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Bigraphical reactive systems: basic theory

Robin Milner

University of Cambridge Computer Laboratory
William Gates Building, J J Thomson Avenue, Cambridge CB3 0FD, UK

September 2001

Abstract A notion of bigraph is proposed as the basis for a model of mobile interaction. A bigraph consists of two
independent structures: a topograph representing locality and a monograph representing connectivity. Bigraphs are
equipped with reaction rules to form bigraphical reactive systems (BRSs), which include versions of the � -calculus
and the ambient calculus. Bigraphs are shown to be a special case of a more abstract notion, wide reactive systems
(WRSs), not assuming any particular graphical or other structure but equipped with a notion of width, which expresses
that agents, contexts and reactions may all be widely distributed entities.

A behavioural theory is established for WRSs using the categorical notion of relative pushout; it allows labelled
transition systems to be derived uniformly, in such a way that familiar behavioural preorders and equivalences, in
particular bisimilarity, are congruential under certain conditions. Then the theory of bigraphs is developed, and they
are shown to meet these conditions. It is shown that, using certain functors, other WRSs which meet the conditions
may also be derived; these may, for example, be forms of BRS with additional structure.

Simple examples of bigraphical systems are discussed; the theory is developed in a number of ways in preparation for
deeper application studies.
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1 Introduction

It is nearly forty years since Petri devised the first substantial model of concurrent computation, and it was a
graphical model [26]. Since that time a great many models have been studied. They are not always graphical,
but the spatial metaphor is never far away; we often use terms like linkage, location, mobility, and so on. As
it was for Petri, it remains a challenge for us to deploy spatial intuition but to retain rigour. This challenge
grows as mobility grows in importance.

Ten years ago I began the study of action calculi [22], an algebraic theory with a graphical interpretation,
in which the dynamics of a system consists of the reconfiguration of its graph. Action calculi –of which we
assume no knowledge here– provide a common frame for a variety of concurrency models, including Petri
nets and the � -calculus; each model can be specified in the frame by a signature (a set of node types) and a
set of reaction rules. Such a general framework yields understanding of the family of models, and of their
differences. What it must also do is to provide a central theory which can be specialised to each individual
model. I now believe that such a theory is best achieved by treating graphs as the primary mathematical
objects, not only as a means to visualise an algebraic or other theory. That belief lies behind the present
work, which advances from action calculi in two ways: in graphical structure, and in behavioural theory.

Graphical structure The first advance is in the form of graph on which the model is based. The model
introduced here treats the locality and connectivity of agents –their nesting and wiring– as orthogonal, co-
ordinated only by the nodes of the graph. Hence the term bigraph; each graph is the superposition of two
graphical structures.

The model inherits many features from action calculi. In particular, a node of a graph represents a variety of
things, for example a � -calculus input term � �������
	

, a ‘solution’ of the Chemical Abstract Machine [1], an
administrative region, or a host machine running several processes. A node possesses ports, linked by arcs
to other ports; a node may also enclose, nested within it, other nodes similarly linked. However, in action
calculi there are constraints both on the arcs themselves (arcs are directed, and an output port carries exactly
one outgoing arc) and on the relation between arcs and nesting (a node may be linked to siblings, parents,
aunts and uncles but not to cousins in the nesting hierarchy). These constraints in action calculi made sense
from the algebraic viewpoint adopted there. In bigraphs the constraints are removed; thereby we not only
model a broader class of systems but also achieve a tractable behavioural theory. Several influences have
led to this treatment:

(1) The mobile ambients of Cardelli and Gordon [2] have emphasized the value of dealing with mobility
in terms of (physical) location, rather than coding it in terms of wiring (as can be done to some extent in
the � -calculus). In terms of node-nesting, action calculi appear to be able to model ambients as originally
defined; but they fail to model certain natural developments of the ambient notion.

(2) The fusion systems of Gardner [10], which evolved from action calculi, represent a process-calculus
framework whose graphical form is implicit in its process-algebraic formulation. Two of its innovations are
adopted in the present work; the unconstrained connectivity of the kind mentioned above, and the explicit
fusions –here called aliases and coaliases– of Gardner and Wischik [11], developed from the fusion calculus
of Parrow and Victor [25]. These authors are further developing a calculus of fusion graphs.
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(3) It may be argued that to allow arcs to link nodes which are distant cousins, i.e. enclosed within distinct
parent nodes arbitrarily far apart in the nesting structure, is contrary to reality. But we wish to model not
only the reality, e.g. how communication is implemented, but also the fiction –e.g. ‘action-at-a-distance’–
which the world wide web permits us to adopt. By embracing both views in the same model, one can hope to
validate complex communication protocols in a mobile environment. This is well-argued by Wojciechowski
and Sewell in their Nomadic Pict [29]; Sewell and Unyapoth [28] develop verification techniques for ‘infras-
tructure algorithms’, which implement high-level location-independent communication primitives in terms
of low-level location-dependent ones.

(4) A strong motivation has been to model fully-fledged mobile interaction, as increasingly found on the
internet. A certain complexity is essential in a model which will support the analysis of such real systems.
By treating locality and connectivity as independently as possible, it appears that the model can nevertheless
remain mathematically tractable.

Behavioural theory In process calculi, activity is often first expressed as reactions of the form � ���
�
,

where � and �
�
are agents, and then refined or extended somehow to labelled transitions of the form �

�
���
�
,

where the label
�

is drawn from some vocabulary expressing the interactions which an agent may perform
with its environment. Transitions (we henceforth omit ‘labelled’) have the advantage that they support the
definition of behavioural preorders and equivalences, such as traces, failures and bisimilarity. This kind of
behavioural theory has been successful; but for each calculus one may ask where the labels come from.

Typically they are simple, but not always atomic; in the � -calculus we have transitions like ���
	�� 

�
	
�
���
�
,

meaning that � can send a new private name � along the channel � . For action calculi, but more generally
for any reactive system (under a precise definition of this concept), we may ask whether somehow these
labels can be derived uniformly from any given set of reaction rules � � �

�
. A natural approach is to take

the labels to be (a special class of) contexts; then �
�
� �
�
implies the reaction ����� � �

�
, i.e. in the context

� , � can react to become �
�
. But we don’t want all contexts as labels. How to find a suitably minimal set

remained open for some six years. Sewell [27] was able uniformly to derive satisfactory context-labelled
transitions for parametric term rewrite systems with parallel composition and blocking, and showed bisim-
ilarity to be a congruence. It remained a problem to do it for reactive systems dealing with connectivity. In
recent work we have achieved a uniform derivation for all reactive systems satisfying certain conditions. We
arrive at quite tractable transition systems for which, moreover, bisimilarity and other familiar behavioural
preorders and equivalences are guaranteed to be congruences. The first results of this kind appear in Leifer
and Milner [19]; these were extended and refined in Leifer’s PhD Dissertation [18], which is the most
comprehensive reference.

The notion of reactive system is defined categorically, and one of the required conditions is that, in the
appropriate precategory, sufficient relative pushouts (RPOs) exist. In a pilot study, Cattani et al [4], we
showed that this condition holds for certain action calculi involving no nesting of nodes. We believe that the
result extends to calculi with nesting, but verifying the condition becomes uncomfortably hard. The pilot
study led us to expect our RPO condition to be met in interesting cases, but also led us to believe that it
would be hard to verify for nested systems in which locality and connectivity are interdependent.

We come now to the second advance represented by bigraphs: their behavioural theory –being simpler– has
been further developed. In fact, as reported here, the RPO condition holds for a wide class of bigraphical
reactive systems (BRSs). The paper includes an example of a derived transition system for a simple BRS; it
also develops techniques –based upon certain functors– by which the RPO condition can be transferred to
other models than BRSs.
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Discussion The nature of this report is dictated by the need, mentioned in the second paragraph of the
introduction, for any general model for interactive systems to pay its way by providing a central theory that
can be applied usefully in specific instances – i.e. in calculi with special orientation. So the aim here is
not to polish each stage of development, but rather to reach a point at which applications of the theory can
be carried out and assessed. This point is represented, in Section 6, by a preliminary taxonomy of derived
transition rules followed by a conjectured definition of parametric reaction rule. This will allow us, as a
first experiment, to calibrate the theory against that developed over the last decade for the � -calculus; this is
a natural choice for a test case, since many calculi share features with the � -calculus.

We call the proposed definition conjectural, because bigraph theory cannot simply assert the way to define
reaction; its proposal needs to be assessed against what is found useful and natural in practice. There are
several ways in which the proposal can be judged: Does it lead to transition systems which relate nicely to
those that we know? Do the resulting behavioural relations match those that we know, or are they new? And
does the theory explain phenomena or resolve questions in specific calculi – e.g. why the original strong
bisimilarity for the � -calculus was not a congruence? (This last example is not chosen randomly; I believe
that it yields a very satisfactory explanation.)

Because the primary concern has been to reach a point at which the theory can be tested, many questions
about the theoretical path chosen are not fully answered here. For example: is it best to use precategories,
as we do, instead of categories? Has the best graphical formulation been chosen? Cannot the demonstration
of RPOs for bigraphs be simplified? These questions will be all the more worth addressing if the theory, as
it stands, is seen to contribute to specific applications.

There are also many links to be established with existing work, especially with the long tradition of research
recorded in the Handbook of Graph Grammars and Computing by Graph Transformation [7]. Some of these
links are discussed in the concluding section.

How the paper in organised In Section 2 we introduce bigraphs informally, by means of examples of
familiar reactions and a term language for describing bigraphs. In Section 3 we review the necessary cate-
gory theory, and in particular the RPO theory previously developed; we then introduce the abstract notion
of wide reactive system (WRS) (of which bigraphs will provide a concrete instance), define transitions for
them, and prove that under two conditions the resulting bisimilarity is a congruence. In Section 4 we define
bigraphs in terms topographs and bigraphs, establishing several important properties; some of these follow
from the existence of RPOs for bigraphs, which are proved in Appendix A for topographs and Appendix C
for monographs. We also characterise the idem-pushouts (IPOs) constructed in Appendices A and B, which
will underlie our derived transitions for bigraphs. Thus the reader can gain an understanding of the entire
paper without reading any appendices.

In Section 5 we give the central definition of bigraphical reactive system (BRS), a special kind of WRS; we
show that bigraphs satisfy the two properties required for the congruence theorem, and hence deduce that
bisimilarity in BRSs is a congruence. We also show how certain other WRSs enjoy the same result, provided
they are related to BRSs by well-behaved functors; a particular case of this is a derived BRS with added
structure that deals with scoping and binding of names. In Section 6 we fill out the theory of BRSs in many
ways in preparation for application studies; in particular we justify the term language introduced earlier, we
examine certain classes of transition which are (or may turn out to be) redundant in certain analyses, and
we propose a definition of parametric reaction rules –illustrated in the � -calculus– which harmonises with
the treatment of scoping and binding introduced in the preceding section. Finally, in Section 7 we discuss
several lines for future work, including the need to establish links between the present theory and other
research on related topics.
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Figure 1: An example of a bigraph

2 Bigraphs in action

In this section we illustrate bigraphs, with examples showing the kinds of system they can represent, and
the kind of mobility that they model. Along the way we introduce a simple term language for describing bi-
graphs. The whole section is informal and motivational; the subsequent mathematical development depends
neither upon the diagrams nor upon the term language of this section. Subsection 2.1 contains examples
drawn from familiar calculi; the diagrams allow us to explain how locality and connectivity co-operate.
Subsection 2.2 briefly discusses the term language as a possible medium for expressing applications. In
Subsection 2.3 some consequences of treating locality and connectivity independently are discussed.

2.1 Examples

Figure 1 shows an uninterpreted example of a bigraph. It has nodes (the ovals and circles) which support
two kinds of structure; hence the term ‘bigraph’. First, nodes may occur inside other nodes, so a bigraph
has depth; since a node represents locality, in either a concrete or an abstract sense, we call this nesting
structure of a bigraph its topograph. Second, nodes may be linked by edges, represented here by thin lines
which may fork; we call this linked structure of a bigraph, which is independent of locality, its monograph.
To each node is assigned a control, such as � or � , which tells us what kind of node it is. Each control has
an arity, a finite ordinal; for example, � has arity three, so each � -node has an ordered set of three ports, at
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Figure 2: Two reaction rules for arithmetic

each of which an edge may impinge. It does not matter whether they impinge from inside or from outside
the node. The diagram also shows the use of names " and & ; such names allow a bigraph to be linked into
larger bigraph.

The topograph and the monograph of any bigraph are coordinated by a node set, but are otherwise inde-
pendent structures. But the dynamics of bigraphs, i.e. the reactions which may occur, depend upon both
structural components: the precondition for any reaction is the presence of a certain pattern of nesting and
linkage. A node in a bigraph may represent a great variety of computational objects: a physical location,
an administrative region, a data constructor, a : -calculus input guard, an ambient, a cryptographic key, a
message, a replicator, and so on. Its behaviour in any such role is determined by one or more reaction rules.
A control ; can be specified as atomic, meaning that nothing may be nested within a ; node; if non-atomic
it may also be specified as active, meaning that reactions may occur within ; node.

We now give some typical reaction rules. Each rule consists of a precondition and a postcondition, which
we call a redex and reactum. A reaction consists of the replacement of a redex occurring in a bigraph by the
corresponding reactum; we shall make precise what we mean by ‘occurrence’ and ‘replacement’.

Example 1 (reactions without nesting) Our first examples, shown in Figures 2 and 3, involve no nesting.
The graphs � � �<� (redex and reactum) have a name set = as outer interface with their environment; here =
takes the respective values > "?�'&8���A@ , > ���'"?�'&8���A@ and > "$�/B8��C%@ . The shape of nodes is immaterial, except
that if a control has arity more than one then its shape should not have rotational symmetry; thus the order
of ports is unambiguous.

The first two reaction rules (Figure 2) are for arithmetic, with atomic controls 
����9� , ������� and ��� � � having
arities one, two and three respectively. They say, roughly, DFE " )%" and � � E " )?��� E "G� � (where a
prime here means successor). This strongly resembles the interaction nets of Lafont [17], but note that there
is ‘sharing’ in the sense of Hasegawa’s sharing graphs [14]. In both cases one argument of ��� ��� is shared via
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Figure 3: A reaction rule for decryption

the name 7 ; we envisage a context around the redex which uses the argument for some other purpose. The
third reaction rule (Figure 3) is to do with security; a decrypting control succeeds in decrypting the datum
named 8 encrypted on a key named 9 ; as in the arithmetic rules, but more essentially, this key may be shared
by other agents. The controls are again atomic.

In the first and third rules the reactum has a link which makes : or 8 an alias for ; . Such an alias is essentially
an ‘explicit fusion’ in the sense of Gardner and Wischik [11]; their calculus of explicit fusions was developed
from the fusion calculus of Parrow and Victor [25] and from action calculi [22], and has guided the present
development. The reactum in the second rule, and the redex in the third rule, both illustrate the use of a
closed (i.e. unnamed) edge – respectively between the <�=?>A@ and @�>�B�B nodes and between the C	D�BFEHG	<�I and
DFJ�BFEKG	<AI nodes. However, in the latter case it would be equally (or more) realistic for the edge to be named;
this would represent the possibility that the encrypted datum may be accessible to other agents.

In all three rules, terms that define the redex and reactum are shown. Such terms can be used to define any
bigraph. They indicate how to build a bigraph; its body consists of a parallel product of molecules (one for
each node) and holes (see Example 2), with square brackets for grouping. (We use the term ‘parallel product’
instead of ‘parallel composition’ in this paper, because it is closer to a tensor product than to categorical
composition.) The subterm for a molecule indicates the edges impinging on it by suitable identifiers. The
term language is described at the end of this section. The notion of molecule stems from action calculi
(Milner [22]); but the use here is more akin to that of fusion systems (Gardner [10]), in that edges are
undirected hyperedges. As in that work, the only name-binding mechanism is the restriction operator L
appearing in the term language. Here it is used in the second arithmetic rule to describe a closed edge.

Our next three examples are more advanced; they show how bigraphs can define distributed reaction in
mobile systems.

Example 2 (reaction in the M -calculus) Our second example (Figure 4) represents the familiar reaction
rule of the asynchronous M -calculus (without summation)

;0N�:PORQ�;TSU7WVYX[Z 2]\ :P^�7`_AZaX
To present this reaction rule in terms of bigraphs we need two controls @bDFJ�C and c�D�I , both with arity two. In
the asynchronous M -calculus there are no output guards ;TN�:POYXdSfegV and reaction is forbidden inside the input
guard ;hSU7	VYXdSfegV ; to match this we declare @bDFJ�C atomic, and c�D�I non-atomic but inactive.
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Figure 4: Reaction rule for the * -calculus

Since the rule is parametric, the redex bigraph is now a context + with both an inner and an outer interface
as shown. Both interfaces have a width , (in this case – but not in the following examples) and a name set.
The inner width 1 indicates that the context has a hole, as shown. Thus we begin to see that a bigraph (of
which + and + �

are examples) can be modelled as an arrow in a category with interfaces of the form -/.103254
where the width . is a finite ordinal and the name set 2 is finite. The redex and reactum of a rule will
always have the same outer interface; normally they will also have the same inner interface, when –as here–
the rule is linear (see Subsection 2.3). In this example we have +607+ �98 -:,%0<;�=?>@4BAC-:,%0<;ED�03FG>@4 .
Thus the outer interface of the agent parameter must contain = , and + will link it to the H�I<J -node. Our theory
will allow polymorphism w.r.t. the parameter’s name set; it may include any set K of other names (distinct
from = ) which are understood to be exported by + and + �

to their outer interface – i.e. the reaction rule is
transparent to K . Names of the inner interface, referred to as conames, are underlined ( = ) to distinguish
them from those of the outer interface, since the two name sets may have members in common.1

In applying the rule, one must be able to choose arbitrary instances for the names D and F . In fact, an
arbitrary substitution for these names can be effected by the surrounding context with the help of co-aliases,
dual to the notion of alias we have mentioned. We say more about them later.

Example 3 (reaction in the ambient calculus) In the ambient calculus of Cardelli and Gordon [2], one of
the primitive forms of reaction is the movement of one ambient inside another.

Figure 5 shows how bigraphs may represent such a rule. We use two controls, each with arity one: L	M�N for
an ambient, and OQP for a ‘command’ to move its parent ambient somewhere else. We declare OQP to be atomic
and inactive (in fact, it would make little sense for an atomic control to be active); in contrast with H�I<J in
the * -calculus we declare L	MRN to be non-atomic and active, since ambients are intended only to localize
activity, not to inhibit it. In the redex + , the intent of the OQP command is to move the ambient named D inside
the one named F . The rule has two parameters – the other contents of the D -ambient and the contents of the
F -ambient – so the redex has two holes, or sites as we shall call them from now on. Thus in this example the
interfaces are given by +607+ � 8 -TSU0�V�4BAC-:,%0<;ED�03FG>@4 . The parameters, though occupying distinct sites, may be
linked by edges; this allows interaction between them – quite independently of their passive participation in
the ambient reaction.

As in Example 2, this ‘double agent’ parameter may have an arbitrary name set W , which will be exported at
the outer interface of + and + �

. Moreover, since locality and linkage are independent, these names pertain

1In a term, a singleton prefix such as ’ XUY ’ represents a name or coname of the interface that is not mentioned elsewhere.
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Figure 5: Reaction rule for the ambient calculus
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Figure 6: Remote reaction rule for the 8 -calculus

to the whole double agent, not to one or other component. In the terms describing the redex and reactum,
these component sites are denoted by 9 � , 9 	 . (Our use of square brackets is not meant to match how the
ambient calculus uses them.)

Example 4 (remote reaction in the 8 -calculus) In the 8 -calculus reaction rule of Example 2 the redex
and reactum have width : ; this means that the rule applies only when the ;=<&>#? and @+<�A molecules are
co-located. To put it another way, any context in which we place the redex will have these two nodes
topographically adjacent. To allow a context to site them apart, we just change the outer width of the redex
and reactum to 2, as shown in Figure 6; thus in this case we have BDC=B �!E!F :&C�GIH�J#KML F�N C�GPO1C"Q!J#K .
Such ‘wide’ reaction rules make it very easy to model mobility. They are especially interesting in the
presence of one or more active controls, because they can be used to separate the components of a distributed
redex but still allow it to react. We have already introduced RTSVU as an example of an active control. By
choosing W in Example 3 (Figure 5) to be GPO � C"Q � JYX Z3[ , we may compose the ambient redex with an instance
of the remote 8 -redex of Figure 6; we then obtain two interwoven but independent redexes, such that neither
reaction precludes the other. This is not an unlikely occurrence in the internet, modelled at a suitable level
of abstraction.
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2.2 Terms

In our examples we have informally adopted a term language for describing bigraphs. These terms may
also serve as the core of a bigraph programming language. The elementary ingredients of the terms are
molecules, such as ��� �����	��

�
��������������� . If we want our description to include unique node-names ����� for
the nodes of the bigraph, then we shall write this molecule as ��� ����������

�
�! "�����#�$���%� where &(')�*�+� ; in that
case no node-name � should occur more than once in the term. Here is how terms are built:

, A term describing a bigraph -/.10�23')465�780�9:'<;=5 consists of an equivalence relation on the disjoint
union 4?>@; , a set of local names written (if any) after A , and a sequence of 9 regions. The equivalence
relation may be written as equations between names and/or conames, with a singleton (e.g.

�
, B ) for

any name or coname not otherwise mentioned. An equation
�DCE�

between a name and a coname
may also be written F�G�H , since it represents a substitution.

, A molecule such as �I� �$������

�
�$���J�K�L� � � describes a node and its contents; it consists of a control,
followed in parentheses by an ordered list of identifiers denoting the edge impinging on each port,
followed by a region describing its contents, if any.

, A region is a parallel product (in any order) of molecules and sites, in square brackets

NM �

. A site is
�PO

( QSRUTWVX2 ). One may write
�

for
� �

.

, An identifier is either a name
�

, or a coname
�

, or a local name.

, The local names are distinct from 4 and ; , and can be re-named by alpha-conversion.

Note that if two names or conames are equivalent they denote the same edge, so either may be used in a
molecule to denote that edge.

As we said at the start of this section, the ensuing mathematical development does not depend upon this
term language. The reason for introducing it here is to show how bigraphs relate to longer-established
entities. Parallel product (composition) and restriction are of course familiar from many process algebras,
and molecules come from action calculi [22]; as we shall see in Section 6, these all arise as derived operations
from more primitive bigraph operations. Multi-hole contexts are also a familiar device; the way they are
used here is consistent with the way Sewell uses them [27] to represent parametric reaction rules in his
derivation of labelled transition systems. We have already mentioned that our equations such as

�YCZ�
,�?C B are akin to fusions [25, 10]; they are naturally extended here to refer to both names and conames.

In fact, as we shall see in Construction 77, all the elements of the term language arise from the algebra of
bigraphs.

When this algebra is further developed (the present paper is only a beginning) it will have much in common
with the algebra of fusion systems (Gardner [10]). Similar algebra, without fusions, was also adopted by
Honda [16] and Yoshida [30] for their combined study of process structures and process combinators. The
novel element in our term language is the notion of region – representing the idea that the occupant of a
multi-hole in a context is not a tuple of separate entities but a loosely connected bigraph. Indeed, although
we have not formulated it, the reader may expect that to compose two bigraphical contexts, using the term
language, we just insert the regions of one in the sites of the other. This intuition is correct. However, our
term language represents only normal forms in the algebra of bigraphs, just as molecular forms are normal
forms in action calculus. In composing two bigraphs we need an algebra like that of fusion systems to
normalise the result, by manipulating restrictions and name equations so that the composite term has all
such items at the top level.
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Figure 7: Resolving a bigraph into a topograph and a monograph

2.3 Discussion

The preceding examples illustrate how a bigraph context can be composed, or decomposed, in such a way
that a single component may consist of linked regions located separately in the host bigraph. As just men-
tioned, the term language gives a way of representing such compositions algebraically. The term language
also allows us to present the dynamics of bigraphical systems, as we have seen, as reaction rules each de-
scribed by a pair of terms – a redex and a reactum. But it has been found that, using algebra alone, one
cannot develop a behavioural theory based upon suitable labelled transitions.

It is therefore necessary to formalise bigraphs directly. To manage their complexity we represent a bigraph
as a combination of two independent mathematical structures – a topograph and a monograph. Note that this
combination is quite distinct from the two kinds of composition already discussed: contextual composition
and parallel product. (Later we shall treat the former of these as a categorical composition, and the latter as
derived from a tensor product.) But it is simply related to them; to compose (in either sense) two bigraphs,
we first resolve them into their respective topographs and monographs, then compose these (in the given
sense), and finally combine the results into a new bigraph.

Before treating bigraphs mathematically, it is helpful to see an example in Figure 7 of how a bigraph can be
resolved into a topograph representing locality, and a monograph representing connectivity. (Controls are
not shown in the diagram.) The nodes @�ACB3D3D3DCBE@GF are common to the two structures, which are otherwise
independent. Note that the bigraph’s interface HJIKBELNMGOPHJQKBSRTM combines the topograph interface IUOVQ with
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the monograph interface ����� ; there is nothing which determines that the names ���	�
���
�
��� ‘belong’ to
any particular region of the bigraph (= root of the topograph), nor that the conames � � �
� � ‘belong’ to any
particular site. In this diagram, though we shall not always do so, we have drawn tunnels linking the three
sites to suggest the unity of the multiple bigraph that will occupy them.

The bigraphs of our theory will have an extra restriction: each site ��� ( ����� ) must occur exactly once;
that is, the contexts in our theory will be linear. However, for parametric reaction rules we can be more
permissive if (as we shall) we treat each parametric rule ����������� just as a way of describing a family of
ground rules �! "�
 � � – one for each way of filling the holes in ������� � � . In this case we shall still require
the parametric redex � to be linear, but we may allow �#� to be non-linear; this is because we place no
restriction on the forking or aborting of links which is involved in copying or discarding an agent. Such
rules are described as left-linear (see for example Sewell [27]). Non-linear rules are essential in practice;
for example, we must be able to model the destruction of all occupants of an arbitrary site.

The reader may find it striking that in a bigraph $&%('!�)�
�+*,�-'!.,���/* we admit no association between
the names � and the roots (regions) . , nor between the conames � and the sites � . It is this dissociation
that enables us to treat locality and connectivity independently, yielding a tractable theory. However, at
the end of Section 5 we shall revisit this topic. It turns out that, having built the behavioural theory on
the assumption of independence, we can introduce name-region dependency –in fact, define the scope of a
name to be a certain region– by means of a certain functor, while preserving the important properties of the
theory. We shall also see that, for full expressive power in the model, it is necessary to retain some names
dissociated from regions.

3 Mathematical basis

In this section we develop the mathematical framework in which we shall analyse bigraphs. These definitions
and theorems are an adaptation of work which was started in Leifer and Milner [19], and was then refined
and extended by Leifer in his PhD Dissertation [18], which is the fullest exposition.

In Subsection 3.1 we introduce (monoidal) well-supported precategories. In Subsection 3.2 we recall the
theory of relative pushouts (RPOs) and idem pushouts (IPOs). In Subsection 3.3 we develop wide reactive
systems (WRSs), and derive labelled transitions for them. In Subsection 3.4 we lay a foundation for the
behavioural theory of bigraphs.

Notation In categories or precategories we use ‘ 0 ’, ‘ 1 2 ’ and ‘ 3 ’ for composition, identity and tensor
product; we denote the domain 4 and codomain 5 of an arrow 67%849�&5 by 2;:�<��=6>� and ?8:@2A�=6>� . In sets,B 2;C will denote the identity function on a set D . We use ‘ E F ’ for union between sets known to be disjoint; it
should not be confused with the disjoint sum ‘ G ’, which disjoins any pair of sets before taking their union.
We assume a fixed representation of disjoint sums; for example, ��GIHJGK� means �MLON@PRQS�+�TE FU�ML;V	P/Q
H#�TE FW�ML"XYP�QZ�/� , and []\8^`_RH \ means a�\8^b_9�ML
cdPeQZH \ � . We deal frequently with ordered pairs �>�b�
�>� ; we
use f� to denote the pair. We often use � to range over the set LON��
V	P indexing such pairs; then we use g for the
complement V@�h� of � . A natural number � is often interpreted as a finite ordinal, i.e. ��ijLON��
Vb�8k8k8kb�
�l�/V	P .

