → InstCont → InstCont

A′[[Vm Mm Vi Mi ]]ρχ = clet ρ′ = V[[Vm ]] in
let ρ′′ = ρ′ ⊕ ρ in

χ(ρ′′,W′[[Mm Vi Mi ]]ρ
′′)

The metaclass wrapper is the same as a class wrapper except for the addition of an

inst template whose semantics is directly analogous to that of classes defined above. The

double-boxed combination function ⊕ is used to combine wrappers in this case by

distributing self and super to both of them.

W′ : Proc×Var×Proc → Env → Wrapper

W′[[Mm Vi Mi ]]ρ = W[[Mm ]]ρ ⊕ λ ρsρp . [ inst 7→ ρp(inst) ◦A[[Vi Mi ]]ρ ] )

66



The basicNew method is defined in class Base, which serves as the starting-point for

inheritance:

Base 7→ [ inst 7→ λψ . ψ(λ ρ . [ basicNew 7→ λκ . ρ(inst){λ (ρ′, γ) . κ(fix(γ))} ] ) ]

The regularity of the treatment of metaclass and class inheritance shows that the

two concepts are very similar. The metaclass mechanism generalizes to higher levels

of metaclassing. A meta-metaclass would be one that created metaclasses, and would

handle the messages sent to meta-classes. All that is needed is yet another layer template

within what is now considered the instance level. This template would be combined

with the corresponding template from a super-object, and a new method provided to

instantiate the template.

The uniformity of Smalltalk-80, though in many ways a simplification of Simula, tends

to confuse novice programmers. An intuitive and empirical review of Smalltalk-80 [5]

produced the recommendation that metaclasses be eliminated, reverting to the approach

of Smalltalk-76. However, other ‘confusing’ aspects of Smalltalk-80, self and super in par-

ticular, were retained because of their evident utility, though no logical justification was

offered. By examining the semantics of Smalltalk-80 class declarations, it is clear that

metaclasses are a complicated construct for which alternative, less confusing solutions

exist.
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Chapter 9

Inheritance in Beta

In Beta [15, 16], the direct successor of Simula, the notion of class prefixing is generalized

to allow attributes to be prefixed. In Beta a class is called a pattern and has attributes

and an imperative. The attributes of a pattern may be locations that refer to pattern

instances or local pattern definitions. Inheritance of patterns is achieved by prefixing, as

in Simula. But inheritance is extended to pattern attributes, allowing the parts of a pat-

tern to be extended as the complete pattern is inherited. Attribute prefixing resembles

method replacement in other object-oriented languages but it is more controlled because

it uses the prefixing discipline instead of complete replacement. The inner construct is

uniformly extended for use within the imperative of a pattern attribute to invoke the

corresponding subpattern attribute imperative. Qualification and this are not used in

Beta.

These changes give Beta a stronger form of definitional consistency, because the be-

havior of a pattern cannot be changed radically during inheritance, but can only be

extended in a controlled fashion, mediated by inner.

9.1 Syntax

The language used to characterize Beta inheritance is defined in Table 9.1. It omits

static references, concurrency, arrays, strong typing declarations, selection of pattern

attributes from uninstantiated patterns, etc., since these changes have little real impact

on the fundamental semantic nature of inheritance in the language. The syntax is

explained below.

A program is simply a pattern definition whose imperative is executed to perform the

top-level computation.

A pattern declaration consists of a prefix I and an object description (# V D#),

which is also called the suffix. The prefix names the pattern that is to be extended with

the additional features in the object description. As usual, the predefined pattern Base

with no attributes serves as the root of the inheritance hierarchy. The object description
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Program Prog ::= P

Patterns P ∈ Pat ::= I (# V D #) |
Declarations D ∈ Dcl ::= I : P | enter ~I do E

Expressions E ∈ Exp ::= inner |

Table 9.1: Abstract Beta syntax.

defines state variables V and a collection of pattern attributes D. The pattern attributes

are analogous to methods in other languages.

The pattern attributes and variables defined by the prefix are inherited and combined

with the local declarations. First, any use of inner within the prefix attributes or impera-

tive is made to refer to the corresponding component of the object description. Then the

attributes of the new pattern are determined by taking first from the pattern attributes

of the prefix, and then including any additional attributes in the object description not

defined in the prefix. The result takes its imperative from the prefix. Finally, all refer-

ences to components from within the prefix or the object description are made to refer

to the combined pattern component.

