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Condition diagnosis of multiple bearings system is one of the requirements in industry field, because bearings are used in many
equipment and their failure can result in total breakdown. Conditions of bearings commonly are reflected by vibration signals data.
In multiple bearing condition diagnosis, it will involve many types of vibration signals data; thus, consequently, it will involve many
features extraction to obtain precise condition diagnosis. However, large number of features extraction will increase the complexity
of the diagnosis system. Therefore, in this paper, we presented a diagnosis method which is hybridization of adaptive genetic
algorithms (AGAs), back propagation neural networks (BPNNs), and grey relational analysis (GRA) to diagnose the condition
of multiple bearings system. AGAs are used in the diagnosis algorithm to determine the best initial weights of BPNNs in order
to improve the diagnosis accuracy. In addition, GRA is applied to determine and select the dominant features from the vibration
signal data which will provide good diagnosis of multiple bearings system in less features extraction.The experiments results show
that AGAs-BPNNs with GRA approaches can increase the accuracy of diagnosis in shorter processing time, compared with the
AGAs-BPNNs without the GRA.

1. Introduction

A bearing is a device widely used in industries to minimize
friction on rotating part of machine by giving smooth metal
balls or roller and a smooth inner and outer metal surface
for the balls to roll against. Unfortunately, bearing is one
of the machine parts which has high percentage of failures
compared to other components [1]. Based on previous study,
bearings contribute 40–50% causes of machine failure [2].
Therefore, a precise condition diagnosis of bearing system is
essential to detect defects before they lead to failures.

A precise condition diagnosis can be achieved by good
condition monitoring. Condition monitoring of a bearing is
reflected by vibration signal data. The vibration signal data
is captured by accelerometers which record the condition of
the bearing continuously. Vibration signal data is commonly
used for bearing condition diagnosis due to its intrinsic

advantage of revealing bearing failure [3–5]. Vibration signal
under different condition will show different pattern [6], as
can be seen in Figure 1. Figure 1 shows that the vibration
signal data of normal bearing has different pattern from
faulty bearing. Vibration signal of faulty bearing has higher
amplitude compared with the normal bearing. However,
multiple bearing system with one faulty bearing may not
be visually different on the represented vibration signal
data compared to all bearings being normal. Therefore, it is
important to have a technique which is able to accurately
diagnose the system condition based on the continuously
monitored vibration signals.

It is important to extract features from vibration signal
data, since the vibration signal data captured from mechani-
cal system such as bearing are complex in nature and some of
the useful information is corrupted [5, 7]. In order to capture
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Figure 1: Vibration signal data of normal bearing (a) and faulty bearing (b).

Table 1: Multiple bearings specifications [22].

Bearing Inside diameter (inches) Outside diameter (inches) Thickness (inches) Ball diameter (inches) Pitch diameter (inches)
DE bearing 0.9843 2.0472 0.5906 0.3126 1.537
FE bearing 0.6693 1.5748 0.4724 0.2656 1.122

the diagnostic information from the vibration signal data,
it is appropriate to compute as many features as possible.
In this paper, we extract ten features from vibration signal
data of the bearing system. Those features are standard
deviation, skewness, kurtosis, the maximum peak value,
absolute mean value, root mean square value, crest factor,
shape factor, impulse factor, and clearance factor [8]. These
features are effective and practical for condition diagnosis
due to their relative sensitivity to early faults and robustness
to various loads and speeds [9]. But the choice of features
is often arbitrary, which will lead the situation where some
features contain the same information and the others contain
no useful information at all [8]. Therefore, a technique to
determine which are the dominant features for multiple
bearing diagnoses is important. One of the simplest ways to
find the dominant parameters is by trying and combining
the features continuously up to the desired result achieved.
However, this method will spend much time and memory to
obtain the dominant features. Grey relational analysis (GRA)
is one of the methods which are commonly used to find
the dominant features. It is used as feature selection method
to remove irrelevance and redundant factors that affect the
results [10]. The essential thing of GRA is that it can be used
to describe the relation among features [11]. GRA can be
employed to explain the complicated interrelationship among
the data when the trends of their development are either
homogeneous or heterogeneous [12]. In this study, we used
grey relational analysis (GRA) to determine the dominant
features which contain useful information in multiple bear-
ings condition diagnosis. The dominant features from GRA
will be used as the input in condition diagnosis algorithm.

