A Byte of Python
Swaroop CH

A Byte of Python
Swaroop CH
Copyright © 2003-2005 Swaroop C H

Abstract

This book will help you to learn the Python programming language, whether you are new to computers
or are an experienced programmer.

This book is released under the Creative Commons Attribution-NonCommercial-ShareAlike License 2.0 .

Table of Contents

P e aCE . e X
WHO ThiSBOOK IS FOF . .euiin it X
HISIONY LESSON ..ttt e et et e e et e e et e e et e e ean e eeaes X
StatuS Of thEDOOK ... X
OFfiCial WEDSITE .ot e et e e e s Xi
LICENSE TEIMNS et ettt e et e e e e e e e e et e e e e et e e e eeta e eeeee Xi
FEEADACK .. cvniei Xi
Something TO Think ABOULoiiiiic e Xi

I g o (1 1 o o PP 1
FpL oo ¥ 1o o RSP UPTRUPTR 1
Features Of PYtNONooi e 1

S 0] 7= Y/ 2
WY NOE PEIT? et et e e e 3
What ProgramimerS SAYccouuueeiiiiieeeiie ettt e et e e et e e e e eees 3

2. INStAlliNg PYTNON ... e 4
FOI LINUX/BSD USEIS ...ttt ettt et e e e e e e ea e eaes 4
FOr WINAOWS USEY'S ...ttt ettt et e et e e et e e e enens 4
S 101017 Y/ 5

R T S (= o= S ST PRT 6
g1 oo (8o 1 o o PP 6
Using the interpreter PromMIPL e e e e ea e eaes 6
ChoosSiNG @N EITOrooeieci e 6
L0 LS T aTo - S o0 (o 1= 7

L 11 0 7
HOW TEWOTKS ..o e e e e 8
Executable Python Prograimseeeeeeeieiie et 8
GEIING HEID e et 9
SUIMIMIBIY ettt et et e e e e e e e e e e e e e e a e 10

A TRE BASICS .. ettt 11
Literal CONSIANESeevuieeiiiie et e et e e et e e e e et e e e eaae e eeees 11
N[00 o= PSP 11
S {1010 PP OUPPPTI 11
VATADIES ...t e 13
[0 01 1= NN = 1 o P 13
(D = W Y 0= S PP 14
L o= £ 14

L0 0 11 o 11 | PP 15
HOW TEWOTKS <o e e e e e aas 15
Logical and PhySICal LINESc.uiiiiiiiiiiei e 15
Fge =g 1 7= o o HE PP 17
S 0] 7= Y 18

5. Operators N0 EXPrESSIONSuueieeeeeteeeieeei e eei e e e e et e eet e e e e e e e et e e e e eean e eaneeannns 19
Fp 10 oo (8 i1 To o E PP PTNPRN 19
(O07C = 0] £SO 19
OpErator PrECROBNCEt e e eees 21

Order Of EVAIUBLIONccunieiiiii e 22
F NS o = 1Y/ 22
T 01155 o P 22
USING EXPIrESSIONSvtieiiiiieeeeii ettt ettt e et e e et eeeaai e eees 22
SUMIMBIY ettt ettt ettt et et e e e e et e et e eaa e enes 23

B. CONLIOl FIOW ...t et e e e e e e e e e e e enaas 24
INEFOTUCTION ...ttt et e e e e e eenn s 24
THhE If SLELEIMENT e e e e e e s 24

A Byte of Python

Using the if Statementcooiiiiii e 24

HOW TEWOTKS .ot e e e e ees 25
TheWhIle StALEMENT ... e e e e e e e e eees 26
Using the While SEEEEMENtoouuiiiiii e 26

L0 (=0 {0 g (o] « IR 27
Using the for Statementcc.voeniiiii e 27

The break SLAtEMENTiiiii e 28
Using the break Statementoovvviiiiiiiii e 28

The CONtINUE SLAEEMENTee e e e e e e e e e e eees 30
Using the Continue SLAEEMENTcoeeuteiiiiii e e e e 30

ST 01007 YU UPTUP PR 30
T FUNCLIONS ..o ettt e e e et et e e e e aa s 32
F g1 (8ot [o PSP 32
= 1T o g o = W Vo o o 32
FUNCLION ParAMELENSoeeiiiiii et e e e et e e e e e e e e eeanaees 32
UsSiNg FUNCLION ParaMeterSiiiiiiiieiiiiii et 33

LOCAl VATADIES ... et 33
Using Local VariableSoovniiiii e 34
Using the global Statementcooiiiiiiiiiii e 34
Default Argument ValUEScveeiiii e e e e e e e e e eanaees 35
Using Default Argument ValUBSoouuiiiiiiiiiiiiii e 35
KEYWOId ATQUMENTS ...ttt ettt e ettt e et e e e et eeeeba e eeees 36
USiNg KEYWOrd ATQUIMENLESeeeniiieeei et e et e e e e ean e eees 37

THhe return SLAEEMENT ...t e e eees 37
Using theliteral StaemMENtcccvuiviiiei e e e 38

Do o T P 38
USING DOCSIIINGS ettt et e et e e et eeeaaa e eees 39
SUMMBIY ettt ettt e et et et e e e e e et et e eaa e enes 40
B IMOAUIES ... ettt 41
INEFOTUCTION <.ttt et e et e e een s 41
USINGthe SYSMOCUIEuviiiiicei e 41
Byte-compiled .pYCIlESiiee i 42
The from..import SLAEEMENTceeiii e e 42
A MOTUIE'S _ NBIME .oeieiiii ettt 42
USINg @MOUIE'S NAIME.__ ceuiiiiieii et 43
Making your OWN MOCUIESoveiiiii e e 43
Creating your OWNMOTUIEScvviiiiicc e e 43

100 0 P01 o o R 44

The dir() TUNCLION ... e 45
Using the dir fUNCLIONoooiiiic e 45
SUMIMBIY <.ttt ettt et e et e et et e et e et e et e et e e a e ea e e e e aaneeanaees 46
O. DAIASIIUCLUIES ... ettt ettt et ettt e ettt e et et e et e e e e et e e reeneenns 47
F g1 (8ot [o KPP 47
PPN 47
Quick introduction to Objectsand Classesovvvieiiiiiiiiiiccei e, 47
USING LISES ettt e et e e et e e 47

LI o T ST 49
USING TUPIES ..t e et e ea e eees 49
Tuplesand the print StAtEMENtccviiiiiiiiiii e e 50

D ox 1 o 1Y/ P 51
USING DICHONAITES ...t et 51
SEOUBICES ... ettt ettt ettt 53
USING SEQUENCES ... eetneeti ettt e et e et e et et e e et e e et e e et e e et e e e e e aa e aean e eanaaeees 53
REFEIBNCES ...ttt 54
Objects N REFEIENCES ... cevviiii e e 55

Y o == oo U1 AR {1 o P 56
SNG MENOUScevee e 56
SUMIMIBIY ettt ettt e e et et et e e e e e et e e e e eaa e eees 57

A Byte of Python

10. Problem Solving - Writing a Python SCriptccouveiiiiiiii e, 58
THE PrODIEIM ..o 58

QLIS 114 o 58

TS AV £ o] o I P 58

SECONA VEISION ...ttt e et e et e e e e e e e eannas 60

TRIFA VEISION ..ot 61

FOUtN VEISION ..o e et e eees 63

MOre REFINEMENTSuiiiiiii e 64

The Software Devel OPMENT PrOCESSccuuuiiiiiiiieeiii et 65
SUMMIBIY ettt ettt et et et e e e e e et e e e e eaa e enes 65

11. Object-Oriented ProgramiMingcceueeeeieieeiae e e e e e e e ean e aeees 67
INEFOTUCTION <.ttt et e e et e e e en s 67

TR Sl e 67
LSS PP 68
Creating @ CIASS ...covuiiiii e 68

ODJECE MELNOUSveiieet et 69
USINg OBbJECt MELNAS ... 69

The Nt MENO ... e e 69
Usingthe _init. mMethodoooviiiii i 69

Classand Object VariableSvviuiiii i e 70
Using Class and Object VariableSovviiiiiiiiiiiice e 71
INNETANCE ...ttt 73
USING INNEITTANCEcenieeieei e 73