3.1 Well-supported precategories

Definition 1 (precategory, functor) A precategory C is defined exactly as a category, except that the
composition of arrows is not always defined. Composition of arrows will be denoted by 0 . Composition
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with the identities � � is always defined, and � �������������	�
� � . For associativity, either both ����
�������� and

������������ are undefined or both are defined and equal.2

A subprecategory C � of C is defined almost as a subcategory; we take ����� to be defined in C � exactly when
it is defined in C. A functor ��� C � C � between precategories is defined almost as between categories. �
is a total function on objects and on arrows, and preserves identities. It also preserves composition in this
strong sense: if ����� is defined in C, then ��
���������
���� is defined in C � and equal to ��
�������� .

When considering precategories abstractly we shall use  �!#"�!%$&!('('(' to stand for their objects and �
!)��!*�+!('('('
for their arrows. We shall extend category-theoretic properties to precategories without comment when they
are unambiguous. For example, we shall work with epimorphisms; recall that an epimorphism (epi) in any
(pre)category is an arrow � such that whenever �����,�-����� then �.�/� .

We shall model bigraphs in a special kind of precategory. Every bigraph has an underlying set of nodes; we
can compose two bigraphs whose node sets are disjoint, and the node set of the result is their union. This is
a particular instance of support, defined as follows:

Definition 2 (well-supported precategory) A precategory C is well-supported if it has:

0 a support function 132)1 mapping each arrow to a finite set called its support, such that 14� �
5�16�87 , and also
such that ����� is defined — with support 1 �9���91:�;1 �<1:= 2>1 �91 — iff 1 �<1@?A1 �916�-7 and ��B�CD
������/E(BF�

���� .

0 for any arrow �G�� ��H" and any injective map I whose domain includes 1 �91 , an arrow I>JK�L�� ���"
called the support translation by I of � such that


)MN�OIPJK� �65Q��� �65

�R6�OIPJS
��������T�UIPJV�9��IPJW�

�X6�ZY[�
\ ]^\ J ���/�

3_F�`
3I�a���IcbN� J ���UI�a J 
3Icb J ���

�d6� if I bfe 1 �91^�UI age 1 �91 then I b J@�h�UI a Ji�

�j6�k1 I J �91^�UI

%1 �91[�9'

We shall deal with precategories which have a partial tensor product as well as a partial composition. It rests
upon an assignment of a set to each object, similar to the support of arrows. In bigraphs this will be a set of
names, so we adopt that terminology here:

Definition 3 (tensor product, monoidal well-supported precategory) A well-supported precategory is
monoidal if it has:

0 a naming function l92�l mapping each object to a finite name set, and a unit object m with lSm:ln�-7 ;
0 a partial tensor product o on objects, with unit m , such that  �op" is defined — with name set l* �op"nln�
l* �l�= 2>l("nl — iff l* �l�?ql("nln�/7 ;

0 a partial tensor product on arrows such that if ��rs�9 #r<�t"6r ( uv��w�!xM ) then � b o/� a exists — with
support 1 �^bToy�FaN1^�z1 �:b�1{= 2�1 �Fa{1 — iff l* (bcl|?ql* }a^l��/7 , l("�bcl�?~l("�a6l��-7 and 1 �91(?�1 �<1��-7 ;

2This work was first announced in Milner [23], where a transcription error led to the inclusion of a weaker definition of precate-
gory, in which the associativity condition is: if �|�c� and �+��� are defined then either both �|�<���<���^� and ���|�c�{�N��� are undefined
or both are defined and equal. We are only concerned here with precategories which satisfy the present stronger (and simpler)
condition.
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� a symmetry isomorphism ����� ���
	���
���
���	 for each pair 	���
 with disjoint name sets.

If � is a support translation then �������������! "�#�$�%���#�&� . The tensor and symmetries satisfy the equations
of a strict symmetric monoidal category whenever both sides exist, i.e.

(1) �%�"�'�(�*)+�� ,���%�-���.�*)
(2) ���0/#�-�0/1�324���65��-�758�� ,���9/�2:�65;�4�<�'�0/�2��65;�
(3) � ��� =  ?> @ �
(4) �:��� �+20����� �A ?> @3�CB4�
(5) ����� DE24���%�-���� F�'�(�*�4�920��GH� � � for �I�3J<�,	:�K����
��MLN�PO

A well-supported precategory is what we need when we wish to preserve the identity of elements in the
support of arrows3. Sometimes we do not; therefore we define a quotient with respect to arrow support (not
object support) as follows:

Definition 4 (support quotient) Let C be a well-supported precategory. Two arrows �+�$���9	#��
 in C are
support-equivalent, written �RQ�� , if there is a bijection �S�UT ��T7VWT �XT for which �Y�'�R Z� . By Definition 2(5)
and (6) this is an equivalence relation. Then the support quotient of C is a category [C] whose objects are
the objects of C and whose arrows are Q -equivalence classes of arrows in C:

[C] �[	:��
K�]\W^`_a�Ub'c*T7�ed C �[	���
K��f�O
Identities, composition and tensor product (when it exists) in [C] are given by

> @7g \ _h> @7gib'c
_ �
b'cj24_a�Ub'c \ _ �H2:�Ub'c
_ �
b'cR�k_a�Ub'c \ _ �l�*�Ub'cmO

The funjctor [ n ] � C � [C] is called the support quotient functor for C.

It is straightforward to show, using the axioms of Definition 2, that [C] is category, not merely a precategory.
Note that to compose two arrows of [C], which are equivalence classes, we choose representatives of the
classes with disjoint supports, compose them in C, and then take the equivalence class of the result. The
quotient does not affect objects; thus the tensor product in [C] is still partial.

3.2 Relative pushouts

The central technical device in our theory is the notion of relative pushout (RPO), which we now define.
This is to prepare for our definition of labelled transitions.

3Leifer’s development [18] (see Chapter 7) made use of a special category o�phqsrCt�u C v to keep track of the support elements of C.
This allowed the RPO theory to be developed for categories rather than for well-supported precategories; that approach is perhaps
more standard in category theory. The present more direct approach is justified by a forgetful functor wyx9o�phqsrstsu C v
z C which
preserves RPOs in both directions.
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Notation In what follows we shall frequently use �� to denote a pair
���������

of arrows in a precategory. If,
for example, the two arrows share a domain 	 and have codomains 
 ��� 
 � we write ��
� 	�� �
 .

Definition 5 (bound, consistent) If two arrows ���� 	�� �
 share domain 	 , the pair �� � �
���� share
codomain � and � ��������� � ������� , then we say that �� is a bound for �� . If such a pair �� has any bound, then
it is said to be consistent.

Definition 6 (relative pushout) In a precategory, let �� � �
���� be a bound for ���� 	�� �
 . An RPO-
candidate – or just candidate – for �� w.r.t. �� is a triple ���� � � � of arrows such that �� is a bound for �� and� � ��! � � ! ( " �$#%�'&

). A relative pushout (RPO) for �� w.r.t. �� is a candidate ���� � �(� such that for any candidate�)�* � *�� there is a unique arrow + for which + � � !,� * !
( " �$#%�'&

) and
* � + � �

.

-/. -�0

1 . 1 0
2 0

2

3 . 3 0
32 . 4

-/. -�0

1 . 1 0

3 . 3 0
3

The more familiar notion, a pushout, is a bound �� for �� such that for any bound �� there exists an
�

which
makes the left-hand diagram commute. Thus a pushout is a least bound, while an RPO provides a minimal
bound w.r.t. a given bound �� . (In bigraphs we shall find that RPOs exist in cases where there is no pushout;
see the discussions following Constructions 31 and 45.)

Now, supposing that we can create an RPO �5�� � �(� for �� w.r.t. �� , what happens if we try to iterate the
construction? More precisely, is there an RPO for �� w.r.t. �� ? The answer lies in the following important
concept:

Definition 7 (idem pushout) In a precategory, if ��
� 	�� �
 is a pair of arrows with common domain, then
a pair �� � �
6�87 is an idem pushout (IPO) for �� if ���� �59 :<; � is an RPO for �� w.r.t. �� .

Then it turns out that the attempt to iterate the RPO construction will yield the same bound (up to iso-
morphism); intuitively, the minimal bound for �� w.r.t. any bound �� is reached in just one step. This is a
consequence of the first two parts of the following proposition, which summarises the essential properties
of RPOs and IPOs on which our work relies. They are proved for categories in Leifer’s Dissertation [18]
(see also Leifer and Milner [19]), and the proofs can be routinely adapted for precategories.4

Proposition 8 (properties of RPOs)

(1) If an RPO for �� w.r.t. �� exists, then it is unique up to isomorphism.

(2) If ���� � �(� is an RPO for �� w.r.t. �� , then �� is an IPO for �� .

4This adaptation works for the definition of precategory in Definition 1, which is satisfied by our well-supported precategories.
It does not appear to work for the weaker alternative mentioned in a footnote to that definition.
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(3) If �� is an IPO for �� , and an RPO exists for �� w.r.t.
�������	�
�����
�

, then the triple ������
��� is such an RPO.

� �
���

�
� ���
����� �

��� ���

�
� ���
(4) (IPO pasting) Suppose that both diagrams shown here commute, and that the right-hand diagram has

an RPO. Then in the left-hand diagram

– if the two squares are IPOs then so is the big rectangle;

– if the big rectangle and the left square are IPOs then so is the right square.

Another important consequence of Leifer’s development (Proposition 4.8 in [18]) when a precategory is
well-supported, is as follows:

Corollary 9 (IPO sliding) In any well-supported precategory, IPOs are preserved by support translation;
that is, if �� is an IPO for �� and � is any injective map whose domain includes the supports of �� and �� , then� � �� is an IPO for �!�"�� .

3.3 Wide reactive systems

We now introduce a kind of dynamical system, of which bigraphs will be an instance.

In previous work [19, 18] a notion of reactive system was defined. In our present terms, this consists
essentially of a well-supported precategory whose arrows are contexts –including agents– and two other
ingredients: a set of agent-pairs �$# � #&% � called reaction rules, and a subprecategory of so-called active con-
texts. The reaction relation ' between agents is taken to be the smallest such that ( � # '�( � # % for
every active context ( and reaction rule �$# � #&% � . For such systems we were able uniformly to derive labelled
transitions, in such a way that several behavioural preorders and equivalences based upon these transitions
are congruences, subject to two conditions: first, that sufficient RPOs exist in the precategory; second, that
‘decomposition preserves activity’ – i.e. ( ��)

active implies both
)

and ( active.

In subsequent work, sufficient RPOs have been found in interesting cases (Leifer [18], Cattani et al [4]).
In each of these cases the condition that decomposition preserves activity is also met, if we limit attention
to contexts with a single hole. However, certain derived transition systems are unsatisfactory under this
limitation, as Sewell [27] has pointed out with examples. Also, as we saw in Section 2, we wish to consider
multi-hole bigraphical contexts – not only to represent parametric reaction rules but also to accommodate
multiple or ‘wide’ agents, as in the remote * -calculus reaction rule in Example 4. There are other reasons for
treating wide agents; for example, we would like to understand reactions occurring concurrently at different
places in a system.

This gives rise to the possibility of contexts in which some sites may be active, i.e. permit reaction to occur,
but not others. The following definitions, leading up to wide reactive systems, offer a way to handle these.
We shall refine the above notion of reactive system as little as necessary to achieve that purpose. We shall
also see that, if we specialise this new treatment to ‘narrow’ contexts (those with width one), we recover
exactly the original notion of reactive system.
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In what follows we shall use Nat, the strict symmetric monoidal category whose objects are finite ordinals,
and whose arrows are functions between them.

Definition 10 (wide precategory) A wide precategory A is a well-supported precategory equipped with
a width functor � � �������

A 	 Nat invariant under support translation, and a distinguished object 
 called
the origin such that � � ������� 
�
���� . Moreover, for each permutation � of � � ��������� 
 there is an isomorphism
��� ��� 	 �

in A with � � ������� ����
���� , such that
��� 
 � respects identities and compositions.

If A –as a precategory– is monoidal with unit 
 , and � � �����
preserves tensor product, then A equipped with

� � �����
and 
 is a monoidal wide precategory.

The objects
�"!$#%!'&'&'&

of A are called interfaces, and its arrows ( !*)+!'&'&'&
are called contexts. Contexts with

domain 
 are called agents, and denoted by , !.-/!'&'&'&
.

We shall define bigraphs as a wide precategory in the next section. Meanwhile, from our discussion in
Section 2 it is easy to see what ‘width’ means for bigraphs; the width of an interface

� �1032 !5476
is just its

multiplicity 2 , and the width of a bigraph 8 � 032 !5476 	903: !*;<6
is the function mapping each site =?>@2 to

the unique root AB>C: such that ABDE= . Thus width for bigraphs is purely topographical. Of course it says
nothing about the nodes and controls in the topograph; but it will allow us to define –at the more abstract
level of wide precategories– exactly which sites of a bigraph permit reaction. The notion of place will help
us to formulate this.

Definition 11 (place) A place of an interface
�

with width 2 is a subset FHGI2 . We denote by J�K LNM ��� 

the set of places of

�
, i.e. the powerset of � � ��������� 
 .

The width function OP�Q� � �������SR 
 of a context
R���� 	 #

is extended to J�K LNM ��� 
 by O � FT
�U�V/O �3W 
YX W >ZF\[ .
The offset of F by : is given by : � F]UEV^:`_ W X W >PF\[ .

Places will also have a dual role, which we can illustrate in terms of bigraphs, where a place is just a set of
sites. Consider a reaction rule

� A ! A�ab
 with width 2 . In the informal discussion of Section 2 we tended to
assume that, in order for such a rule to ‘fire’, every root of the redex A should lie at an active site. This is
natural for a narrow rule ( 2c�ed ); but at least for 2fDgd it is not essential. Take for example the remote
� -calculus rule, with width two, in Example 4; we may wish to require only that a part of its redex –say theh�i � node– lie at an active site. One can imagine other rules where this makes good sense; for example, a
rule to ‘fetch’ a value from a remote site may allow that site to be inactive, but require the fetch command
itself – represented perhaps by a single node – to be at an active site. To allow this freedom, in our abstract
formulation we shall associate with every rule whose interface is

�
a place FZ>�J�K LNM ��� 
 ; the redex will only

fire in a context which is active at (every site in) F .

We are now ready to add dynamics to wide precategories. The following definition introduces an activity
map to determine the sites at which each context is active; the reader will find the discussion following the
definition helpful in understanding the conditions we impose upon the activity map.

Definition 12 (wide reactive system (WRS)) A (monoidal) wide reactive system (WRS) over a (monoidal)
wide precategory A, often written WRA, has two further components besides A:

j a set k i L/M ��l GQm � � A � 
 !*� 
�npoCJ�K LNM ��� 
5
 of reaction rules, and
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� for each
�����

an activity map ����	�
 A � �
����������� ����� ��� such that

(1) ����	�������� � � �!��	��"� �$#&%(' ) 	+*��"� �+,.- �/����	0��� �1�+� ����	�� ' )�23�4�5%(' ) 	6*7� �7�98
(2) ����	��"�;:<� �9� ����	��"� �>= ?@%(' ) 	6*7� )�A�B �"� �1�C? ����	���� � (for WRA monoidal).

We say � is active at D if DFE5����	��"� � ; similarly � is active at G if G5HI����	��"� � , and � is active if
����	��"� �9�&%(' ) 	+*7� )�A�B �"� �1� .

These components both respect support equivalence; that is, (1) if JLKNM , J�OPKQM0O and �RJ � JSO � G � EUTWV0����	YX then
�/M � M O � G � EUTWV0����	YX , and (2) if �ZKN[ then ����	���� �9� ����	���[ � .
The reaction relation \ over agents is defined as follows: ] \�] O iff there exist a reaction rule �RJ � J O � G �
and a context � with G^H;����	���� � such that ] � �;��J and ]�O�K_����JSO .
The first part of condition (1) asserts: ����� is active at D iff � is active at D and � is active at

%(' ) 	6*7�"� � �RD � .
If � has lower width ` then condition (2) asserts: �;:�� is active at D iff either Dba5` and � is active at D
or D�cd` and � is active at Dfeg` . We leave it to the reader to check that these conditions make sense – i.e.
that they are consistent with the equations governing composition and tensor product.

Now let us revisit the special case in which all contexts are narrow, so that
%(' ) 	6*7�"� � �ih3j>k�lj7m

for all � ; so
we can say � is active if it is active at

j
. Condition (1) is then equivalent to requiring that the active contexts

form a subprecategory closed under decomposition. Thus, as promised, we have a proper generalisation of
the conditions under which the original congruence theorems [18, 19] were proved.

Definition 12 ensures that all its ingredients are closed under support equivalence, allowing us in Defini-
tion 14 to divide WRA by K , forming a quotient WRS. The following is immediate:

Proposition 13 (support translation of reactions) Reaction in a WRS is closed under support equiva-
lence, i.e. if ]nKNo , ]7OPKQopO and ] \ ]�O then o \ o+O .
We may therefore define reaction in the support quotient of any WRS, as follows:

Definition 14 (quotient WRS) Let WRA be a wide reactive system over A. Then a wide reactive system
WR[A] over [A] is defined as follows:

� the reaction rules are �1q J�r � q JsOtr � G � , for each reaction rule �RJ � JsO � G � in WRA;

� the active sites are given by ����	��1q �ur �4v ����	���� � .
The preceding results ensure that q ]sr \ q ]�Owr in WR[A] iff ] \ ]�O in WRA.

Thus reaction in WR[A] perfectly mirrors reaction in WRA. The importance of the quotient WRS is that,
being based upon a category and not merely a precategory, it is amenable to a simpler algebraic theory
(which we do not discuss fully in this paper). However, important structural properties are lost in taking the
support quotient. In fact, as we shall show in Subsection 4.3, a WRS for bigraphs has sufficient RPOs to
allow the derivation of satisfactory labelled transition systems, while its support quotient does not. This has
been a crucial factor in determining our theory. In the following subsection we shall show how to derive
labelled transition systems for suitable WRSs; we shall also show how these systems may be transferred to
their support quotients.
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3.4 Transitions and bisimilarity

We now turn to the problem of deriving labelled transitions for an arbitrary WRS, and thence defining
behavioural equivalence. The definitions and results of this section will later be applied to bigraphs; they
will also be applied to a broader class of WRSs functorially related to bigraphs.

The definition in Leifer and Milner [19] was in terms of IPOs, as follows: � � � � � iff there is a reaction rule�����	� ��

and an active context � for which 
 � � is an IPO for � �	� and � ��� ��� � � . We shall do something

close to this, with two differences. First, this is an unplaced transition of � ; the transition tells us the extra
context 
 needed by � to create a redex, but does not specify where those parts of the redex already within
� lie. If we think of the transition as an observation of � , then it is an unplaced observation. In fact, even
before developing the theory of bigraphs, we can give an example in which the version of bisimilarity arising
from such transitions is not a congruence:

Example 5 (unplaced bisimilarity is not a congruence) This example shows that bisimilarity based upon
unplaced transitions, which we denote by �� , is not in general a congruence for bigraphical systems. Take
the signature � ����� ���������

, each with arity zero; let
� ���

be atomic and
�

non-atomic but inactive. Ports,
names and wiring are irrelevant in this example, so we take interfaces to be just finite ordinals (widths). We
write

� ���! #"%$'&
for agents consisting of a single atomic node, and

�)(* +&,$-&
for the elementary inactive

context based upon
�

. Let there be a single (unplaced) reaction rule
� ���

.

Now consider the two agents � �/.0 �"1$32
with width two, where � �3�54 �

and
. � � 46�

, illustrated below.
If transitions are unplaced then one can prove � �� .

, since no such transition can observe the difference in
the place of

�
(we omit the details).

78 89 9:; 9 8< :;
7 78 9

= :;?> @ � = < :;A@ � >@CBCD 7FEHGJI KLENM

But if we put � and
.

in turn in the context OQP3R �S( 4�T U (	VH #2%$'&
, as shown, it turns out that OW�X�WY �� OJ� . .

For OZ� . has a transition [ \�] � since its ^ node is a redex with active place; but OZ�_� has no such transition
since its ^ node is placed inactively.

The second difference from the cited definition is that –as for reaction– we want labelled transitions to be
preserved by support translation, so that we also get a good definition of transition for the support quotient
WR[A]. These two differences lead to the following:

Definition 15 (placed transition) Let WRA be a wide reactive system. Then the quadruple � � 
 �a`H� � � is a
placed transition of WRA, written � � �cb � � , if there exist a reaction rule

�����	� � �	d 

and a context � active atd

for which 
 � � is an IPO for � �	� , e T Ugfih � � 
 ��d 
�� `
and � �+j �k� � � . In this case we say that the reaction

rule and the IPO underlie the transition.5

5By allowing l�monSpq�_ram , rather than the stricter requirement l�mgsSpq�6r/m , we allow the derivation of transitions for the support
quotient WRS (Definition 16). However, for other purposes –e.g. to keep track of causal dependency among transitions– we may
wish to use the stricter condition. This point is taken up in the concluding section.
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Returning briefly to Example 5 we now see that with these transitions we shall not have � and
�

bisimilar;
for while � has the transition

� ��� ���	��

,
�

has instead the transition
� ��� �
���	


.

In what follows we shall often omit ‘placed’, and talk of transitions and transition systems, since we shall
not deal further with unplaced transitions – or if we do, we shall explicitly call them ‘pure’.

Crucially, we deduce from IPO sliding (Corollary 9) that

Proposition 16 (support translation of transitions) In any wide reactive system WRA, transition is pre-
served by support translation. That is, let ��� �

, ����� and ����� � � in A, with ����� and ��� � defined; then
� � ��� � � iff

��� � � � � .
This validates the following definition of transition for WR[A]: ! �#"%$ �'& � � ! �#"(� iff ����� is defined and � � � � �#�
in WRA.

Having defined transitions for both WRSs and their support quotients, we may define behavioural equiva-
lences and preorders in familiar ways. Here we shall limit attention to strong bisimilarity. (Throughout this
paper we shall omit ‘strong’ since we do not define or use weak bisimilarity.)

Definition 17 (wide bisimilarity) Let WRA be a wide reactive system over A. Then wide bisimilarity is
the largest symmetric relation ) between agents of A with equal codomain such that if �*) �

and � � � � �+� ,
then whenever ��� � is defined there exists

� � such that
� � � � � � and � � ) � � .

Wide bisimilarity in WR[A], the support quotient of WRA, is the largest symmetric relation ) between agents

of [A] with equal codomain such that if ! �#",)-! � " and ! �."/$ �'& � � ! �#�0" , then there exists ! � �0" such that ! � "%$ �'& � � ! � �0"
and ! � � "')-! � � " .
Note the slight departure from the standard definition; here we must require �1� � to be defined. This is
merely a technical detail; for note that whenever ����� is defined there will always exist �2�3��� for which
both �4����� and �4��� � are defined.

From the definition, together with that of transitions in Definition 15 and Proposition 16, it is straightforward
to deduce that wide bisimilarity equivalence in WR[A] mirrors that in WRA:

Proposition 18 (support quotient preserves wide bisimilarity) Let WR[A] be the support quotient of a
wide reactive system WRA. Then ��) �

in WRA iff ! �#",)-! � " in WR[A].

We may now add force to the claim that our derived transitions are tractable; for we can prove our central
theorem for wide reactive systems —that if there are sufficient RPOs in a WRS then wide bisimilarity is
congruential. First, we explain what we mean by ‘sufficient RPOs’:

Definition 19 (redex-RPOs) A wide reactive system WRA has all redex-RPOs if, for every reaction rule57698:6 � 8�;'< , any pair � 8:6 in A has an RPO w.r.t. any bound � 8 =
in A, where

=
is active at

;
.

Theorem 20 (congruence of wide bisimilarity) In a wide reactive system with all redex-RPOs, wide bisim-
ilarity of agents is a congruence; that is, if � � )>� � then ?���� � )@?1��� � .
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(a) (b)

� �
��� �

�

��

� �
� �

�
	 �

�� 	

��
��	�
�

� � � 	�
� ���

Proof The proof is along the lines of Theorem 3.9 in Leifer [18]. We establish the bisimulation
�������������! �"
������#
$&%'�! &()�*#�"+�

any context ,.-
Suppose then that

�  ()� #
, and that

�/�*�  10 2436587 
, for some 9 such that 9 �+�1�:� # is defined. It is enough

to find
5
7 #

such that
���:� # 0 2 36587 #

and
� 5;7 " 5
7 # $=<>�

.

There exist a reaction rule
�@?  "A? 7 "8B  $DCFEHGJI  

and a context K  active at
B  

such that the large rectangle
shown at (a) is an IPO, with LNM O
P;Q � K  R$��SB� �$UTWV

and
5
7 T K  F�X? 7 . Then because all redex-RPOs exist,

there exists a triple
�ZY["4\  "4\]$

forming an RPO as shown, and from Proposition 8 we deduce that the right
square at (a) is an IPO.

Now from Definition 12 we know that
\  

is active at
B  

, so
�  /^ 24_ � 7  

where ` T LNM O
P;Q �Z\  $��SB  $ and� 7  �a\N +�:? 7 
; we also know that

\
active at ` . From the former, since

�+ b(a��#
there is a transition� #c^ 24_ � 7 #

with
� 7  (d� 7 #

. (Note that
Ye�:� #

is defined, since
\f�:Ye�:� # T 9 �*�1�*� # is defined.) So the left

square shown at (b) is an IPO for some reaction rule
�@? # "A? 7 # "8B # $gChEiGjI #

, where
\ #

is active at
B #

and
LNM O
P;Q �Z\D#;$��SBk#;$hT ` , and also

� 7 # T)\D#X�X? 7 #
.

Pasting the right IPO square of (a) to this square we obtain – as shown at (b) – a large rectangle which is also
an IPO by Proposition 8, and by Definition 12 again K # T)\l�*\ # is active at

B #
. Also LmM OnP
Q � K # $��@o # $hTpV .

Hence
�1�:�*# 0 2 3 587 #

where
5
7 # � K #:�:? 7 # . Moreover

� 5;7 " 5
7 # $g<p�
as required, because

5�7 Tq\l�:� 7 
and5 7 # T)\l�:� 7 #

with
� 7  ()� 7 #

.

As with ‘placed’ transition, we shall henceforth often omit the adjective ‘wide’ when discussing bisimilarity.
We should remark that we are taking (strong) bisimilarity as a representative of many preorders and equiva-
lences; Leifer [18] has proved congruence theorems for several others, and we expect that those results can
be transferred to the present setting.

In the next section we study bigraphs. In Section 5 we shall establish bigraphical reactive systems (BRSs)
as WRSs, and deduce a congruence theorem for them. To broaden the application of that theorem, in
Subsection 5.2 we study functors between WRSs in general; then in Subsection 5.3 we show how congruence
results can be transferred from BRSs to a variety of other WRSs via suitable functors.

4 Bigraph theory

We are now ready to embark on the theory of bigraphs, in the light of the framework of Section 3.

Definition 21 (signature) A signature r is a set whose elements are called controls. For each s < r the
signature provides a finite ordinal t'u � s $ , its arity; it also determines which controls are atomic, and which
of the non-atomic controls are active.
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The arity of a control indexes the ports of a node with that control. A node with an atomic control may not
contain sites or other nodes. If a control is active (hence also non-atomic) then reactions are permitted inside
it. (Thus the term ‘active’ pertains to what happens inside the node, not how the node itself may react.) In
refinements of the theory the signature may carry further information, such as a sign and/or a type for each
port. The sign may be used, for example, to enforce the restriction that each negative port is connected to
exactly one positive port, as in action calculi [4, 22]. We shall revisit such refinements in Section 5.

We shall normally work with a fixed but unspecified signature. We give the definition of a bigraph top-
down; that is, we define first how a bigraph is built from its two structural components, and then define those
components themselves.

Definition 22 (bigraph) A bigraph over the signature � takes the form �������	��

�������������������������! 
where: �"�$#&%'�)("* and  +�,#&-.�0/1* are its inner and outer interfaces, each combining a width (a finite
ordinal) with a finite name set; � is a set of nodes; 
������2�3�4�5� is the control function assigning a control to
each node; � � �6%7�8- and � � �9(:�5/ are respectively a topograph and a monograph (see Definitions 23
and 34), each having � as its node set and 
������ as its control function.

We refer to � as the combination of � � and � � ; we write it as ���;#�� � ��� � * when the shared parts �
and 
������ are understood.

Thus each interface combines two components, one for topographs and the other for monographs. The reader
may like to recall from Figure 7 how a bigraph combines two components. As we shall see below, bigraphs
thus combine two well-studied mathematical structures: trees for the topographs, and equivalence relations
(on ports) for the monographs. We proceed to define and study these components in Subsections 4.1 and 4.2
respectively. In Subsection 4.3 we revisit bigraphs, developing their structure by combining attributes from
topographs and monographs.