This allows a form of attribute prefixing in which the attributes in the prefix are

automatically combined with those in the suffix. This form of attribute prefixing is

slightly different from the actual Beta syntax, in which the complete definition of the

pattern must be given in the suffix. This notation is avoided here because it implies

that the entire attribute of the prefix is being replaced by the complete new definition

provided by the suffix, even though the new definition must be an extension of the

original.

Real Beta also has additional syntax for determining when attributes are virtual and

can be redefined, signaling that a redefinition is being made and preventing any fur-

ther redefinition. In the subset of Beta examined here, all attributes are assumed to

be virtual, so none of these indications are necessary. Allowing non-virtual attributes

would require some change in this presentation, adopting some features from the Simula

semantics in Section 7, but would add little insight.

Declarations are used to specify pattern attributes and the imperative. The treatment

of the imperative deserves some discussion. The imperative is included as a declaration

among the pattern attributes because its behavior is similar with respect to inner. The

imperative will be converted into a functional component with the special name imp,

which is executed when the pattern is instantiated. During prefixing the imperative is

treated exactly like the pattern attributes. The novel notation of ‘flow expressions’ used

for expressions in Beta is not described here, since the novelty is primarily cosmetic.

The special expression inner may appear in the imperative of a pattern, and indicates

that the corresponding subpattern imperative, if defined, should be executed at that
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point in the prefix imperative.

A pattern is instantiated by naming it, causing the execution of its imperative. This

expression returns the value of the imperative execution. References are not currently

dealt with in this analysis.

Interestingly, the Counter example cannot be expressed in Beta in the same way as in

the other object-oriented languages. This is because Beta has a strong notion of defini-

tional consistency, so that the increment attribute of the parent class cannot be simply

replaced by an iterating version. Inheritance in Beta is intended to be incremental, so

modifications can be made only by adding to the behavior of inner.

Counter : Base (#

var value;

increment : (#

enter do

value := value + 1;

inner;

#);

limit : (#

enter bound do

while value < bound do

increment();

inner;

#);

enter do

value := 0

inner

#)

ModCounter : Counter (#

var step;

increment : (#

enter do

inner;

if value mod step 6= 0 then

increment;

#);
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enter do

step := 1;

inner

#)

This example illustrates how behavior is added to an imperative during inheritance.

Since the original increment attribute cannot be replaced by ModCounter, it is essential

that it be written to invoke the inner method at an appropriate place.

The extension of increment in ModCounter takes advantage of the fact that it is called

after the value is incremented to check if it is an even multiple of step. If not, it calls

increment to test again; thus it is tail-recursive.

Note that inner was also inserted in a likely place in the definition of limit. The location

of inner must be guided by consideration of what kind of extensions might be useful and

should be allowed.

9.2 Domains

The domains used for the semantics of Beta are structurally the same as those used in

Smalltalk, as defined in Section 8.1.2. However, there is in a difference in the kinds of

values in the environment of the generator. In Smalltalk the generator component of

an instance specification is a simple generator of functional environments of the form

EnvFun → EnvFun. In Beta each attribute in the result of the generator is a function

of the corresponding inner attribute, and selective combination is used to match these

components. Thus a Beta instance specification has the form EnvFun → EnvFun→Fun.

In addition, the special symbol imp is used to indicate the imperative of the pattern.

Its type in the generator is different, being based upon Cmd instead of Fun.

9.3 Semantics

In Beta, the pattern is essentially a functional abstraction or generic definition, the actual

parameter being supplied by a subpattern. The keyword inner represents this implicit

formal parameter in the prefix definition. When the pattern is instantiated by itself, the

parameter is filled by an empty subpattern. Prefixing is essentially composition of these

generics.

The semantics of inner is given by selective inheritance (see Section 2.4.3), because

inner in an attributes is automatically associated with the corresponding attributes of

the subpattern. Since prefixing is uniform with respect to pattern attributes and the

imperative, simple composition serves to form prefixed subpatterns and to resolve inner

imperatives. The semantics of patterns is given below:
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C : Pat → Env → Dc → Dc

C[[ I (# V D #) ]]ρ = ρ(I) ◦A[[V D ]]ρ

A : Dcl×Dcl → Env → InstCont → InstCont

A[[V D ]]ρψ = λ ρp, γp . clet ρv = V[[V ]] in

let ρ′ = ρv ⊕⊥ ρp in ψ(ρ′, γp ⊕◦ W[[D ]](ρ′ ⊕ ρ))

W : Dcl → Wrapper

W[[D ]]ρ = λ ρ′ .M[[D ]]((ρ′|B[[D ]])⊕ ρ)

Note that if a variable is in a position to be redefined, an error will be generated during

composition, since variables are bound to locations, not composable functions.