Diagnosis algorithm had been proposed by many
researchers, some of them using individual metaheuristic
techniques such as the genetic algorithms (GAs) and fuzzy
and neural networks (NNs) [13–17]. However, individual
metaheuristic techniques suffer from their own drawbacks,
which can be overcome by forming a hybrid approach com-
biningthe advantagesof each technique [18].Hence, research-
ers have recently started to propose hybrid metaheuristic
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Figure 2: Bearing and accelerometer structure.

techniques to improve the performance of condition
diagnosis. Wulandhari et al. [19–21] improved the condition
diagnosis work in specific type of fault for multiple bearing
using hybrid genetic algorithms and back propagation
neural networks (GAs-BPNNs) approach. In this paper,
we propose an improvement of GA-BPNNs by applying
adaptive methods to GAs and back propagation neural
networks (AGAs-BPNNs) and using GRA to identify and
select the dominant features for AGAs-BPNNs algorithm in
order to obtain a precise condition diagnosis for the multiple
bearing systems.

2. Bearing Vibration Signal Data

In this paper, we use the vibration signals data from the
Case Western Reserve University Bearing Data Center [22].
The vibration signals data were captured from a two-bearing
system, which consists of Drive End bearing (DE) and Fan
End bearing (FE), with various combinations of the bearing
conditions. The specifications of the bearing are given in
Table 1. For the purpose of capturing the vibration signals
data, three accelerometers were attached on the bearings and
the baseline (BA) as shown in Figure 2. Bearing vibration
data were collected under seven different conditions: (1) FE
and DE Normal, (2) FE Normal and DE Inner Race Fault
(DE-IRF), (3) FE Normal and DE Ball Fault (DE-BF), (4) FE



Computational Intelligence and Neuroscience 3

Normal and DE Outer Race Fault (DE-ORF), (5) FE Inner
Race Fault (FE-IRF) and DE Normal, (6) FE Ball Fault (FE-
BF) and DE Normal, and (7) FE Outer Race Fault (FE-
ORF) and DE Normal. The example of the data captured is
presented in Table 2.

From Table 2, we can see that each condition has three
streams of data as captured by the three accelerometers; thus,
each feature will be extracted from three accelerometers.
Based on the available data, generally only seven condition
classes of bearing can be specified as the output of the
diagnosis. In this paper, we expanded the condition classes
from seven to sixteen classes by combining and mixing the
available data. For the FE-IRF and DE-IRF class, for instance,
its BA data was set or obtained from the average of BA
accelerometer in FE-IRF and DE-IRF condition, the FE data
was obtained from FE accelerometer in FE-IRF condition,
and the DE data was obtained fromDE accelerometer in DE-
IRF condition. The expansion of condition classes was done
to obtain more specific condition diagnosis for each bearing
so that any action to each bearing can be specifically carried
out. The advantage of this expansion is that, here, we can
identify the condition of DE and FE bearing simultaneously.
In the seven classes case, we can only identify the condition
of either one.The sixteen classes of the bearing conditions are
presented in Table 3.

The classes of multiple bearing conditions are influenced
by ten features extracted from the data. The values of the
features lie within the interval which is the lower and upper
bound of the data extraction. The interval of the features
values is presented in Table 4.

3. The Proposed Algorithm

This paper proposed a hybrid method of GRA, AGA, and
BPNN to diagnose the condition of multiple bearing systems.
This hybridization applies GRA to determine the dominant
features by analyzing the relation between each feature and
its ideal values. The algorithm is started by initializing the
features which are extracted from the vibration signal data
and then calculate the grey relational coefficient (GRC)
followed by calculating the grey relational grade (GRG)
which both of them including to theGRAprocess.The results
from theGRAare the dominant features whichwill be used as
the input of the AGAs-BPNNs. The framework of the GRA-
AGA-BPNNs is shown in Figure 3.