4.1 Topographs

In this subsection we develop the theory of topographs far enough to define their contribution to dynamics.

Definition 23 (topograph) A topograph <=�;���	��

�����>��?@�A�B����%8��- has an inner width % and an outer
width - , both finite ordinals; a finite set � of nodes with a control function 
������C�	�D�E� ; and a parent
function ?@�A�F�G%IH J2�7�;�:H JK- which is acyclic, i.e. such that ?@�A��LM�&NO�QP�RN for all SUT5V and NUWX� . An
atomic node – i.e. one whose control is atomic – may not be a parent. We write YZTC["Y]\ , or just YZT7Y^\ ,
to mean Y:�_?@�A�`La�&Y \ � for some SbT_V .

The acyclicity condition makes the parent function ?���� represent a forest of - unordered trees; thus - indexes
the roots of the trees. The other points of each tree are either nodes NcWd� , or sites indexed by % ; a site may
only occur as a leaf of a tree.

The sites and roots provide the means of composing the forests of two topographs; each root of the first is
planted in a distinct site of the second. Formally:

Definition 24 (precategory of topographs) The precategory Top has finite ordinals as objects and to-
pographs as arrows. The composition <�eOfg<^hC�M%ih��=%ij of two topographs <^k2�Z���gk>��
�������k���?@�A� k �]�M%lkm�
%lkon�e ( p^�qVa�
r ) is defined when the two node sets are disjoint; then <segfO<^h1t!���.��
���������?@�A�B�u��%ih	�;%ij
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where ��������� �	��
 , ��
���������
�������� ����
�����
 , and ����
�������� �"!#� �$�%�&
 
�')( �*�%�&
 � � �#��� �,+ ' . The identity topograph
at - is . �0/213�547684:9;6����)/ '�< ->=�- .

It is trivial to check that ? ( . �@�A?A� . � ( ? . To see that composition is associative, suppose that
?CB;�D�E��B:6F�%�&
 BG'H< -IB�=J-IK is a third topograph with ��B disjoint from �%�,6L�M
 ; then the parent function
of ?CB ( ��?N
 ( ?C� ' is

����� �"!�O PQ�,+R� ������
 B�')( �*�%�&
�� �����)�GS ' � �����)�"!�O PF�,+R� ���%�&
 BG'0( �T�T����� ��!#� ������
 
L')( �*�%�&
 � � �����)�,+ 'T' � �����)��S '
� �����)� ! � �#��� � + � ���%�&
 B '0( �����)� ! � ���%�&
 
 � �#��� � S ')( �*����
 � � �#���7� + � �����)� S ' 6

and the parent function of ��?UB ( ?V
 ')( ?C� expands to the same.

When dealing with many topographs ? , W , . . . , instead of indexing their parent functions as �%�&
�X , �%�&
TY
etc. we shall find it more convenient to abuse notation and denote the parent function of a topograph ?
again by ? . The context will prevent ambiguity; for example in W ( ? we are talking of topographs, while
in WZ��?[�]\ 'T' we are talking of their parent functions. Thus ��W ( ? ' �]\ ' means the parent function of the
composite topograph W ( ? applied to the node \ .

Proposition 25 (isomorphisms in topographs) An arrow ^ < ->=�_ in Top is an isomorphism iff it has no
nodes, -`�a_ , and its parent function is a bijection.

Here are some basic properties:

Definition 26 (barren, shallow, deep, active) A node or root in a topograph is barren if it has no children.
A site or node is shallow if its parent is a root, otherwise deep. A topograph is shallow if all its sites are
shallow, otherwise deep; it is active at a site b if whenever \dceb then ��
������]\ ' is active.

Epimorphisms will play an important role, both for topographs and for monographs. Recall that in the
category of sets with functions the epis are the surjective functions. Here we find something analogous:

Proposition 27 (epimorphisms in topographs) In Top, a topograph is an epimorphism iff it has no barren
roots.

Proof ( f ) Let ? < -�=g_ have a barren root, say hji>_ . Take any pair Wd6kWml < _d=on , with support
disjoint from that of ? , which are identical except that W;��h 'qp�rW l ��h ' . Then W p�aW l but W ( ?s�2W l ( ? , so
? is not epi.

( t ) Assume ? has no barren roots, and let W ( ?r�2Wul ( ? . Then W and Wvl must have the same node set � ,
and for each \Ziw� we have W;�]\ ' �x��W ( ? ' �]\ ' ����W l ( ? ' �]\ ' �2W l �]\ ' . Also for any yziI_ , since y is not
barren we have ?v�]{ ' �ay for some node or site { of ? ; hence W;�]y ' �3��W ( ? ' �]{ ' �3��W l ( ? ' �]{ ' �2W l �]y ' .
Hence Wx�2W[l ; but W and Wvl were arbitrarily chosen, so ? is epi.

What is a suitable tensor product for Top? For example, we do not want ?I|IW to have the effect of merging
nodes from ? and W . So we choose a partial tensor product, with ?}|~W defined exactly when the supports
are disjoint, in which case its support is � ?[�,� ��� W;� .
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Definition 28 (tensor product) The tensor product � in Top is defined as follows: On objects, we take� ��� � ��� � . For two topographs �	��
 � �
����� ( ��������� ) we take ����������
 � � ��� � ���!� � �"� to be
defined when �	� and �#� have disjoint node sets; for the parent function, we first adjust the sites and roots
of �#� by adding � � and �$� respectively, then take the union of the two parent functions.

For the rest of this subsection we shall consider a pair
%
�&
(')� %� of topographs with common domain ' ,

and we shall adopt a convention for naming their nodes. These may be partitioned into three sets: *�� private
to �+� ( �,�-����� ) and */. common to both. From now on we shall consistently use 01�2�30 4� �
5
5
5 to range over *6�
( �	�&�����7�98 ). We shall also take a simplifying liberty; we shall just treat the case where ':�;� , since the
sites in ' are treated by the construction exactly as members of *!. . It comes to the same thing if we think of
0 . �30<4. 5
5
5 ranging over '>= ?�* . .
As the next step towards IPOs, we define certain conditions on

%
� which we shall prove to be necessary and

sufficient for their consistency (Definition 5).

Definition 29 (consistency conditions) We define four conditions on a pair
%
�&
/�@� %� of topographs as

follows, where �A������� (recalling also that B means �DCE� ):
(C0) F�GIHKJI�MLN07.POQ��F�GIHKJR�PLN0M.PO
(C1) � � LN0 � O@ST* � = ? � �
(C2) If �+�ULN0M.�OVST*6� then (C2.1) � WULN0M.PO@S � W

(C2.2) X Y10 WZ5U� W[LN0 W\O]��� W2LN0M.PO
(C2.3) ^/0 4. 5U� W LN0 4. OQ��� W LN0M.PO]_`�+�[LN0 4. O]���+�3LN07.PO

(C3) If �+�ULN0M.�OVST*a. then � W LN0M.PO����+�ULN07.�OQ5

If we assume a bound
%b

for
%
� , then these conditions follow easily from the definition of composition. So:

Proposition 30 (consistency in topographs) If the pair
%
� is consistent then conditions (C0) - (C3) hold.

Let us express the consistency conditions more informally, in words rather than in symbols. Talk of � � , � �
as ‘left’ and ‘right’; so for example the left parent of a shared node 0c. refers to �	�7LN0M.PO –which may be a
node or a site– and so on. The conditions declare the following (also with ‘left’ and ‘right’ exchanged) for
every shared node 0<. :

(C0) 0M. has the same control, left and right.

(C1) All the children of 0<. are shared.

(C2) If the left parent of 0<. is an unshared node then

(C2.1) its right parent is a root;
(C2.2) all its right siblings are shared . . .
(C2.3) . . . and are also among its left siblings;

(C3) If the left parent of 0<. is shared then this is also its right parent.

Example 6 (consistent topographs) Consider the pair
%
� of topographs in Figure 8, each with two roots

and no sites; as above, nodes with subscript 2 are shared. (Controls are not shown). It is worth checking
that conditions (C1)–(C3) hold. What happens if an extra node d is added to �e� as a sibling of 0<. ? If
d is unshared then (C2.2) is violated, so consistency is lost. If d is shared, then to preserve consistency
–especially (C2.3)– d must also become a sibling of 0�. in ��� .
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Figure 8: A consistent pair �� of topographs, with IPO ��

Now the main content of Appendix A is to give, as Construction 96, a complete description of the set of
IPOs for every pair �� of topographs with domain � ; it then justifies the construction. The set is non-empty
iff �� is consistent. Here we repeat the construction less formally.

Construction 31 (IPOs in topographs) (This is a less formal version of Construction 96 from Appendix A.)
First we construct the unique IPO for a pair �� of epis satisfying the consistency conditions; then we show
how this may be extended, non-uniquely, when the pair is non-epi – i.e. has barren roots.

Stage 1 To construct a unique IPO ����
��! #" for a pair �� � �  �� of epis. (Remarks in italics indicate

how the consistency conditions validate the construction.)

roots The shared codomain " of �� is constructed as follows: For each site $ �&% � � , unless $ �('� �*),+.-0/
for some

+*-
deep in

� �
, create a root 1 $ �
% " ; similarly for each $ �2% � � . Equate 1 $ � and

1 $ � whenever $ �2' � ��),+.-0/
and $ �3' � �4),+.-0/

for some
+.-

.

nodes Take 5 � to be the nodes of
� �

; similarly for
� �

.

parents For sites: If 1 $ � exists, define
� �.) $ �0/76 1 $ � ; otherwise find

+*-
deep in

� �
with

� �*),+�-0/2' $ �
and define

� � ) $ � /26 � � ),+ - /
. (This will be in 5 � and independent of choice of

+ -
.) For nodes:

If
+8�

is shallow in
� �

, say
� ��),+8�9/:' $ � , then define

� �.),+;�9/26 1 $ � . (This will exist.) Otherwise
define

� �*),+8��/<6 � ��),+8�=/
. (This will be in 5 � .) Similarly for

� �
.

Stage 2 To extend the construction for each barren root in an arbitrary pair �� � �  �� of topographs.

barren roots If $ � is barren in
� �

then either create a new root 1 $ �>% " and define
� �.) $ �0/(6 1 $ �

(leaving 1 $ � barren in
� �

), or define
� �*) $ �0/?6@+8�

for any non-atomic
+
�2% 5 � . Similarly for

� �
,

if any $ � is barren in
� �

.

Example 7 (topograph IPO) Figure 8 shows an example of an IPO �� , for a pair �� which we have already
seen to be consistent in Example 6. The pair are epis, so Stage 1 of the construction applies. In forming the
codomain of the IPO only one root $ ' 1 $ �(' 1 $�A� is created. It is informative to check why 1 $BA� and 1 $ � are
not created, and also to walk through the rest of the construction. Later we shall continue this example by
adding an IPO for a pair of monographs with the same support, and then combining these into an IPO for a
pair of bigraphs.
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We now restate Theorem 97 from Appendix A:

Corollary 32 (IPOs in topographs) A pair ���� ������ is an IPO for �	 ��
 � �� iff it is generated by
Construction 31.

Since the construction generates at least one IPO when �	 satisfies (C0) – (C3), the theorem also shows
that these conditions are sufficient for consistency. As we shall see later, if � and 
 are bigraphs whose
topograph components are ����� 	��

and 
���� � �
, then any transition � � �

is defined in terms of a
topograph IPO �� for �	 .

Note that if
	��

has a barren root then, provided
� �

has any non-atomic node, Stage 2 yields at least two
distinct IPOs for the pair �	 . This shows that in bigraphs IPOs –hence RPOs– exist where a pushout cannot
exist (else it would be the unique IPO). This justifies the remark following Definition 6.

In the second alternative of Stage 2 we can think of the construction as ‘losing’ the barren root of
	��

inside
a node of

� �
. (By contrast, in the first alternative the root is preserved.) We shall return to this phenomenon,

which we call elision, in Definition 78.

Finally, to ensure that our derived behavioural relations over bigraphs are congruential, we need the follow-
ing corollary of Theorem 95, proved in Appendix A:

Corollary 33 (topographs always have RPOs) Every pair �	 of topographs with a bound �� in Top has
an RPO w.r.t. �� .

4.2 Monographs

In this subsection we develop the theory of monographs far enough to define their contribution to dynamics.
Since equivalence relations play an important role we review them briefly here.

Equivalence relations: terminology and facts We write ��� for the smallest equivalence containing a
relation � , and � ��� ��� for the smallest equivalence including � � and � � . An equivalence � is discrete
if !"�$#&%'!"�$# . If � is over (*) +-, then its restriction to ( is written �/.0( , meaning ��12(43 ; its
restriction from ( is written �657( , meaning �8.9, .

� � � � � is the least upper bound (lub) of � � and � � in the lattice of equivalence relations over a set ( . We
have that :;!=<>!@?BADC2� � � � � iff there is a sequence

!E�F! � ��GIHJ! � +K+K+L��GNM�!@OP�F! ? :;!RQTS �LU�F!RQ0A
where �WVYX , Z;Q�C\[ X <T]_^ and ZIQTS �LU�FZIQ ( ]�`badc � ). More generally, :;!=<>!e?BA is an instance of � � � +K+K+ � �gf
iff there is a chain

!E�F! � ��GIHJ! � +K+K+L��GNM�!@OP�F! ? :;!RQTS �LU�F!RQ0A
where Z;QhCi[j]k<KlKlKlnm@^ and Z;QKS �hU�oZIQ ( ]d`Fa\c � ). We call this a lub chain for [_� ��p ]qcrZ�csm@^ . (If the
conditions !tQTS �PU�u!RQ and Z;QTS ��U�uZIQ do not hold, the chain can readily be collapsed to a shorter one where
they do hold.)

We shall often have to combine equivalences over distinct but overlapping sets. For example if � � is over
( � ) +�, and � � is over ( � ) +=, , where ( � and ( � are disjoint, then � � � � � is over ( � ) +-,u) +�( � .
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Formally, we may regard this as first extending ��� to an equivalence over
� ��� ���	� � ��
 by making �
�����

for each ��� ��

, similarly extending � 
 , and then combining them. But it is perfectly correct to make

the combination (by the above prescription) without this extension. We can use the notion of support of
an equivalence to reduce its domain before combination; if � is over

�
, then its support consists of those

members ��� � whose equivalence class � ����� is not a singleton.

A common case of restriction is ��� ��� � 
���� � , where � � is over
� � � ��� and � 
 is over

� 
 � � � . A
common manipulation is that if the support of �"! is disjoint from � then

���#� � � 
 � �#! �$� �&%'����� � � 
 �$� � � �#!)(
We are now ready to define monographs.

Definition 34 (monograph) A monograph *+%,��-/.103254768.�� �:9 �+; � has finite6 sets
�

of conames and
� of names; a set - of nodes and a control function 0325476 ; and an equivalence � upon the set

�=<?>@< � of
ports, where the set

>
of inner ports is the disjoint sum of node arities, i.e.

>�ACBED$FHGJI 4K�L01254�6L�NM �L� .
We shall consistently use corresponding lower case letters to denote members for the port-sets, �+� �

,O � >
and so on, to avoid repeated qualifications such as ‘ �)� �

’. This convention will also allow us to
write, for example, �P�RQ O instead of S5TK.L�VUR��QWS8XH. O U . Since the conames

�
and the names � may not

be disjoint we shall often write � for a coname � . We shall often abuse notation even further by writing
* instead of ��Q for the equivalence relation, and � YZ�5Q for the ��Q -equivalence class of any port Y . So for
example �[* O means S5TK.L�VU\�RQ]S8XH. O U . Furthermore if ^+%_��`a.��cb ��9 � ;_d

is another monograph sharing
an interface � with * , we may write e.g. O *:�e^af to mean O *:�hgi�[^af .
Definition 35 (precategory of monographs) The precategory Mog has name sets as objects and mono-
graphs as arrows. The composition ^]jk* 9 �l;md

of two monographs *l%n��-oQ\.101254�65Q/.���Q �h9 �l; �
and ^m%p��-[bq.101254�6�b�.���b �a9 � ;rd

is defined when their node sets are disjoint; its node set and control
function are then -[Q
� �/-�b and 03254765Qs� ��01254�6�b , and its equivalence7 is ����b � �#Q �3� � . The identity on

�
ist u�v	9 �w;W�

with no nodes and the equivalence xy�N� .L� �{z �J� ��| � .

It is routine to establish the identity and associativity properties of composition.

From the last two definitions it is quite clear that the structural character of monographs, and of their precat-
egory, lies almost entirely in the equivalences over ports. Since the theory of monographs – especially their
RPO theory – is technically complex, we wish to present it in the simplest possible medium. This will be in
a precategory which is the image of a forgetful functor on Mog, as follows:

Definition 36 (edge net) An edge net }W%~� > .�� ��9 �w; � has finite sets
�

of conames and � of names;
a set

>
of inner ports; and an equivalence � upon the set

��<P>�< � of ports.

6The reader may ask why we constrain the interface sets to be finite, since this may be inconvenient when representing (say)
the � -calculus. The answer is simple; RPOs do not exist for monographs without this constraint. But the inconvenience is not
serious. The outer name set of an agent � is understood to contain all the names which it ‘uses’ – i.e. which are not idle in � (see
Definition 39 below), and we are only interested in finitely presented agents, which can therefore only ‘use’ finitely many names.
Moreover, in Section 6 we shall show that two agents with a given name set are bisimilar iff they are so when provided with a larger
name set.

7This definition is slightly inaccurate, for the sake of brevity. Since the name sets may not always be disjoint, the fully accurate
definition of ��� j�� is as follows: Let � � and �K� be the two sets of inner ports; take the lub of the two equivalences on ���"� � �� ��� � ��� induced by � � and � � ; then take the equivalence thus induced on �P����� ��� � � �e� ��� .
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Definition 37 (precategory of edge nets) The precategory Edg has name sets as objects and edge nets as
arrows. The composition ���������
	�� of two edge nets �
����	�� and �
����	
� is defined when their
sets � and � of inner ports are disjoint; its inner port set is then �
� ��� and its equivalence is ��������� �"!$#%� .
The identity on � is & '�()���*	)� with no inner ports and the equivalence +,�.- /0-1!324-657�98;: .

The forgetful functor <=� Mog 	 Edg is the identity on interfaces; on a context >@?A��B�/DCDEGFIHJ/I��!K�L�)	��
it yields the edge net �M?M�G�N/I��!O�;�
	�� , where � is the set of inner ports of > .

It is a routine matter to check that < is indeed a functor. In what follows we shall establish a few properties
of both monographs and edge nets, but the main work of establishing RPOs and characterising IPOs will be
done for edge nets and then (easily) lifted through < to monographs. With this approach, we have succeeded
in basing the theory of bigraphs upon two well-studied mathematical structures; trees (for topographs) and
equivalences (for edge nets). Technically we could avoid monographs in much of this development, letting
edge nets play their role; but in applying the theory it is important to be able to use the topograph-monograph
combination.

The following few properties apply equally to monographs and to their edge nets. We use the term ‘support’
to mean the node set in the former case and the set of inner ports in the latter case.

Proposition 38 (isomorphisms in monographs) A context PO�Q�)	A� in Mog or Edg is an isomorphism
iff it has empty support and its equivalence is a bijection from � to � .

Definition 39 (properties of ports) A name -R5S� , the name set of an monograph or edge net > , is an
alias for -UTV5W� in > if -YX?Z-UT and -[>K-UT . - is idle in > if \;>]-6^_\`5a� for any port \ in > . A port \ is
open in > if \;>K- for some -R5S� ; otherwise it is closed in > . There are obvious dual concepts co-alias,
co-idle etc. for the conames of > .

We have met aliases in the examples of Section 2; they played a role in the examples on arithmetic and
security, where in each case the reaction rule creates an alias in the reactum. They have no analogue for
topographs. Although they appear to be necessary for certain calculi, we shall here find it useful to study
bigraphs without aliases (though we keep co-aliases, which play a role akin to substitutions). To this end,
we now define

Definition 40 (alias-free) Call a monograph alias-free if it contains no aliases. Denote by Mog ā and Edgā

the subprecategories of Mog and Edg respectively which include only alias-free contexts. It is easily shown
that alias-freedom is preserved by composition.

We now give a simple characterisation of epimorphisms in both these precategories.

Proposition 41 (epimorphisms in monographs) A context >@�,bc	�� in Mog or Edg is an epimorphism
(epi) iff it has no idle names and no aliases. Similarly a context in Mogā or Edgā is epi iff it has no idle
names.

Proof We need only prove the first; the argument applies equally to monographs and edge nets.

( ^ ) Suppose > has an idle name -W57� . Then pick two contexts with empty node sets: dfe ���*	A+hgi8 with
the identity equivalence, and dfj3���
	A+hgU8 with the equivalence +,�.-k/0g�!l84: ; clearly d efX?
dmj but d e1��>
?
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�������
. On the other hand, suppose �	�
����
�� are distinct, with � � ��� ; then pick

������� ������� ( � � � �"! )
with empty node sets, where

�$#
has the identity equivalence and

�%�
has the equivalence &(')�*�
� � �,+.- .

( / ) Assume that
�

, with inner port set 0 , has no idle names and no aliases, and let
�1#32�4���

. We shall
prove

�5#6���72�8�����9�
. Clearly if

�5#
,
���

have different node sets or interfaces then also
�:#�����2�;�������

.
Otherwise we have

���<� �=��> ( � �?� �"! ) both with inner port set @ say, with three possibilities:

1. For some �*�
���A
B� , we have, say, � �5# �C� but not � �:� �C� . Since �	�
�6� are not idle, there are D*�ED���
FHG I 0 with D � � , D � � � � . Then DJ' �5#6�C� �KD � , but not DJ' ������� �KD � since
�

has no aliases.

2. For some �?
L� and M�
?@ G I > , say � �5# M but not � ��� M . Then similarly for some D � � we have
D<' �N#���� �OM but not DJ' ������� �OM (again, the no-alias condition is needed here).

3. Otherwise, there must be MP�QMR�S
T@ G I > co-closed (i.e. not related to � ) in
�$#

and
���

, with say M �5# M.�
but not M ��� M � . Then clearly M�' �5#���� �OM � but not M�' ���9��� �OM � .

We now turn to the definition of tensor product in monographs. Unlike the case of topographs, where
�VUW�

is defined to exist iff
�

and
�

have disjoint support, in monographs we also have to require disjointness of
the name sets representing their domains and codomains respectively.

Definition 42 (tensor product) For two monographs
�X�<� � � ��> � ( � �?� �"! ) in Mog we take their tensor

product
� # UY� � � � # G I � � �Z> # G I > � to be defined when � # and � � are disjoint, > # and > � are disjoint,

and
�N#

and
�$�

have disjoint node sets. The equivalence on the ports of the product is then just the union of
the equivalences for

�5#
and
�$�

respectively (recalling that the port sets are disjoint).

Again, as for topographs, it is routine to check that this definition satisfies the requirements of Definition 3.

For the remainder of this subsection we shall consider an arbitrary pair [�\�PF � [� of monographs or edge
nets. We first make a simplifying assumption. In this all the work of this subsection, the conames

F
which

are the common domain of
� #

and
� �

are treated exactly as inner ports common to both contexts; so w.l.o.g.
we shall assume

F
to be empty. Now the inner ports of [� may be partitioned into three sets: 0 � occurring in�]�

alone ( � �?� �"! ) and 0<^ shared between
��#

and
�$�

. (Of course, for monographs this partition is induced
by a partition of the node sets.) We shall regularly use D � �EDC�� �EDC� �� �`_`_`_ ( � �a� �"!b�,c ) to range over these sets,
and � � over � � ( � �=� �"! ). Since we are considering the domain

F
to be empty, the reader may like to note

that it comes to the same thing if we consider D ^ �ED � ^ �`_`_`_ as ranging over 0 ^ G I�F .

As with Top, we shall be concerned with consistency. The following pair of conditions will turn out to be
necessary and sufficient for consistency of a pair of monographs or edge nets:

Definition 43 (consistency conditions) We define two conditions on a pair [�d� �<� [� of monographs or
edge nets (recalling that e means !gfh� ):

(O1) D �)�]� D�^jikD6^ open in
� l

(O2) D ^ � � D � ^ im'�D ^ � l D � ^ or D ^ open in
� l ��_

These conditions are somewhat easier than those for topographs, but let us state them informally, in words
rather than in symbols. Talk of

�5#
,
�$�

as ‘left’ and ‘right’, and of equivalent ports as ‘peers’; so for example
a port M is a left peer of a shared port DS^ if M �N# D�^ , and so on. The conditions declare the following (and also
with ‘left’ and ‘right’ exchanged) for any shared port D*^ :
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(O1) If ��� has an unshared inner port as a left peer then it is open on the right.

(O2) If ��� has a shared left peer, then on the right either they are peers or they are both open.

Example 8 (consistent monographs) Consider the pair
������
	 ��

of monographs in Figure 9, where�
�����������������������
and
��� ���������������

. As in Example 6, controls are not shown and the nodes with
subscript 2 are shared. The pair is consistent. But if

� �
is removed from

� �
, or
� �

from
� �

(i.e. their edges
are closed) then (O1) is violated; similarly if

�!�
or
���

is removed then (O2) is violated.

We now wish to characterise the IPOs in Mogā, and also state conditions under which RPOs exist. In doing
so, we shall summarise the results of Appendices B and C, which are proved for edge nets; we therefore rely
on the following, which is easy to prove by standard categorical reasoning:

Proposition 44 (moving RPOs from edge nets to topographs) In Mogā, let " �#$��#
% be an RPO candi-
date for

��
w.r.t.

�&
. Then in Edgā, '(" �#$��#
% is an RPO candidate for '(" �� ) w.r.t. '(" �&)% . Moreover, the former

is an RPO in Mogā iff the latter is an RPO in Edgā.

The main content of Appendix B is to give, in Constructions 98 and 105, a complete description of a non-
empty set of IPOs for every consistent pair

��
; it then justifies the construction. As for topographs, we shall

repeat the construction informally.

Construction 45 (IPOs in monographs) (This is a less formal version of Constructions 98 and 105 from
Appendix B.)

For any pair
��

of monographs satisfying (O1) – (O2), we characterise their IPOs in two stages. First we
construct a bound, which also yields the unique IPO when

��
are epis. We then describe how to extend the

construction, non-uniquely, to non-epis.

Stage 1 To construct a unique IPO
�# � �� 	+*

for a pair
��,�-�.	 ��

of epi monographs.

codomain The shared codomain
*

is constructed as follows: For each coname
�/�10,�
�

, unless�2� � � ��� for some �2� closed in
� �

, create a name 3�4�
0 * ; similarly for each
�5�607�8�

. Equate
3�2� and 3�.� whenever

�2� � � ��� � ���.� for some �2� .

inner ports Take the inner ports of
#9�

to be : � (similarly for
#
�

). This determines the nodes of
#;�

.

edges Generate the equivalence
#9�

from the following (similarly for
#<�

):

���=#>�=�@?�
if
��� � � ��� � � � ? � � �=�@?� � ��#>� � ? � if � � � � � ? �� � # � � � if
� � � � � � � � � � � � # � 3� � if � � � � � �BA���=#>� 3���

Stage 2 To extend the construction for each idle name in an arbitrary pair
��,�-�.	 ��

of monographs.

idle names If
�4�

is idle in
� �

then either create a new name 3 �C�>0 * and set
�2�=#>� 3��� (leaving 3�2� idle

in
#6�

), or set
�2�D#>�=E

for any port
E

closed in
#;�

. Similarly for
#
�

. (Note that
E

may be either
an inner port � � or another

�2?� 0�� �
.)
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Figure 9: A consistent pair �� of monographs, with IPO ��

Example 9 (monograph IPO) Figure 9 shows an IPO ��! �"$#&%
for pair �� of monographs which we

already found to be consistent in Example 8. As with the topograph example if Figure 8, the pair �� are epis,
so Stage 1 of the construction applies. In forming the codomain

%
of the IPO we find that only ' ( � and ') �

are created; moreover they are equated (as * ) because they are linked to the same port of a shared node.
Thus

% +$, *.- , a singleton. Note particularly the co-alias / � + ) � in
� �

; it arises because / � and ) � are
connected to shared inner ports which are linked in

� �
. It is a good exercise to check how the construction

generates the other edges in
� �

and
� �

.

The construction is justified by Theorem 108 from Appendix B, which we restate here as a corollary:

Corollary 46 (consistency and IPOs in monographs) The IPOs for any pair of monographs in Mog ā are,
up to isomorphism, exactly those produced by Construction 45.