Declarations are changed to allow definition of constant patterns and to convert the

imperative into a procedure:

D : Dcl → Env → Dc → Cc

D[[ I : P ]]ρ = [ I 7→ P[[P ]]ρ ]

D[[ enter (~I ) do E ]]ρ = [ imp 7→ λϑ . λ κ . λ~δ .E[[E ]]( [~I 7→ ~δ, inner 7→ ϑ ] ⊕ ρ)κ ]

To execute a pattern, it is instantiated to produce an environment generator, passing

in an empty environment 〈〉 to represent the fact that no prefixing is to occur. The

imperative is selected from the environment and is passed a no-op (represented by ϑ∅)

to clear the effect of inner.

E′[[ I ]]ρκ = clet δ = E[[ I ]]ρ in
if δ ∈ Instance
then clet ρ, γ = ρ(I) in

let δ = fix(γ ⊕· γnull) in

δ(imp)κ〈〉
else κ(δ)

γnull = λ s . [ imp 7→ ϑ∅, others 7→ γ∅ ]

72



9.4 Beta Compared With Smalltalk

The semantics of Beta and Smalltalk are very similar; however, they differ in the central

mechanism used to combine the inherited structure with the local definitions. The

following table brings this difference into focus. γp is the parent generator, ρ′ is an

environment of variables, and ρ is the global environment.

Smalltalk : WSmalltalk[[D ]](ρ′ ⊕ ρ) � γp

Beta : γp ⊕◦ WBeta[[D ]](ρ′ ⊕ ρ)

The primary difference is that the parent generator is on the right in Smalltalk but

on the left in Beta. This means that Beta attributes cannot be replaced. The other

difference is that Smalltalk uses � to apply the changes, while Beta uses ⊕◦ giving

selective composition.

The surprising conclusion is that Beta’s notion inheritance is the inverse of that in

other object-oriented languages. In Beta, a superpattern acts as a subclass, while a

subpattern acts as a superclass. This is because the super-pattern generator is composed

to the left of the subpattern and thus takes precedence over it. The inner statement

corresponds more closely to super than self. The notion of self-reference is implicit, being

an artifact of mutually recursive definitions. This situation is illustrated in Figure 9.1.

Note that self has been replaced by an explicit variable reference var in Beta.
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Figure 9.1: Inverse hierarchies in Smalltalk and Beta.
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Chapter 10

Inheritance in Flavors

Flavors is an object-oriented extension of Lisp. The most significant advance in Flavors

was the introduction of multiple inheritance. However, multiple inheritance in Flavors is

fundamentally different from multiple inheritance as presented in Section 2.5.1, because

it is based upon linearization. This chapter focuses on the semantics of linearization.

Linearization is potentially detrimental to the encapsulation of programs [25]. But

the conventional technique of mixins depends directly on this breach of encapsulation.

A more modest approach that does not have the potential to violate encapsulation is

suggested. The mechanism of method combination is also examined.

10.1 Syntax

In choosing a simple language to represent Flavors inheritance, the intent is to include

the most regular and powerful notations and omit those covered by more general forms.

This abbreviated syntax is given in Table 10.1.

The declaration of a flavor specifies the flavor name IN , a list of instance variables ~Iv,

and a list of inherited flavors ~Ip. The ancestors of a flavor consist of all the inherited

flavors and their ancestors. The associated defmethod form specifies the main methods

of the flavor, and the defwrapper form defines any wrappers.

The instances of a flavor have local state represented by the union of all the variables

declared in the flavor and all its ancestors. When more than one ancestor uses the same

Flavors Dcl ::= (defflavor I(~Iv) (~Ip)

(defmethod Mm)

(defwrapper Mw))

Expressions E ∈ Exp ::= new I

Table 10.1: Flavors syntax.
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variable name, only a single variable is present in the instance and both ancestors refer

to the same storage location. Thus instance variables are shared among ancestors.

The behavior of a flavor is defined by a complex combination of the main methods

and wrappers that appear in the flavor and its ancestors.

The variable self is given a special binding just as in Smalltalk. The variable continue

is given a special binding in the evaluation of the wrappers. This symbol is bound to

a function that represents the “main-method” being wrapped. Thus, a typical wrapper

performs some initial computations, then invokes continue to perform the main method,

and then finishes the computation. Continue can be used only to invoke the corre-

sponding method in the parent; Flavors does have the more general super construct of

Smalltalkthat can access arbitrary parent methods.