3.1. Grey Relational Analysis (GRA). A system for which the
relevant information is completely known is called a white
system, while a system for which the relevant information is
completely unknown is a black system. Any system between
these limits is a grey system which has poor and limited
information [23]. In multiple bearing systems, any informa-
tion about the condition of the bearing is not completely
revealed by the features extracted from the vibration signal
data. This unclear condition of data can be overcome using
GRAwhich was proposed by Deng [24] in 1982. GRA utilizes
the mathematical method to analyzing correlation between
the references series which is the ideal value of features

and the alternatives series [25]. It firstly normalizes the
features extracted and then translates the performance of
all alternatives into a comparability sequence with the ideal
value called grey relational generating [26], followed by the
calculation of grey relational coefficient between all compa-
rability sequences and the references sequences. Finally, the
grey relational grade between the reference sequence and
every comparability sequence is calculated based on the grey
relational coefficient. The highest grey relational grade of the
alternatives features indicates that the features have dominant
influence to the condition diagnosis. The procedures of GRA
are shown in Figure 4.

The GRA starts by normalizing the features extracted, for
the simplification; we omit the units of all parameters. This
can be done easily by multiplying the certain parameter, say
𝑝
𝑖
, with 1/the unit of parameter 𝑝

𝑖
. Let 𝑥

𝑖𝑗
be the 𝑖th sample

of the 𝑗th feature extracted where 𝑖 = 1, 2, . . . , 240 and 𝑗 =

1, 2, . . . , 10:

𝑥max = max (𝑥
𝑖𝑗
| 𝑖 = 1, 2, . . . , 240; 𝑗 = 1, 2, . . . , 10) ,

𝑥min = min (𝑥
𝑖𝑗
| 𝑖 = 1, 2, . . . , 240; 𝑗 = 1, 2, . . . , 10) .

(1)

Then, the normalized features 𝑥∗
𝑖𝑗
can be obtained by the

following equation [27]:

𝑥
∗

𝑖𝑗
=

𝑥
𝑖𝑗
− 𝑥min

𝑥max − 𝑥min
. (2)

Next, the grey relational generating is conducted by deter-
mining the reference or ideal values of the features extracted.
Let 𝑃
𝑗
be the features extracted, with 𝑗 = 1, 2, . . . , 10. 𝐶

𝑠
is

the condition of the bearing systems with 𝑠 = 1, 2, . . . , 16.
It is noticed that we used 240 pieces of sample data and 16
classes for bearing conditions where each class 𝐶

𝑠
consists

of 15-item data which fall in the condition class 𝑠. The ideal
values of the features extracted, say 𝑧

𝑠𝑗
, are the average of 𝑗th

feature extracted value in 𝑠th condition which can be written
as follows:

𝑧
𝑠𝑗
=

1

15

15𝑠

∑
𝑖=15𝑠−14

𝑥
∗

𝑖𝑗
. (3)

For example, 𝑧
11
is the ideal value for the first condition class

(class of FE andDENormal) and the parameter𝑝
1
. Regarding

obtaining the next step, namely, grey relational coefficient,
we need to determine the comparability sequences of the
alternatives values and the ideal values. It is noticed that we
used 240 pieces of sample data and 16 classes for bearing
conditions where each class𝐶

𝑠
consists of 15-item data which

fall in the class 𝑠. Then, we define
𝑤
𝑖𝑗
= 𝑧
1𝑗

for 𝑗 = 1, . . . , 10; 𝑖 = 1, . . . , 15,

𝑤
𝑖𝑗
= 𝑧
2𝑗

for 𝑗 = 1, . . . , 10; 𝑖 = 16, . . . , 30,

𝑤
𝑖𝑗
= 𝑧
3𝑗

for 𝑗 = 1, . . . , 10; 𝑖 = 31, . . . , 45,

...