SUIMIMIBIY ettt ettt e e e e e e e et e e e e an 75

o220 o1 7 11 o 76
[T =T PPN 76
USING FIl e e 76

PRI e e e e 77
Pickling and UnpPicklingoeeeiiii e 77

SUIMIMIBIY ettt ettt e e e e e e e et e e e e an 78

G T (o= o1 o0 79
g o PRSPPI 79
Ty EX OO e 79
HaNdliNg EXCEPLIONSccovviieiiii ettt e 79

RAISING EXCEPLIONS ...ttt e et e et e e e e ea e ean s 80

HOW TO RAISE EXCEPLIONS ...cvteiiieeii ettt 81
TEYLFINAIY oo 82
USING FINAIY .o 82

SUMMIBIY ettt e ettt et ettt e e e et n e e e eaa e enes 83

14. The Python Standard LiDraryooceeeueoiiiiee e 84
FpLu oo ¥ i 1o o RN PP 84
THESYSMOUUIE ... e e e e e e e e e eaas 84
Command Lin€ ATQUMENESc.uuiiiieiiiieeeee e e e e e e e e e e e e e e e e e eaeas 84

Y £ 86

QLIS 3 0o 1 86
SUMIMIBIY ettt ettt e e et et et e e e e e et e e e e eaa e eees 87

15. MO PYINON ...t et 88
SpeCial MEINOGS ... 88
Single StatemMent BIOCKSuiiiiiii e e e e e e e 88

LiSt COMPIENENSIONiitiiei et e e e e e e e e e e et e et s e e e e an e e eaneeeanaees 89
Using List COMPreNENSIONSuuuiiiiiiiieiiiii et e 89

Receiving Tuplesand ListSin FUNCLIONSooviiiiiiiiiii e 89
LambAa FOIMS ... e 0
UsiNg Lambda FOrmSoouii e 90

The exec and eval STALEMENESccevviiie e 91

The aSSErt STAEEMENTeuei e e 91

THE rePr FUNCLION ...t 91
SUMIMIBIY ettt ettt e e et et et e e e e e et e e e e eaa e eees 92

Vi

A Byte of Python

16, WNEE INEXE? ..ttt et e et e e e e et e e e e et e e e eetn e e e enteaeaees 93
GraphiCal SOfWEIEvve e e e e e e e e eaes 93
SUMMENY Of GUI TOOIS ...t %!

EXPIOITE IMIONE ..ottt ettt e e 9

ST 01007 YU UPTUP PR 95

A. Free/Libré and Open Source Software (FLOSS)oooviviieiiiiiiieece e 96
Bl ADOUL .ot e a e e at e ae 98
L0 o o] o o 98

N oo 1 L= 11 o 98

C. REVISION HISIOMY ...ttt ettt e e e e eeeans 99
0= T oo TP 99

Vii

List of Tables

5.1. Operators and their usage
5.2. Operator Precedence
15.1. Some Specia Methods

viii

List of Examples

3.1. Using the python interpreter Promptoceeeieiiiee e e e e e e 6
3.2.USINQASOUICE Il ...iiiiiiii et e e e e e e e e e 7
4.1. Using Variables and Literal CONSANESuuiiiiiiiiiiiii e 14
5.1 USING EXPrESSIONSveieiiiiieeeeit ettt ettt ettt e e e e e eaans 22
6.1. USiNg the if StatemMeNntooeei e 24
6.2. Using the While Statementcoiiiiiiii e 26
6.3. Using the for Statementcouuiiiiiii e 27
6.4. Using the break Statementcoovuiiiiiie e e e 29
6.5. Using the continue SEAtEMENTooiiiiiieii e 30
7.1 DEfINING ATUNCHIONieiiit ettt eaeas 32
7.2.USiNg FUNCLION PaIraMELENSc.uiiieiiei et e e e e aaas 33
7.3.USiNgLOCAl VariableSoeeiiie e 34
7.4. Using the global Statementcoouiiiiiiiii e 35
7.5. Using Default Argument ValUESovvvnieii e e e e 36
7.6. USiNg KeYWOrd ATQUMENESoeiiiiiiiti ettt ettt e e e e e eeaens 37
7.7.Using the literal StAEMENEuiiiiiii e 38
7.8. USING DOCSINGS .. .vn ettt ettt ettt e e e e e e et e e e e eannas 39
8.1. USINgthe SYySMOUUIEcuiiiii e e e eaas 41
8.2.USiNgamOdUIE'S NAME ..iiviiiiiii i e e e e e e e e e e e e e e e e e aaaas 43
8.3. How to create YOur OWN MOAUIEveveeei e e e e e e e e e aas 43
8.4.UsiNg the dir FUNCHIONuuiiiii et 45
0.1 USING TISES -ttt ettt 47
0.2, USING TUPIES .ttt ettt et et e et e e e e eaaaas 49
9.3, OULPUL USING TUPIES ..eeeeeeie e ettt e e e e e e e e e e e et e e e e eenns 50
9.4. USING AICHIONAITES ..vuietiieiii e i ei e e e e e e e e e e e e e e e et e e et e e e e e e e eannas 51
0.5, USING SEOUENCES ...vvueetnieeit i eeeie et teeet e e et e e et e e e et e e et e e et s e e e e e an e e et e e et e aean e eaneeannns 53
9.6. OhJeCtS aNd REFEIENCESviiiiiiii et 55
O.7. SIING MELNOAS ... ettt eeaeas 56
10.1. Backup Script - TRE FIrSt VEISIONveeiiiiieei e 58
10.2. Backup Script - The SeCONd VErSIONcvuiiiiiiiiii e e e e 60
10.3. Backup Script - The Third Version (does not Work!)coeeeiiiiiiiiiineviiece e, 62
10.4. Backup Script - The FOUrth VEISIONcvveiiiiccc e 63
11,1 Creating @ CIASS ...ieeieiee et 68
11.2. USINg ObJECE MENOUSovviieiiiiiie e 69
11.3.Usingthe _init. mMEthOdoiiini e 69
11.4. Using Classand Object Variablesc..oveuiiiiiiiii e 71
T U L= T o I = =T 73
2t T U =T o I 1= 76
12.2. Pickling @and UNPIckIiNgooieiiiiiiii e 77
13.1. Handling EXCEPLIONSceeitieiiiiie ettt ettt e e e eati e e e 80
13.2. HOW t0 RAISE EXCEPLIONSieiiiieiiieee ettt e e et eea e eees 81
13.3. USING FINAIY o e e e 82
I U L= T o RSV o | 84
15.1. USiNg List COMPIENENSIONSccuuiiiiieieiieeiiieeei e e e e e s e ee e e et s ee s e seaa e e e e eanaeeanaeeees 89
15.2. USINg LamBAa FOMMIScooviiiiiii et 90

Preface

Python is probably one of the few programming languages which is both simple and powerful. Thisis
good for both and beginners as well as experts, and more importantly, is fun to program with. This book
aimsto help you learn this wonderful language and show how to get things done quickly and painlessly -
in effect 'The Perfect Anti-venom to your programming problems.

Who This Book Is For

This book serves as a guide or tutorial to the Python programming language. It is mainly targeted at
newbies. It is useful for experienced programmers as well.

Theaimisthat if all you know about computersis how to save text files, then you can learn Python from
this book. If you have previous programming experience, then you can also learn Python from this book.

If you do have previous programming experience, you will be interested in the differences between Py-
thon and your favorite programming language - | have highlighted many such differences. A little warn-
ing though, Python is soon going to become your favorite programming language!

History Lesson

| first started with Python when | needed to write an installer for my software Diamond
[http://www.g2swaroop.net/software/] so that | could make the installation easy. | had to choose
between Python and Perl bindings for the Qt library. | did some research on the web and | came across
an article where Eric S. Raymond, the famous and respected hacker, talked about how Python has be-
come his favorite programming language. | also found out that the PyQt bindings were very good com-
pared to Perl-Qt. So, | decided that Python was the language for me.

Then, | started searching for a good book on Python. | couldn't find any! | did find some O'Reilly books
but they were either too expensive or were more like a reference manual than a guide. So, | settled for
the documentation that came with Python. However, it was too brief and small. It did give a good idea
about Python but was not complete. | managed with it since | had previous programming experience, but
it was unsuitable for newbies.

About six months after my first brush with Python, | installed the (then) latest Red Hat 9.0 Linux and |
was playing around with KWord. | got excited about it and suddenly got the idea of writing some stuff
on Python. | started writing a few pages but it quickly became 30 pages long. Then, | became serious
about making it more useful in a book form. After alot of rewrites, it has reached a stage where it has
become a useful guide to learning the Python language. | consider this book to be my contribution and
tribute to the open source community.