To determine the behavior of an instance, the ancestor graph is first linearized. There

are several schemes for linearization, but the general idea is to perform a left-to-right

depth-first search up to duplicates of the ancestor graph of the flavor. Thus the order

in which the inherited flavors are listed in the flavor definition may have an impact on

the behavior of instances. The effect of linearization is to form a linear list of flavor

definitions in which duplicates have been removed, from which the behavior of the class

is easily constructed.

Given the linearized list of flavors, the main methods are found by searching the list in

order to find the first definition of each method. In addition, the wrappers are composed

in order, so that continue in an earlier one invokes the next wrapper in sequence, and

continue within that one invokes the next, etc. Finally, the wrappers are composed with

the main methods, so that continue in the last wrapper invokes the corresponding main

method.

The before and after methods of Flavors have been omitted because their functionality

can be achieved using wrappers.

(defflavor Counter

(value) ; variables

(Base) ; parent

(defmethod (increment Counter) ()

value := value + 1

)

(defmethod (limit Counter) (bound)

while value < bound do

self.increment()

))

(defflavor StepMixin
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Flavors Flav = [

Variables var : Ide∗

Main methods meth : GeneratorFun

wrappers wrap : GeneratorFun→Fun

Parents parent : I → Flav

]

Table 10.2: Semantic domain of flavor definition.

(step) ; variables

(Base) ; parent

(defwrapper (increment StepMixin) ()

for i := 1 to step do

super.increment

))

(defflavor StepCounter

() ; variables

(StepMixin Counter)) ; parents

10.2 Domains

In the semantics of Flavors, there is a significant difference between the behavior of

flavor instances and the behavior inherited by subflavors. Inheritance depends upon the

complete structure of ancestor hierarchy, not merely on the behavior (or generator of

behavior) of its parents. Thus the ‘denotation’ of a flavor is merely a tree containing

the behavioral contributions of its parents.

The specification of a flavor is given by an environment of wrappers, an environment

of methods, and a set of variables. These domains are summarized in Table 10.2.

The denotation of a flavor is a tree structure that represents the behavioral contribu-

tion of this flavor together with all the behavioral contributions of its ancestors.

The wrapper environment contains wrapper methods, which are functions on denotable

values. The argument to a wrapper method is the corresponding value in the parent, i.e.

the value with the same name in the record of parent methods. The wrapper environment

is assumed to be defined for all identifiers, with the identity function standing in for any

unspecified wrappers. This convention allows wrapper environments to be composed

without loss of information, but does not allow a wrapper actually to define an identifier

if the parent base method is undefined.
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Because the list of flavor components contained in a flavor may be arbitrarily rear-

ranged when the flavor is inherited, it is not meaningful to say that the flavor behavior

is inherited. Rather, it is the tree of ancestor components that is inherited. Also, since

linearization may insert the components of a flavor directly into the middle of a linear

order, a flavor that does not inherit from anything typically ends up having ‘parents.’

In this position it may act as a wrapper. This effect is relied upon heavily in Flavors

programming through the use of mixins, which are by convention placed in front of the

flavor they modify or wrap.

10.3 Semantics

Since the semantics of a flavor is an ancestor tree, the interpretation of a flavor definition

simply builds a new ancestor tree by joining the parents’ ancestors together into a new

tree.

The semantics for the flavor declaration given above is:

F : Dcl → Env → Flav

F[[ (defflavor I(~Iv) (~Ip)) (defmethods Mm) (defwrappers Mw) ]]ρ

= [I 7→ [ var 7→ ~Iv,

meth 7→ M[[Mm ]],

wrap 7→ W[[Mw ]],

parent 7→ [ ~Ip 7→ ρ(~Ip) ] ]

]

W[[M ]] = λ ρ . λ x . (λ a .M[[M ]]( [ continue 7→ a ] ⊕ ρ))

It is impossible to combine these behaviors into a less syntactic “denotation” because

the internal structure of the tree is important when inheritance behavior is derived.

The instance behavior of a flavor, on the other hand, is derived by combining the

ancestor flavors. The instance behavior of a flavor definition is specified by a series of

transformations. First, the tree of parent flavors is converted into a list by linearization.

This linear list is then reduced to a single specification by composition and method

combination. This final specification is used to instantiate the flavor instances.