𝑤
𝑖𝑗
= 𝑧
𝑛𝑗

for 𝑗 = 1, . . . , 10; 𝑖 = 15 (𝑛 − 1) + 1, . . . , 15𝑛,

(4)
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Figure 3: The framework of GRA-AGAs-BPNNs.

where 𝑛 = 1, . . . , 16; then, the comparability of the alterna-
tives and ideal values can be calculated as

Δ𝑤
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝑥
∗

𝑖𝑗
− 𝑤
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
, (5)

where Δ𝑤
𝑖𝑗
is the comparability of alternatives and ideal val-

ues, 𝑥∗
𝑖𝑗
is the alternatives value which is normalized features

extracted from the vibration signal data, and 𝑤
𝑖𝑗
is the ideal

values which is defined based on the condition classes. Based
on (4) and (5), the next step of GRA procedures, namely,
grey relational coefficient calculation between comparability
sequences and ideal sequences, is written as follows:

GRC
𝑖𝑗
=
min
𝑘
(min
𝑙
(Δ𝑤
𝑘𝑙
)) + 𝜉max

𝑘
(max
𝑙
(Δ𝑤
𝑘𝑙
))

(Δ𝑤
𝑖𝑗
) + 𝜉max

𝑘
(max
𝑙
(Δ𝑤
𝑖𝑗
))

for 𝑘 = 1, 2, . . . , 240; 𝑙 = 1, 2, . . . , 10,

(6)

where GRC
𝑖𝑗
is the grey relational coefficient value of 𝑖th

samples and 𝑗th feature and 𝜉 is the distinguishing coefficient
which is defined in the range 0 ≤ 𝜉 ≤ 1. Then, the grey

relational grade (GRG) is determined by averaging the GRC
to each feature and is represented as

GRG
𝑗
=

1

𝑚

𝑚

∑
𝑖=1

GRC
𝑖𝑗
, (7)

where𝑚 is the number of samples. Equation (7) is used to find
the GRG of accelerometers BA, DE, and FE. The final grey
relational grade on the feature 𝑗, say GRG

𝑗
, is the average of

GRG∗
𝑗
s from BA, DE, and FE, respectively. The results of the

experiment using GRA are presented in Section 4.

3.2. The Proposed GRA-AGAs-BPNNs Algorithm. The pro-
posed GRA-AGAs-BPNNs algorithm is the hybrid algorithm
which combines the advantages of GRA, GAs, and BPNNs
to one algorithm for the condition diagnosis of the multiple
bearing systems. The dominant features from GRA are used
in AGAs-BPNNs algorithm to classify the condition effec-
tively. Adaptive operator probabilities techniques in GAs are
proposed to obtain better initial weights for BPNNs training.
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Table 3: Sixteen classes of bearing conditions.

Number Condition
C1 FE and DE Normal
C2 FE Normal and DE-IRF
C3 FE Normal and DE-ORF
C4 FE Normal and DE-BF
C5 FE-IRF and DE Normal
C6 FE-ORF and DE Normal
C7 FE-BF and DE Normal
C8 FE-IRF and DE-IRF
C9 FE-IRF and DE-ORF
C10 FE-IRF and DE-BF
C11 FE-ORF and DE-IRF
C12 FE-ORF and DE-ORF
C13 FE-ORF and DE-BF
C14 FE-BF and DE-IRF
C15 FE-BF and DE-ORF
C16 FE-BE and DE-BF

Normalize features
extracted

Initialize
the features extracted 

Define the ideal 
value of the features

Calculate grey relational 
coefficient (GRC)

Calculate grey
relational grade (GRG) 

Rank the features based on 
the GRG

Choose the best features

Figure 4: Grey relational analysis procedures.

The adaptive technique is applied to maintain the diversity of
the population by varying the probabilities of crossover (𝑝

𝑐
)

andmutation (𝑝
𝑚
) as, for example, [28–31].The algorithm for

the proposed AGAs-BPNNs is as follows.

(1) Let (𝐼
𝑘
, 𝑇
𝑘
) be the 𝑘th input and target pair of the

problem to be solved by BPNN, with 𝑘 = 1, 2, . . . , 𝑁in,
and𝑁in is the number of paired data.

(2) Let 𝑁pop, 𝑁chro, 𝑝𝑐0, 𝑝𝑚0, and 𝑁iter be the num-
ber of populations, number of chromosomes, initial
crossover probability, initialmutation probability, and
maximum number of iterations, respectively. Initial-
ize 𝑝
𝑐0
, 𝑝
𝑚0
, 𝑅
𝑝𝑐
, and 𝑅

𝑝𝑚
where 𝑅

𝑝𝑐
are random

vectors of numbers which generated in range [0, 1]

with size 1 × 𝑁chro/2 and 𝑅
𝑝𝑚

are random vectors
of numbers which generated in range [0, 1] with size
1 × 𝑁chro. Set 𝑖 = 0.