Since the construction generates at least one IPO when �� satisfies (O1) – (O2), the theorem also shows that
these conditions are sufficient for consistency. Just as for topographs, we shall later find that if 0 and 1 are
bigraphs whose monograph components are 0�2 + � � and 132 +4� � , then any transition 065 7 is defined
in terms of an monograph IPO �� for �� .

Note that if
� �

has an idle name then, provided
� �

has any closed port, Stage 2 yields at least two distinct
IPOs for the pair �� . Like the IPO construction for topographs, this shows that in bigraphs IPOs –hence
RPOs– exist where a pushout cannot exist (else it would be the unique IPO), justifying the remark following
Definition 6.

As for topographs, the second alternative in Stage 2 represents a kind of elision, to be defined in Defini-
tion 78. We may think of the construction as ‘losing’ an idle name of

� �
somewhere within

� �
.

As for topographs, we need to know that RPOs exist sufficiently often for monographs. The fact that every
consistent pair �� of monographs has at least one IPO does not imply that an RPO always exists for the pair
w.r.t. any bound �8 . And indeed, it does not always exist! A counter-example appears in Appendix C. But we
can show that it exists often enough for our purposes. The proof – for edge nets – is given as Theorem 126 in
the same appendix; with the help of Proposition 44 we can deduce the corresponding result for monographs:

Corollary 47 (a monograph pair with one epi always has an RPO) In Mogā, every pair �� of monographs
of which at least one is an epimorphism has an RPO w.r.t. any bound �8 .
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We shall derive a corresponding result for bigraphical reactive systems in the next subsection.

4.3 Bigraphs

We now resume the discussion of bigraphs.

Definition 48 (precategory of bigraphs) The precategories Big( � ) and Bigā( � ) of bigraphs over a sig-
nature � have pairs �������	��
�� as objects (interfaces) and bigraphs 
���������������������
 �!��
#"%$&�'�)(+* as
arrows (contexts), where 
 " has no aliases in the case of Bigā. If ,-�.*)(0/ is another bigraph with node
set disjoint from � , then their composition is defined directly in terms of the composition of the components
as follows:

,213
546��, � 17
 � �8, " 17
 " ���9�:(;/�<
The identities are ��= >@?A�B= >DC ���E�F(;� , where �#�0���	��
�� .

We shall continue to omit the signature � except when we are making a formal definition. We now combine
some familiar topograph and monograph structures to yield bigraph structures.

Proposition 49 (isomorphisms in bigraphs) The isomorphisms in Big and Big ā are all combinations G!�
�HG��:��GI"J� of a topograph isomorphism and a monograph isomorphism.

Definition 50 (tensor product) The tensor product of two bigraph interfaces is defined by ���	��
	�LK
��MN�8OP�Q4R���TSUMN��
�V W:OX� when 
 and O are disjoint. The tensor product of two bigraphs 
#YZ�[�BY\(]*EY
( ^F�`_\��a ) is defined by


 b�Kc
&dJ4e�H
 �b Kf
 � d ��
 "b Kc
 "d �g�D�hbiKj�kd@(l*Db�Km*.d

when the interfaces exist and the node sets are disjoint. This combination is well-formed, since its compo-
nents share the same node set.

We can now assert that

Proposition 51 (wide precategories of bigraphs) Big and Bigā are monoidal wide precategories.

Proof First, they are well-supported, with node sets as support. Second, they are monoidal (Definition 3)
with a naming function yielding the name set of each interface. Third, to make them wide precategories
(Definition 10) we identify the required ingredients as follows:

(1) The origin is n�4e��_\�poE� .
(2) The width functor is given on objects by qr= >Es�t@���	��
�� 40� . On each arrow uT�N���	��
��v(w��MN�8OX� ,

for each site xAyz� we define qr= >Es�t@�HuA$B�{x|$ to be the unique root }PyzM is such that }P~���x .
(3) The isomorphisms from �������	��
	� to itself include �'��45���F�B= >9C � , where ���L�+(�� is any

isomorphism on � .
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Figure 10: A consistent pair  ! of bigraphs, with IPO  "

The origin # is neither an initial nor a terminal object. However $ %�& is the unique arrow from the origin to
itself, and we shall denote it also by # .
Proposition 52 (epimorphisms in bigraphs) A bigraph ' in Bigā is an epimorphism iff its components
')( and '+* are epimorphisms in Top and Mogā respectively.

For RPOs and IPOs, the corresponding result depends upon the fact that the RPO and IPO constructions
treat the node sets of Top and Mogā consistently.

Proposition 53 (RPOs in bigraphs) A triple ,- "/.0"�1 is an RPO for  ! w.r.t.  2 in Bigā iff both

3 ,  " ( .0" ( 1 is an RPO for  ! ( w.r.t.  2 ( in Top, and

3 ,  " * .0" * 1 is an RPO for  ! * w.r.t.  2 * in Mogā.

Thus, in particular, we get every IPO in bigraphs by combining a topograph IPO and a monograph IPO.

Example 10 (Bigraph IPO) To illustrate this, we can now combine the examples of IPOs in Example 7
for topographs and Example 9 for monographs, since they have the same support. They appear in Figures 8
and 9, and we show their combination in Figure 10. Comparing the three figures, it seems that the separation
of a bigraph into its parts is a valuable aid to understanding; on the other hand the composite bigraph
diagrams seem better for the presentation of reaction rules, in the way that we used them in Section 2.

We now have everything we need for the definition of bigraphical reactive systems in the next section. To
end the present section, we shall now show why we have to base that definition on bigraphs in Big ā, rather
than upon the support quotient of Bigā, as defined in Definition 4.

The difference between a well-supported precategory and its support quotient category is that, in the former,
operations such as composition keep track of support elements, while in the latter they do not. For bigraphs,
this means that in Bigā we keep track of the identity of nodes, while in its support quotient we do not; in a
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familiar terminology, we deal with concrete graphs in Bigā and abstract graphs in its quotient. As promised
in Subsection 3.3, we shall now show by examples that in passing to the support quotient of Big ā we lose
structural properties that are essential for deriving transition systems.

In these examples we shall work with diagrams. The only difference between a faithful diagram of a concrete
bigraph � and the abstract bigraph ����� is that the former should make explicit the names ( ���	�
������� ) of nodes,
while the latter should not. In all the examples of IPOs in this section we have respected this convention
in our diagrams; indeed, the notions of consistency and IPO have depended crucially on node identity.
However, this does not rule out the possibility that RPOs and IPOs, defined in some other way, may exist in
the support quotient category. We shall now show definitively that they do not exist, in very simple cases.

Our first example shows that epis are not preserved by support quotient.


 � � ����
�������

�

�
�

� � �
��

� �
� �

�
�

Example 11 (support quotient loses epis) The diagram shows an abstract bigraph � , the image of an epi
in Bigā. Two distinct (abstract) contexts � and � are shown, such that the abstract bigraphs � � � and � � �
coincide (because this bigraph, being abstract, does not record where each � -node came from). Thus � is
not an epi in the support quotient of Bigā.

A more crucial loss of structure occurs with RPOs, as follows.

Example 12 (support quotient loses RPOs) Let � be as in Example 11. Since any concrete representative
of � is an epi in Bigā, any concrete representative of the pair ��� � will have an RPO in Bigā w.r.t. any bound.
Moreover, this RPO will differ according to whether the two � -nodes in the representatives of � have the
same or different identities. Figure 11 shows two candidate RPOs for the abstract pair ��� � w.r.t. the abstract
pair !"� ! ; these two candidates are in fact the images of the two different concrete RPOs mentioned above.
The first candidate is the triple #%$ &'�($ &�� !*) , while the second is #,+.-/�0+213�0+�) as shown.

Now if an RPO #546-/� 4713� 4�) exists for �8� � w.r.t. !"� ! then there must exist abstract bigraphs � and � that
mediate to the two candidates, making the diagram commute. But this leads to a contradiction, as follows.
First, 4 - and 4 1 have empty support, since for example � � 4 -29 $ & . From 4 - � � 9 4 1 � � it can then be
deduced that 4 -29 4 1 .8 It follows that + -29 � � 4 -29 � � 4 1:9 + 1 , a contradiction.

Thus, to derive transition systems we must use concrete bigraphs. However, once derived, these systems
and their congruence theorems can be transferred to abstract bigraphs as shown in Propositions 16 and 18.

8This would be easy if ; were epi, but from Example 11 it is not! However, one can use the following lemma about support
quotients which can be verified from the definitions in Subsection 3.1: Let < be epi, with singleton support, and let =?>,@ have empty
support. Then = � <BAC@ � < implies =:DC@ .
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Figure 11: Two abstract bigraphs may lack an RPO

5 Bigraphical reactive systems

We now give the central definition of the paper.

Definition 54 (bigraphical reactive system (BRS)) In Big( � ) let ����������� be a set of triples  "!�#$!&%'#)(+* , where
!�#$! % are agents with interface , and (.-0/21 ���3 ',4* . Then the bigraphical reactive system (BRS) Big( � , ���������5� )
consists of the monoidal wide reactive system (Definition 12) over Big( � ) whose reaction rules are ���������5� ,
and whose activity map ����� is defined for each bigraph

�76 ,98;: by the activity of its topograph; that is,

�����< � *>=@?�AB-DC � � �FE4 ',4*HG �JI active at A$KML
Bigā( � , ����������� ) is defined similarly.

This definition is justified as follows:

Proposition 55 (a bigraphical system is a WRS) The definition of bigraphical systems satisfies the con-
ditions required for a monoidal WRS.

Proof We already know from Proposition 51 that Big and Bigā are wide precategories. It remains to show
that the activity maps defined above satisfy the two conditions of Definition 12. This only concerns the
topograph of a bigraph, and the details are routine.
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5.1 Wide bisimilarity

With this definition, we are now able to apply the derivation of placed transitions (Subsection 3.4) to any
BRS. So we can deduce from Theorem 20 a congruence property for wide bisimilarity in a BRS with
sufficient RPOs. The existence of RPOs in Big is still an open question, but in Big ā we are better off; we
have them for any pair �� provided the monograph

���� is epi – i.e. has no idle names – as a consequence of
the work of the previous section on RPOs for topographs, monographs and bigraphs (Corollaries 33,47 and
Proposition 53). So we can assert:

Theorem 56 (congruence of bisimilarity in BRSs) Let ���	��

��� be a set of reaction rules for Big ā( � ) in
which every redex is an epimorphism. Then Bigā( � , ���	��

��� ) has all redex-RPOs. Hence wide bisimilarity of
agents in Bigā( � , ���	��

��� ) is a congruence.

How awkward is it to require redexes to be epis? It can be argued (see Chapter 7 in Leifer [18]) that a reaction
rule whose redex has an idle name leads to rather strange behaviour, unlikely to be met in applications;
we tend to regard such rules as unreasonable. The same can be argued for redexes with barren roots.
So, even though RPOs exist always for topographs, we are happy to limit our attention to those cases of
Bigā( � , ���	��

��� ) in which every redex is epi – i.e. has neither barren roots nor idle names.

This result –together with our expectation of similar congruence properties for other equivalences and
preorders– tells us that our derived transition systems are worthy of attention. Of course, it does not tell
us how easy they are to work with; nor does it tell us how large the congruence relation is. For these
purposes we must rely on the characterisation of IPOs given in the preceding section, to yield in turn a
characterisation of transitions and hence of bisimilarity itself. We begin this work in Section 6. Mean-
while, in the rest of the present section we investigate how this theory –hitherto specific to bigraphs– can be
transferred to other WRSs.

5.2 WRS functors and sub-WRSs

When working in a WRS over A we may often be interested only in agents and contexts which lie in a
subprecategory of A. More generally, we may be interested in A � for which a functor ��� A ��� A exists. So
we extend the notion of functor to WRSs as follows:

Definition 57 (WRS functor, sub-WRS) Let WRA and WRA � be wide reactive systems, with components
respectively ����� � !"�$#%�����	��

�����&��

� and �&����� � !"�$# � �����	��

���'�(�&��

��� . A functor �)� A ��� A of precategories is then
a WRS functor from WRA � to WRA if it preserves all these components; that is:

�+*,� �.-0/ �21
� � !%�3#546� / � � !%�3# � 1
*87��'7 � �39 -;: ���	��

�<� �>= *��+*87 - ���+*87 ��- �39 -?: ���	��

���@1 and
��

���(*BA -;C ��

��*��D*BA -'-0E

Call � monoidal if both A � and A are monoidal and � preserves tensor product. If � is a (monoidal)
inclusion functor then we call A � a (monoidal) sub-WRS of A.

We shall be interested in WRS functors which treat redex-RPOs with respect, in the following sense:
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Definition 58 (functor creating redex-RPOs) Let ��� WRA ��� WRA be a WRS functor. Then � is said
to create redex-RPOs (in WRA � ) if the following holds for every reaction rule in WRA � with redex ��� and
place 	 � : Let the pair 
 ��� � � have bound 
 ������� in WRA � , where ��� is active at 	 � ; let ��� ��������� be an RPO
for ����
�� � ��� � w.r.t. ����
�� ��� � � in WRA; then there exists an RPO ����� ��� � ��� � � for 
�� � ��� w.r.t. 
�� ��� � in WRA �
such that ������� ��� � ��� � �! ��� ��������� .

Note that the conditions of Definition 57 say that the image of every reaction rule of A � is a rule of A, and
the image of a context �"� of A � is at least as active as �#� ; so we deduce the following:

Proposition 59 (functors which create sufficient RPOs) Let WRA have all redex-RPOs, and let the func-
tor �$� WRA �%� WRA create redex-RPOs. Then WRA � has all redex-RPOs.

We shall meet some very interesting functors of this kind, and they will allow us to work in models which
are refinements of BRSs as well as directly in BRSs themselves. There is always work to do in proving that
a specific functor creates RPOs; so it is worth finding some general conditions that ensure this and are easy
to check. We shall now look at one such set of sufficient conditions, which we shall be able to apply a few
times. For the remainder of this subsection we revert to our notation for arbitrary precategories.

Definition 60 (safe functor) Let ��� A � � A be a functor of precategories. Say that � is safe if it has the
following properties:

(1) Let & be an epi in A, and let ���'& �(�� & and ���') ���� +*-, & . Then there exists unique *.� such that
��� * � �/ 0* and )1�  2* � , &3� .

(2) Let 4) be an IPO for 4& in A, and let ���54&3� �� 4& . Then there exist a bound 4)6� for 4&3� in A � such that
���74) ���8 4) .

If � is an inclusion, call A � a safe subprecategory of A.

Note that condition (2) does not require 4)1� to be an IPO in A � ; it is therefore not too hard to verify in
particular cases. An easy consequence of the definition is:

Proposition 61 (safe functors create epis) Let ��� A � � A be safe, with ���'&9� � an epi of A. Then &9� is an
epi of A � .

When the functor is an inclusion then the safe condition can be simplified:

Proposition 62 (safe subprecategories) A subprecategory A � of A is safe iff the following hold:

(1) If & is an epi in A, and both *-, & and & are in A � , then * is in A � .
(2) If 4) is an IPO for 4& in A, and 4& is in A � , then 4) is in A � .

We now show that, with one extra condition (which will always hold for BRSs) if � is safe then it creates
enough RPOs.
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Proposition 63 (safe WRS functors create RPOs) Let ��� A ��� A be safe. Let �� � be a bound for �� � in A � ,
with �
	 �� ����
 �� and ��	��� ����
 �� . Let 	 ������ � be an RPO in A for �� w.r.t. �� , such that both

���
and

���
are epis.

Then there exists an RPO 	 �� � ��� � � in A � for �� � w.r.t. �� � , with �
	 �� � ��� � ��
 	 ������ � .
Proof (outline) The first step is to create in A � a bound �� � for �� � such that ��	 �� ����
 �� , using condition
(2). By Proposition 61

� � � is epi; therefore by condition (1) we find
� � in A � such that

� ��� � � � 
 � �� . We
now wish to prove that

� � � � � � 
 � � � . For this, since
� �� is epi by Proposition 61, it is enough to prove that� � � � � � � � �� 
 � � � � � �� ; this follows from equations already known. We have therefore established that 	 �� � ��� � �

is an RPO candidate.

Now let 	 � � �� ��� be any other candidate. Then its � -image 	 � !�� � in A is a candidate; hence, since 	 ��"��� � is
an RPO in A, there is a unique arrow # mediating it to 	 � !�� � . Create the preimage # � such that # ��� � � � 
  �� ,
using condition (1) for

�$�
epi. Now deduce that #%� � � � � 
  � � and

 � � #&� 
 � � from known equations, using
the facts that

� �� and
� � � respectively are epis.

Thus # � is a mediator from 	 �� � ��� �'� to 	 � � �� ��� . Its uniqueness can be deduced from the uniqueness of the
mediator # in A. This completes the proof that 	 �� � ��� � � is an RPO.

We shall see the consequence of this proposition for BRSs in the next subsection.

5.3 BRS functors and sub-BRSs

In Definition 54 we defined a class of WRSs directly on Big and Bigā, simply by equipping bigraphs with a
signature and reaction rules. But there are many variants of bigraphs we may want to consider; for example
linear bigraphs (those where all edges have exactly two ports), and oriented bigraphs with – say – exactly one
positive port in every edge. WRS functors allow us to derive such variants, and if they create redex-RPOs
then the derived BRS will have all redex-RPOs.

Definition 64 (derived BRS) A WRS functor ��� WRA ( � Big 	*) �"+�,.-0/2143 � is called a bigraphical reactive
system (BRS) derived from Big( ) ,

+�,.-0/2153
). If � is an inclusion then call WRA ( a sub-BRS of Big( ) ,

+�,.-0/2143
).

Make the same definitions also with Bigā.

The following can then be deduced from Proposition 59 together with Theorem 20:

Corollary 65 (bisimilarity for derived BRSs) Let WRA 
 Bigā 	*) �6+�,.-0/2153 � , with every redex in
+�,.-0/2143

an
epimorphism. Let the WRS functor �7� WRA ( � WRA create redex-RPOs. Then WRA ( has all redex-RPOs.
Consequently wide bisimilarity in WRA ( is a congruence.

Now we deduce a further corollary concerning safe functors, with the help of Proposition 63:

Corollary 66 (bisimilarity for safe derived BRSs) Let WRA 
 Bigā 	*) �6+�,.-0/2153 � , with every redex in
+�,.-8/2143

an epimorphism. Let the WRS functor �9� WRA ( � WRA be safe. Then � creates redex RPOs. Conse-
quently WRA ( has all redex-RPOs, and wide bisimilarity in WRA ( is a congruence.

Proof We need only note that in a BRS, whenever a redex : is epi, and ; � : has an RPO with legs < ��= ,
then < is also epi; consequently the conditions of Proposition 63 are met.
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We shall now look at a few examples of safe BRS functors or sub-BRSs that create redex-RPOs. In each
case the construction seems a rather natural one, and it is not surprising to find that the RPO condition can be
transferred to them. Nonetheless, the proof of safety in each case needs a little care. We omit these proofs;
the reader interested in getting to grips with the theory will find them to be excellent exercises. In some
cases, but not all, the no-alias condition of Bigā is essential.

Example 13 (linear bigraphs) A very simple sub-BRS of Bigā consists of the linear bigraphs; those in
which every edge has exactly two ports. Linearity (in this sense) is a purely monographic property. This sub-
BRS is safe. The proof of the IPO condition –part of the safety condition– depends upon the characterisation
of IPOs in monographs in Construction 45; it is made easier by the observation that all linear monographs
are epis.

Example 14 (epimorphic bigraphs) It is very attractive to deal only with epimorphic bigraphs, since they
have a simple dynamic theory; this is because there are no elisive transitions (see Section 6), so the charac-
terisation of transitions is easier. This again is a safe sub-BRS.

A slightly larger sub-BRS –again safe– consists of the bigraphs whose monographs (but not necessarily the
topographs) are epi. This appears to be practically significant. Note that Example 2 in Section 2 could not
be handled in this sub-BRS, because the epi property is not preserved by reaction. This is clear from the
reaction rule; the name � is unused by the reactum of the rule. But it can be shown that if the reactum
of every reaction rule has no idle names then the epi property for monographs will be preserved both by
reaction and by transition; thus the behaviour of systems can be analysed entirely within this sub-BRS.
Clearly this is not possible for the � -calculus, but it may be true for certain variant calculi.

Example 15 (oriented bigraphs) We may consider a kind of bigraph with extra structure, by which a sign
is ascribed to every port (including names and co-names). To achieve this we must extend signatures to
assign a sign to each port of a control; we must also extend interfaces to assign a sign to every name in the
name set. Then in an oriented bigraph

�������
	���
�����������	���
����
–where the superscript ���! 
�� indicates a sign

assignment– each name will have the sign in the outer interface, each coname will have sign opposite to that
in the inner interface, and each inner port will have sign dictated by the signature.

To make the signs do some work we can orient each graph by requiring every edge to contain –say– exactly
one positive port. For example, if the left port of the control "$#&% in Example 2 is declared positive in the
signature, then every message is addressed to a unique receiver. This is true for example in the Join calcu-
lus [8], but not in the � -calculus, where it is an important source of non-determinism. Thus the orientation
of graphs has significant practical implications.

The WRS functor in this case is the obvious forgetful functor from signed BRSs to Big ā. It is not an
inclusion, so we do not have a sub-BRS. But it is a safe functor. This is one case where the reader will
discover the no-alias condition useful; I do not know whether the functor is safe if aliases are admitted.

Example 16 (typed bigraphs) Analogous to signing ports, we can type them. We leave the details to the
reader. The practical significance is obvious. Again we get a safe forgetful functor from typed to untyped
BRSs. However, the situation is only simple of we demand exact matching of types: no polymorphism
and no subtyping. It is an intriguing question how to deal with these richer type phenomena in bigraphical
systems.

At least two of the above examples – linear BRSs and oriented BRSs – correspond to cases where colleagues
and I had previously, with considerable difficulty, established the existence of RPOS [4, 18]. (The linear case
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has not been published). The correspondence is not exact, because we have adopted the no-alias condition
here. However, these examples provide evidence that bigraphs as defined here are somehow central in this
kind of theory.

5.4 BRSs for scoping and binding

We now move to an example of a different flavour, to do with the scoping of names. As observed at
the outset, we have adopted the orthogonal treatment of topographs and monographs –with no association
between a name and any particular topographic region– as the best way to get a tractable behavioural theory.
But there is another reason to avoid having every name of a bigraph � associated with a particular region of
� . Consider the agents � and � in the diagram, where � and � have arity one.

�� �

�
	���
���������
����� 	���
������	���
����
� � � �

Clearly the agent  as shown is given by  "!$# �&% � ' ��(�)*# �&% � ' �+( , or equivalently by  �!,# ��% � -.� ( ' #/�102�3( .
(We are anticipating the notation and conventions for substitution contexts, to be introduced in Subsec-
tion 6.1.) Here 4 is localised to neither region of  , or at least it is unnatural to make it so. The reader may
note that this phenomenon also arises in our example of a remote reaction rule for the 5 -calculus, Example 4.
It turns out that in the refined BRS presented below, which will permit but not enforce name-localisation, the
only context 6 such that  7!86 ' #/�709�+( will have 4 local to neither region. Thus to enforce the localisation
of each name to a particular region reduces expressive power.

We shall use scoping to mean the association of a name with a region. We have just seen the advantage of
having some names with unlimited scope, but we need also to reflect the kind of scoping represented by the
5 -calculus prefix construction :�#/4;(=<?> , where the scope of 4 actually coincides with the term guarded by the
prefix. In our 5 -calculus examples this becomes the region inside a @�A3B -node.

In this subsection we propose a refined notion of bigraph that provides scoping, and we shall take advantage
of it in Subsection 6.5 where we propose a definition of parametric reaction rules. In both of these subsec-
tions we give less detail than in the rest of the report; the consequences of these definitions are under study,
to be reported at a future date.

If we designate the scope of a name : to be a particular region C in a bigraph � , then we want to ensure that
(1) any node with a port linked to : also lies in that region, and (2) � 'ED will have this property for any D
that is also subject to the scoping discipline. Hence the following definition:

Definition 67 (scoping bigraph) Let F be a signature as for bigraphs. Then the precategory Bigs
ā( F ) of

scoping bigraphs over F is as follows: An object takes the form GIHKJMLN J NPO where GIHKJ NPO is an object of
Bigā( F ) and LN ! NRQ J+<+<+<SJ NUTWVYX a sequence of disjoint subsets of

N
. An arrow �[Z\GIHKJ LN J NPO�] GI^_J L` J `RO

is a bigraph �aZbGIHKJ NPO\] GI^_J `UO of Bigā( F ) such that, whenever cPd `*e for Cfdg^ a root of � , then two
scoping conditions hold:

(S1) If :h�"c for :id N then there exists a site jkdlH with :md Nfn and jko7piC .
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(S2) If ����� where � is any inner port of node � in � , then ���	��
 .

The objects and arrows are called scoped interfaces and scoping bigraphs.

It is straightforward to check that, with composition and identities as in Big ā, this yields a precategory.9

With an obvious definition of tensor product it also yields a wide monoidal precategory.

There is a natural forgetful functor from scoping bigraphs to bigraphs. This functor preserves epis, and can
be proved to create RPOs. Omitting the details of the definition of a scoping bigraphical reactive system,
which faithfully matches the standard BRS definition (Definition 54), we have the following:

Theorem 68 (redex RPOs and bisimilarity congruence in scoping BRSs) For any signature � and set��
�������� of reaction rules, the forgetful WRS functor from Bigs
ā( � , ��
�������� ) to a BRS creates redex-RPOs.

Therefore if every redex in ��
�������� is an epimorphism, then Bigs
ā( � , ��
�������� ) has all redex-RPOs. Hence wide

bisimilarity of agents in Bigs
ā( � , ��
�������� ) is a congruence.

Proof (sketch) The only new requirement is to prove the first part. The functor turns out not to be safe,
and therefore a specific argument is needed. This depends upon identifying the correct mediating interface
in constructing an RPO in the scoped BRS. The details are omitted here.

Scoping pertains to the names of a bigraph; we now turn to a related notion pertaining to control ports, which
we shall call binding.10 A control port of a control � is any member of its arity ����� �"! ; it also refers to the
corresponding port of any � -node. We want to designate certain control ports –such as the right-hand port
of a # 
�� node in our $ -calculus examples– as binding, and to ensure that binding is propagated downwards
by composition. The following refinement of scoping bigraphs arises naturally.

Definition 69 (binding bigraphs) Let �&% be a binding signature, i.e. a signature � as for bigraphs with
certain control ports designated as binding. Then the precategory Bigb

ā( � % ) of binding bigraphs over � % is

the subprecategory of Bigs
ā( � ) whose arrows �('*),+.-0/1 - 13254 ),67-5/8 - 892

satisfy three further conditions
for every binding port : of a control node ; in � :

(B1) If <��0: for <�= 1
then there exists a site >?=@+ with <A= 1@B

and >?� � ; .

(B2) If ���0: where � is any inner port of node � in � , then ���C�D; .

(B3) : is closed in � .

Note that the first two conditions correspond closely to the scoping conditions. It is a routine matter to check
that this is a monoidal subprecategory. Furthermore, concerning the natural forgetful functor to bigraphs we
have the following as a corollary of Theorem 68:

Corollary 70 (redex RPOs and bisimilarity congruence in binding BRSs) For a binding signature � %
and set ��
�������� of reaction rules, the forgetful WRS functor from Bigb

ā( �E% , ��
�������� ) to a BRS creates redex-
RPOs. Therefore if every redex in ��
�������� is an epimorphism, then Bigb

ā( � % , ��
�������� ) has all redex-RPOs.
Hence wide bisimilarity of agents in Bigb

ā( �E% , ��
�������� ) is a congruence.

9This depends upon the no-alias assumption; an extra condition would be needed for Big.
10This is consistent with the meaning of “binding” for action structures.
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Binding BRSs deserve further study. For example, the stronger constraint that every name should be scoped
may have some interest. For the present paper, we return to these derived BRSs in Subsection 6.5.

6 Towards applications

In this section we prepare for detailed exploration of the behaviour of particular bigraphical systems. In
Subsection 6.1 we define some useful forms of bigraph and some important operations, including all the
constructions of the term language introduced in Subsection 2.2. In Subsection 6.2 we look at two manip-
ulations of interfaces, elision and extension. In Subsection 6.3 we find certain transitions to be superfluous
in establishing bisimilarity, introduce a notion of adequate set of transitions, and enumerate all transitions
for a specific BRS. In Subsection 6.4 we define the notion of engaged transition, which depends essentially
on the fact that transitions are placed. It turns out that the engaged transitions are adequate under certain
conditions. Finally, in Subsection 6.5 we begin to examine parametric reactions and the � -calculus, leaving
their detailed study for future work.