Linearization serves to convert the tree structure of ancestors into a linear list in which

duplicates are removed. The removal of duplicates ensures that each behavior defined

by an ancestral flavor is performed only once, no matter how many times it appears in

the ancestor tree. In Flavors, the rules governing linearization are

1. A flavor always precedes its components.

2. The local ordering of components is preserved.
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3. Duplicate flavors are eliminated from the ordering.

A function linearize : Flav → Flav∗ is assumed to convert of a flavor into a list of flavors

according to these rules, based on the flavor denotations in an environment. Though a

flavor definition may not have a linearization that satisfies the rules, this complication

is minor and is ignored here.

The second stage is achieved by iterated single inheritance. Iterated single inheritance

works by considering the linear list as a sequence of wrappers, each of which modifies

and augments the behavior specified by the rest of the list. Iterated single inheritance

is simply a composition function for flavors:

compose : Flav∗ → Flav

compose(F1, . . . , Fn) = [

var = F1,var · · · ∪Fn,var

wrap = F1,wrap · · · ⊕◦ Fn,wrap

meth = F1,meth · · · ⊕ Fn,meth

]

It is this behavior that is instantiated to produce a flavor instance. A behavior is

instantiated by allocating storage for the variables, then wrapping the wrapper methods

around the main methods:

E[[ new E ]]ρκ = clet F = E[[E ]]ρ in
clet ρv = V[[Fvar ]] in

κ(fix(λ ρs . (Fwrap ⊕· Fmeth)( [ self 7→ ρs ] ⊕ ρv)))

To create an instance, the variables of the flavor are instantiated, the wrappers are

applied to the main methods, and the fixed point of the resulting method is taken.

The base flavor Base, which serves as the parent of all flavors, defines no variables,

wrappers, or methods.

10.4 Method Combination

Multiple inheritance is used to form a new class by inheriting attributes from several

parent classes at once. In order to handle the inevitable problem of conflicting attributes

among several parents, Flavors introduced method combination to construct derived

methods automatically. Method combination allows a method to be constructed from

the pieces of functionality contributed by each parent. Method combination requires
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some uniformity in the way these method pieces are defined, especially in how they

interact parent methods.

Method combination gives additional flexibility and power to the Flavors language.

With method combination, the main method of a subflavor need not simply replace

the corresponding method in the parent. The subflavor method may be combined with

parent methods. The form of combination is specified statically, and may involve logical

combination, list concatenation, summation, etc.

Method combination is represented by a record of combination functions, that is part

of the behavior of every flavor. Appropriate syntax should be added to the definition of

Flavors. The method combination specification, comb : Env, is added as a component

of the domain Behavior. Method combination functions are unioned very much like

instance variable names. The only effect of method combination is to change the way in

which main method generators are combined. Instead of simply replacing all redefined

methods with⊕, each method may be individually combined with its parents, as specified

by the combination function environment.

In this way each all methods under a single label are combined according to the

corresponding function from the combination environment. Of course, the combination

functions should not require both arguments to be defined.

10.5 Linearization and Mixins

Since linearization reduces multiple inheritance to iterated single inheritance, the par-

ents that are placed first in the list end up “wrapping” those placed later in the list, even

though they may not have originally specified this relationship. This effect is controver-

sial because it provides added functionality that is desired, but at the cost of making

complex inheritance hierarchies very difficult to understand.

Though languages with linearization do not support an explicit wrapper construct,1

they achieve the effect of wrappers by depending upon linearization to wrap the first

parents around later ones [26]. Adding an explicit wrapping construct to these lan-

guages would obviate the need for linearization and at the same time greatly simplify

the behavior of multiple inheritance.

1Wrappers in Flavors [20] are used to wrap a particular method, and are not a record-wrapping
construct.
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Chapter 11

Related Work

11.1 Cardelli

Cardelli [6] proposed a semantics of inheritance in which he identified inheritance with

subtyping. His notion of record subtyping was presented in Chapter 4. Cardelli claimed

that the subtype relation on record types “corresponds to the subclass relation of Simula

and Smalltalk.” He illustrated this correspondence by the following examples:

type any = ()

type object = (age: int)

type vehicle = (age: int, speed: int)

type machine = (age: int, fuel: string)

type car = (age: int, speed: int, fuel: string)

Since car has all the properties of vehicle, car is a subtype of vehicle. Cardelli’s inter-

pretation was that “a car has (inherits) all the attributes of vehicle and of machine.” This

is also an example of multiple inheritance because the car type is a subtype of (inherits

from) two types: vehicle and machine.

Cardelli points out that the attributes in the records types listed above resemble

the instance variables of an object in object-oriented programming, while these objects

typically consist of methods. Cardelli addresses this point by using functions as the

values in a record.