(3) Determine the number of dominant features chosen.
(4) Determine the BPNN architecture in terms of the

number of input neuron, hidden layer, hidden neuron
and output neuron, and the activation functions
based on the number of dominant features chosen.

(5) Generate an initial population of chromosomes 𝑄
0
.

Each chromosome contains genes which correspond
to BPNN random weights, and the number of genes
in a chromosome is equal to the number of BPNN
weights.

(6) Calculate the fitness value 𝐹(𝑖, 𝑗) of the 𝑗th chromo-
some in population 𝑄

𝑖
using

𝐹 (𝑖, 𝑗) =
1

𝐸 (𝑖, 𝑗)
, 𝑗 = 1, 2, . . . , 𝑁chro, (8)

where 𝐸(𝑖, 𝑗) is the mean square error (MSE) of the
𝑗th chromosome in the population𝑄

𝑖
. It is calculated

based on the selected BPPN architecture as follows:

𝐸 (𝑖, 𝑗) =
1

2

𝑁in

∑
𝑘=1

(𝑇
𝑘𝑗
− 𝑂
𝑖

𝑘𝑗
)
2

, (9)

where 𝑇
𝑘𝑗

is the target of the 𝑘th input in the 𝑗th
chromosome and 𝑂𝑖

𝑘𝑗
is the output of the 𝑘th input

in the 𝑗th chromosome of the population𝑄
𝑖
based on

the selected BPNN architecture.
(7) Generate the mating pool by selecting the best chro-

mosomes using roulette selection methods.

(8) Select parent pairs of population 𝑄
𝑖
, say (𝜙𝑖

1𝑠
, 𝜙𝑖
2𝑠
),

from themating pool for crossovermechanismwhere
𝑠 = 1, 2, . . . , 𝑆 and 𝑆 = ⌊𝑁chro/2⌋.

(9) Calculate the crossover probability of the 𝑠th parents
pairs in the population 𝑄

𝑖
[32]:

𝑝
𝑐
(𝑖, 𝜙
𝑖

1𝑠
, 𝜙
𝑖

2𝑠
)

=

{{{

{{{

{

𝑝
𝑐0

(𝐹max (𝑖) − 𝐹
󸀠
(𝑖, 𝑠))

(𝐹max (𝑖) − 𝐹 (𝑖))
if 𝐹󸀠 (𝑖, 𝑠) > 𝐹 (𝑖)

𝑝
𝑐0

otherwise,

where

𝐹
󸀠
(𝑖, 𝑠) = {

𝐹 (𝜙𝑖
1𝑠
) if 𝐹 (𝜙𝑖

1𝑠
) > 𝐹 (𝜙𝑖

2𝑠
)

𝐹 (𝜙𝑖
2𝑠
) otherwise.

(10)

𝐹(𝜙𝑖
1𝑠
) and 𝐹(𝜙𝑖

2𝑠
) are the fitness values of parent 1 and

parent 2, respectively; 𝐹max(𝑖) is the maximum fitness
value of the population 𝑄

𝑖
; 𝐹(𝑖) is the average fitness

value of the population 𝑄
𝑖
.
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Table 5: The GRG and sequence of features extracted.

Number GRG 𝜉 = 0.3 GRG 𝜉 = 0.5 GRG 𝜉 = 0.6 GRG 𝜉 = 1 Features
1 0.912 0.945 0.954 0.972 Root mean sq. value
2 0.912 0.945 0.953 0.971 Standard deviation
3 0.909 0.943 0.952 0.970 Abs. mean value
4 0.868 0.916 0.929 0.956 Skewness
5 0.864 0.910 0.923 0.951 Max peak value
6 0.761 0.833 0.855 0.907 Shape factor
7 0.746 0.830 0.854 0.904 Kurtosis
8 0.480 0.604 0.646 0.752 Crest factor
9 0.412 0.536 0.580 0.695 Impulse factor
10 0.367 0.488 0.532 0.652 Clearance factor

(10) Calculate mutation probability of the 𝑗th chromo-
some in the population 𝑄

𝑖
[32]:

𝑝
𝑚
(𝑖, 𝑗) =

{{

{{

{

𝑝
𝑚0

(𝐹max (𝑖) − 𝐹 (𝑖, 𝑗))

(𝐹max (𝑖) − 𝐹 (𝑖))
if 𝐹 (𝑖, 𝑗) > 𝐹 (𝑖)

𝑝
𝑚0

otherwise,
(11)

where 𝐹(𝑖, 𝑗) is the fitness value of the 𝑗th chromo-
some in the population 𝑄

𝑖
.