Unless otherwise stated we are working in Bigā(
�

, �������
	�� ) for unspecified
�

and �������
	�� .

Terminology We shall call an agent or context narrow if its interfaces have width one, shallow if all its
sites are shallow, atomic if all its nodes are atomic, and open if all its ports are open.

6.1 Operations on bigraphs

Definition 71 (special graphs) Notation for several entities with empty support is introduced (with alter-
native notation in the second column):

Topographs: 
 ��
���
 � ��� no sites and no roots�
� ����� � � sites and one root� ��
�� � � � one barren root� ��
�� � ��� �!�!�"�#�
no sites and � roots

Monographs: $ �%$&�'$ � ��( no names or conames) �%$&� ) discrete set of names) � ) �'$ discrete set of conames* ) � ) �'$ )
restrict

)
+ , - �/. +�0 �1. -20 3%465 substitution+7, - �%$&�1. +98:-20 alias+ , - �/. +98:-20 �'$ co-alias

For any interface ; ,=<>�?8 )A@ we use ; also to denote the bigraph combination <>�?8 )A@ �CBC�D; , having �
barren roots and idle names

)
.

In the monograph operations indexed by the set
)

we may use + , + , */+ for the case when
) , . +&0 , a

singleton. Note that aliases occur in Big but not in Bigā.

Definition 72 (promotion) If a topograph E'�F�#� � has empty support we may promote it to a bigraph< E 8 � �FG @ � < � 8 )A@ � <>�?8 )A@ ; we abbreviate < E 8 $ @ to E . Similarly, if a monograph HI� ) �KJ has empty
support we may promote it to < � � � 8 H @ � < � 8 )L@ � < � 8 J @ , abbreviating < 
 8 H @ to H .
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More generally, an operation � on topographs which does not change the support set may be promoted to
an operation on bigraphs by ���������
	��������
��������� . Similarly, for an operation � on monographs which
preserves support, ����������	�� � ������� � ��� .
To illustrate promotion, for the bigraph ����� �!	#"$�&%('
)+* ,.-/� we may substitute 0 for ' by writing ��132&4 56 798 �;:<� , with codomain 	#"$�&%(0<)+* ,�-/� ; it abbreviates 	 6 79= ��1>2&4 5 6 7;8 ���;:<� .

We shall also allow ourselves to abbreviate any bigraph ?@5 6 7A8
to ? , when the context makes - clear.

This is convenient when ? is a restriction, substitution or co-alias; for example we can further abbreviate
�#132&4 5 6 798 �3:�� to �#1;2B4 �3:�� .

We now introduce a derived form of tensor product, useful in applications:

Definition 73 (parallel product) The parallel product of two interfaces CED
F�	#"GD���HIDJ� ( K�FML �(N ) is always
defined; it is C(OQPRCRS���	#"TOVUW"XSY��HZOV*[H\SB� .
The parallel product ]/OQPR]QS of two topographs ^] with disjoint node sets is just their tensor product. If two
monographs ^_ � ^H`� ^a have disjoint node sets ^b then their parallel product

_ OQP _ Sc�dHZOe*�H\S9� a Of* a S
has node set

b Og* , b S , control function h(ikjBl�Og* ,�hmikj�lnS and equivalence oQp<qsrto�pvu . We extend it to two
bigraphs � D �>C D �xw D with disjoint node sets by

�/OQP>�ySz�{	�� �O Pd� � S ��� �O Pd� �S ���;CYO|PdCRS3�tw3OyP3w�S�}
Parallel product resembles the tensor product 5 , but takes the union of domains and codomains; thus it may
coalesce edges from ��O and ��S . It is associative on topographs, monographs and bigraphs, with units L , ~
and � respectively. It is commutative on monographs.11

Later we shall need the following simple property that an agent can be factorised uniquely into a parallel
product of narrow factors:

Proposition 74 (unique parallel factorisation) An agent �Z�;�9��	#"$��HX� in Bigā can be expressed uniquely
(up to a renaming of - ) in the form �A-G:f�k� O P�,Y,Y,fP;� =c� S � , where � D ������	�NE��HX� ( Kc��" ) and each �\�X-
is non-idle in at least two of the factors ��D .
Note that Bigā is closed under parallel product of bigraphs with disjoint sets of conames; this condition will
hold when we use it in examples.

Using parallel product we can define non-injective substitutions such as ���R2Y4 � 1 ���@�R2&4 P;�R2 1 . The co-alias
' FM0 is then expressible as � :
� � 2Y4 � 1 � . Dually, we can define co-substitutions such as � 4<� 1 2 � ��� 4 2 � P 1 2 � ;
thence the alias '`F�0 is expressible as � 4A� 1 2 � �;:�� . This shows how Bigā is not closed under arbitrary
parallel product.

Together with parallel product, the next two definitions explain most of the term language introduced in
Subsection 2.2:

Definition 75 (merge) Let � have codomain 	#"$��HX� . Define �����|��	�N = � 6 7>� �;:<� , the merge of � ; it
coalesces the " regions of � into one, so has codomain 	�NE��H$� .

11In [23] parallel product was wrongly stated to be commutative on bigraphs, though no results there were affected.
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Finally, the basic building blocks for all bigraphs are as follows:

Definition 76 (element, molecule, atom) Let � have arity � , let ��������
	������
	�������� be a sequence of
names (not necessarily distinct) and let � ��� ���� . Then the elementary bigraph or element �����
����! #"%$&	('*),+"%$&	 � ) has one root, one site, and a single node - which is the site’s parent. For .0/21435� the 1 th inner port
of - is linked to the name ��6 .
For any bigraph 7  �89+:"<;=	?>@) we call �A� � �
����CB�D EGF!�IH�J 7LK  �8M+�"%$&	 �ON >P) a molecule12 ; using our
abbreviation convention we may write it �Q�G�
��R�IHRJ 7SK . When 7 �UT then the molecule is �V�G�
����GH�$�� , which
we call an atom.

Note that, in the molecular construction, the names > of 7 may not be disjoint from those of the element;
thus elements nested inside one another may have their ports linked.

We may now complete the semantic definition of the term language of Subsection 2.2. Given the con-
structions defined here, all that remains is to make minor syntactic adjustments (since the term language is
oriented to programming rather than algebra), and to take care in handling the sites.

To illustrate, consider the bigraph 7  W"YXZ	 � )4+["Y\Z	?>0) of Figure 7. Suppose that the nodes - �&	 - � have
control � with arity one, and -I] 	 -,^ have control _ with arity three. Then, omitting node subscripts on
controls, a term for 7 is

� � �a` ] �bJ �2� `*�c�dJ �e� `*�
�dJgfW� K�K B _L� `*�
	�` � 	�` ] � KBhJdf � B _L� ` ] 	�� � 	�` ] �dJgf ]iK�K �
Note that since � � and ` ] are equivalent, � � could appear in place of ` ] anywhere in the body of the term.
To represent the term algebraically we transform it as follows: (1) render the equation prefix by parallel
product; (2) make explicit the composition ( H ) in each molecule; (3) replace any conames (here only � � ) in
each molecule by a new restricted name; and (4) replace the sites by identities. The new name in step (3) is
needed because � and > are not disjoint in general. So, assuming that composition binds more tightly than
parallel product, we get the expression

� � �j` ] B&kmlnH �Ao B
p&qdr st�t	 where o � J �2� ` � �GHRJ �2� ` � �IH�JuD E � K�K B _L� ` � 	�` � 	�` ] �IHR$ � KBhJuD E � B _S� ` ] 	?lv	�` ] �IHRJuD E � K�K �

Note the identities for the sites. Of course ‘ JuD E � K ’ can be removed, since JuD E � K ��D E � .
We now give the general construction. Note that the sites in a term will not always occur in numerical order
(as they do in the above example), so a permutation is needed in general.

Construction 77 (Meaning of the term language) Let w �yx*�(k _ �(z be a linear term of the language,
representing a bigraph 7  {"<;=	 � )�+|"<}n	?>@) . Here x contains (besides singletons) equations representing
aliases, co-aliases and substitutions, _ are the local names (disjoint from � and > ), and the body z is a
sequence of } regions. Then, in terms of our operations over bigraphs, we represent w by the expression

7[~y� B � k _ Hm�0��	
where � is just the parallel product of the members of x , and the expression �� �"<;=	 � )�+�"<}n	 _�N � >@) is
obtained from the term z as follows. The overall structure of z needs only slight change; for each molecule

12This definition replaces that of molecular bigraph in [23], which was inconvenient for defining the term language.
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��������	��
�
�

� we write
�������������
�
�
�� , and for a molecule

�������� with no contents we write
�������������� , an atom. It

remains to deal with the sites � ��� ��� ��������� � �"!�� (each of which occurs just once since # is linear), and the
occurrences of conames $ in atoms and molecules. To this end:

% let &('*),+-) be the topograph isomorphism whose parent function is the bijection .�/10+32�465�/879)(: ,
where �<;>= �������?� �";A@CB�D is the left-to-right order of sites in the term # ;

% if EGF-.�$ � �������H� $JI�: , let ELKMFN.�$MK � �������H� $MKI : be distinct new names disjoint from O and P .

Then, in the body Q , replace each site by R ST� and each coname $ 4 by $ K4 , leading to an expression U . Finally,
complete the construction by setting

VXWZY E K � � U � &[5�\�]^`_ \ ^ 5 
�
�
 5H\�]a?_ \ a �6�

So we have shown that the term language is ‘just’ algebra, with a little sugar added. We have, in effect,
established the term language as the core of a programming language for bigraphical systems. The rest
of such a language should allow a user to specify a signature and a set of reaction rules. It may also take
advantage of some of the BRS refinements described in Section 5, in particular the ability to provide names
with scope.

6.2 Elision and extension

We now look at two manipulations of interfaces. One of them, extension, consists in adding extra idle names
or barren roots to bigraph U , arriving at bGcdU ( b an interface). The other, with which we begin, is the
notion of elision which arose in characterising IPOs for both topographs and monographs in Section 4. As
we saw there, for a consistent pair

�U of epis there is exactly one IPO. But we are interested in pairs e ��f
where f is epi (being a redex) while e may not be. We begin by looking at the extra IPOs which may then
arise; these are elisions. Let us define them more exactly:

Definition 78 (elision) For a topograph
V '1)g+ih and finite ordinal j , let k�l be a map from j to the

non-atomic nodes of
V

. Form kml V '�jonp),+-h from
V

by incrementing its existing sites by j , and defining
the parent of each new site /q79j to be k*l � / � . Then k�l V is an elision of j in

V
.

Similarly, let
V 'rO,+Gs be a monograph and E disjoint from O . For any map kut from E to the closed

ports of
V

, form kmt V '*Ewv 
 O(+xs by adding each new coname $ to the equivalence class of k�t � $ � . Then
k*t V is an elision of E in

V
.

For an interface byFxz{j � E(| , an elision of b in a bigraph
V '�}~+�� takes the form k�� V�W k�l � k*t V � , with

interfaces b�c�}1+�� . A transition is called an elision, or elisive, if it takes the form b�c�e����C� �
�1e K up
to isomorphism.

A key property of an elision is that
� ku� V ��� b�F V .

Now Proposition 53 expresses the RPOs of Bigā in terms of those for topographs and monographs, while
Corollaries 32 and 46 characterise the IPOs of Top and Mogā. For non-epi agents in Bigā this yields:

Proposition 79 (IPOs for non-epi agents) Let f be an epi. Then
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(1) A pair ����� of contexts is an IPO for the agents ���	�
��� iff it takes the form either 
 �����	���������	��� or� ��� � ��� � , where � � ��� � is an IPO for ����� .
(2) A pair ����� of contexts is an IPO for the agents ���	����� iff it takes the form either 
 ��� �!� � �"�#�	� � or� �$�%�&���'� , where ���&����� is an IPO for ����� .

A first consequence of this is that bisimilarity is strictly preserved when we extend the interface of an agent
� by adding idle names and/or barren roots. For example, when considering whether � and ( are equivalent,
it makes no difference how large we make the name set in their outer interface, provided it includes the
names they actually use. To be precise:

Proposition 80 (interface extension strictly preserves bisimilarity) Let ) be an interface. Then

��*+( iff ),�	��*-).�!(�/

Proof ( 0 ) In the forward direction, simply recall that * is a congruence (Theorem 20), so is preserved by
a context of the form ).�1
 � .

( 2 ) By induction it will be enough to treat only the two cases )435� and )63.� ; we distinguish these
cases below. In each case we shall show that 783:9<;=���$(?>�@A).�!�'*+),�8(CB is a wide bisimulation, where

)D3FE�GH��IKJ . Assume ���$(MLON�PRQ with ) disjoint from Q . Let �+S T�UV� � , choosing �FLOQ�PXW so that
�KY�( is defined. We may also assume ) disjoint from W , since IPOs are preserved by isomorphism. Then
).�	�[Z T]\�^ U ),�	�<� by Proposition 79, where _`3`
 �bac�	� .

Now �KY�( is defined, so _dYe;=)f�1(?> is defined; hence from )g�1�d*h)f�1( we deduce )f�i( Z T \�^ UVj �
with )k�[�<�l*:jA� . Now, if )m3.� (resp. )m3n� ) this transition cannot be isomorphic to any transition of

the form ).�1(no$pq S p T�r , since such an elision closes the site s (resp. the coname � ), which is open in _ .

Hence by Proposition 79 there is a transition ( S T�UO(t� with ju��3-):�v($� . So ;=�<�=�$(t�w>�xy7 , and we are done.

6.3 Adequate transitions

How essential are all our derived transitions? We know that if we define bisimilarity over the entire set we
get a congruence. What happens if we define it only over a subclass? Every subclass of the transitions gives
rise to a bisimilarity equivalence, and as the class is reduced this equivalence is increased in general. But
it may be that certain reduced classes give rise to the same relation as the full class – which is not only an
equivalence but even a congruence. Let us make this precise:

Definition 81 (adequate transitions) Let z be a class of transitions, i.e. a subclass of the quadruples
�������t{|��� � such that �1S T�UV� � . Then 7 is a z -bisimulation (or bisimulation for z ) if, whenever �<7�( , then
for every transition � S T U}� � in z there exists ( � such that ( S T UO( � and � � 7�( � . let *�~ be the largest z -
bisimulation. Call z adequate if *%~d3�* .

(Note especially that the transition of ( , which matches the z -transition of � , need not itself be in z . This
means that *�~ is in general not transitive.)

We may loosely say that a transition is superfluous if there exists an adequate class not containing it. Now,
we may expect a transition � S T UV� � to be superfluous if ‘ � contributes nothing’ to the redex on which the
transition is based; for then the entire redex is ‘provided by � ’. The tensor product allows us to make this
intuition precise and justify it.
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Definition 82 (tensorial transition) A transition from ������� �
is tensorial if, up to isomorphism, it takes

the form � � 	�

��� ��� ������� , where ����������� is a reaction rule.

Note that the form of the transition implies that � and � have disjoint support; if this were not so, we could
hardly expect a tensorial transitions to be superfluous. In fact, they are so:

Proposition 83 (non-tensorial transitions are adequate) The class �! of non-tensorial transitions is ad-
equate.

Proof (outline) It is enough to show that the following is a bisimulation for all placed transitions:
"$#&% �('*)+�,�-'*)/.0�213' active �4�658739:.<;>=

for then, taking ' as the identity context, we find 5?739A@ " @B5 .

The proof follows the lines Theorem 20. We take an arbitrary transition for 'A)/� , and derive from it the
underlying transition for � by taking an RPO. In case the transition for � is non-tensorial, from �C5D739
. we deduce a matching transition for . , thence one for 'E)/. as in the cited proof. On the other hand

suppose that � ’s transition is tensorial, say � � 	-

��� ��� �8�B��� , where the reaction rule �������F��� has interfaceG
. then – independently of the fact that �H5I739J. – it is easy to construct a matching tensorial transition

. � 	K

��� � � .L����� , and to check that the context .M�ON P+Q which occurs in its IPO is appropriately active. The
proof then proceeds as in the previous case.

We shall now examine the transitions derived for a simple specific BRS, motivated by the R -calculus.

Example 17 (transitions for a simple BRS) Take the signature S #&%�T �VUW�<X?; , all atomic and non-reactive
with arity two. Let there be a single narrow reaction rule:

Y YZ Z[ [
� �]\

^ _ `
a ^4bdcfehgWiLj _ b�gkehl�i�m � gkn ` bdcfe]l�i

We enumerate the kinds of transition possible for a narrow agent �o�f�f�qpsr��-tvu ; without loss of generality
we assume wx��y��
z|{} t . The enumeration is based upon the extent of node-sharing between � and � . If � has
non-empty node-set we obtain five kinds of transitions for � , four of which are non-tensorial. The transition
labels are shown in the following diagrams. Any names in t not shown in the diagrams are exported to the
outer interface; we have indicated this by a double line.

a
~ m

[� �Y �(SUPERFLUOUS)
�

a�~ m�j � a�~ j _ bd�2e]l�i�m a ^4bdcfe���i�j ~ m ��� � e�� �
_

�
^

� � \�
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The transitions arise as follows:

No nodes shared There is one transition: � � ����� � �
	���
 ������� . It may also be written ��� ����� � ��	���
 ������� ,
which we recognise as tensorial – hence superfluous. Note especially that this is the only label with
two regions; the reaction � � ��� occurs ‘alongside’ � without merging with it.

One node shared If the � -node is shared, then its right-hand port must be open in � , at  say, and the
unique IPO of the pair �"!#� equates  with $ and contains just an % -atom. The transition takes the

form � � �&� ')(+*-, .�/0� � 	�1�
 � � . Similarly, if the % -node is shared there is a transition � �324(657, *8/9� ��� � 	�1�
 � � .
Both nodes shared There are two cases. If the � - and % -nodes are already linked in � , then there is a tran-

sition of the form � � ��� � 	�1�
 � � ; this corresponds to a : transition in CCS. Otherwise the two nodes are

open in � , say at  and  ;� , and there is a transition of form � <4= < > < ?
�)	�1�
 �4� ; in explicit fusions [11]

this is a fusion supplied by the context.

If � has an empty node-set we have �A@CBED�!�FHG , and it has only a (superfluous) tensorial transition.

If � is not narrow then there is one other type of transition, when both nodes are shared but are in different
regions of � ; these regions are coalesced by the ‘label’ context. We omit the details.

The transitions for this example are simple because we excluded all elisions by choosing a redex � to be
open and atomic – for then every transition label I is also open and atomic.

Another simplicity in the present example is that in a non-superfluous transition �KJ ��L �M� , if � is narrow
then so is I , hence also � � ; thus bisimulations for narrow agents need involve only narrow agents. This, in
turn, means that placed transitions degenerate to pure transitions; so in this case the addition of places has
not increased the discriminating power of transitions.

6.4 Engaged transitions

Example 17 also provides insight for our next topic. All its non-superfluous transitions are such that the
underlying reaction rule is engaged by the agent � , in the sense that one or more nodes are shared between� and � . The place component of transitions allows us to make this phenomenon precise:

Definition 84 (engaged) A transition �NJ ��L �4� , where �POMQ4RSBUT�!#VWG , is engaged if XZY []\)^`_aIcbd_UTeb�fhg�i@kj ;
otherwise it is disengaged.

It is not immediately clear that, if a transition of � is engaged, then � shares with the redex � of the underlying
reaction rule. Indeed it is misleading to speak of ‘the’ underlying rule; for in general a single transition may
arise from different rules. In spite of this, however, we can show that if a transition of � is engaged then
the redex of any underlying rule will share with � . In fact we get a stronger result, providing another
characterisation of ‘engaged’:

Proposition 85 (engaged means sharing nodes) Let Il!�m be any IPO for �n!#� underlying the transition
��J � L � � . Then the transition is engaged iff � �o�efp� �q�8i@kj .
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Proof We proceed by induction on the size of the interface ���������
	�� of 
 , taking the basis of the induction
to be when 
 is epi. In that case it is easy to show, from the construction of IPOs, that ��� �������������������! #"�%$
iff (the transition is tensorial) iff & 
'&(�)& *+&,"�%$ .
For the inductive step, we must consider transitions of -��/.102
 and of -��43506
 . We shall treat only the
former, since the second is simpler. So suppose -7�8.90:
%; <>=1-�? , with underlying IPO @A�
B for -C�>* , where
- and * have widths .1D6� and E . From Proposition 79 there are two cases of how this arises from an IPO
for 
F�>* :
Case @A�
BG�H� ��I�0J�7�9.F0JK , where �7�
K is an IPO for 
F�>* : Then the latter underlies a transition 
4L <
MN
�?
for which we may assume the proposition as inductive hypothesis. We need to show that ��� �O�P�Q�R@S���T.UDV���W�X "�%$ iff &Y.'0Z
'&[�!& *+&�"�4$ . Now X �\��� �����]�>�T.102K^�>�_�`EV� , so ��� �������R@S���T.'DJ�(�]� X �8.ba_���c� �O�P�W�����������Q�� ,� ;
also &Y.102
�&��G& 
�& . The required result then follows from the inductive hypothesis.

Case @A�
Bd�fe�I
�7�
K , where �7�
K is an IPO for 
+�>* : Again this IPO underlies a transition of 
 for which
we may assume the proposition. The inductive argument is similar to the previous case, using the fact that
��� �O�P�]�`e�Ig���_�T.10#�(�h�\��� ����������������� .

Engaged transitions are a smaller class than non-tensorial transitions; for they exclude not only tensorial
transitions but also elided tensorial transitions. It is therefore useful to know when the class of engaged
transitions is adequate. Here is a simple example of a BRS in which it is not adequate:

Example 18 (need for disengaged transitions) Take the signature iH�kj�lm�(n]��oqp , each atomic with arity
one, and a single reaction rule �`*r�>* ? �(.�� with *s�%t�3buwv_l1�`3'�x&]nW�`3���y and * ? �8. . Then the class z of engaged
transitions is not adequate. To see this, let 
��\3{&�. and -7�%|}�`3�� .

~ ~

�7�#���F�Y���b�w�]�N���O�w�]�r� �������w�]����)����� �6�6���b�w� �h���O��� �h���A�
� �� ~��

First, it is easy to check that 
�0�� and -10�� have no z -transitions for any �\��� , except tensorial ones.
Then one may show that jQ��
S0��h�g-h0��b�x&C�)���]p is a z -bisimulation, hence 
�����- .
Next, take ��� v_l¡�`3 �¢&£nW�`3 �¢&1¤¢y . Then 
 has the disengaged transition 
 L <P¥[¦g§¨. , while - has no �
transition; hence 
:"�%- .
Note that this transition is also elisive; so in this BRS any adequate set must contain elisive transitions.

The key feature of this example is that the redex has a closed port. Now it is easy to show that if a redex
is open and atomic then so is the label of any transition based upon it; we therefore deduce the following
immediately from Proposition 83:

Proposition 86 (engaged transitions are adequate for open atomic redexes) In a BRS in which every re-
dex is open and atomic, the class of engaged transitions is adequate.

The advantage of being able to limit attention to engaged transitions is considerable. We conjecture that this
will also be possible for certain BRSs with parametric reaction rules, as defined in the next subsection.
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Figure 12: Communication in the synchronous ? -calculus

6.5 Parametric reaction and binding

Hitherto we have worked only with ground reaction rules @BA�CDA � C
E!F , composed of agents. We have given
examples (Examples 2, 3 and 4) of parametric rules, but we have avoided defining their meaning. In this
final subsection we propose a general definition for a parametric rule @HGIC$G � C
EJF , where GIC$G � are contexts.
The definition is conjectural, because further investigation is needed to see how well it behaves in practice.
We finish with a brief discussion of binding, in preparation for further research.

Let us first look at two more parametric rules pertaining to the ? -calculus: communication in the syn-
chronous calculus, and replicated input in the asynchronous calculus.

Example 19 (summation and replication in ? -calculus) The rule for communication in the (original) syn-
chronous ? -calculus [24]

@LKNM OQPBR0S
T'U�FWV0@HXYMZO[@H\]F
T_^2F 4 U`V]a � 5�6cb ^
employs summation, and has four parameters of which two are discarded by the reaction and one is subjected
to a substitution. To represent this rule, we add M as a non-atomic inactive control to the signature of
Example 2. The rule is shown in Figure 12, both as a diagram and in the term language.

Anyone familiar with the ? -calculus may be puzzled to see the parallel product, ‘ V ’, appear in the rule under
summation. It is not really surprising; the operator is best understood as ‘place the processes side-by-side,
sharing any names free in both’. In the absence of any surrounding inactive control, this implies ‘. . . and let
the processes run concurrently’, and that is what happens, both here and in the ? -calculus. Indeed, many
derivatives of the ? -calculus – especially the asynchronous calculus – dispense with summation, since its
power can usually be simulated by other constructions.

Turning to replication, for simplicity we revert to the asynchronous calculus. Traditionally, replication has
been dealt with in two ways: Either the structural congruence rule UYV ! Ued ! U is introduced, avoiding the
need for a special reaction rule for replication, or an inductive transition rule such as

U`V ! Ugf 4 U �
! Uhf 4 U �

is used, where i is drawn from a given family of labels (including j to represent reaction). The latter ap-
proach is not open to us, since we mean to derive labels; the former approach involves imposing a structural
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Figure 13: Replication in the asynchronous + -calculus

congruence upon bigraphs, which has not been studied. For the present, we shall confine ourselves to repli-
cated input, denoted by an extra control ! ,
-%. , non-atomic and inactive with arity one. A rule for this is shown
in Figure 13. This is a simple case of duplicating a factor in the reactum / � of a parametric rule, where the
two copies are subjected to different substitutions. The substitution

� ( � in the term for the reactum qualifies
only one copy of the site, so cannot be lifted to the top level, since the effect would be to broaden its scope
to include two copies. Thus, though our ‘normal-form’ terms suffice to describe linear contexts, they need
slight extension to describe non-linear ones.

Now let us look at two general issues to do with parametric rules. The first is to do with linearity. By
mentioning a context / with inner width 0 as a parametric redex we intend that it has a 0 distinct ‘formal
parameters’, i.e. 0 holes in which to place the distinct factors of any 0 -ary agent 1 with correct interface.
In other words, our parametric rules are left-linear. But a rule need not be linear; we may wish each factor
of 1 to be placed at zero, one or more of the sites of / � . Our three examples in Section 2 are all linear, each
factor appearing exactly once in the reactum; but the example of synchronous communication (Figure 12)
discards two of its four factors, while the replication example (Figure 13) duplicates its only factor.

The second issue is to do with the scope of conames. We can assume that each coname of / is to be used
by exactly one factor of the parameter; for if sharing is required, / can use a co-alias. (See the end of this
subsection for the connection with the binding BRS Bigb

ā introduced in Subsection 5.4.) having required
this discipline, the rule must also cater for of different instantiations of such conames in the reactum.

In fact, a parametric rule must deal with much of the same detail as an analogous rule in term-rewriting,
corresponding to the definition of a second-order (recursive) function 2 . This takes a form such as

243�5 �&6!7!7!7�6 5&8:9<;	= '?>!>!> 5A@B3DC �&6 CE;�= >!>!> 5 � 3DCF@�= >!>!> 5 � 3DC:G�= >!>!> 6
where the right-hand side is an arbitrary expression which applies several of the function parameters 5IH
of 2 , some of them several times, each time with different subexpressions CKJ as arguments. Much of
the complexity of the following definition is present in such functional rules, and not due to our graphical
formalism!

Conjectured definition (parametric reaction rule) A parametric reaction rule for Big ā is a triple of the
form 3A/MLONQPSR 6 / � LON � PTR 6VU = with UXWZY)[ \&] 3^R�= . It generates a set of ground (reaction) rules, defined as
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follows. Let ���������
	�� and ��
�������
��
	�
�� ; then the rule is equipped with
� 	������������ a partition of names, i.e. 	��! #" � 	��$�%�&�'���)(*,+.-
/&0 ��

12� an instantiation map;354 0 	76 8:9<;>= 4@? 12	 
 an instance substitution for each AB��� 
�C

In terms of these, each ground rule takes the form
DED * FHGJILKNMPOEQ � D * F5GRILK 
 M�OEQ 
 �TS M

for some interface U �!�WVX�@YZ� . The redex is required to be epi, and the agents
Q[0]\ 1^U I � andQ 
 0P\ 1ZU I � 
 take the following form for some agent _ 0P\ 1�` I U :

Q � ab` O D _c� QPd ��"e"e"f� Q)gihfjkMQ 
�� ab` O D _c� Q 
 d ��"e"e"f� Q 
g$l�hfj M C
Here

Q
is factorised uniquely according to Proposition 74, with V factors comprised in _ and factors

Q � 0P\ 1
` I Y I �:mX�
	 � � for each �&�'� ; in place of the latter

Q 
 has factors
Q 
4on 3 4 OEQ 6 8p9<;>= 4@? for each AB��� 
 .