In a later paper [7], Cardelli and Wegner point out that since the functions in a record

are not specified in a record type (only their type is given), objects must be created

explicitly, independently of their notion of inheritance. One effect of this is that “at

record creation time one must choose explicitly which field values a particular record

should have: whether it should inherit them by using some predefined function (or

value) used in the allocation of other records, or redefine them by using a new function

(or value). Everything is allowed as long as the type constraints are respected.” They

also note that method refinements using “the concept of super . . . cannot be simulated
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type point = (x:real, y:real)

type active point = point and (d: point → real)

val make active point(px:real, py:real) : active point =

rec self : active point .

(x = px,

y = py,

d = λp:point . sqrt((p.x - self.x)**2 + (p.y - self.y)**2))

type counter = (increment: int → int, fetch: unit → int)

val make counter(n:int) =

let count = cell n

in (increment = λn:int . count := (get count) + 1,

fetch = λnil:unit . get count)

Figure 11.1: Cardelli’s object constructors.

because they imply an explicit class hierarchy.”

Cardelli’s two examples of explicit object creation are reproduced in Figure 11.1.

They are expressed in a language similar to ML with updatable reference variables.

The first example illustrates the use of self-reference: The second example illustrates

the introduction of local storage in the definition of an object that closely resembles

a typical instance in an object-oriented language. Although these examples are very

suggestive, Cardelli makes little comment on them.

In conclusion, Cardelli’s semantics of inheritance may be summarized by the following

principle: Inheritance is record subtyping.

Cardelli’s identification of inheritance with subtyping does not explain inheritance in

object-oriented languages. The analysis of Cardelli’s proposal is complicated by the close

relationship between inheritance and subtyping discussed in Chapter 4, where Cardelli’s

type system was used. The subtype relationship between parent and child, which is

the focus of Cardelli’s work, is a necessary consequence of the inheritance mechanism

presented in this thesis. But modeling one of effects of a mechanism, no matter how

significant, is not sufficient to explain the mechanism itself.

The types that are related by Cardelli’s subtype scheme are not analogous to the classes

in object-oriented programming. A record type can define only the format of instances,

specifying the names and parameter types of functions that might represent methods. A

class is a mechanism for constructing objects and providing them with similar behavior.

Though a type can describe the instances of a class, it is not a class itself. The class

concept is more closely modeled in type theories by the elements of existential types,

again illustrating the mismatched levels of classes and types. The denotational model
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presented in Section 6, though it makes no claims of type-correctness, more closely

models classes than does Cardelli’s types.

There is also a structural mismatch between Cardelli’s notion of subtyping and object-

oriented inheritance. In object-oriented programming, inheritance is a mechanism, not a

relation as it is in Cardelli’s model. Inheritance is not a relationship that is discovered in

an object-oriented program after the program is written; rather, inheritance is a means

to build programs. The semantics of inheritance presented in Section 2.3 defines it as a

mechanism. This mechanism is shown to capture the essential aspects of object-oriented

inheritance in Chapter 5.

Cardelli’s proposal for explicit selection of methods at object-creation time is not

general enough to model the selection of methods in object-oriented programming. This

mechanism works only as long as the functions used to implement methods do not

depend upon other methods in the class. If they do, then it is impossible to choose them

independently; they are inextricably part of a composite structure. In addition, the

explicit selection of methods does not address the interaction between original methods

and their replacements arising from the use of super. The selection of interacting methods

and invocation of original methods via super are both handled by the semantics of record

inheritance presented in Section 2.4.2.

When the type definitions of car and vehicle are compared with the the points and

counter examples (see Figure 11.1) of explicit object creation, it is clear that point

and counter more closely resemble object-oriented class definitions. Cardelli’s model of

inheritance is defined as a relationship between car and vehicle, while the semantics of

inheritance presented in this thesis is based on inheritance of behavior from point or

counter.

Others researchers have challenged Cardelli’s identification of inheritance and sub-

typing. Snyder [25] argues that inheritance does not always correspond to subtyping,

especially when methods may be deleted. Wegner [30] distinguishes between classes and

types, and discusses several of their subtle interactions. Danforth and Tomlinson [9]

discuss difficulties arising in an attempt to use Cardelli’s semantics to reproduce the

effect of inheritance in object-oriented languages.

11.2 Kamin

Kamin [14] presents a denotational semantics of inheritance in Smalltalk-80. In his

semantics, inheritance is handled by building a structure containing all the class defini-

tions in the system, and then taking a single global fixed point to derive the meaning of

the entire system in one operation. His semantics employs the traditional techniques of

standard semantics, including continuations to express method returns and blocks.