This book started out as my personal notes on Python and | still consider it in the same way, although
I've taken alot of effort to make it more palatable to others:)

In the true spirit of open source, | have received lots of constructive suggestions, criticisms and feedback
from enthusiastic readers which has hel ped me improve this book alot.

Status of the book

This book is awork-in-progress. Many chapters are constantly being changed and improved. However,
the book has matured a lot. Y ou should be able to learn Python easily from this book. Please do tell me
if you find any part of the book to be incorrect or incomprehensible.

More chapters are planned for the future, such as on wxPython, Twisted and maybe even Boa Construct-

X

http://www.g2swaroop.net/software/

Preface

or.

Official Website

The official website of the book is www.byteofpython.info [http://www.byteofpython.info] . From the
website, you can read the whole book online or you can download the latest versions of the book, and
also send me feedback.

License Terms

This book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License 2.0
[http://creativecommons.org/licenses/by-nc-sal2.0/] .

Basically, you are free to copy, distribute, and display the book, aslong as you give credit to me. There-
strictions are that you cannot use the book for commercial purposes without my permission. You are
free to modify and build upon this work, provided that you clearly mark all changes and release the
modified work under the same license as this book.

Please visit the Creative Commons website [http://creativecommons.org/licenses/by-nc-sa/2.0/] for the
full and exact text of the license, or for an easy-to-understand version. There is even a comic strip ex-
plaining the terms of the license.

Feedback

| have put in alot of effort to make this book as interesting and as accurate as possible. However, if you
find some material to be inconsistent or incorrect, or simply needs improvement, then please do inform
me, so tha | can make suitable improvements. You <can reach me a
<swar oop@yt eof pyt hon. i nf o> .

Something To Think About

There are two ways of constructing a software design: one way isto make it so simple
that there are obviously no deficiencies; the other is to make it so complicated that
there are no obvious deficiencies.

—C. A. R. Hoare

Success in life is a matter not so much of talent and opportunity as of concentration
and perseverance.
—C. W. Wendte

Xi

http://www.byteofpython.info
http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

Chapter 1. Introduction
Introduction

Python is one of those rare languages which can claim to be both simple and powerful. You will find
that you will be pleasantly surprised on how easy it is to concentrate on the solution to the problem
rather than the syntax and structure of the language you are programming in.

The official introduction to Python is

Python is an easy to learn, powerful programming language. It has efficient high-level
data structures and a simple but effective approach to object-oriented programming.
Python's elegant syntax and dynamic typing, together with its interpreted nature, make
it an ideal language for scripting and rapid application development in many areas on
most platforms.

I will discuss most of these features in more detail in the next section.

Note

Guido van Rossum, the creator of the Python language, named the language after the BBC
show "Monty Python's Flying Circus . He doesn't particularly like snakes that kill animals for
food by winding their long bodies around them and crushing them.

Features of Python

Simple Python is a ssimple and minimalistic language. Reading a good Python
program feels almost like reading English, although very strict English!
This pseudo-code nature of Python is one of its greatest strengths. It al-
lows you to concentrate on the solution to the problem rather than the
language itsalf.

Easy to Learn As you will see, Python is extremely easy to get started with. Python
has an extraordinarily simple syntax, as aready mentioned.

Free and Open Source Python is an example of a FLOSS (Free/Libré and Open Source Soft-
ware). In simple terms, you can freely distribute copies of this software,
read it's source code, make changes to it, use pieces of it in new free
programs, and that you know you can do these things. FLOSS is based
on the concept of a community which shares knowledge. This is one of
the reasons why Python is so good - it has been created and is con-
stantly improved by a community who just want to see a better Python.

High-level Language When you write programs in Python, you never need to bother about the
low-level details such as managing the memory used by your program,
etfc.

Portable Due to its open-source nature, Python has been ported (i.e. changed to

make it work on) to many platforms. All your Python programs can
work on any of these platforms without requiring any changes at al if
you are careful enough to avoid any system-dependent features.

Y ou can use Python on Linux, Windows, FreeBSD, Macintosh, Solaris,
0S/2, Amiga, AROS, AS/400, BeOS, 05390, zZ/OS, Pam OS, QNX,
VMS, Psion, Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus,

1

Introduction

Interpreted

Object Oriented

Extensible

Embeddable

Extensive Libraries

Summary

Windows CE and even PocketPC !
Thisrequires a bit of explanation.

A program written in a compiled language like C or C++ is converted
from the source language i.e. C or C++ into a language that is spoken
by your computer (binary code i.e. Os and 1s) using a compiler with
various flags and options. When you run the program, the linker/loader
software copies the program from hard disk to memory and starts run-
ning it.

Python, on the other hand, does not need compilation to binary. You
just run the program directly from the source code. Internally, Python
converts the source code into an intermediate form called bytecodes and
then trandates this into the native language of your computer and then
runs it. All this, actually, makes using Python much easier since you
don't have to worry about compiling the program, making sure that the
proper libraries are linked and loaded, etc, etc. This also makes your Py-
thon programs much more portable, since you can just copy your Py-
thon program onto another computer and it just works!

Python supports procedure-oriented programming as well as object-
oriented programming. In procedure-oriented languages, the program is
built around procedures or functions which are nothing but reusable
pieces of programs. In object-oriented languages, the program is built
around objects which combine data and functionality. Python has a very
powerful but simplistic way of doing OOP, especially when compared
to big languages like C++ or Java.

If you need acritical piece of code to run very fast or want to have some
piece of agorithm not to be open, you can code that part of your pro-
gramin C or C++ and then use them from your Python program.

Y ou can embed Python within your C/C++ programs to give 'scripting'
capabilities for your program's users.

The Python Standard Library is huge indeed. It can help you do various
things involving regular expressions, documentation generation, unit
testing, threading, databases, web browsers, CGlI, ftp, email, XML,
XML-RPC, HTML, WAV files, cryptography, GUI (graphical user in-
terfaces), Tk, and other system-dependent stuff. Remember, all this is
aways available wherever Python isinstalled. Thisis called the 'Batter-
ies Included' philosophy of Python.

Besides, the standard library, there are various other high-quality librar-
ies such as wxPython [http://www.wxpython.org], Twisted
[http://www.twistedmatrix.com/products/twisted], Python Imaging Lib-
rary [http://lwww.pythonware.com/products/pil/index.htm] and many
more.

Python is indeed an exciting and powerful language. It has the right combination of performance and
features that make writing programs in Python both fun and easy.

http://www.wxpython.org
http://www.twistedmatrix.com/products/twisted
http://www.pythonware.com/products/pil/index.htm
http://www.pythonware.com/products/pil/index.htm

Introduction

Why not Perl?

If you didn't know already, Perl is another extremely popular open source interpreted programming lan-
guage.

If you have ever tried writing a large program in Perl, you would have answered this question yourself!
In other words, Perl programs are easy when they are small and it excels at small hacks and scripts to
'get work done'. However, they quickly become unwieldy once you start writing bigger programs and |
am speaking this out of experience of writing large Perl programs at Y ahoo!

When compared to Perl, Python programs are definitely simpler, clearer, easier to write and hence more
understandable and maintainable. | do admire Perl and | do use it on a daily basis for various things but
whenever | write a program, | always start thinking in terms of Python because it has become so natural
for me. Perl has undergone so many hacks and changes, that it feels like it is one big (but one hell of @)
hack. Sadly, the upcoming Perl 6 does not seem to be making any improvements regarding this.

The only and very significant advantage that | feel Perl has, is its huge CPAN [http://cpan.perl.org] lib-
rary - the Comprehensive Perl Archive Network. As the name suggests, this is a humongous collection
of Perl modules and it is simply mind-boggling because of its sheer size and depth - you can do virtually
anything you can do with a computer using these modules. One of the reasons that Perl has more librar-
ies than Python is that it has been around for a much longer time than Python. Maybe | should suggest a
port-Perl-modul es-to-Python hackathon on comp.lang.python
[http://groups.google.com/groups?g=comp.lang.python] :)

Also, the new Parrot virtual machine [http://www.parrotcode.org] is designed to run both the completely
redesigned Perl 6 as well as Python and other interpreted languages like Ruby, PHP and Tcl. What this
means to you is that maybe you will be able to use all Perl modules from Python in the future, so that
will give you the best of both worlds - the powerful CPAN library combined with the powerful Python
language. However, we will haveto just wait and see what happens.