The reader may like to work out how the definition specialises to our proposed rules for the q -calculus
(Example 19). In understanding the definition, note these points:

1. In the factorisation of the parameter
Q
, for each �r�s� only the factor

Q � may use the ‘bound’ names
	�� ; thus the intended scoping is respected.

2. For given � there may be more than one copy of
Q � used by

K 
 ; each has a distinct node set (by n ), and
each is subject to a distinct substitution 3�4 ( �t� *,+.-
/ D A M ). This corresponds to the distinct applications
of the function parameter uv� in our functional rewrite rule.

3. However, each factor
Q 
4 in the reactum will share both the restricted names ` and the ‘free’ names

Y shared by all factors in the redex.

4. The factor _ also shares these names; it is included for technical reasons, but can safely be ignored for
the present paper.

Let us now look briefly at the relationship between these parametric rules and the binding BRS Bigb
ā in-

troduced in the previous section (Definition 67). Take for example the rule for communication in the syn-
chronous q -calculus (Example 19); it is only applicable when the binding port of the redex’s w)x / -node is
indeed linked only to ports within the region of that node. But if we work with this rule in Big ā then nothing
prevents other w)x / -nodes, apart from those in redexes, from violating this discipline. Therefore we expect
a closer correspondence with the behavioural theory of the original q -calculus if we work in Bigb

ā. In that
case we would naturally take the reaction rules to be the preimages of our rules in Big ā under the forgetful
functor from Bigb

ā. We leave this question for further research; this will provide a test for our conjectured
definition of parametric rules, as well as for the importance of our derived BRS for binding.

7 Related topics and further work

In this concluding section we first discuss some topics connecting this work with other research; we then
indicate the most immediate lines along which the present theory should develop in its own terms. Finally
we speculate whether and how the theory of concurrency may stabilise.
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We begin by commenting on four topics that have been the focus of considerable research, which should be
explored in relation to bigraphs: causal dependency, locality, graph rewriting and hierarchy.

Causal dependency In this work we have taken bisimilarity, as originally defined for CCS or the � -
calculus, to be typical of the behavioural equivalences and preorders that are guaranteed by our theory to
be congruences. Others were treated in Leifer’s PhD Dissertation [18]. Hitherto we have only considered
behavioural relations which are not sensitive to causal dependency. We would like to extend our study to a
wider class of relations; a good account of their variety and taxonomy may be found in van Glabbeek and
Plotkin [12].13

How can we treat causal dependency in bigraphs, or more abstractly in wide reactive systems? In the � -
calculus it can be done by keeping track of the occurrences of redexes, noting whether they are disjoint. In
WRSs there are two possibilities. First, we may represent the concurrency of two independent transitions
by their tensor product; this corresponds closely to allowing concurrent firings in a Petri net, and indeed
–as was first pointed out by Mesegeur and Montanari [21]– a Petri net can be well modelled by a monoidal
category. Second, we can keep track of successive redex occurrences by means of their supports, i.e. their
node-sets. A small but important change to Definition 15 would be needed. There, transitions � � ��� � �
are closed under support translation (this was in order to derive transitions for the support quotient WRS in
Definition 16); but if we replace � ���
	���
��

by � ���
	���
��
in Definition 15, then we may keep track of the

supports of successive reactions and determine which are disjoint. This deserves further study.

Locality In this paper I have avoided giving a technical meaning to the word location, because it already
has a rich variety of meanings in concurrency. These are thoroughly surveyed by Castellani [3] in the
recently published Handbook of Process Algebras. Her broad classification is into abstract locations which
–crudely simplified– keep track of causal independency (discussed above), and concrete locations which
form an essential ingredient of behaviour (e.g. they can be manipulated as data). Castellani calls a model
distributed if it provides concrete locality.

Bigraphs are distributed in this sense. Their concrete locality, just as in action calculi, consists simply of the
control nodes and their nesting structure. In Castellani’s terms, these nodes are units of distribution. When
bigraphs are specialised to a particular model by a signature and some reaction rules, nodes with a given
control � may be made to function variously as –in Castellani’s terms– units of communication, of mobility,
of security or of failure; it is the reaction rules which determine the role of � -nodes, for each control � .
Take failure as an example. Recalling the conjectural definition of parametric reaction in Subsection 6.5,
one can simply define an active control ������� ����� � (say) with suitable arity, and define reaction rules which
model failure by letting a �!���"� �����#� -node discard its entire contents and report the occurrence; alternatively,
it may mutate into an inactive node with control $&%'��()(*��+ (say), which is susceptible to later resuscitation.
Turning to mobility, we saw in the ambient reaction rule (Example 3) how an ��,.- -node is made to function
as a unit of mobility.

Bigraphs also provide what we may call the composition of locality. Sites and places (Definitions 23, 11) are
not themselves units of mobility (etc), but they provide means by which the concrete locality of a complex

13I avoid here any judgement on the relative merit of equivalences which are causality-sensitive versus those which are not.
It is clear that both are important, for different reasons. In particular, the CCS bisimilarity was adopted to allow a concurrent
process to be semantically equivalent to a sequential one; thus one can improve the efficiency of a program by making it more
concurrent, without changing its semantic equivalence class. This has strong practical and theoretical significance, yet it is precluded
by equivalences that preserve causal dependency. There are equally cogent, but different, reasons to study causality-sensitive
equivalences.
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system can be built up incrementally by categorical composition and tensor product. The notion of width is
an essential part of this toolkit; for example, it allows us to compose a whole distributed system from parts,
each of which may be distributed over that whole.

Graph rewriting There is a well-developed algebraic theory of graph rewriting, especially in relation to
concurrency. The third volume of a recent Handbook [7] is devoted to this topic. A prominent part is played
by the double pushout (DPO) construction introduced by Ehrig [6] for representing rewriting rules, called
here reaction rules. This construction works in what we may call an embedding category, with graphs as
objects and graph morphisms –or embeddings– as arrows. In our terminology, a reaction rule consists of a
pair ���������
	���
������
��� of embeddings, where � is the common part (often a discrete graph) shared by
the redex 	 and reactum � . A reaction � ��� is then defined by a pair of pushouts, as shown.

�� ��

���

�

On the other hand our monographs Mog are contextual precategories, with sets (of names) as objects and
graphs –or graphical contexts– as arrows. A link between these two views of graph rewriting is given by
Gadducci and Heckel [9]. Essentially, each arrow (monograph) ���! "��# of Mog is considered as a pair
of embeddings of  and # (considered as discrete graphs) respectively into � ; then for �$�%#&�(' the
composition �&)*�+�, -�.' is formed by a pushout of the two embeddings of # . Another link between
the views, at least when embeddings are injective on control nodes, was employed by Cattani, Leifer and
Milner [4]; it was shown that a category whose arrows are embeddings is isomorphic to (essentially) the
coslice category /10 Mog. (The contextual category differed slightly, but a similar result should hold for
Mog.) These correspondences suggest linking bigraphs more deeply with the graph-rewriting tradition.

There are considerable differences of purpose, however. A main concern of this work is to derive labelled
transition systems, with graph-contexts as labels, in order to study behavioural congruences. For this purpose
relative pushouts (RPOs) are of prime importance, and we seek these in a contextual –not an embedding–
precategory. At first sight, our use of RPOs has little to do with the DPO construction. But our contex-
tual RPOs are shown in [4] to arise from relative coproducts in the embedding category, via the coslice
isomorphism already mentioned.

Hierarchy Nesting of control nodes was discussed above in connection with locality. There are several
notions of structured and/or hierarchical graphs, some of which (with applications) can be found in the
already cited Handbook [7]. A very different application from ours, but still in concurrency, is Harel’s
statecharts [13]. A statechart is a generalisation of the transition diagram of an automaton, in which the
states have hierarchical structure, represented by the regions of the chart. The difference from bigraphs
is fundamental: a bigraph represents a single distributed state, while a statechart represents the dynamic
behaviour of a whole system. But we may still ask: How alike are the graphs? A pleasant feature of
statecharts is that regions can intersect; for example one structured state of a wristwatch may correspond to
the alarm being set, and another to the day registered being Monday; each of these states has many substates,
and these two sets of substates have a proper intersection – i.e. a (sub)state does not have a unique immediate
superstate.
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Then why have we adopted tree-like topographs, by insisting that each point has a unique parent? The mean-
ing is different from in statecharts, but not wholly different. For example, in the special case of ambients,
it would make good sense for two ambients to have a proper intersection; one might represent the city of
Heraklion, while the other represents the University of Crete (locally known as the ‘longest university in the
world’ and having many campuses in other cities). In other applications of bigraphs, e.g. the � -calculus,
it makes less sense for control nodes to intersect. But since bigraphs are a general model, we would like
to know if our constraint on topography –adopted to avoid tackling too many problems at once– is neces-
sary. The question may not be hard to answer, since the requirements are quite sharp; for example, are the
conditions of a WRS (Definition 12) satisfied if topographs are generalised to directed acyclic graphs?

Variations are possible within the tree-like topography. Drewes, Hoffmann and Plump [5] generalise DPO-
based graph rewriting to hypergraphs in which a subgraph may be assigned to each hyperedge.14 However,
no links can exist between the subgraph and its parent; instead, such links may be formed when the subgraph
is ‘promoted’ to top level as a result of a transformation. With this scheme it is not easy to see how to repre-
sent the ambient calculus, for example. The same limitation holds for the scheme of Hirsch and Montanari
for hyperedge replacement [15]; however, as they show, the scheme permits an encoding of the � -calculus.

Returning to bigraphs, the present work suggests three lines for immediate development:

Matching known calculi The first task is to test bigraph theory against existing calculi, such as the � -
calculus and the ambient calculus, to see how our derived transition systems and equivalences match
those already known. The first step in each case is to enumerate the derived transitions, and then
to look for a subclass of them –such as the engaged transitions (Definition 84)– that constitutes an
adequate set (Definition 81). We would hope to find a correspondence between these and the familiar
transition systems. If this correspondence is close, then the induced behavioural relations (e.g. bisim-
ilarity) are likely to agree; if not, we should try to characterise these relations in terms of the original
definition of the calculus.

For the � -calculus, it is reasonable to expect that we recover the original bisimilarity congruence [24].
The reader may recall that the original bisimilarity equivalence is not quite a congruence, but that
congruence is obtained by closing up under substitutions. Now we can already observe (see Exam-
ple 17) that our derived transitions include some whose labels are just substitutions; so the bigraph
framework begins to explain what is needed to obtain a congruence directly.

Understanding RPOs better Much can be done to improve the RPO theory. At present we only know
about the existence of RPOs in Bigā, which has no aliases. I conjecture that RPOs exist under man-
ageable conditions, in the general case; but I found the proofs –though not easy– to be easier without
aliases, and this restriction also makes examples more tractable. With or without aliases, the RPO
theory ought to be simpler, but at present I do not see how to make it so. One possibility is a more
gradual theory, expressing RPOs and IPOs for compound agents in terms of those for their compo-
nents – i.e. an inductive presentation, which is markedly absent at present. This could link nicely with
the traditional inductive presentation of transition systems.

The reader will have noticed that much of the complexity of IPOs comes from elisions (Definition 78),
which in turn arise from non-epi agents – those with idle names or barren roots. We saw that elisions

14In standard hypergraph terminology our control nodes and names correspond roughly to hyperedges and nodes respectively; I
have preferred the terminology used here partly because control nodes are also nodes of a topograph.
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are needed for congruence in these cases, i.e. the non-elisive transitions are not an adequate set (Defi-
nition 81, Example 18). But it is worth asking why we need non-epi agents; for example, if we could
arrange that the epi property is preserved by reaction then we could work entirely in a the sub-BRS
with only epis (Example 14). We leave this question open.15

Exploring refined BRSs The definition of bigraphs represents a deliberate choice to keep the structures
as simple as possible, consistent with the challenge to find a model for mobile interaction that is
both rigorous and useful. In bigraphs themselves there are no restrictions upon wiring in relation
to locality, arcs are undirected and may branch without constraint, ports are untyped, and so on. In
Section 5 we began to show how these constraints may be incorporated into derived BRSs, paying
special attention to the scoping of names. It remains to be discovered in future work whether this has
the effect of recovering the original bisimilarity of the � -calculus in this new setting. Beyond that,
derived BRSs, in conjunction with specific signatures and reaction rules, seem to offer a very general
way of customising the bigraph model for particular applications while keeping its core theory intact.

Conclusion It is worth reflecting on the timeliness, or otherwise, of trying to find a common conceptual
basis for concurrent calculi. The central concepts underlying bigraphs, connectivity and locality, have be-
come important largely because of technological progress. Computer scientists would not be building these
ideas into languages and calculi if, for some reason, we had remained fixed in the era of the freestand-
ing stored-program computer. So we must ask: What comes next? Will some new concept –enabled by
technology– burst upon us and render our theoretical efforts obsolete? Do we have any right to believe that
the quest for a stable science of concurrent processes will converge?

There are three reasons for optimism. First, both connectivity and locality16 have been studied for a long
time, and their technological importance has increased during that time. So whatever other concepts become
important, these two are likely to persist. Second, they are both yielding to mathematical and logical treat-
ment via calculi of one kind or another, and tractable mathematical models lead to stable theories. Finally,
because tractable models are good for thinking in (which is their purpose), industrial designers have an in-
centive to adopt these models in structuring their designs and are beginning to do so; in other words, they
begin to use the models to mould the new technology into shape. We can hope for a science of concurrency
to stabilise, step by step, through this dialectic between theory and implementation.
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APPENDICES





A RPOs and IPOs in topographs

In this appendix we first prove that RPOs always exist in the category Top of topographs, as required for
Subsection 4.1. Then we enumerate all the IPOs for any pair

��
of topographs with common domain.

Let
�������� ��

and
�� �	�����


be two pairs of topographs, with
��

a bound for
��
. Then the nodes may be

partitioned into four sets: �
� common to
� � and

� �
( ��������� ), ��� common to

���
and

���
and ��� common to� �

and
� �

. From now on we shall consistently use ��� �!�#"� �%$%$%$ to range over ��� ( �&�������'�)(*�)+ ). We shall also
take a simplifying liberty; we shall just treat the case in which

� �,� , since the sites in
�

are treated by
the construction exactly as members of �-� . It comes to the same thing if we think of �*�.�!�#"� $%$%$ ranging over�0/ 1 � � .
We now seek an RPO 2 �3 � 354

for
��

w.r.t.
��
. We begin by constructing

3 � �6� � �87�
( ���9����� ).

:<;
=
>

? ;
@: ACB%DFEACB'G�H IJB%DFE?LK ACB%M�H IJB�DFE

N ;ACB'G�H IJB�O!E
P K ACB%MFEP ;AQBRGSEN KAQB%M
H IJBTO!E

: K

First we fix the node set of
3 � to be � � , as shown. Next, we have to define the multiplicity

7�
, and we do

this in two stages. First, we select those roots in
� � which must be “exported” via

7�
, because their parents

in
� � lie outside � � : � "�VU W�X<Y � �&Z � �!2 X 4 Y �[� / 1�
]\ $

These will provide the members of
7�

; furthermore, in
7�

we shall equate any pair of them which are parents
of the same node in � � . So our second stage is to define an equivalence on

� " �_^ � " � and divide by it to
obtain

7�
: ` U W 2!ab��� X �Rc �Ta �'� X �dc 4 Z � � 2e�J� 4 � X � Y � "� 2e�f������� 4 for some �6� \.g7� U 2 � " � ^ � " � 4!h ` $

We are now ready to define the legs
�3

of our RPO. It helps to think of
3 �

, for example, as follows; on nodes
in � �

it imitates
� �

, while on sites in
� �

it imitates
� �

as far as it can.

Construction 87 (RPO legs) We define
3 �

(
3 �

is similar):3 � 2e� � 4 U ikj
if

j Y � �l a �'� j cnmbo
if

j Y � �qp where
j � ��� 2e� � 43 � 2 X � 4 U ikj

if
j Y � �l ab��� X �Rcnm o if
j Y ��� / 1�
 p where

j � � � 2 X � 4 $
Note that this definition is good. For in the first case the equation

� �srt�u� � � �[rt���
ensures that if

j �� � 2e� � 4 is in
� �

then
� � 2 j 4 Y � � / 1[


, hence
j Y � " � ; in the second case the condition

j Y � � / 1�

similarly

63



ensures ������� �� . It is also easy to check that no atomic node has become a parent in �	� , assuming that both
��
and 
�� have this property.

We now prove the first property required of an RPO.

Proposition 88 (RPO legs are a bound) ����� 
 ����� � � 
�� .

Proof Let 
���
���� 
 ����
 � � 
�� . The possible arguments � for the parent function of ����� 
 � lie in
����� �"! #$� � ! #$�&% . Consider cases (omitting symmetric ones) for the pair '(�*),+.- , where +/��
0'(�1- :
Case ���2�&�3),+4�2�&� . Then +5� 
 �6'(�6�7- , so '8� � � 
�� -9'(�:-;��� � '(�1-;�<+5� 
 �6'(�1-=�>'8�.�*� 
 �7-9'(�1- .
Case ���2�&�3),+4�2� � ! #?� % . Contradicts 
@��� 
 ���/
 � � 
�� .
Case �5�A�&�B),+C�>� DE! # F . Then for some ���G�5�H� we have


 �I'(�:-��J�7� and 
��K'(���7-L��+ , whence
'8�.��� 
 �M-9'(�:-N���.�6'(�7�7-;�>OQP8R:),�7�TSVUXWY�<� � '(�1-;�>'8� � � 
�� -9'(�1- .

Case ���Z�&%�),+>�Z�&� . Then '8�.��� 
 �7-9'(�1-N� 
 �6'(�1-N�/+ ; also for some � � �H� �
we have


�� '(�:-N��� � and

 � '(� � -=�<+ , whence '8� � � 
 � -9'(�:-;��� � '(� � -;��+ .

Case ���2� % ),+4�2� % . Then

 � '(�:-N�<+5� 
 � '(�1- , whence '8� � � 
 � -9'(�:-N�<+5�>'8� � � 
 � -9'(�:- .

Case �[�\�&%L),+]�^� DE! #*F . Then

 �,'(�:-��_�7� ( `0�aR:)Mb ) where P8R:),���7S�cdPebK),� � S , so '8�.��� 
 �7-9'(�1-��

'8� � � 
�� -9'(�:-N�>OQP(`f),�M�VSVUXW .

For later use we record an important property of g� :

Proposition 89 (RPO legs keep an epi) If

	�

is epi then ��� is epi.

Proof Consider �2�4h� ; there exists either i6�L�G� �� with P8R:)ji��7S��k� and ���\�.�I'li7�M- , or i � �k� � �
with

PebK)ji � S��m� . In the latter case, as

n�

has no barren roots, either i � � 
�� '(� � - for some � � �o� � , in which
case by construction �������6'(� � - , or i � � 
�� '(�K%7- for some �6%��Z� % . In the latter case, since i � ��� � �

, there
exists i���� 
 �6'(�6%7-E��� �� with P8R:)ji��7SE��� , and again ���/�.�6'li��M- . Thus p is not barren in ��� .

Now, instead of directly defining the head � of our RPO, we shall consider any candidate ' gq ) q - , i.e. a triple
of topographs such that

q �*� 
 ��� q � � 
�� and
q � q �r�5
3� ( `$�5R:)Mb ), and define a mediating topograph hq

such that hq �1�@�s� q � ( `?��R:)Mb ).
t

u;v uxw

y v y w

z w

z

{ v { w

|y
z v |z

}

~ w~ v |~

64



Construction 90 (RPO mediator) Let the triple ����������
be such that

�
	���
�	���������
��
and

�������������
( � ����� �

), with
���"!$#%�'&)(

( � ����� �
) and

�)!�(�&�*
. Let +�, � +.-
/ 01+32 , where + 45/ 0�+�- is the node set of�"�

( � ����� �
) and +32 the node set of

�
. Then the mediator 6�)! 6#�&)(

is defined as follows, noting that its
parent function is 6�7! 6# / 01+.- & +.-
/ 0 ( :

6� �98 - �;: � � �98 - � for 8 -=< + - �9� �>��� �?�
6� �A@ �;: �"� �9B �C� for D9� � B �CE < @ < 6# �9� �F��� �?�HG

This definition is good, for we have
��	 �98I- �J� � ��	K��
L	?� �98M- �J� � ������
=�N� �98M- �J�O��� �98M- � , and also if

D ��� B 	PE"Q D �M� B �NE with B �R�S
�� �98'T � ( � �>��� �
) then

�
	 �9B 	?�U� � ��	���
�	?� �98'T �H� � ���.��
��N� �98'T �H����� �9B �N� . It is
also easy to check that no atomic node has become a parent in 6� .

Proposition 91 (RPO mediator respects bounds) If 6� is a mediator for the candidate � ��V���W�
, as defined

in Construction 90, then 6� is the unique topograph X for which X ��Y=�Z�S�"�
( � �F��� �

).

Proof Unicity is simple: the definition of 6� is determined by the condition X ��Y[���S�"�
since �\X �.Y��]� �98I- ���

6� �98M- � , and also if D9� � B �CE < @ < 6# then �\X ��Y��]� �9B �C�U� X^�A@ � .
We now check that � 6�_�.Y�	?� �9` �
����	 �9` �

for all ` < #a	 / 01+ � / 0�+�- . We have already proved the equation
when ` < #ab	 / 0U+�- , so two cases remain:

Case ` � B 	 < #a	�c.# b	
. Then

�L	 �9B 	?� < + � , so using
�_�3�
	V�)�L	

we have � 6�_��Yd	e� �9B 	?���)Yd	 �9B 	?���
� 	 �9B 	 �H�S� 	 �9B 	 � .
Case ` � 8 � < + � . If

� 	 �98 � � < + � we argue as in the previous case. Otherwise
� 	 �98 � � < + , / 0 * ,

so
Yd	 �98 �N�f� D �M�g
=� �98 �N�hE and we have �'6�_��Yd	 � �98 �e��� 6� D �M�g
�� �98 �N�hEW�i��� � 
=� �98 �N�h�f� � ���.��
��j� �98 �k�W�

� ��	5��
L	 � �98 �k���S��	 �98 ��� .
Now we observe that, trivially, � ��l�km nPop�

is a candidate. Hence

Corollary 92 (RPO head respects bounds) Let 6�q! 6#r&r*
be the special case of 6� , as defined in Con-

struction 90, in which
(s�t*

,
�
�u�F���

and
����m nPo

, so that

6� �98M, �v: ��� �98', � for 8', < +.,��9� �F��� �?�
6� �A@ �v: ��� �9B �C� for D9� � B �CE < @ < 6# �9� �F��� �?�HG

Then 6�w��Y����F���
( � �F��� �

).

(Of course we can also claim that 6� is unique with this property, but we do not need to do so.) We are now
ready to complete the definition of our RPO:

Construction 93 (RPO head) An RPO � �Yl�gYx�
for �
 w.r.t. �� is defined by taking �Y as in Construction 87

and setting
Yr: 6� .

It remains to complete the proof of the following:

Proposition 94 (unique RPO mediator) For any candidate RPO �U��V�����
, the mediator 6� is the unique X

such that X �.Y��u�F���
( � �F��� �

) and
��� X �FY

.
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Proof We know already that �� is unique such that ��������	��
��
; recalling our definition of

�
, it only

remains to prove that
��� ��
� �
 . Consider the possible arguments ��� ���� ����� :

Case � ��� � �� . Then say �����! #"%$&� � with  %"'� �)(" , so

 "+*, -"-.&� �/�0� �/1 ; moreover �� * � . ��� "2*, -"-. .

We now distinguish two cases, and use

 " �3���4� " . If


 "+*, -"-.5� ��6 then

 "+*, -"-. � * ���/� "-.7*, -"-. �� "2*, -"-. � �� * � . , so * �8� �� .7* � . � �� * � . ��
 "2*, -"-. � �
 * � . . On the other hand if


 "+*, -"9.:� �<;=� �/1 then
 " *, " . �
� * � " *, " .!. where
� " *, " . � �� * � .>�)? , so * �8� �� .7* � . �@� * �� * � .!. �A
 " *, " . � �
 * � . .

Case � �CB 6 � � 6 . Then * ��� �� .7* B 6 . � �� * B 6 . �
� " * B 6 . � * �8�/� " .7* B 6 . �A
 " * B 6 . � �
 * B 6 . .
Case � �CB ; � � ; . Then * ��� �� .7* B ; . �
� * B ; . � * ���/� " .7* B ; . �A
 " * B ; . � �
 * B ; . .
We have therefore established

Theorem 95 (topographs always have RPOs) Let DE@F �HG D� and D
 F D�HGH1 be two pairs of topographs,
with D
 a bound for DE . Then the triple * D� � � . defined in Constructions 87 and 93 is an RPO for DE w.r.t. D
 .

For practical purposes we need to go further. Given a pair DE with common domain, we would like a
construction which yields all its IPOs; then when

EJI
is a redex, we shall know all the labelled transitions ofE " . It turns out that there is a finite, usually small, number of IPOs for given consistent pair DE . In fact, if

both components are epi – i.e. they have no barren roots – then there is exactly one, which is therefore not
only an IPO but a pushout. In general though, at least one of the pair may have barren roots, and we find
that these alone lead to the existence of a larger family of IPOs.

Now, recall the three consistency conditions defined in Definition 29. Under these conditions, we now
construct one or more IPOs for DE . The construction rests on (and justifies) the claim that the IPO DK is fully
determined by DE , except for the value to which

K �
maps the barren roots of

E �
; indeed, it may map a barren

root to any
B L � � L , or to a root of

K �
.

Construction 96 (IPOs in topographs) Assume the consistency conditions (C1) - (C3) for the pair of
topographs DEMFON G D� . We define a family of IPOs for DE as follows.

For P � ���9Q choose any subset R �TS � � whose members are all barren in
E �

. Set U �V� � �XW R � ; then define U (�
and an equivalence over U ("ZY U ( I byU (�\[ ]  J�^U �Z_9`aB2bdc E � * B2b . �  fe E L * B2b .0� � Lhgi [ ] *!�����! -"#$j�-�kQd�! I $!. _+lmB2b#c E � * B2b . �  � �^U (� for P � ���9Q g#noc
Take ? [ *pU ("qY U ( I .!r i . Choose two functions s � F R � Gt� L , arbitrary except that s � *, +. is non-atomic for all u�8R � . Then define topographs

K � F � � G ? with node sets � L , whose parent functions extend the chosen
functions s � as follows (we give

K " ; K I is similar):K "2* B I . [ v � if ��� � Iw �kQd�!�x$zy|{ if ��� � I~} where � � E&I * B I .K "2*, -"-. [ ���� E�I * B2b . if  %"��5U+" W U (" � for some
B+b

with
E "+* B2b . �  %"w �����! -"%$zy|{ if  %"��5U ("s+"2*, -"-. if  %"��)R7" c

This defines an IPO DK F D�HG ? for every chosen quadruple *|R � ��s � F R � G�� L . ( P � ���9Q ).
The functions s � are called elisions in Definition 78. This refers to the fact that the barren roots � � in

E �
are

not exported in the IPO interface ? , but instead mapped into the body of
���

.
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To validate this definition we first have to show that the definition of ��� is good and unambiguous. Thus
in the second clause for �������	��
 we must ensure that ��
����� , and in the first clause for ����������
 we must
ensure that a ��� exists such that ����������
������ , and that each such ��� yields the same value � ��������
 in !"� . The
consistency conditions do ensure this; they also ensure that �#�%$��&�'���(�)$*�+� , so they are indeed sufficient
for consistency. The main validation lies in the following theorem.

Theorem 97 (characterizing IPOs for topographs) A pair ,�.- ,/1032 is an IPO for ,�4-%5 0 ,/ iff it is
generated by Construction 96.

Proof (outline) ( 6 ) Take ,7 � ,� in Construction 87 which constructs the legs of an RPO ,8 for ,� w.r.t.
,7 ; then show that ,8 �9,� , up to isomorphism of their codomains.