Kamin defines a fairly complete subset of Smalltalk-80, including a modified form of

metaclasses. He defines a Smalltalk-80 program as a mapping from class names to class
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definitions, which in turn are mappings from message keys to method expressions. The

entire program is self-referential, because one class definition may inherit from another,

and also because expressions may invoke class methods.

Kamin’s semantics defines the meaning of a Smalltalk program by a single global fixed

point that resolves all class references in one stroke. Message sending, recursion, and

inheritance are all handled by this single fixed point construct. But in his conclusion,

Kamin asks “Should these not be distinct and separable features?” In addition, the

necessity of a global fixed point for inheritance leads Kamin to conclude that “inheritance

is strictly global”.

Kamin also introduces some syntactic changes to simplify the semantics. The seman-

tics of the pseudo-variable super is not defined directly. Noting that the class to which

super refers may be determined statically in Smalltalk-80 programs (it is the superclass

of the class in which the expression appears), Kamin requires super m e to be translated

into a special form self C::m e where C is the explicit name of the superclass.

Class methods, part of the meta-class concept, are defined as a special expressions

that have the effect of evaluating the method with the receiver bound to a special null

object. The null object is the only indication that instance variables are not bound

within a class method.

Though Kamin’s semantics is an accurate description of Smalltalk-80, it is not compo-

sitional. A semantics is compositional if the meaning of a compound expression depends

only upon the meaning of its component parts. Compositionality is one of the most

desirable aspects of denotational semantics since it leads to modularity of definition and

indicates where equivalent expressions can be substituted because they have the same

meaning. Kamin’s semantics is non-compositional because the meaning of a class is not

built up from the meanings of its components (its parent together with its local defini-

tions) but is instead the result of a global fixed point over all classes. It is impossible

to identify the meaning of any individual class independent of the whole. As a result,

Kamin’s semantics provides little help in determining when two class definitions are

equivalent (for example, when one involves inheritance and the other does not). The

semantics of inheritance presented in this thesis is more compositional, because every

class is assigned an independent meaning, and the meaning of a subclass depends only

upon the meaning it inherits.

Kamin’s conclusion that inheritance is strictly global is based on a failure to distin-

guish the two forms of reference to class denotations: inheritance and instantiation.

Since inheritance requires access to the generator of recursive behavior, while instantia-

tion must use the behavior fixed point, the two references have different requirements.

In adhering to the traditional association of class identifiers with behaviors (instead of

behavioral generators), Kamin is forced to use a global fixed point over a single gen-

erator representing all the class generators for the entire object-oriented library. The

denotational semantics of Chapter 6, in introducing generators as the denotations of
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class identifiers, allows composition of generators to model inheritance, while the fixed

points of the generators can be taken as needed for instantiation.

Kamin’s also blurs scope issues and inheritance. In Smalltalk, class names have global

scope, so it is necessary for a global fixed point to resolve references to class names. This

use of the fixed point is associated only with the binding of class denotations to identifiers,

in the form of a global recursive binding; it is not associated with inheritance. On the

other hand, recursion via self within a class definition refers only to the class, not to the

entire program; thus a local fixed point is appropriate for classes.

Because Kamin uses a single global fixed point to resolve recursion and and inheri-

tance, the relation between these concepts is not made clear. The semantics of inheri-

tance defined in Section 2.3 distinguishes inheritance from recursion, at the same time

indicating that they are definitely not separable.

Kamin’s semantics yeilds a non-error value for programs that are not valid in

Smalltalk-80. These implicit extensions to Smalltalk are caused primarily by the merging

of classes and metaclasses in his semantics:

• The introduction of the form self C::m e allows classes to send messages directly

to any of their ancestors, which is not allowed in Smalltalk-80. In its most general

form, e C::m e allows any method to be invoked on an expression e as if it were

defined on that expression. This is not allowed in Smalltalk-80, since it is a direct

abrogation of object-oriented philosophy.

• Any method may erroneously invoke a method from any other class, and if the

other class method does not use any instance variables not defined in the first

class, then the method may produce a non-error value. In addition, class variables

may be accessed globally. This oversight is perhaps excusable, because syntactic

conditions are easily imposed upon programs to eliminate these problems.