What Programmers Say

You may find it interesting to read what great hackers like ESR have to say about Python:

» Eric S. Raymond is the author of 'The Cathedral and the Bazaar' and is also the person who coined
the term 'Open Source'. He says that Python has become his favorite programming language
[http:/iwww.linuxjournal.com/article.php?sid=3882]. This article was the real inspiration for my first
brush with Python.

» Bruce Eckd is the author of the famous 'Thinking in Java and 'Thinking in C++' books. He says
that no language has made him more productive than Python. He says that Python is perhaps the
only language that focuses on making things easier for the programmer. Read the complete interview
[http:/iwww.artima.com/intv/aboutme.html] for more details.

» Peter Norvig is a well-known Lisp author and Director of Search Quality at Google (thanks to
Guido van Rossum for pointing that out). He says that Python has always been an integral part of
Google. You can actudly verify this satement by looking a the Google Jobs
[http:/iwww.google.com/jobs/index.html] page which lists Python knowledge as a requirement for
software engineers.

* Bruce Perensis aco-founder of OpenSource.org and the UserLinux project. UserLinux aims to cre-
ate a standardized Linux distribution supported by multiple vendors. Python has beaten contenders
like Perl and Ruby to become the main programming language that will be supported by UserLinux.

http://cpan.perl.org
http://groups.google.com/groups?q=comp.lang.python
http://www.parrotcode.org
http://www.linuxjournal.com/article.php?sid=3882
http://www.artima.com/intv/aboutme.html
http://www.google.com/jobs/index.html

Chapter 2. Installing Python
For Linux/BSD users

If you are using a Linux distribution such as Fedora or Mandrake or { put your choice here}, or a BSD
system such as FreeBSD, then you probably already have Python installed on your system.

To test if you have Python aready installed on your Linux box, open a shell program (like konsole or
gnome-terminal) and enter the command python -V as shown below.

$ python -V
Python 2.3.4
Note

$ is the prompt of the shell. It will be different for you depending on the settings of your OS,
hence | will indicate the prompt by just the $ symbol.

If you see some version information like the one shown above, then you have Python installed already.

However, if you get amessage like this one:

$ python -V
bash: python: command not found

then, you don't have Python installed. Thisis highly unlikely but possible.

In this case, you have two ways of installing Python on your system.

» Install the binary packages using the package management software that comes with your OS, such
as yum in Fedora Linux, urpmi in Mandrake Linux, apt-get in Debian Linux, pkg_add in FreeBSD,
etc. Note that you will need an internet connection to use this method.

Alternatively, you can download the binaries from somewhere else and then copy to your PC and in-
stall it.

* You can compile Python from the source code [http://www.python.org/download/] and install it. The
compilation instructions are provided at the website.

For Windows Users

Visit Python.org/download [http://www.python.org/download/] and download the latest version from
this website (which was 2.3.4 [http://www.python.org/ftp/python/2.3.4/Python-2.3.4.exe] as of this writ-
ing. Thisis just 9.4 MB which is very compact compared to most other languages. The installation is
just like any other Windows-based software.

http://www.python.org/download/
http://www.python.org/download/
http://www.python.org/ftp/python/2.3.4/Python-2.3.4.exe

Installing Python

Caution

When you are given the option of unchecking any optional components, don't uncheck any!
Some of these components can be useful for you, especially IDLE.

An interesting fact is that about 70% of Python downloads are by Windows users. Of course, this doesn't
give the complete picture since amost all Linux users will have Python installed already on their sys-
tems by default.

Using Python in the Windows command line

If you want to be able to use Python from the Windows command line, then you need to set the
PATH variable appropriately.

For Windows 2000, XP, 2003, click on Control Panel -> System -> Advanced -> Environment
Variables. Click on the variable named PATH in the 'System Variables' section, then select
Edit and add ;C:\Python23 (without the quotes) to the end of what is aready there. Of course,
use the appropriate directory name.

For older versions of Windows, add the following line to the file C. \ AUTOEXEC. BAT :
'PATH=%PATH%;C:\Python23' (without the quotes) and restart the system. For Windows
NT, use the AUTCEXEC. NT file.

Summary

For a Linux system, you most probably already have Python installed on your system. Otherwise, you
can install it using the package management software that comes with your distribution. For a Windows
system, installing Python is as easy as downloading the installer and double-clicking on it. From now
on, we will assume that you have Python installed on your system.

Next, we will write our first Python program.

Chapter 3. First Steps

Introduction

We will now see how to run atraditional 'Hello World' program in Python. This will teach you how to
write, save and run Python programs.

There are two ways of using Python to run your program - using the interactive interpreter prompt or us-
ing a source file. We will now see how to use both the methods.

Using the interpreter prompt

Start the intepreter on the command line by entering python at the shell prompt. Now enter pri nt
"Hell o Worl d' followed by the Enter key. Y ou should seethewordsHel | o Wor | d as output.

For Windows users, you can run the interpreter in the command line if you have set the PATH variable
appropriately. Alternatively, you can use the IDLE program. IDLE is short for Integrated Devel opment
Environment. Click on Start -> Programs -> Python 2.3 -> IDLE (Python GUI). Linux users can use
IDLE too.

Note that the <<< signs are the prompt for entering Python statements.

Example 3.1. Using the python inter preter prompt

$ python

Python 2.3.4 (#1, Cct 26 2004, 16:42:40)

[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2

Type "hel p", "copyright", "credits" or "license" for nore information.
>>> print '"hello world

hello world

>>>

Notice that Python gives you the output of the line immediately! What you just entered is a single Py-
thon statement. We use pri nt to (unsurprisingly) print any value that you supply to it. Here, we are
supplying thetext Hel | o Wor | d and thisis promptly printed to the screen.

How to quit the Python prompt

To exit the prompt, press Ctrl-d if you are using IDLE or are using a Linux/BSD shell. In case
of the Windows command prompt, press Ctrl-z followed by Enter.

Choosing an Editor

Before we move on to writing Python programs in source files, we need an editor to write the source
files. The choice of an editor is crucial indeed. Y ou have to choose an editor as you would choose a car
you would buy. A good editor will help you write Python programs easily, making your journey more
comfortable and helps you reach your destination (achieve your goal) in a much faster and safer way.

6

First Steps

One of the very basic requirements is syntax highlighting where al the different parts of your Python
program are colorized so that you can see your program and visualize its running.

If you are using Windows, then | suggest that you use IDLE. IDLE does syntax highlighting and a lot
more such as allowing you to run your programs within IDLE among other things. A specia note: don't
use Notepad - it is a bad choice because it does not do syntax highlighting and also importantly it does
not support indentation of the text which is very important in our case as we will see later. Good editors
such as IDLE (and also VIM) will automatically help you do this.

If you are using Linux/FreeBSD, then you have a lot of choices for an editor. If you are an experienced
programmer, then you must be already using VIM or Emacs. Needless to say, these are two of the most
powerful editors and you will be benefitted by using them to write your Python programs. | personally
use VIM for most of my programs. If you are a beginner programmer, then you can use Kate which is
one of my favorites. In case you are willing to take the time to learn VIM or Emacs, then | highly re-
commend that you do learn to use either of them asit will be very useful for you in the long run.

If you still want to explore other choices of an editor, see the comprehensive list of Python editors
[http://www.python.org/cgi-bin/moinmoin/PythonEditors] and make your choice. You can aso choose
an IDE (Integrated Development Environment) for Python. See the comprehensive list of IDEs that sup-
port Python [http://www.python.org/cgi-bin/moinmoin/IntegratedDevel opmentEnvironments] for more
details. Once you start writing large Python programs, | DEs can be very useful indeed.

| repeat once again, please choose a proper editor - it can make writing Python programs more fun and
easy.

Using a Source File

Now let's get back to programming. There is a tradition that whenever you learn a new programming
language, the first program that you write and run is the 'Hello World' program - all it does is just say
'Hello World' when you run it. As Simon Cozens 1 puts it, it is the 'traditional incantation to the pro-
gramming gods to help you learn the language better' ;) .

Start your choice of editor, enter the following program and saveit ashel | owor | d. py

Example 3.2. Using a Source File

#!/ usr/ bi n/ pyt hon
Filenane : helloworld. py
print "Hello World

(Source file: code/helloworld.py)

Run this program by opening a shell (Linux terminal or DOS prompt) and entering the command py-
thon hel | owor | d. py. If you are using IDLE, use the menu Edit -> Run Script or the keyboard short-
cut Ctrl-F5. The output is as shown below.