( : ) Take the legs ,8 of an arbitrary RPO for ,� w.r.t. ,7 , as constructed in Construction 87; then apply
Construction 96 with the choice

;=<.> ? �@
 / <BA � barren in � <DC 7 < ����
E
F! GIHJ < - ;=< 0 ! G > 7 <�KL;M<ON

then show that the construction produces ,� equal to ,8 up to isomorphism.
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B IPOs in edge nets

In this appendix we characterise all the IPOs in Edgā, as required for Subsection 4.2. Section B.1 contains
general definitions and properties; Section B.2 derives a pushout for any consistent pair �� of epimorphisms;
Section B.3 characterises the IPOs for any consistent pair.

B.1 Basic properties

We recall from Section 4 the definitions of edge nets and their precategory, Definitions 36 and 37. As in
Subsection 4.2 we examine an arbitrary pair �������� �� , and we adopt the conventions stated there; in
particular we assume w.l.o.g that

�
is empty, since the constructions here treat any conames in

�
exactly

as if they were shared inner ports.

In Subsection 4.2 we asserted that the consistency conditions (O1) and (O2) of Definition 43 are necessary
for �� to have a bound; we now give a construction which yields a bound under those conditions.

Construction 98 (bound) Given ��	��
�� �� , we define a bound �
 � �� ���
as follows:

The inner port set of

��

will be � � .
The set of names in

���
which are be exported via the bound’s co-domain

�
is defined as follows:

������������������ � � �"!$#%�&!
open in

� �('*)
We define an equivalence relation over

���+�, ��.-
, and take

�
to be its quotient:

/ � ��01�"+324��-657�3�"+ � +8�&! � -9��-
for some

�&! '�:� � 0 ���+�, ��.-654; / )
Then we extend / to

���+�, ��.-<, �
by declaring that

�&� />= �"�@?@A
.

Finally the parents functions of �
 are defined by


B�C�D0 � +FE � -GE / 5GH�� � H � �IH � ! )
Before justifying this construction we prove an important lemma about it:

Lemma 99 Assume �� satisfies (O1) and (O2). If
�J+ � +K�&! � -9��-

, then
�&+ML ���+

,
��-NL ��.-

and
�&+ / �O-

.

Proof Note that
�P!

open in
� -

. Suppose
�&+BQL ���+

; then for some
�"R!

we have
�&+ � +8��R!

and
�"R!

closed in
� -

.
Then

�&! � +8� R !
, so (O2) implies that

�P!S2T� R !
are either both open or both closed in

� -
, yielding a contradiction.

Hence
�&+ML ���+

; similarly
�U-NL ��.-

, and so
�&+ / ��-

by definition.

We now validate our construction under the consistency conditions:

Proposition 100 (consistency in edge nets) In both Edg and Edgā, the pair �� is consistent iff the condi-
tions (O1) and (O2) hold.
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Proof The necessity of the conditions is straightforward; they can easily be deduced using the equation���������	�
���
�
���
where

��
is any bound for

��
. For sufficiency, we shall show that the conditions imply

that � ��������� � �
�
��� for the pair
�� defined in Construction 98.

By symmetry it will be enough to prove � ���
��������
, where

��������������������� "!$#%��!$#&�
. Now from

definitions and a simple manipulation of restriction we have

� �'�������(�����)�������)�*���+ ,!.-/�0!.-213�4�� ,!5#%�0!5#&��6
Abbreviate

�����7�����+ ,!.-2�5!.-21
to
���

. Noting that
�98:�;�)�*���

, it immediately follows that � �������<8=��
.

It remains to show the converse, that
�������>���?���� @!
#%�5!A#&��8(�����7� ���B���� @!
#%�5!A#&�

. So, from a lub
chain for the former, we must eliminate all

�	�
-links in favour of instances of

�<�
,
���

and
�

.

Case C �D����EF� . Immediately C � ���GEF� .
Case C �H���GE'1 . Then there must be a left adjacent instance of

�
, hence C ��I �#&� . So

E'1
is open in

���
, sayE 1 � � C � , and by Lemma 99 we deduce a replacement C � � C � � � E 1 .

Case
E � � � E$J �

. Immediately
E � � � E �

.

Case
E � � � E 1

. By (O1) we have
E 1

open in
� �

, say
E 1 � � C � , and we deduce

E � � � C � � � E 1 .
Case

E 1 � � E$J1
. By (O2) we have

E 1LK E$J1
open in

� �
, say

E 1 � � C � and
E'J1 � � C � ; hence

E 1 � � C � � � C J � � � E$J1 .
This completes the proof that

�� is a bound for
��
, at least in Edg. But it is straightforward to prove that if

��
has no aliases then

�� has no aliases; hence it is a bound in Edgā also.

So far we have looked at both Edg and Edgā. We end this section with a useful property of composition in
Edgā.

Lemma 101 Let
�NM�O PQ#

and R M5#SPUT
be edge nets in Edgā with disjoint port-sets

-
and V . LetE K E J

range over
OXW:-

, C K C J over
#

and Y K Y J over V WZT . Then�\[@ E2� R �$�; Y ] E�� C�R^Y for some C I&#�G_` aE2� R �
�< bE$J ] E��?E$J
or
E'� C'R^C Jc�BE$J for some C K C J�I�#�Gd` Y � R �
�; Y J ] Y"R	Y J 6

B.2 IPOs for epis in Edgā

In this section we shall deal with the case of a consistent pair
��

in which both components are epis; in fact
we shall find that it possesses a unique IPO, i.e. a pushout.

Theorem 102 (pushouts for epis in edge nets) If
��

is consistent pair of epis in Edgā, then the pair
��

defined in Construction 98 is a pushout for
��
.

Proof Let
��XM �#ePQf

be any bound for
��

in Edgā. We must show that there exists a unique arrow�
M`T4PNf
such that

�g� �ih �j� h ( k �jl K [ ).
Suppose that

� h has inner ports
- m�n o3-/p

; then we define
�

with inner ports
-?p

as follows:�� h � ���&qr��-2p�n o*�#%�@ s�
i=0,1

 
���1t� u5� C � K C �+ �I �#%�<v �#&��w0xyE h 6 C'h � h E h � m C m for some k I�u@l K [Lz{zL|� � �"����)�}��<�~�����1s�&�� ,!5#%�5!5#&��6
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We first record a few useful facts, some of which depend on the fact that no ��� is idle in
� � :

(1) ��� � �����	�
�����

� �

(2) �����������	�
�����

� �

(3) ������������ ������� ������
(4) � ��� ���� ��� � � � ����
(5) ������������ ���������


� �	������ �

� � �"!

To prove �$#&%('*)+�,' , first note that by manipulation of restrictions

�-#&% '/. �


� '10



�*2 0



�,3 0


� '40

� 2 0 � �6587 ' 58793:5 � 2;58<=!

So from a lub chain for this relation we must transform all links except instances of


� ' . Most transformations

are simple. We indicate whenever they use one of the above facts, or non-idleness, but we do not flag uses
of the equation � ' # � '>. �?2&# � 2 .
We begin by eliminating



�,3 -links. It is enough to consider the two generating instances, as follows:

Case �@' � 'A�@'B� 2 � 2 . Since � 2 is not idle, either � 2 � 2 � 2 and using Lemma 99 we deduce CEDGFHDIC�JDLK C4M ,
or �N2 � 2��@3 and we deduce C D F D�O4MQPRM C M .

Case � ' � ' ��2 � 2S��2 . No replacement needed.

We now have a lub chain in TU� 'IV


�?2 V � 'IV � 2 V �HW . Eliminating



�*2 -links:

Case �@�


�?2X� �� . From (3) deduce O"Y F D6O�JY .

Case � �


� 2 � 2 . Since � 2 is not idle, for some �Z�[7�']\ ^97 3 deduce O Y_FHD_C�D P D O`P MaC4M .

Case � 2


� 2 ��� 2 . Since � 2 V ��� 2 are not idle, we have � 2 � 2 � and ��� 2 � 2 ��� for some � V ���*�b7 2 \ ^97 3 . There

are several cases; with the help of Lemma 99 deduce C MQPRMcO4M F D�O�J M PdM C J M , or C MQPRMSO4M F D C D K C J M , or
C M K C D F D C D K C�J M , or C MQPRMcO`eIPfD6O J e PRM C�J M .

We now have an lub chain for �g� '�0 � ']0 � 2 0 � �;5h7 ' 5�7�3i5 � 2G5h< . In eliminating
� 2 -links, we have to

consider possible adjacent links:

Case �@3 � 2X� � 3 . Deduce O`eIPjD6O�Je or O`e_PjD C D F D C J D PjD6O�Je .

Case � 3 � 2 � 2 . Deduce O e P D_C�DGFkD O M .

Case � 3 � 2 � 2 . There must be a left adjacent
� ' -link; if it is �l' � 'A� 3 then by Lemma 99 replace �	' � 'A� 3 � 2 � 2

by C D K C M , and if it is � � 3 � ' ��3 then replace � � 3 � ' ��3 � 2S��2 by O�Je PjD C D K C M .

Case �N2 � 2X� � 2 . Deduce O4M F D�O�J M .

Case �N2 � 2S�N2 . There must be a right adjacent link ��2 �nm , where also �N2 � 2X��3 � ' � ' �nm . Then replace
��2 � 2S��2 �om by O4M F D C D K�p .

We now have a lub chain for �g� '�0 � '�0 � �q5;7 ' 5;793a5 � 2B5;< . But no
� ' -links can remain; for it cannot be an

alias, and otherwise it involves 7 ' or 793 so cannot be an end link, and no neighbouring
� ' - or � -link can

involve 7 ' or 793 . We therefore have a lub chain for �g� '�0 � �r5 � 2B5a< . But the support of � is
� 'ls � 2 s < ,

and ��' has support disjoint from
� 2 and < ; so the only possible � -link has the form ��' � ���' , from which

by (4) we deduce C D F D C J D . This completes the proof that �$#&% ' )+� ' .

To prove �,'*)+�-#�%t' , we have to deduce from each instance of �*' a lub chain for �


��' 0



� 2 0



� 3 0


� ' 0
� 2 0 � �6587 ' 587�3u5 � 2I58< .

70



Case ���������	�� . Then 
�� 
��� 
��� .
Case ����������� . Then ������������������� , and ���! 
" � by (2), so 
�� 
�$#&%'#)(*#)+,# .
Case ���������-� . Then ���, 
" � by (2), so 
�� 
���.%/� .
Case �������0� � � Then ���213���546���879� � � , so either 
 #2(*# 
 � # or ����������������� � � �:�;� � � ; in the latter case �<�&=�� � �  


" �
by (1) and (5), hence 
 #&(*#2%'#)�$#&% � # 
�� # .
Case �����>���-� , ���@? 
" � . Then ���������-A for some ��A closed in �:� ; so �-AB13���645�:�879� � A , hence �-A��:�C� �A , hence

 #2(*# 
�D (E�B%/� .
Case �����>����� , ���F 
" � . Since ��� is not idle in �G� there are two cases: If �H�I�,�J�-� then ���213���546�:��79��� so
�����:���������C�-� , with ���K 
" � by (1), so 
 #)(L#2%'# 
� D %/� . If ����������A then ���213���546�:��79��A , so either 
 #)(*# 
�D
or � � � � � � � � � � � � � � A ; in the latter case � � =�� � �  


" � by (1) and (5), and � �NM � � � by Lemma 99, so

 #2(*# 
�F#2% � #KO %/�

.

Case ���I���8�-�� , ����? 

" � . Then ����������A and �-�� �,���	�A with ���P=��-�� closed in �:� , and also ��AQ13���645�:��79�-�A ; hence

�-A��:�C� �A , so
%/�Q(R� 
�D (*# 
 � D (E�B% �� .

Case � � � � � � � , � �  

" � . Then

% � 
� � % � � by (5).

This completes the proof that �S46T$U�VW�>U ( XYV[Z\=&] ). It follows that � has no aliases, since an alias for �
would be preserved by the composition as an alias for � U , so it is any arrow in Edgā. Furthermore, if any �^�
satisfies these equations then � � V_� since the T U are epis. Thus `T is a pushout for `� .

B.3 Further IPOs in Edgā

We shall now characterise the IPOs for any pair `� with common domain. In this subsection we use some of
the notations introduced at the start of Section 6.

We begin with a simple lemma.

Lemma 103 If `a is an IPO for `� , then
a � and

a � have no inner ports in common.

Proof Let `a have co-domain b . It is easy to construct a candidate 1�`c = c 7 for `� w.r.t. `a , in whichcedgfih b contains all inner ports common to
a � and

a � . If any such ports exist, then no arrow j d b hkf
can exist with

c 46jlVlm npo , contradicting the assumption that `a is an IPO. .

Our next proposition expresses any IPO for a pair having an idle name in terms of an IPO for the same pair
with the name removed.

Proposition 104 (IPO extension for an idle name) Let � not be a name of � � . Then:

(1) Up to isomorphism any IPO `a � for �rqi�,�P=��:� takes the form either m nps�q a �P=��rq a � or 1;�ithvu7 a �.= a �where � is not a name or co-name of `a and
u

is a port closed in
a � .

(2) In each case `a is an IPO for `� .

Note that
u

may be either a co-name or an inner port of
a � . The operation 1;�@thwu7 a � is called an elision in

Definition 78. This refers to the fact that the idle name � in �:� is not exported in the IPO interface b , but
instead mapped into the body of

a U .
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Proof (1) Suppose not; then, since there are no aliases, the IPO must take one of the forms � ���������
	
or��� ��
����� ��������	

, with � not a name or co-name of
�
�

and � a port open in
���

.

Now let
���

have co-domain � ( ����� � � ). In either case we construct a candidate
�"!# � # � with

#%$'& �%� ,
for which there is no mediating arrow ( $ �)� &

such that (+* �-,� � # �
, (+* ��	 � # 	

and
# *.(/�%0 132 ,

contradicting the assumption that
� ,� ����	

is an IPO.

In each case take
!# �40 1�5 �6����� � �6�
	

. In the first case take
# �7� � 0 182 ; in the second case we have � �
�:9

for some
9<; � , so take

# � � �=
� 9 �>0 1 2 . It is easy to check that each is a candidate. But in both cases
(+* �?,�A@� # �

, whatever ( . For in the first case we have � closed in (+* �-,� but open in
# �

; in the second
case, � � (+* � ,� �B� but not � # � � .

(2) Let
!�

have co-domain � . It is easy to prove it a bound for
!C
. Let

�D!# � # � be candidate for
!C

w.r.t.
!�
,

whose intermediate domain
&

we can assume w.l.o.g. does not contain � . We must find a unique mediating
arrow ( $ �+� &

, with (+* ��� � # �
and

# *'(4�40 132 .

Case
!� , �40 135 �����E� � ����	

.
It is easy to show that the following defines a candidate

�F!# , � # , � for
!C ,

w.r.t.
!� ,

, with
# , $ ��G H & ���IG HJ� :

# ,�LK 0 1�5 � # ��� # ,	MK � � # 	 � # , K 0 1�5 � #ON
Hence there exists unique ( , $ �IG HP�Q�R�IG H & satisfying ( , * � ,� � # ,� ( ���S� � � ) and

# , *.( , �T0 1U5JV W�2 .
From ( , * � ,� � # ,� we have ( , * � 0 1 5 �X� � �Y� � 0 1 5 � # � � , whence (since � is not a name or co-name for���Z� # �

) we deduce ( , �40 1U5 � ( where (+* ��� � # �
, yielding

(A* � � � # �\[
(A* ��	 � # 	M�

since � � � (A* ��	 �F� � 0 1�5 � (��]* � � ����	 �F�^( , * ��,	 �7� � # 	
;

and
# *.(4�40 132 �

since 0 135 � � # *.(?�"� � 0 135 � # �]* � 0 135 � (��"� # , *.( , �40 1�5PV W�2_��0 1U5 � 0 132 N
Thus ( is the required mediator; its unicity easily follows from that of ( ,

.

Case
!�?, � � ��
����� ��������	

, with � closed in
���

.
It is easy to show that the following defines a candidate

�F!# , � # , � for
!C ,

w.r.t.
!� ,

, with
# , $8& �`� :

# ,�LK � �a
�b��� # �Z� # ,	�K # 	c� # , K # [
in particular, Lemma 103 ensures that � is a port of

# �
(for if not, it would be an inner port of both

�-,� and� ,	 ). Hence there exists unique ( , $ �-G Hd�)�%�IG H & satisfying ( , * � ,� � # ,� ( �Y�`� � � ) and
# , *.( , �%0 132 .

Taking �d�^� we get ( , * ��� �a
�b��� ��� �e� � �f
����� # �
, whence

� ��
����� � ( , * ��� �"� � �a
����� # �
; so we have

( , * ��� � # �
immediately;

( , * �
	 � # 	
;

and
# *g( , �40 1 2 N

Thus ( K ( ,
itself is the required mediator, whose unicity is deduced easily from its unicity as mediator

between
!�?,

and
!# ,

.

This concludes the proof that
!��,

is an IPO for
!C ,

.

This proposition shows that any IPO for
!C ,

can be derived by a sequence of steps (one for each idle name
of

!C ,
from the IPO of a pair

!C
of epis, provided the pair is consistent. It does not prove that any IPO for

!C ,
exists. We now complete the work of the section by showing that indeed this construction provides exactly
all the IPOs for

!C ,
. Let us next express the construction succinctly.
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Construction 105 (IPOs in edge nets) Let ���� be a pair of edge nets in Edgā. We construct a family of
IPOs for �� � as follows.

Choose any subset ��� of the idle names of
� � , and let its remaining idle names be ��� ( 	�

����� ). Then

���� 
������������ � ������������� � � where �� 
 � ��� � � is a pair of epis. If the pair is consistent (otherwise
�� � is also inconsistent) then let �� be an IPO for �� , unique up to isomorphism. We may assume that �� has

co-domain  disjoint from � .

For 	!
������ choose an elision (Definition 78) " � mapping � � to the closed ports of
� � (which may be either

inner ports or co-names). Now define

�� �$#&% ')(!* ���+�!��")� � �,�-���.� % ')(0/ �1"�� � �32
for each choice of �4� and "5� ( 	6
������ ) this is an IPO for �� � .
We are now ready to validate this construction, and indeed show that it yields all and only the IPOs of �� � .
First, two lemmas to deal with the idle names:

Lemma 106 Let �� be an IPO for �� , and 7 be not a name or co-name of either pair. Then �� � 
 % '58 �� �,��79� � � is an IPO for 7:� � ��� � � .
Proof It is easy to show that �� � is a bound for 7�� � ��� � � . Let �� have co-domain  , and let ; �< � � < �>= be
a candidate for 7+� � � � � � w.r.t. �� � , where

< �3?�@A�)B 7�C D! . We have to find a unique mediating arrowE � ? 7�C D! BF@ � satisfying

E �HG � �� 
 < �� ;I	!
������ = and
< �JG E � 
 % ')8!K L5MON

Now since
< � G < �� 
 � �� 
 % '58 � � � , we find that

@��
may be partitioned as

@P� 
Q�
C D @ and that there exist< ?R@+B  and
< � with co-domain

@
such that

< �� 
�S 8 � < �,� < � 
UT 8 � < and
< G < �A
 � �

where S 8 ? 7 B � links 7 to a single member of � , while T 8 ? � B 7 links all members of � to 7 .
Furthermore, since

< � G < �� 
 � �� , i.e. ;VT 8 � < = G < �� 
Q7P� � � , we deduce that for some
< � with co-domain@

< �� 
Q�W� < � and
< G < �3
 � �3�

and we also find �X�Y; < � G � � = 
 < �� G ;I79� � � = 
 < �� G � �Z
Y�W�Y; < � G � � = , whence
< � G � ��
 < � G � � ;

so ; �< � < = is a candidate for �� w.r.t. �� .

It follows that there exists a unique mediator
E ?  BF@ satisfying

E G � �[
 < � ( 	6
������ ) and
< G E 
 % 'RM .

Now take
E � # S 8 � E . We readily deduce that

E � ? 7�C D� BW@ �
is the mediator we seek between �� � and

the candidate ; �< � � < �\= . To see that it is unique, suppose that ] � is another; then from ] � G � �� 
 < �� we find
that ] � 
^S 8 ��] where ] G � � 
 < � ; from this we deduce that also ] G � � 
 < � and

< G ]_
 % ' M
, so

]`
 E by the unicity of
E

, hence also ] � 
 E � .
Lemma 107 Let �� be an IPO for �� , both epis. For 	a
������ let the set ��� ( 	b
c����� ) contain no name or
co-name of either pair, and let " � map � � into the closed ports of

� � . Then �� � 
�" � � � ��" � � � is an IPO for
�4�.� � ���d���!� � � .
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By Theorem 102, �� is the pushout (unique up to isomorphism) for �� produced by Construction 98. Let� ������	����
 be a candidate for ��
�� � 
 � ����� � � w.r.t �� . with � the co-domain of
���

; then we require a
unique mediating arrow � � ������� � satisfying

� ��� � ��! � �� ��"  $# �&%'
 and
� �(� � �  *) +-,�.

We shall first show that /0
 ��1 
 is closed in
� �
 for each

132 ��
 . (Likewise /4� ��1 
 is closed in
� �� for each152 ��� .) There are two cases. First, if /6
 ��1 
  87 � is an inner port of

� 
 , then the construction ensures
that it is closed in

� � ; hence by
� �
 � � � 
  � �� � � � � it is also closed in

� �
 . On the other hand if /0
 ��1 
  :9 

is a co-name of

� � then 9*;2=<> � (using the notation of Construction 98), so for some 7@? we have 9 
 � 
 7A?
with 7 ? closed in

� � ; again
� �
 � � � 
  � �� � � � � ensures that 9 
 is closed in

� �
 .
We deduce from this, and the known equation

� � � � ��  � �� (
"  3# �&% ) that

� �� takes the form
� ��  / � � �

where
� � � � �  � � . Also

� 
 � � 
  � �
 � � � 
  � �� � � � � ; so by taking
�CB*� �

we have a candidate
� ��D�	��


for �� w.r.t. �� . Since the latter is an IPO, we have that there is a unique mediator � �-��� � satisfying

� � � �  � � ��"  E# �&%'
 and
� � �  F) +0,G.

From this, taking � �HB � , we deduce quite simply the required mediating equations for � � ; we use the fact
that each / � ��1 
 is closed in

� �� . Moreover, the unicity of � � can be deduced easily from the unicity of � ,
and the Lemma is proved.

We may now complete the proof of the theorem which characterises IPOs for edge nets:

Theorem 108 (characterizing IPOs for topographs) The IPOs for any pair of edge nets in Edg ā are, up
to isomorphism, exactly those produced by Construction 105.

Proof Let �� � be the pair. Then Proposition 104 ensures that an IPO for �� � is generated by Construction 105;
for by applying the Proposition inductively, removing the idle names of �� one by one, we determine the
pairs � � � / � (

"  E# �&% ) for which the construction should be applied.

It remains to show that for each such application an IPO is created. Therefore let us assume that

�� �  > 
I�J��
I� � 
 � > �K�J�G�K� � �
with �� both epis, and let �� be an IPO for �� with co-domain

�
disjoint from the

> � . Choose elisions / � (see
Definition 78) mapping � � into the closed ports of

� � (
"  E# �&% ).

First, Lemma 107 shows that �� � �  /�
 � 
 � /L� � � is an IPO for �� � �  ��
I� � 
 � ���K� � � .
It only remains to define �� �HB ) +-MKN � > �O� � � �
 � > 
I� ) +PMIQ � � � �� ; for by inductive use of Lemma 106 we
deduce that it is an IPO for �� � w.r.t. �� � , and the theorem is proved.
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C RPOs in edge nets

In Appendix B we have shown that IPOs exist for any consistent pair �� in Edgā; furthermore we were able
to give a construction to generate them all, which is necessary to characterise the labelled transition systems
(LTSs) derived in this paper.

Here we shall focus our attention on RPOs in Edgā, which are needed to ensure that familiar behavioural
equivalences for our derived LTSs are congruences. For this purpose we require an RPO to exist for �� w.r.t.
any bound �� whenever

���
is a redex. Elsewhere it has been argued that any reasonable redex should be an

epi; and we are able to show that an RPO does indeed always exist if
���

is epi, as required for Subsection 4.2.

RPOs do not always exist! Counter-examples arise with non-epis, i.e. with idle names. In the lower diagram
of Figure 15 we show a simple case in which the pair �� , each with an idle name, has no RPO w.r.t. �� . The
figure shows two candidates ����
	��
� and ���� 	 � � ; their legs �� and �� are identical, and their heads

�
and�

differ in the simplest possible way. It is easy to show that there is no mediating arrow between the two
candidates, and then to show that no other candidate can dominate both.

We now proceed to the RPO construction. Section C.1 presents the construction; Section C.2 validates it.

C.1 Construction

From now on we shall work in Edgā with an arbitrary pair of edge nets ������ � �� having a bound
�� � �� ���

. Under a simple assumption, we shall give and justify the construction of an RPO for �� w.r.t.
�� . In this section we summarise the construction and give examples; in Section C.2 the next section we

repeat the construction piecemeal interleaved with a series of lemmas and propositions.

The internal ports of
����� � �

may be partitioned into four sets: � � common to
� �

and
� ��� �

( �! #" 	%$ ), �'&
common to

��(
and

���
, and �') common to

� (
and

� �
, as indicated (in parentheses) in the diagram at the

top of Figure 14. We shall consistently use * �+	 *-,� 	 *., ,� 	0/0/0/ ( �� 1" 	%$2	435	46 ) to range over these sets, and 7 � over� �
( �� 8" 	%$ ). Furthermore, for ease of notation, from now on we shall now consider

�
to be empty; this

loses no generality, since the construction of an RPO treats the set
�

just like �9& .
An RPO consists of a triple of edge nets

� (:� � (;� <�
,
� �=� � �!� <�

and
� �><� �?�

, with the desired
universal property. The first step in our construction is to take their internal ports sets to be � � , � ( and �')
respectively. The next step is the RPO interface

<�
. Each 71@ <�

will be an equivalence class of certain
7 � @ <�A�

( �B C" 	%$ ) which need to be exported. To help understand the construction, here is an example of
an 7 ( which should not be exported via

<�
, i.e. for which 7 ( must be closed in

� (
: Suppose that *D& �!( 7 ( ,

but that *E& is closed in
�:�

; then *E& will be closed in
� � � �;�

, so to achieve
� ( � �!(  � � � ��� we must also

have * & closed in
� ( � � (

, which precludes exporting 7 ( via
<�

.

The entire construction of � ��F	��A� is illustrated and presented in Figure 14. An example of the construction,
together with another candidate �G�� 	 � � , is shown in the top diagram of Figure 15. Though very simple,
involving a single port * � with * ���;� 7 � and 7 ( � ( * � , it exhibits some subtleties. Indeed our construction
does not yield an RPO in some degenerate cases. The second diagram in the figure illustrates what happens
if the single port * � is omitted from the first example; the RPO is lost! (The notes in the diagrams indicate
why.) However, we shall find that RPOs always exist in Edgā provided only that one of �� is an epi, which
in this precategory means that it has no idle names.
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� � � �
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���� � �������


������


���� � �����!�


����"�

The RPO interface
#$

: The ports in %'& which will be exported via the interface are denoted by
(%)& , and

those not exported are denoted by
*% & , defined as follows ( +-,/.�021 ):

(% &43 5768&:9<;>=�68?&!@ 68&BAC&B68?&BD &FE G2H�IJE G open in D K 0 and
;>=�6 ?& @ 68&BAC&�E K HLI<E K open in D KNM*% &43 % &�O (% & @

We next define an equivalence relation over
(%'P and

(%RQ , and take
(% to be its quotient:

S 3 5N;T6 P�0 6 Q H	9�6 P D P EUG D Q 6 Q for some EUG MWV(% 3 ; (%'P:X (%RQ H�Y S @
We extend S to

(% P X (% Q X (% by declaring that 6 & S[Z 6 &T\^] .

The RPO legs _a`�bc_ed : To define f�P , for example, we employ part of D Q involving g�Q and
(%RQ , and part

of A P involving g:Q and
*%'P . To export both

(%'P and
(%RQ in f�P , we incorporate S and restrict away %hQ :

(
D &43 D &jik; g &ml n

(% &>H*AC&o3 5N;T6 & 0"p HrqeAs&:9W68&Lq *% & 08p q *% &Ul n g K�MWV
f &o3 ; *As&8t (

D K t S HkO % K @
The RPO head _ : We define a larger equivalence upon

(%'P:X (%RQ , and use it in defining f :

S�u 3 S tv5N;T6 P�0 6 Q HC9�=cE Q @ 6 P A P E Q D Q 6 Q or =WE P @ 6 P D P E P A Q 6 Q M V
f 3 ; (A P t (A Q t S�u HkO %'P O %RQ where

(As&a3wAC&�ix; (% &ml n gzy l n-{�H ( +L,/.�021 ) @

Figure 14: Construction of an RPO |�}_~bW_~� for }� w.r.t. }� .
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is an RPO for
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w.r.t.