(11) Set 𝑖 = 𝑖 + 1.
Generate 𝑄

𝑖
by applying crossover and mutation

mechanism based on the following rules.

(a) For 𝑠 = 1 : 𝑆,
if𝑝
𝑐
(𝑖, 𝜙𝑖
1𝑠
, 𝜙𝑖
2𝑠
) > 𝑅
𝑝𝑐
(𝑠), do a crossover between

𝜙𝑖
1𝑠

and 𝜙𝑖
2𝑠
. Otherwise, copy 𝜙𝑖

1𝑠
and 𝜙𝑖

2𝑠
as

offspring.
(b) For 𝑗 = 1 : 𝑁chro,

if 𝑝
𝑚
(𝑖, 𝑗) > 𝑅

𝑝𝑚
(𝑗), do a mutation of the 𝑗th

chromosome. Otherwise, the 𝑗th chromosome
is kept unchanged.

(12) If𝑄
𝑖
converge or 𝑖 is equal to𝑁iter, then the best chro-

mosome is obtained and used as the initial weights for
BPNN learning. Otherwise, go to step (6).

4. Experimental Evaluation and Discussion

In this section, we will describe and discuss the result of
the experiment from GRA-AGAs-BPNNs in classifying the
condition of the multiple systems. For the GRA process, we
tried several values of 𝜉, namely, 0.3, 0.5, 0.6, and 1. Based on
(7), GRG value for each was calculated. The sequence of the
features extracted based on GRG value is given in Table 5.

Table 5 shows that if the distinguishing coefficient 𝜉 is
closer to 0, then the GRG of the feature will have a range
wider than if the distinguishing coefficient 𝜉 is closer to 1. For
𝜉 = 0.3, the GRG range is around 0.545 while the 𝜉 = 1 GRG
is around 0.320 as shown in Figure 5. From Table 5, we can
see, however, that the 𝜉 values are varied and the sequence of

Features extracted

G
RG

GRC comparison of various distinguishing coefficients

1

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

DC = 0.3

DC = 0.5

DC = 0.6

DC = 1

Figure 5: GRG comparison of various distinguishing coefficients.

features extracted is the same. Root mean square value is the
features with the highest GRG value.

In this paper, we conducted experiments of AGAs-
BPNNs using one, three, five, and seven of the best dominant
features based on theGRGvalues in Table 5. InAGAs-BPNNs
techniques, we set AGAs features as follows: 100 chromo-
somes of each population, initial crossover probability of 0.6,
and initial mutation probability of 0.01. For BPNNs, we use
three hidden layers and refer to 𝑚-𝑙

1
-𝑙
2
-𝑙
3
-𝑛 as 𝑚 neurons

input, 𝑙
1
neurons in the first hidden layers, 𝑙

2
neurons in

the second hidden layers, 𝑙
3
neurons in the third hidden

layers, and 𝑛 neurons output. As stated in Section 2, vibration
signals data is recorded from three accelerometers; thus,
features are extracted from three accelerometers which cause
the number of neuron inputs in BPNNs to be equal to 3 ×
number of features. For example, if we choose five dominant
features, then the neuron input contains 15 neuron inputs,
where each neuron contains 240 samples of data, while each
hidden layer contains 15 neurons as well and 16 neurons
in output layer. The 240 samples of data are split randomly
into three sets: 80% for training, 10% for validation, and 10%
for testing. BPNN uses logsig and purelin as the activation
function, where learning rate and momentum are 0.05 and
0.25, respectively.
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Table 6: Comparison of performance between the AGAs-BPNNs and GRA-AGAs-BPNNs.