Output

1 one of the leading Perl6/Parrot hackers and the author of the amazing ‘Beginning Perl' book

7

http://www.python.org/cgi-bin/moinmoin/PythonEditors
http://www.python.org/cgi-bin/moinmoin/IntegratedDevelopmentEnvironments
http://www.python.org/cgi-bin/moinmoin/IntegratedDevelopmentEnvironments
code/helloworld.py

First Steps

pyt hon hel | owor| d. py
[lTo World

If you got the output as shown above, congratulations! - you have successfully run your first Python pro-
gram.

In case you got an error, please type the above program exactly as shown and above and run the program
again. Note that Python is case-sensitivei.e. pri nt isnot thesameasPri nt - note the lowercase p in
the former and the uppercase P in the latter. Also, ensure there are no spaces or tabs before the first char-
acter in each line - we will see why thisisimportant later.

How It Works

Let us consider the first two lines of the program. These are called comments - anything to the right of
the# symbol isacomment and is mainly useful as notes for the reader of the program.

Python does not use comments except for the specia case of the first line here. It is called the shebang
line - whenever the first two characters of the source file are #! followed by the location of a program,
this tells your Linux/Unix system that this program should be run with this interpreter when you execute
the program. Thisis explained in detail in the next section. Note that you can aways run the program on
any platform by specifying the interpreter directly on the command line such as the command python
hel | owor | d. py .

I mportant

Use comments sensibly in your program to explain some important details of your program -
thisis useful for readers of your program so that they can easily understand what the program is
doing. Remember, that person can be yourself after six months!

The comments are followed by a Python statement - this just prints the text * Hel | o Worl d' . The
print isactually an operator and' Hel | o Wor | d' isreferred to asastring - don't worry, we will ex-
plore these terminologies in detail later.

Executable Python programs

This applies only to Linux/Unix users but Windows users might be curious as well about the first line of
the program. First, we have to give the program executable permission using the chmod command then
run the source program.

$ chrmod a+x hel | oworl d. py
$./helloworld. py
Hello World

The chmod command is used here to change the mode of the file by giving execute permission to all
users of the system. Then, we execute the program directly by specifying the location of the source file.
Weusethe. / toindicate that the program islocated in the current directory.

To make things more fun, you can rename the file to just hel | owor | d and run it as ./helloworld and it

8

First Steps

will still work since the system knows that it has to run the program using the interpreter whose location
is specified in thefirst line in the source file.

You are now able to run the program as long as you know the exact path of the program - but what if
you wanted to be able to run the program from anywhere? Y ou can do this by storing the program in one
of the directories listed in the PATH environment variable. Whenever you run any program, the system
looks for that program in each of the directories listed in the PATH environment variable and then runs
that program. We can make this program available everywhere by simply copying this source file to one
of the directorieslisted in PATH.

$ echo $PATH

[opt/ nmono/ bi n: /usr/ Il ocal/bin:/usr/bin:/bin:/usr/X11R6/ bin:/home/ swar oop/ bi n
$ cp helloworld. py /hone/swaroop/ bin/helloworld

$ helloworld

Hello World

We can display the PATH variable using the echo command and prefixing the variable name by $ to in-
dicate to the shell that we need the value of this variable. We seethat / hone/ swar oop/ bi n isone of
the directories in the PATH variable where swaroop is the username | am using in my system. There
will usualy be a similar directory for your username on your system. Alternatively, you can add a dir-

ectory of your choice to the PATH variable - this can be done by running
PATH=3$PATH:/home/swar oop/mydir where' / honme/ swar oop/ nydi r' isthedirectory | want to
add to the PATH variable.

This method is very useful if you want to write useful scripts that you want to run the program anytime,
anywhere. It islike creating your own commands just like cd or any other commands that you use in the
Linux terminal or DOS prompt.

Caution

W.r.t. Python, a program or a script or software all mean the same thing.

Getting Help

If you need quick information about any function or statement in Python, then you can use the built-in
hel p functionaity. Thisis very useful especially when using the interpreter prompt. For example, run
hel p(str) - thisdisplaysthe help for the st r class which is used to store all text (strings) that you
use in your program. Classes will be explained in detail in the chapter on object-oriented programming.

Note

Press g to exit the help.

Similarly, you can obtain information about almost anything in Python. Use hel p() to learn more
about using hel p itself!

In case you need to get help for operators like pr i nt , then you need to set the PYTHONDCCS environ-
ment variable appropriately. This can be done easily on Linux/Unix using the env command.

$ env PYTHONDOCS=/ usr/ shar e/ doc/ pyt hon-docs-2. 3.4/ html/ python
Python 2.3.4 (#1, Cct 26 2004, 16:42:40)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)] on linux2

First Steps

Type "hel p", "copyright", "credits" or "license" for nore information.
>>> hel p('print')

You will notice that | have used quotes to specify ' pri nt' so that Python can understand that | want
to fetch help about 'print’ and | am not asking it to print something.

Note that the location | have used is the location in Fedora Core 3 Linux - it may be different for differ-
ent distributions and versions.

Summary

You should now be able to write, save and run Python programs at ease. Now that you are a Python
user, let's learn some more Python concepts.

10

Chapter 4. The Basics

Just printing 'Hello World' is not enough, isit? You want to do more than that - you want to take some
input, manipulate it and get something out of it. We can achieve thisin Python using constants and vari-
ables.

Literal Constants

An example of aliteral constant is a number like 5, 1. 23, 9. 25e-3 or astring like' This is a
string' or"lt's a string!".Itiscaled aliteral because it is literal - you use its value liter-
ally. The number 2 always represents itself and nothing else - it is a constant because its value cannot be
changed. Hence, al these are referred to asliteral constants.

Numbers

Numbersin Python are of four types - integers, long integers, floating point and complex numbers.

» Examples of integers are 2 which are just whole numbers.
* Longintegers are just bigger whole numbers.

e Examples of floating point numbers (or floats for short) are 3. 23 and 52. 3E- 4. The E notation in-
dicates powers of 10. Inthiscase, 52. 3E- 4 means52. 3 * 10-4.

» Examplesof complex numbersare (-5+4j) and (2.3 - 4.6j)

Strings
A string is a sequence of characters. Strings are basically just a bunch of words.

| can almost guarantee that you will be using strings in almost every Python program that you write, so
pay attention to the following part. Here's how you use strings in Python:

Using Single Quotes (')

Y ou can specify strings using single quotessuch as' Quote ne on this' . All white spacei.e.
spaces and tabs are preserved as-is.

Using Double Quotes (")

Strings in double quotes work exactly the same way as strings in single quotes. An example is
"What's your name?"

Using Triple Quotes ("' " or""")

Y ou can specify multi-line strings using triple quotes. Y ou can use single quotes and double quotes
freely within the triple quotes. An exampleis

11

The Basics

"'"'"This is amulti-line string. This is the first line.
This is the second I|ine.
"What' s your name?," | asked.

He said "Bond, Janmes Bond."

Escape Sequences

Suppose, you want to have a string which contains a single quote (*), how will you specify this
string? For example, the string isWhat ' s your nane?. You cannot specify ' What ' s your
nane?' because Python will be confused as to where the string starts and ends. So, you will have to
specify that this single quote does not indicate the end of the string. This can be done with the help
of what is called an escape sequence. You specify the single quote as\ ' - notice the backslash.
Now, you can specify thestringas' What\' s your nanme?'.

Another way of specifying this specific string would be "What' s your nanme?" i.e using
double quotes. Similarly, you have to use an escape sequence forusing a double quote itself in a
double quoted string. Also, you have to indicate the backslash itself using the escape sequence\ \ .

What if you wanted to specify a two-line string? One way is to use a triple-quoted string as shown
above or you can use an escape sequence for the newline character - \ n to indicate the start of a new
line. AnexampleisThis is the first line\nThis is the second |ine.Anocther
useful escape sequence to know isthe tab - \ t . There are many more escape sequences but | have
mentioned only the most useful ones here.

One thing to note is that in a string, a single backslash at the end of the line indicates that the string
is continued in the next line, but no newline is added. For example,

"This is the first sentence.\
This is the second sentence."”

is equivalent to "This is the first sentence. This is the second sen-
tence.”