�%
.

Note that & ��'( & � . The candidate�)�*  * "
identifies & � and & � , i.e.

& � (,+ & � (see Construction 116), and
it exports them as - . Also & � (,. & � ,
but �& are not exported by

�%
.
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Here the port 1 � has been removed.
Our construction yields the candidate

RPO
����� !�#"

, but there’s also
another candidate

� �*  * "
and

no mediator from one to the other.
In fact no RPO exists!

����

0��

���

��������
�
0��

���
��������

�
���

�

0��

���

��������

Figure 15: An example and a counter-example for RPOs
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C.2 Validation

In this section we repeat the complete RPO construction at a slower pace, interleaved with lemmas and
propositions and ending with a summary theorem. Some of them hold when subscripts 0 and 1 are system-
atically interchanged; in this case they are annotated (example: Lemma 110 ��������� ).

Recall the notations and terminology of the previous section. In particular, 	�
 has internal ports �

�� �����
( �
������� ). In our RPO construction we are taking their co-name set � to be empty; this loses no generality,
since the full construction treats � just as it treats ��� .
An RPO of

�	 w.r.t.
��

consists of a triple of edge nets  � !#" � $ %" ,  � !&" � $ %" and  ! %" $(' , with
the desired universal property. The first step in our construction is to take their internal ports sets to be � � ,� � and ��) respectively.

*,+ *.-

/0+

1�+ 12-
��354��

1

6

/�-
7*��354�8 9:3<;=�

> + > -
�?35458 9:3&@A�

�?3<BC8 9<3<;A�

�?3<B=�

�?3<BC8 9<3&@D�

��3<;��

The next step in the construction is the RPO interface %" . Each EGF %" will be an equivalence class of certain
EH

F %" 
 ( �I������� ) which need to be exported.

Construction 109 (RPO interface) The ports in " 
 which are be exported via the RPO interface %" are
denoted by %" 
 , and those not exported are denoted by

J" 
 ( �
������� ); they are defined as follows:

%" 
LK M E 
ONQPSR EHT
DU E 
 � 
 EHT
 	 
WVC��X0YZVC� open in 	 [�� and
PSR E T
DU EH
 � 
 V [ XIYQV [ open in 	 [#\J" 
 K " 
=] %" 
 U

We next define an equivalence relation over %" � and %" � , and take %" to be its quotient:

^ K M#P E � �=E � X2N E � 	 � V�� 	 � E � for some V�� \`_%" K P %" �Oa %" � X=b ^ U
Finally, we extend ^ to %" �0a %" ��a %" by declaring that E�
 ^dc EH
fehg .

Lemma 110 ��������� If E � 	 � V �i	 � E � then E � F %" � , E � F %" � and E � ^ E � .

Proof Suppose E � F
J" � ; then there are two cases, both yielding a contradiction:

Case E �
�
� E T � 	 � V T � and V T � closed in 	 � . Then V � P � �kj 	 � XlV T � , hence V � P � �mj 	 � XlV T � , so by Lemma 101(2)

V �i	 � V T � and hence V � is closed in 	 � , contra V �n	 � E � .
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Case ��� � ����� and ��� closed in 	
� . So similarly ����
 � ����	�������� , and again we find a contradiction.

So �������� � , and similarly �������� � . Thus by definition ����� ��� .

Lemma 111 ! �#"$��% Each of the following conditions implies � � � �� � :

'&(�)��� � �*��+� 	,�-��� 
/.0�)��� � �1��+� 	,�����2
3��� open in 	
�1�

/40�)��� � �-��5 
768�)��� � �����9
3��� open in 	
�1�;:

Proof The arguments from each condition are similar. For example, assuming condition (2), suppose
���<�>=� � and consider two cases:

Case ��� � �*� + � 	?�-��� , ��� closed in 	@� . Then we deduce ���A
 � ����	������ + � , whence by Lemma 101(2) ���*	,�-� +� ,
contra � � open in 	 � .
Case ��� � ����� , ��� closed in 	
� . Again ���A
 � ����	
�1����� , whence a similar contradiction.

We are now ready for the next stage of the RPO construction; we define its two legs BC .

Construction 112 (RPO legs) We define the legs
C � , C � of our intended RPO. First, in defining

C � for
example, we need the part of 	$� involving DE� and the exported names:

�	�FHG 	,F�I*
JD�F�K L �� FM�N:
In building

C � we also need a part of
� � involving DO� and the unexported names in

� � :
=� F G P8
7� F-Q#R �S� � FET � F � =� F-QUR � =� F K LVD W�XZY[:

Finally, in order to export both �� � and �� � , we incorporate � in
C � and then restrict away

� � to yield an
equivalence on

� � K LVD � K L �� : C F G 
 =� F�\ �	 W \ ���^] � W :

A point about =� � deserves comment. Why not simply =� �`_ � �aIU
O=� �bK L�DE�1� ? The latter would include
any pair 
3� � Q � + � � which is a member of

� � . But such a pair should not always be in
C � , because the

corresponding leg cb� of a candidate may not contain the pair – and an RPO leg should only link ports which
will be linked by every candidate. The present definition ensures that if � � � � � � � � ��+ � for some � � then the
pair will indeed be in

C � – whether or not ����� �� � .
We must check that

C � Q C � are indeed in Edgā:

Proposition 113 (RPO legs are well-formed)
C � and

C � have no aliases.

Proof We use the notion of support. It is obvious that =� � and � have disjoint support, and by Lemma 111(4)
it is easy to show that the supports of =� � and �	
� are disjoint.

Now suppose � C ��� + , where � Q � + � �� ; we shall prove �d_e� + . There must be a lub chain for P
=� � Q �	
� Q �@X
whose end-members are � Q � + . So the end-links of the chain are � links, and from the above it follows that
it has no =� � links; so it consists of alternating � and �	�� links. But any �	
� link can only take the form
���#	
�#� + � , implying ���,_e� + � by the no-alias condition; so there can be no �	
� links. Thus the chain consists
of a single link �f� � + . But � Q � + are equivalence classes over �� �Eg �� � , so �f_h� + , as required.

We are now ready to prove that BC make a commuting diagram with B	 .
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Proposition 114 (RPO legs yield a bound) Let ����������
	��
��	����������������
. Then � ��������� ���� � � �����

.

Proof It will be enough to prove � �!������� �� , which we do as two inequalities. Note first that � ���"���#�
��� � 	%$& � 	 �� � 	��
�'�
� � �
� �

.

To prove � � ��� �)( �� : For every instance of � � ��� � there is a lub chain for * � �,+ $& �,+ �� �-+ �/. whose
extremal members are not in

�10
( 2 �43 +-5

). So we need only show that each
$& �

link in the chain, together
perhaps with adjacent links, implies an instance of

���
or

���
. We proceed by cases of 6 $& � 687 , where 6 + 6,7:9$���<; =?>��

. In each case, we emphasize the replacement instance in bold type.

Case @ � $& � @ 7 � . Then for some A � 9 $���
we have @ � & � A � & � @ 7 � . Hence by Lemma 111(4) @ � + @ 7 � are closed

in
���

. But also @ �B� & �"�����C� @D7 � , hence by Lemma 101(2) EGFBHIFJELK F .
Case @ �M$& � A � . Then A � 9 $���

and @ � & � A � . This link is not rightmost in the lub chain; so there is an adjacent
instance, necessarily of

� �
, of the form A � � � 6 for 6N9 > � ; =L>PO

. ( 6N9 � �
would imply 6 � A � since

� �
has

no aliases, contra the definition of a lub chain.) But 6�9 >��
contradicts Lemma 111(1), hence 6 � @ O 9 > O

and we must replace @ � & � A �'��� @ O . Hence @ �B� & �"���
�Q� @ O ; also by definition of
$���

we have @ O closed in
���

;
so by Lemma 101(2) we have ERF-HSFJEUT .

Case A � $& � A 7 � . Then A � & � A 7 � with A � + A 7 � 9 $���
, and as above there must be adjacent instances 6 ��� A � and

AD7� ��� 687 with 6V9 >?�W; =P> O
. Again, 6X9 >?�

or 687�9 >?�
contradicts Lemma 111(1), so we have to replace

@ O�� � A � & � A!7� � � @D7O . But we deduce @ OY� & � ��� � � @D7O , whence as above E T H F ELKT .
This concludes the elimination of

$& �
from the chain, so we have proved � �!�"�Z� ( �� .

To prove �� ( � ���"��� : In a lub chain for * �[� + �
� + �/. with no member of
�\�

or
���

extremal, for each
instance of

� �
we need find a replacement in terms of * � �,+ $& �,+ �� �-+ �]. .

Case @ OC� � @D7O . Then @ O,� & � �D� � � @D7O , so by Lemma 101(2) either E T H_^'ELKT or @ O'� � A � & � A!7� � � @D7O . In the latter
case, if @ O (hence @ 7 O ) is open in

���
then @ O �
� A � and @ 7 O ��� A � for some A � , whence by Lemma 110 we have

A � + A 7 � 9`����
and A � 9a����

, with A �Z� A �<� A 7 � ; hence EUT,H ^Ybc^cdebLK^ H ^ E K T . On the other hand if @ O and @ 7 O
are closed in

�]�
then A � + AD7� 9 $���

, hence EUT,H ^Ybc^]fg ^Yb K^ H ^ ELKT .

Case @ O �
� @ � . Then @ O � & �������B� @ � , so by Lemma 101(1) @ O ��� A � & � @ � . By similar reasoning to above, if
@ O is open in

���
we find a replacement EMT8H ^Ybc^Ldeb F��HSFJE<F ; otherwise E�TYH ^Ybc^ fg ^ E K F .

Case @ O �
� A � . Then A � 9 ����
, since A � cannot be extremal in the chain and if A � 9 $���

then no right-
adjacent link can exist. So @ O is open in

���
, i.e. @ O ��� A � for some A � ; so by Lemma 110 we have A � 9%����

and A ��� A � , yielding the replacement E<T,H ^Ybc^cdeb F .
Case 6 ��� 687 ( 6 + 687h9 >��U; =:���

). Then 6 + 6,7 cannot be in
$���

, for the above reasons; so i �HIFBiDK .
This concludes the proof of the second inequality, and hence of the proposition.

For later use, we record an important property of j� .

Proposition 115 k
�ml/�on

(RPO legs keep an epi) If
�/�

is epi then � � is epi.

Proof Consider Ap9q�� ; there exists either A � 9SA with A � � � A , or A � 9IA . In the latter case, as
�]�

has no
idle names, either some @ �r��� A � , in which case by construction @ � � � A , or some @ O ��� A � . In the latter case,
since A � 9s����

, @ O is open in
�[�

so some A ���Z� @ O , whence by Lemma 110 A ��� A � , so A � 9tA , and again
A � � � A . Thus A is not idle in � � .
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We now proceed to justify our construction by finding ��� ������
which makes the triple

	��
�� an RPO
for

	

w.r.t.

	�
. Rather than define � directly, we prefer first to consider all RPO candidates, as defined in

Definition 6. Observe that � ��� 
 ��� 
�� ����� is trivially a candidate. Our work is lightened by treating candidates
generally before taking account of this extremal one. The next step of our construction is, for any candidate
� 	� 
 � � , to define the equivalence upon

�� ��� �� �
which it induces; then we can define the mediating arrow

from the RPO legs to the candidate.

�

�! �#"

$  $ "

% "
& "

&

'  ' "

($
&  (&

%  

Construction 116 (RPO mediator) Let � 	� 
 � � be a candidate for
	


w.r.t.
	�
, where

�#) � � ) �+*
( ,�-. 
0/ ) and

� � *1�2�
. Define an equivalence upon

��3� � ��4�
as follows:

5�6 7 598;: �=< � 
>< � �@?A< � � �CBD� 
 � < � or < � 
 �EBF� � � < �HGAIKJ
Let the internal ports sets of

� �
and

� �
be respectively L �NM O LQP and L �RM O LQP , where L�ST-ULDP M O L�V . Define

the mediator
��

as follows: �� � 7 � �4W � ��3� M O L P ��� � 7 � �3W � ��4� M O L P ��� 7 � �� � 8 �� � 815�6 �YX �3� X �4�RJ

Our new equivalence deserved explanation. Intuitively, the larger – i.e. the closer to � 	� 
�� ���Q� – a candidate
becomes, the more ports it will link. Thus, if

� �
(say) is to factor through the mediator

��
, the latter must

link more ports. The equivalence 5Z6 is intended to represent this identification, at least upon the interface
ports

���
and

�4�
.

Before validating our mediator we need some lemmas. For the rest of this section we shall discuss an
arbitrary candidate � 	� 
 � � with components denoted as in the above construction.

Lemma 117 [
��\]�E^

�_/`� If < ��a�b�3�
then < � is closed in

� �
�dce� b�f�Tg b� �hJ

Proof (1) There are two cases:

Case < ���h� <Fi� 
 �jBFk (
Blk

closed in

 �

). Then from
� �Fm 
 � - � �nm 
 �

we know
Blk

is closed in
� �lm 
 �

,
and hence <Fi� closed in

� �
. But < � � � <oi� and

� � - � m � �
, so < � � � <oi� by Lemma 101(2), whence also

< � closed in
� �

.

81



Case ��� � ����� (��� closed in �	� ). Then again ��
 closed in ����
���� , hence by Lemma 101(3) ��� is closed in
��� , whence also ��� closed in ��� .
(2) Recall that

�� � is generated by pairs ������������� and ������������ � in
� � , where ���������� �

�! � ; the rest follows
from

� �#"$�%
���� , by (1) and Lemma 101(2).

Lemma 118 & �(')��* If ���+�������,�-�.�/� or ���0���1���+�#����� then ��� �32! � , ��� �42! � and ���65879��� .

Proof We first deduce contradictions from ��� �
�! � , �/� �

�! � as was done in Lemma 110, but also using
Lemma 117(2). Having thus established ��� � 2! � and �/� � 2! � , the result is immediate by definition of 5)7 .

The next lemma shows how 5	7 relates �:� and �#� :

Lemma 119 & �(')��*
�.;<� If ����587=���>�#�,? then ���<���0?)��? �A@/B6C D�E �
�GFH� If ����587=���>�#�(��� � �-�G��� then ���I���1�/�
�GJH� If ����587=���>�#�(� � � 5879� �� then ���+����� ��=K

Proof We shall prove (3); the others are similar. It is enough to treat the case in which both instances of
587 take one of the three generating forms ���0�=�1��
��-����� , ���<���L�/���-�(��� and ���0�=�1���I�#�(�/� . In all (essentially
six) combinations of these forms in the antecedent of (3), we deduce immediately one of the following, or a
symmetric variant:

��M1�N���I���0?��O�#��
��-�>�P������������ ��? �A@ � C DQ@ 
+�
��MOM1�N���I���0?��O�#��
��-�>�1? � ���0� �� ��?R�(? � � @ � C DQ@ 
<�
��MLMOM1�S���<�������<�O�#�T
��-���P��� � ���>����#K

In each of these cases, we apply � � 
T� � "U� � 
�� � and then the corresponding part of Lemma 101, also
using the no-alias condition for �8� , to deduce that ���+���0� �� .

We can now show that the mediator 2� satisfies one of its required properties.

Proposition 120 (RPO mediator respects bounds) 2�V
�W�X�"$�YX ( MZ"\[]�+; ) .

Proof We shall treat the case M^"_[ . First note that, using the fact that ���=5a` ���>bdc , we can expand 2�%
TWe�
as follows:

2�9
�We�f"4�
�� ��g 2����g 2�-�Zg 2�#�Ig%587^�Ih ! ��h 2! K

To prove 2�V
�W �	i � � : For each instance of 2�%
�W � there is a lub chain for j
�� � � 2� � � 2� � � 2� � �>5 7lk in which

members of
! � and 2! do not occur extremally. We have to eliminate instances of

�� � , 2�-� , 2�#� and 5m7 from
the chain. From Lemma 117 we have

�� � i ��� , so we need only consider the remaining three. We begin by
eliminating 2�#� links:

Case ?H�#�,? � ( ?n�(? � �A@/B6C D�E ). Then ?]�O�:��
T�=�<�1? � , hence by Lemma 101(3) o�prqsoTt .
Case ?H� � � � ( ? � @ B C D�E �T� � � 2! � ). Then there is a right-adjacent link for � � , in either in 2� � or 5 7 . If in
2�-� it must be to some ��� ; so by Lemma 101(3) we replace ?H���(�/�(�m�G��� by o�p	qIu�v . If the link is ���=587w?x�
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then ��������	� , and if ����

�� then no further adjacent link is possible, so ����������� for some ��� ; so by
Lemma 119(1) we replace ��� ���	����� � � by ��� ��!���"$#%�'& .
Case �(� � ��� � �*) �(�,+-� � � 
 �� �/. . Then there are left and right adjacent links in �0 � or ��� . There are essen-
tially three cases for the three links. If they are 1 � 0 ���(� � ��� � � 0 � 1�� � , then using � �'2 0 �3� � ��2 0 � and by
Lemma 101(3) we get 4657� �849& 5 ; if they are 1 � 0 �-�(� � �:� � � ��� � with some �������;� � � , then using � �<2 0 �=�
� � 2 0 � and by Lemma 101(1) we get 4 5 � � ! � " # � ; finally, if the links are � � � � � � � � � � � � � � with some���=���>�(� and � � � ���>� � � , then by Lemma 119(3) we arrive at the replacement �=">#%!��?� ��! &� "$#%� & .
This completes the elimination of �� � . The elimination of �0 � is simpler:

Case 1 � 0 � 1 � � . Then by � � 2 0 � � � � 2 0 � and Lemma 101(3) we get 4 5 � � 49& 5 .
Case �(� 0 � 1 � ( �(� 
@�� � ). There must be a left adjacent link � � �A�(� (since it cannot be in �0 � ), and as
argued above there must exist �B�C���D�	� ; by Lemma 119 we then replace � � �E�	� 0 � 1 � by �E"$#%!��?�F�84�5 .
We are now left with a lub chain for � � and ��� , whose extremal members are not in

� � or �� ; moreover no
� � link involves these sets, so every remaining instance of �G� can only be of the form �B�C����� �� which, by
taking � � �H� � � in Lemma 119(3), can be replaced by ! � � � !9&� . This completes the proof that �� 2'I ��J � � .
To prove � � J �� 2'IK� , we express each instance of � � in terms of L�MN �O+ �� �O+ �0 �,+ �� �,+P���RQ :
Case �S� � � � ( � + � � 
>T(UCV WYX ). Immediately � �� �S�'& .
Case �S� � 1 � ( �Z
[TYU6V WYX ). Using � ��2 0 �\� � �]2 0 � and Lemma 101(1) we deduce �S� �-�	� 0 � 1 � , with�	� 
 �� � by Lemma 111(1); so � ���57!�5 �^ 5_4�5 .
Case �S� �/��� ( �`
aTYUbV W9X ). Then � N �/��� since

N �c� � 2 � � , and ��� 
 �� � by Lemma 111(3); hence
� �� �S!�� .
Case 1 � � � 1�� � . Then using � ��2 0 �d� � �]2 0 � , by Lemma 101(2) either 1 � 0 � 1�� � whence 4b5 ^ 5_4 & 5 , or
1 � 0 ���	� � ��� � � 0 � 1e� � , with �(�8+-� � � 
f�� � by Lemma 111(1), so 465C�^ 5*!�5g��35*! & 5 �^ 5_4�5 .
Case 1 � � �/��� . Then 1 � N �h��� since

N �K� � 2 � � . If ��� 
iM� � then 4b5kjl ��!�� . If ��� 
 �� � then 1 � is open in0 � by definition of �� � , so �(� 0 � 1 � . It follows from Lemma 118 that �m� 
n�� � and ���=�����	� , so we deduce
4�5 �^ 5*!�5("$#%!�� .
Case ��� � �/� � � . Then ��� N �P� � � since

N ��� � 2 � � . By definition of �� � , either ���O+-� �� 
 �� � or ����+-� �� 
iM� � ;
in the former case we deduce !o�6�� ��! &� , in the latter case !R� jl ��! &� .
This concludes the proof that � � J �� 2]IK� , and hence the proof of the proposition.

Now, since )YpN +hq r�sY. is itself a candidate, we have also proved

Corollary 121 (RPO head respects bounds) �N 2]Ikt�� N t ( u �wv<+,x ) . Hence )YpI%+ �N . is a candidate RPO
for p0 w.r.t. pN .

We have therefore completed our RPO construction:

Construction 122 (RPO head) We define the RPO of p0 w.r.t. pN to be the triple )mpI%+�I�. , where Iny �N .

However, it remains to prove �� to be the unique edge net z such that � 2 z �[I . We now address this. We
begin with two crucial lemmas. The first relates two equivalences.
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Lemma 123 �����
If ���	��
���
 then ���	������
�����
If ���	������
 then either ������
���
 or ������ ��� � ������ 
���
 for some �������! #"%$

Proof In each case, we need only consider generating instances in the antecedent.

(1) For example, assume �!� � �'&�
)(*
���
 . We have
� �,+

�.-
�0/ 1324


� 576 �,+
�.-
�0/ 1824


�
since

��9�� ��: 6 � ; the
rest follows.

(2) For example, assume �!� 6 �;&�
<(*
���
 . From ��� 6 �;&�
 , since
�=9>� ��: 6 � we deduce by Lemma 101(2) that

either ��� � �'&�
 , so ��� � �'&�
<(*
<��
 and ���?�@
A��
 as required, or ��� � �B� � ��� � �;&�
 . In this case, from �C� � �'&�
 by� � 9 (D��: � 
 9 (*
 and Lemma 101(1), together with the no-alias condition for (E
 , we deduce � � � 
<��
�(*
�&�
 ;
since �GFH �

-

 ( IJ:LKM�

�
), it immediately follows that � �G�� � � � � �)�� 
 � 
 .

The second crucial lemma uses, for the first time, our assumption that one of N( , say ( 
 , has no idle names.

Lemma 124 Assume that (O
 has no idle names. Let PQ� � �B� � � � � 
<PR
 , where P F  =2�S?/ 1 �
-
F ( IT:UKM�

�
). Then

either P � :V& S  #2 S and P �G�6 
 P 
 , or P 
 :V& S  #2 S and P ���6 � P 
 , or PWF�:X�>FJ �
-
F ( IJ:XKM�

�
) and � � � 
 � 
 .

Proof If P���:Y&>SO Z28S then using
� � 9 ([��: � 
 9 (*
 we find &GS � 
�� � �\� � 
)PR
 , whence P����6 
)PR
 . The caseP 
  #2 S is similar.

We are left with the case P F :X� F ( I3:LKM�
�
) and ��� � �B� � � � � 
���
 . Since (*
 has no idle names, we have �3
)(@
<P

( PZ 724
T/ 1823] ). If ��
<(*
�&�
 then by
� 
 9 (*
O: � � 9 (D� and Lemma 101(3) we get �M� � �'&�
 ; hence ��� � �^&�
 ,

so by Lemma 118 we deduce �!�_��
`��
 . The other possibility is �3
)(*
.&�] ; then by
� 
 9 (@
@: � � 9 ([� and

Lemma 101(1) we get �M� � �B�G�B([�;&G] , so by Lemma 110 we deduce �����a��
 , and again ���	��
���
 .
We are now ready to complete the justification of our RPO construction.

Proposition 125 (unique RPO mediator) Assume that (E
 has no idle names. Then �� is the unique edge
net bdc	�

- e " such that b 9gf F : � F ( IH:hKM�
�
) and

�=9 bU: f .

Proof We have shown in Proposition 120 that �� satisfies the first equations; we now show that it satisfies
the last. Recall that f :i�6 :

�
�6 �kjY�6 
Bj����

�Wl\-
�
l\-


�� :
�
�� � j �� 
 j�� 


�Wl\-
�
l\-



and we deduce��9 �� :

� � j �� �mj �� 
WjZ��

�Wl\-

�
l\-



l
"d$

To prove
�=9 �� 5 f

, we first eliminate all
�

links from a lub chain for n � � �� �o� �� 
p����
4q whose end-
members are not in

-
� ,
-

 or " .

Case P � P � ( P��<P �  #23r ). Since
�=9>� � : 6 � , by Lemma 101(3) s �t_u s>v .

Case P � � ( PZ Y23r ). Then there is a right adjacent �� F link, say � �� � P � with P �  Y2 S / 1 �
-
� ( P �@w a" , elsePx�C:L� ). So as above we replace P � �k�� �yPQ� by s@�t u s v .

Case � � ��� ( � w:h��� ). Then there are left and right adjacent links P � F � and ��� �Hz PQ� , with (since
� �R� � 
 have

no aliases) P, {23S0/ 1 �
-
F and P �  {28S	/ 1 �

- z
. We wish to replace P � F � � � � �Hz P � . If I?:}| then s �t u sgv . Now
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suppose, say, ����� and ����� . Then by Lemma 124 we find the replacement 	�
��
�� 	 � or 	�
��
 
�	 � , or else��� ��� ��� �� � ( ��������� ) and � 
�!#"�� � .
Having eliminated $ , we are left with an instance of % �&('�) �&+*�) �$ '�) �$ *,).-+/�0�12��'312�4*�135 . Let us now
eliminate �$ ' .
Case � �$ ' �76 ( � � �76��98;:=< > ���' ). Then from

&?' �@$BAC$ ' we get 	D�
 
�	CE .
Case � �$ 'GF ( �4�H8 : < > �� ' ). Then there is a right adjacent link

F �$ � � 6 ( � 6 �.8 : < > �� � ), and we must replace� �$ ' F �$ �I�76 . If ���J� then we have � �$ ' �76 and get the replacement 	 �
 
�	KE as in the previous case. Otherwise,
by Lemma 124 (with

F � F 6 ) we get the replacement 	 
��
 � 	 � or 	 
��
 
 	 � , or else � � �L� � � �� � ( ���J����� )
and � 
�!#"4� � .
This concludes the elimination of �$ ' (recall that $ ' has no aliases, so the case

F �$ ' F 6 would imply
F � F 6 ).

�$ * is eliminated similarly. It only remains to note that
-M/ON�-QP

by Lemma 123(1), and we have completed
the proof that $BAR�$ NTS

.

To prove
SUN $VAR�$ , we first eliminate �&(' from a lub chain for WX�&(' �Y�&+* � -QP�Z with end-members not in

�#'
or
�[*

. We use
&(' �@$\A]$ ' frequently.

Case ^`_ &(' ^ 6 _ . Then by Lemma 101(3) acb 
 
�a�Eb .
Case ^ _ & ' � ( �d�e8 : < > �� ' ). Then by Lemma 101(1) a bgf�hi�fj
 	 .

Case � & ' � 6 ( � � � 6 �k8 : < > �� ' ). Then by Lemma 101(2) either ^ : $ ' ^ 6: so a�l �fj
 a El , or ^ : $ 'mF $ F 6 $ ' ^ 6: so
a l �f 
 hXf�h;E �f 
�a El .
This concludes the elimination of �$ ' , and �$ * is treated the same. We now have a lub chain for W7$?���$ ' ���$ * � -QPZC1Y��'Y1Y�4*n1C5

, and it only remains to replace any
-DP

links. For this, it is enough to note that an instance
of
-QP

is representable by a chain of links of the form � � -+P�o � �qpsr , which is also an instance of
-j/

, or of
the form � '(-+P � * , which by Lemma 123 can be represented by a combination of $?� �$ ' � �$ * and

-+/
. This

completes the proof that $VA=�$J� S
.

To see that �$ is the unique edge net t such that t.A S � �U$ � ( �(�u����� ) and $BAKtv� S
, we need merely

observe that if t is another, then in particular t.A Sj' ��$ ' �w�$\A SQ' . But under our assumption that x *
is epi (which we needed in Lemma 124) we also showed in Proposition 115 that

S '
is epi; hence from the

foregoing equation we deduce tL�y�$ .

From Propositions 114 ,120 and 125 we deduce the main theorem:

Theorem 126 (monographs with one epi always have RPOs) In the precategory Edg ā of edge nets with-
out aliases, Constructions 109, 112 and 116 yield %{zS � SM0 as an RPO of zx w.r.t. z& , provided only that one
member of zx is epi.
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