Number of dominant features selected BPNNs topology Training Validation Testing CPU time
10 features 30-30-30-30-16 99.3% 91.7% 92.4% 2905.0
1 feature 3-3-3-3-16 41.5% 38.8% 36.2% 992.2
3 features 9-9-9-9-16 83.6% 80.4% 80.4% 1116.8
5 features 15-15-15-15-16 99.4% 97.1% 96.7% 1279.3
7 features 21-21-21-21-16 100.0% 94.6% 92.5% 1468.2
1 feature (the 10th feature) 3-3-3-3-16 28.7% 26.7% 26.3% 982.6
2 features (the 1st and the 10th features) 6-6-6-6-16 59.9% 52.9% 55.4% 1074.8

Table 7: Percentage of increased accuracy and reducing time compared to AGAs-BPNNs without GA.

Number of dominant features Training (%) Validation (%) Testing (%) Time reduced (%)
5 features 0.1% 5.4% 4.3% 56%
7 features 0.7% 2.9% 0.1% 49.5%

We conducted ten times the experiments of the GRA-
AGAs-BPNNs for each one, three, five, and seven dominant
features combination. We also conducted experiments using
the lowest GRG features and combination of the highest and
the lowest GRG features in AGA-BPNN to obtain condition
diagnosis of multiple bearing systems. These experiments
were carried out to see the influence of the selection of domi-
nant features combination on condition diagnosis algorithm
performance for multiple bearing systems. The performance
of the algorithm is characterized based on the accuracy in
classifying the condition of the bearings. The classification
accuracy is computed by

classification accuracy

=
total true predicted class

total output
× 100%.

(12)

The experiments were executed using a computer with Intel
Core 2 Quad processor Q8200, 2.33GHz and 1.96GHz, and
RAM 3.46GB. The result of the GRA-AGAs-BPNNs is given
in Table 6.

Table 6 shows the comparison of the classification accu-
racy between GRA-AGAs-BPNNs and AGA-BPNN algo-
rithm without GRA (which involve ten features). We can see
that the classification accuracy of GRA-AGA-BPNN using
five and seven dominant features with topologies 15-15-15-15-
16 and 21-21-21-21-16, respectively, has higher accuracy than
AGA-BPNNwith topology 30-30-30-30-16 without GRA and
using ten features. From the experiment results, we obtain
that root mean square value, standard deviation, absolute
mean value, skewness, and maximum peak value can give
good diagnosis of multiple bearing conditions. We notice
that, by applying GRA in AGA-BPNN algorithm, we can
achieve higher classification accuracywith shorter time. GRA
is capable of determining which features can give dominant
contribution in condition diagnosis of the multiple bearing
system.

5. Conclusion

In this paper, we introduced a new hybrid technique of grey
relational analysis, adaptive operator probabilities in genetic
algorithms (AGAs), and back propagation neural networks
(BPNNs), called GRA-AGAs-BPNNs for condition diagno-
sis of multiple bearing systems. We used grey relational
analysis (GRA) to determine the dominant features which
contain useful information of multiple bearings condition.
GRA determines that mean square value, standard deviation,
absolute mean value, skewness, and maximum peak value
can give good diagnosis of the multiple bearings condition.
The features from GRA are used in AGA-BPNNs to diagnose
the condition effectively. We exploited the strong capability
in optimization of genetic algorithms, which here have been
further improved by varying the mutation and crossover
operators probabilities, for searching the best initial weights
for BPNNs, and the strong capability in classification of
BPNNs to classify or diagnose the condition of a multiple
bearing system. The AGAs strengthen the BPNNs to achieve
the higher classification accuracy in shorter CPU time com-
pared to the standard BPNN or the hybrid GAs-BPNNs.

Experimental results showed that the GRA is capable
of improving the classification accuracy of AGAs-BPNNs
in shorter time. The accuracy achieves 100%, 94.6%, and
92.5% for the training, validation, and testing, respectively,
for 7 dominant features and 99.4%, 97.1%, and 96.7% for the
training, validation, and testing, respectively, for 5 dominant
features. The accuracy is increased and the processing time
is reduced compared to the AGAs-BPNNs without GRA as
shown in Table 7. This achievement provides the benefits
for condition diagnosis in the real case, since we require
a precise and quick process to diagnose the condition of
multiple bearing in order to avoid total breakdown.
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