Raw Strings

If you need to specify some strings where no special processing such as escape seguences are
handled, then what you need is to specify araw string by prefixing r or Rto the string. An example
isr"New i nes are indicated by \n".

Unicode Strings

Unicode is a standard way of writing international text. If you want to write text in your native lan-
guage such as Hindi or Arabic, then you need to have a Unicode-enabled text editor. Similarly, Py-
thon allows you to handle Unicode text - all you need to do is prefix u or U. For example, u” Thi s
is a Unicode string.".

12

The Basics

Remember to use Unicode strings when you are dealing with text files, especially when you know
that the file will contain text written in languages other than English.

Strings are immutable

This means that once you have created a string, you cannot change it. Although this might seem like
abad thing, it realy isn't. We will see why thisis not alimitation in the various programs that we see
later on.

String literal concatenation

If you place two string literals side by side, they are automatically concatenated by Python. For ex-
ample, " What\'s' 'your nanme?' is automaticaly converted in to "What's your
nanme?".

Note for C/C++ Programmers

There is no separate char datatype in Python. There is no real need for it and | am sure you
won't missit.

Note for Perl/PHP Programmers

Remember that single-quoted strings and double-quoted strings are the same - they do not dif-
fer in any way.

Note for Regular Expression Users

Always use raw strings when dealing with regular expressions. Otherwise, alot of backwhack-
ing may be required. For example, backreferences can bereferredtoas' \\ 1" orr'\ 1'.

Variables

Using just literal constants can soon become boring - we need some way of storing any information and
mani pulate them as well. This is where variables come into the picture. Variables are exactly what they
mean - their value can vary i.e. you can store anything using a variable. Variables are just parts of your
computer's memory where you store some information. Unlike literal constants, you need some method
of accessing these variables and hence you give them names.

Identifier Naming

Variables are examples of identifiers. Identifiers are names given to identify something. There are some
rules you have to follow for naming identifiers:

» Thefirst character of the identifier must be aletter of the alphabet (upper or lowercase) or an under-
score ("_").

» Therest of the identifier name can consist of letters (upper or lowercase), underscores (') or digits
(0-9).

» ldentifier names are case-sensitive. For example, mynane and my Nane are not the same. Note the
lowercase n in the former and the uppercase N in te latter.

13

The Basics

» Examplesof valid identifier namesarei , __ny_nane, nane_23 andalb2_ c3.

» Examplesof invalid identifier namesare 2t hi ngs,this i s spaced out andmy- name.

Data Types

Variables can hold values of different types called data types. The basic types are numbers and strings,
which we have aready discussed. In later chapters, we will see how to create our own types using
classes.

Objects

Remember, Python refers to anything used in a program as an object. Thisis meant in the generic sense.
Instead of saying 'the something', we say 'the object'.

Note for Object Oriented Programming users

Python is strongly object-oriented in the sense that everything is an object including numbers,
strings and even functions.

We will now see how to use variables along with literal constants. Save the following example and run
the program.

How to write Python programs

Henceforth, the standard procedure to save and run a Python programis as follows:

1. Open your favorite editor.
2. Enter the program code given in the example.

3. Saveit as afile with the filename mentioned in the comment. | follow the convention of
having all Python programs saved with the extension . py.

4. Run the interpreter with the command python pr ogr am py or use IDLE to run the pro-
grams. Y ou can aso use the executable method as explained earlier.

Example4.1. Using Variablesand Literal constants

Filenane : var.py

i =5

print i

=i +1

print i

s ='"'""This is a nulti-line string.
This is the second line.'""'
print s

14

The Basics

Output

$ pyt hon var. py
5

6

This is a nulti-line string.

This is the second |ine.
How It Works

Here's how this program works. First, we assign the literal constant value 5 to the variable i using the
assignment operator (=). Thislineis caled a statement because it states that something should be done
and in this case, we connect the variable name i to the value 5. Next, we print the value of i using the
pri nt statement which, unsurprisingly, just prints the value of the variable to the screen.

Theweadd 1 to thevalue stored ini and store it back. We then print it and expectedly, we get the value
6.

Similarly, we assign the literal string to the variable s and then print it.

Note for C/C++ Programmers

Variables are used by just assigning them a value. No declaration or data type definition is
needed/used.

Logical and Physical Lines

A physical line is what you see when you write the program. A logical line is what Python sees as a
single statement. Python implicitly assumes that each physical line corresponds to alogical line.

An example of alogical lineis astatement likeprint 'Hell o Wirld' -if thiswasonalineby it-
self (asyou seeit in an editor), then this also corresponds to a physical line.

Implicitly, Python encourages the use of a single statement per line which makes code more readable.

If you want to specify more than one logical line on a single physical line, then you have to explicitly
specify thisusing a semicolon (;) which indicates the end of alogical line/statement. For example,

i =5
print i

is effectively same as

15

The Basics

i =5
print i;

and the same can be written as

i =5; print i;
or even
i =5; print i

However, | strongly recommend that you stick to writing a singlelogical linein asingle physical line
only. Use more than one physical line for asingle logical line only if the logical lineisrealy long. The
ideaisto avoid the semicolon as far as possible since it leads to more readable code. In fact, | have nev-
er used or even seen a semicolon in a Python program.

An example of writing alogical line spanning many physical lines follows. Thisis referred to as explicit
linejoining.

s ="'This is a string. \
This continues the string.'
print s

This gives the output:

This is a string. This continues the string.
Similarly,
print \

isthe same as

16

The Basics

print i

Sometimes, there is an implicit assumption where you don't need to use a backslash. This is the case
where the logical line uses parentheses, square brackets or curly braces. Thisisis called implicit line
joining. You can see thisin action when we write programs using listsin later chapters.

Indentation

Whitespace is important in Python. Actually, whitespace at the beginning of the line is important.
Thisis called indentation. Leading whitespace (spaces and tabs) at the beginning of the logical line is
used to determine the indentation level of the logical line, which in turn is used to determine the group-
ing of statements.

This means that statements which go together must have the same indentation. Each such set of state-
mentsis called ablock. We will see examples of how blocks are important in later chapters.

One thing you should remember is how wrong indentation can give rise to errors. For example:

i =5
print 'Value is', i # Error! Notice a single space at the start of the |line
print 'l repeat, the value is', i

When you run this, you get the following error:

File "whitespace.py", line 4
print '"Value is', i # Error! Notice a single space at the start of the line
N

SyntaxError: invalid syntax

Notice that there is a single space at the beginning of the second line. The error indicated by Python tells
us that the syntax of the program isinvalid i.e. the program was not properly written. What this means to
you is that you cannot arbitrarily start new blocks of statements (except for the main block which you
have been using all along, of course). Cases where you can use new blocks will be detailed in later
chapters such as the control flow chapter.

How to indent

Do not use a mixture of tabs and spaces for the indentation as it does not work across different
platforms properly. | strongly recommend that you use a single tab or two or four spaces for
each indentation level.

Choose any of these three indentation styles. More importantly, choose one and use it consist-
ently i.e. use that indentation style only.

17

The Basics

Summary

Now that we have gone through many nitty-gritty details, we can move on to more interesting stuff such
as control flow statements. Be sure to become comfortable with what you have read in this chapter.

18

Chapter 5. Operators and Expressions
Introduction

Most statements (logical lines) that you write will contain expressions. A simple example of an expres-
sionis2 + 3. Anexpression can be broken down into operators and operands.

Operators are functionality that do something and can be represented by symbols such as + or by special
keywords. Operators require some data to operate on and such data are called operands. In this case, 2
and 3 are the operands.