• Class methods cannot be distinguished from instance methods by syntactic anal-

ysis. In effect, class methods are distinguished from instance methods only by the

absence of instance variable references. It is possible to invoke a class method by

a normal message-send to an instance with the same effect as invoking the class

method using the special class method expression. And a method may be used

meaningfully as both a class method and an instance method, because a runtime

check may be used to decide whether or not instance variables are available.

The semantics of Smalltalk presented in Section 8 separates classes and metaclasses, and

provides independent but parallel inheritance at both levels.

Finally, Kamin’s semantics of inheritance does not address the problem of the inter-

action between inheritance and typing, perhaps because inheritance is examined only

in Smalltalk, a weakly typed language. The semantics of inheritance presented in this

thesis is amenable to type analysis, as shown in Chapter 4.
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11.3 Reddy

Reddy [23] independently developed a denotational semantics of inheritance that is es-

sentially the same as that presented here. He sketched the denotational semantics of

a series of languages dealing with objects, classes, and, finally, inheritance, that model

the behavior of Smalltalk. His semantics uses local fixed points and recognizes the in-

teraction between inheritance and recursion. However, his semantics is applied only to

Smalltalk. In addition, he does not attempt to prove the correctness of his semantics,

nor does he investigate applications of type theory.

11.4 Wolczko

Wolczko [32] described inheritance by a transformation from object-oriented programs

with inheritance to programs in a simpler language without inheritance. The semantics

of this simpler language was defined using denotational semantics. The abstract syntax

of object-oriented programs with inheritance, Program′, is translated into the syntactic

domain of programs without inheritance, Program, by the mapping PProgram:

PProgram : Program ′ → Program

The meaning of programs in Program, on the other hand, is mapped into the domain of

program denotations, Program den, by a valuation function:

MProgram : Program → Program den

Wolczko used these techniques for a semantics of Smalltalk [31].

Though Wolczko provides a denotational semantics of class-based languages [29], his

semantics of inheritance is essentially syntactic, not denotational. This can be seen in the

use of a translation from programs into programs in the function PProgram, instead of a

denotational mechanism for constructing the meaning of an inheritor from the meaning

of its parent, as in this thesis.

11.5 Jorgensen

Jorgensen [22] presents an action semantics (a variety of denotational semantics) of

inheritance in Beta. The full generality of Betais not examined, however, because of the

following restriction on the use of virtual patterns (redefinable attributes):

“Virtual patterns can only be referred to in the method of the pattern [im-

perative] in which [they are] declared.” [22, Page 16]

This restriction essentially means that patterns cannot make self-references to their

virtual (redefinable) components.
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Chapter 12

Conclusion

Inheritance is explained as a mechanism for incremental programming. Its key aspect is

the modification of self-reference in inherited components to refer to the derived result.

This manipulation of self-reference allows inheritance to simulate the effect of destructive

modification.

A denotational model of inheritance is developed on the basis of a traditional analysis

of recursion. The model shows how inheritance exploits previously untapped potential in

the use of fixed points for the construction of programs. The essential innovation is the

incremental construction of the arguments for the fixed point function. A distributive

algebra useful for expressing this construction is introduced to facilitate the definition of

operations on generators. Inheritance is especially relevant to the modification of records,

or collections of labeled attributes, because they are multifaceted and a modification

can be defined by adding or replacing a collection of attributes. A variety of inheritance

mechanisms are examined, including a generalization of inheritance that allows more

flexible derivation than has previously been provided.

Several examples of novel uses of inheritance are given. These examples demonstrate

that inheritance has wider applicability than simply object-oriented class definition.

To demonstrate the correctness of the model, it is proven to correspond directly to

the operational implementations of inheritance in object-oriented languages.

The constraints induced by self-reference and inheritance are investigated using type

theory and resulting in a formal characterization of abstract classes and connections

between inheritance and subtyping. Abstract classes in object-oriented programming

are those which send messages to themselves that are not implemented; their genera-

tors don’t satisfy the conditions on the fixed point operator. The well-known effect of

inheritance that children resemble their parent is a consequence of the change of self-

reference within the parent to the child. But the minimal constraint is not that children

are subtypes of their parents, but that they are subtypes of their parents’ self-reference.

The model is incorporated into standard denotational semantics for the analysis of

object-oriented languages. The fundamental innovation is the addition of explicit gen-
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erators and of constructs for their manipulation.

The semantics of inheritance in several object-oriented languages is then investigated,

using a common framework in which their inheritance mechanisms are easily compared.

One significant discovery was that Smalltalk and Beta have the same basic inheritance

mechanism, but that it operates in a different direction in each language; a child in

Smalltalk corresponds to a prefix in Beta.
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