Operators

We will briefly take alook at the operators and their usage:

Tip

You can evaluate the expressions given in the examples using the interpreter interactively. For
example, to test the expression 2 + 3, use the interactive Python interpreter prompt:

>>> 2 + 3

>>> 3 * 5
15
>>>

Tableb5.1. Operatorsand their usage

Operator Name Explanation Examples
+ Plus Adds the two objects 3 + 5gives8.'a'" +
"b' gives' ab'.
- Minus Either gives a negative|- 5. 2 gives a negative
number or gives the sub-|number. 50 - 24
traction of one number|gives 26.
from the other
* Multiply Gives the multiplication|2 * 3 gives 6. 'l a'
of the two numbers or(* 3 gives' | al al a'.
returns the string re-
peated that many times.
*x Power Returns x to the power|3 ** 4 gives81 (i.e. 3
ofy * 3 * 3* 3
/ Divide Dividex by y 4/ 3 gives 1 (division of
integers gives an in-
teger). 4.0/ 3 or
4/ 3.0 gives
1. 33333333333333
33

19

Operators and Expressions

Operator Name Explanation Examples
I/ Floor Division Returns the floor of the|4 // 3.0givesl. 0
quotient
% Modulo Returns the remainder of 898 gives 2. -
the division 25.5%. 25 gives 1. 5
<< Left Shift Shifts the bits of thel2 << 2 gives8.-2 is
number to the left by the|represented by 10 in
number of bits specified. |bits. Left shifting by 2
(Each number is repres-|bits gives 1000 which
ented in memory by bits|represents the decimal 8.
or binary digitsi.e. 0 and
1)
>> Right Shift Shifts the bits of the|1l >> 1 gives5 - 11
number to the right by|is represented in bits by
the number of bits spe-|1011 which when right
cified. shifted by 1 hit gives
101 which is nothing
but decimal 5.
& Bitwise AND Bitwise AND of the|5 & 3givesl.
numbers
| Bit-wise OR Bitwise OR of the num-|5 | 3 gives7
bers
A Bit-wise XOR 5 ~ 3gives6
~ Bit-wise invert The bit-wise inversion|~5 gives- 6.
of xis-(x+1)
< Less Than Returns whether x isless|5 < 3 gives 0 (i.e.
than y. All comparison|Fal se) and 3 < 5
operators return 1 for|gives 1 (i.e. True).
true and O for false. This|Comparisons can be
is equivalent to the spe-|chained arbitrarily: 3<5
cia variables Tr ue and|< 7 givesTr ue.
Fal se respectively.
Note the capitalization
of these variables
names.
> Greater Than Returns whether x is|5 < 3 returns Tr ue. If
greater thany both operands are num-
bers, they are first con-
verted to a common
type. Otherwise, it a-
ways returns Fal se.
<= LessThanor Equal To |Returnswhether xisless|x = 3; y = 6; X
than or equal to y <= y returnsTr ue.
>= Greater Than or Equal |Returns whether x is|x =4;y=3; x>=3re

To greater than or equal toy [turns Tr ue.

== Equal To Compares if the objects|x = 2; y = 2; X
are equal == vy returns True. X

= ‘'str',; y =

"stR; x == yre

turns False. x =

"str'; y =

"str'; X == y re

20

Operators and Expressions

uation of y

Operator Name Explanation Examples
turns Tr ue.
I= Not Equal To Compares if the objects|x = 2; y = 3; X
are not equal I'= yreturnsTr ue.
not Boolean NOT If x is True, it returns|x = True; not vy
Fal se. If x is Fal se,|returnsFal se.
it returns Tr ue.
and Boolean AND x and y retunsix = False; y =
Fal se if x is Fal se,|True; x and y re
else it returns evaluation|turns Fal se since x is
of y Fase. In this case, Py-
thon will not evaluate y
since it knows that the
value of the expression
will has to be fase
(sincex isFase). Thisis
called short-circuit eval-
uation.
or Boolean OR If x is True, it returns|x = True; y =
True, elseitreturnseval-|Fal se; x or vy re

turns True. Short-cir-
cuit evaluation applies
here aswell.

Operator Precedence

If you had an expressionsuchas2 + 3 * 4, isthe addition done first or the multiplication? Our high
school maths tells us that the multiplication should be done first - this means that the multiplication op-
erator has higher precedence than the addition operator.

The following table gives the operator precedence table for Python, from the lowest precedence (least
binding) to the highest precedence (most binding). This means that in a given expression, Python will
first evaluate the operators lower in the table before the operators listed higher in the table.

The following table (same as the one in the Python reference manual) is provided for the sake of com-
pleteness. However, | advise you to use parentheses for grouping of operators and operands in order to
explicitly specify the precedence and to make the program as readable as possible. For example, 2 +
(3 * 4) isdefinitely moreclearerthan2 + 3 * 4. Aswith everything else, the parentheses shold
be used sensibly and should not be redundant (asin2 + (3 + 4)).

Table5.2. Operator Precedence

Operator Description
lambda Lambda Expression
or Boolean OR

and Boolean AND

not X Boolean NOT

in, notin Membership tests
is, isnot | dentity tests

<, <=, > >= 1= == Comparisons

21

Operators and Expressions

Operator Description

| Bitwise OR

A Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction
* 1, % Multiplication, Division and Remainder
+X, -X Positive, Negative

~X Bitwise NOT

*x Exponentiation
x.atribute Attribute reference
X[index] Subscription
X[index:index] Slicing

f(arguments ...) Function call
(expressions, ...) Binding or tuple display
[expressions, ...] List display
{key:datum, ...} Dictionary display
‘expressions, ..." String conversion

The operators which we have not already come across will be explained in later chapters.

Operators with the same same precedence are listed in the same row in the above table. For example, +
and - have the same precedence.

Order of Evaluation

By default, the operator precedence table decides which operators are evaluated before others. However,
if you want to change the orer in which they are evaluated, you can use parentheses. For example, if you
want addition to be evaluated before multiplication in an expression, then you can write something like
(2 + 3) * 4.

Associativity

Operators are usually associated from left to right i.e. operators with same precedence are evaluated in a
left to right manner. For example, 2 + 3 + 4 isevaluatedas(2 + 3) + 4. Some operators like
assignment operators have right to left associativityi.ee.a = b = cistreatedasa = (b = c).

Expressions

Using Expressions

Example5.1. Using Expressions

#!/ usr/ bi n/ pyt hon

22

Operators and Expressions

Fil enane: expression. py

length =5
breadth = 2
area = length * breadth

print 'Area is', area
print '"Perineter is', 2 * (length + breadth)

Output

$ python expression. py
Area is 10
Perimeter is 14

How It Works

The length and breadth of the rectangle are stored in variables by the same name. We use these to calcu-
late the area and perimieter of the rectangle with the help of expressions. We store the result of the ex-
pression | engt h * breadt h in the variable ar ea and then print it using the pri nt statement. In
the second case, we directly use the value of the expression2 * (I ength + breadt h) inthe print
statement.

Also, notice how Python 'pretty-prints' the output. Even though we have not specified a space between
"Area is' andthevariablear ea, Python putsit for us so that we get a clean nice output and the pro-
gram is much more readable this way (since we don't need to worry about spacing in the output). Thisis
an example of how Python makes life easy for the programmer.

Summary

We have seen how to use operators, operands and expressions - these are the basic building blocks of
any program. Next, we will see how to make use of these in our programs using statements.

23

Chapter 6. Control Flow
Introduction

In the programs we have seen till now, there has always been a series of statements and Python faith-
fully executes them in the same order. What if you wanted to change the flow of how it works? For ex-
ample, you want the program to take some decisions and do different things depending on different situ-
ations such as printing 'Good Morning' or ‘Good Evening' depending on the time of the day?

As you might have guessed, this is achieved using control flow statements. There are three control flow
statementsin Python-i f , f or andwhi | e.

The if statement

Thei f statement is used to check a condition and if the condition is true, we run a block of statements
(called the if-block), else we process another block of statements (called the else-block). The else clause
isoptional.

Using the if statement

Example 6.1. Using the if statement

#!/ usr/ bi n/ pyt hon
Filenane: if.py

nunmber = 23
guess = int(raw_input('Enter an integer : '))
i f guess == nunber:

print 'Congratul ations, you guessed it.' # New block starts here

print "(but you do not win any prizes!)" # New bl ock ends here
elif guess < nunber:

print "No, it is alittle higher than that' # Another bl ock

You can do whatever you want in a block ...
el se:

print "No, it is alittle lower than that'

you must have guess > nunber to reach here

print 'Done'
This last statenent is always executed, after the if statenent is executed

Output

$ python if.py
Enter an integer : 50
No, it is alittle |ower than that

24

Control Flow

Done

$ python if.py

Enter an integer : 22

No, it is alittle higher than that
Done

$ python if.py

Enter an integer : 23

Congratul ations, you guessed it.
(but you do not wn any prizes!)
Done

How It Works

In this program, we take guesses from the user and check if it is the number that we have. We set the
variable nunber to any integer we want, say 23. Then, we take the user's guess using the
raw_i nput () function. Functions are just reusable pieces of programs. We'll read more about them in
the next chapter.

We supply astring to the built-in r aw_i nput function which printsit to the screen and waits for input
from the user. Once we enter something and press enter, the function returns the input which in the case
of raw_i nput isastring. We then convert this string to an integer using i nt and then store it in the
variable guess. Actually, thei nt isaclassbut al you need to know right now isthat you can useit to
convert astring to an integer (assuming the string contains avalid integer in the text).

Next, we compare the guess of the user with the number we have chosen. If they are equal, we print a
success message. Notice that we use indentation levels to tell Python which statements belong to which
block. Thisiswhy indentation is so important in Python. | hope you are sticking to ‘one tab per indenta-
tionlevel' rule. Are you?

Notice how the i f statement contains a colon at the end - we are indicating to Python that a block of
statements follows.

Then, we check if the guess is less than the number, and if so, we inform the user to guess a little higher
than that. What we have used hereisthe el i f clause which actually combinestwo relatedi f el se-
i f el se statements into one combined i f - el i f - el se statement. This makes the program easier
and reduces the amount of indentation required.

Theel i f and el se statements must also have a colon at the end of the logical line followed by their
corresponding block of statements (with proper indentation, of course)

You can have ancther i f statement inside the if-block of ani f statement and so on - thisis called a
nestedi f statement.

Remember that theel i f and el se partsare optional. A minival validi f statement is

if True:
print "Yes, it is true'

After Python has finished executing the complete i f statement along with the assocated el i f and
el se clauses, it moves on to the next statement in the block containing thei f statement. In this case, it
is the main block where execution of the program starts and the next statement isthe pri nt ' Done'
statement. After this, Python sees the ends of the program and simply finishes up.

25

Control Flow

Although thisis a very simple program, | have been pointing out a lot of things that you should notice
even in this simple program. All these are pretty straightforward (and surprisingly simple for those of
you from C/C++ backgrounds) and requires you to become aware of all these initially, but after that, you
will become comfortable with it and it'll feel 'natura’ to you.

Note for C/C++ Programmers

Thereisno swi t ch statement in Python. Youcanuseani f. . elif. . el se statement to do
the same thing (and in some cases, use a dictionary to do it quickly)

The while statement

The whi | e statement alows you to repeatedly execute a block of statements as long as a condition is
true. A whi | e statement is an example of what is called alooping statement. A whi | e statement can
have an optional el se clause.

Using the while statement

Example 6.2. Using the while statement

#!/ usr/ bi n/ pyt hon
Fil enane: while. py

nunmber = 23
runni ng = True

whi l e runni ng:
guess = int(raw_input('Enter an integer : '))

i f guess == nunber:
print 'Congratul ations, you guessed it."'

running = False # this causes the while loop to stop
elif guess < nunber:

print "No, it is alittle higher than that.'

el se:
print "No, it is alittle lower than that.'
el se:
print 'The while |loop is over.'
Do anything el se you want to do here
print 'Done'
Output

$ pyt hon while. py

Enter an integer : 50

No, it is alittle lower than that.
Enter an integer : 22

No, it is a little higher than that.

26

Control Flow

Enter an integer : 23

Congratul ations, you guessed it.
The while loop is over.

Done

How It Works

In this program, we are still playing the guessing game, but the advantage is that the user is allowed to
keep guessing until he guesses correctly - there is no need to repeatedly execute the program for each
guess as we have done previously. This aptly demonstrates the use of thewhi | e statement.

We movetheraw i nput andi f statementsto inside the whi | e loop and set the variable r unni ng
to Tr ue before the while loop. First, we check if the variable r unni ng is Tr ue and then proceed to
execute the corresponding while-block. After this block is executed, the condition is again checked
which in this case isthe r unni ng variable. If it is true, we execute the while-block again, else we con-
tinue to execute the optional else-block and then continue to the next statement.

The el se block is executed when the whi | e loop condition becomes Fal se - this may even be the
first time that the condition is checked. If there is an el se clause for awhi | e loop, it is aways ex-
ecuted unless you have awhi | e loop which loops forever without ever breaking out!

The Tr ue and Fal se are called Boolean types and you can consider them to be equivalent to the value
1 and O respecitvely. It'simportant to use these where the condition or checking is important and not the
actual valuesuch as 1.

The else-block is actually redundant since you can put those statements in the same block (asthewhi | e
statement) after the whi | e statement to get the same effect.

Note for C/C++ Programmers

Remember that you can have an el se clause for thewhi | e loop.

The for loop

Thef or. . i n statement is another looping statement which iterates over a sequence of objectsi.e. go
through each item in a sequence. We will see more about sequences in detail in later chapters. What you
need to know right now is that a sequenceisjust an ordered collection of items.

Using the for statement

Example 6.3. Using the for statement

#!/ usr/ bi n/ pyt hon
Fil enane: for.py

for i in range(l, 5):
print i
el se:
print 'The for loop is over'

27

Output

Control Flow

$ python for.py
1
2
3
4
T

he for loop is over

How It Works

In this program, we are printing a sequence of numbers. We generate this sequence of numbers using hte
built-inr ange function.

What we do here is supply it two humbers and r ange returns a sequence of numbers starting from the
first number and up to the second number. For example, r ange(1, 5) gives the sequence [1, 2,
3, 4] .By default, r ange takes a step count of 1. If we supply athird number to r ange, then that be-
comes the step count. For example, r ange(1, 5, 2) gives[1, 3] . Remember that the range extends
up to the second number i.e. it does not include the second number.

The f or loop then iterates over thisrange-for i in range(1,5) isequivadenttofor i in
[1, 2, 3, 4] whichislike assigning each humber (or object) in the sequenceto i, one at atime, and
then executing the block of statements for each value of i . In this case, we just print the value in the
block of statements.

Remember that the el se part is optional. When included, it is always executed once after the f or loop
is over unless a break statement is encountered.

Remember that the f or . . i n loop works for any sequence. Here, we have a list of numbers generated

by the built-in r ange function, but in general we can use any kind of sequence of any kind of objects!
We will explorethisideain detail in later chapters.

Note for C/C++/Java/C# Programmers

The Python f or loop is radicaly different from the C/C++ f or loop. C# programmers will
note that the f or loop in Python is similar to the f or each loop in C#. Java programmers will

notethat the sameissimilartofor (int i : IntArray) inJavals.
In C/C++, if youwant towritefor (int i = 0; i < 5; i++),thenin Python you
writejustfor i in range(0,5).Asyoucan see thef or loop issimpler, more express-

ive and less error prone in Python.

The break statement

Using

The br eak statement is used to break out of aloop statement i.e. stop the execution of alooping state-
ment, even if the loop condition has not become Fal se or the sequence of items has been completely
iterated over.

An important noteisthat if you break out of af or or whi | e loop, any corresponding loop el se block
isnot executed.

the break statement

28

Control Flow

Example 6.4. Using the break statement

#!/ usr/ bi n/ pyt hon
Fil enane: break. py

whil e True:
S = raw_i nput (' Enter something : ')
if s =="quit":
br eak
print 'Length of the string is', len(s)
print 'Done'
Output

$ python break. py

Enter sonething : Progranming is fun
Length of the string is 18

Enter sonething : Wen the work is done
Length of the string is 21

Enter sonmething : if you wanna nake your work al so fun:
Length of the string is 37
Enter sonething : use Pyt hon!

Length of the string is 12
Enter sonething : quit
Done

How It Works

In this program, we repeatedly take the user's input and print the length of each input each time. We are
providing a specia condition to stop the program by checking if the user input is' qui t ' . We stop the
program by breaking out of the loop and reach the end of the program.

The length of the input string can be found out using the built-in | en function.

Remember that the br eak statement can be used with thef or loop as well.

G2's Poetic Python

Theinput | have used hereisamini poem | have written called G2's Poetic Python:

Programming is fun

When the work i s done

if you wanna nake your work al so fun:
use Pyt hon!

29

Control Flow

The continue statement

The cont i nue statement is used to tell Python to skip the rest of the statements in the current loop
block and to continue to the next iteration of the loop.

Using the continue statement

Example 6.5. Using the continue statement

#!/ usr/ bi n/ pyt hon
Fil enane: conti nue. py

whil e True:
s = raw_input('Enter sonething : ')
if s =="quit":
br eak
if len(s) < 3:
conti nue

print 'Input is of sufficient |ength'
Do ot her kinds of processing here...

Output

$ python continue. py

Enter sonmething : a

Enter something : 12

Enter something : abc

Input is of sufficient length
Enter sonething : quit

How It Works

In this program, we accept input from the user, but we process them only if they are at least 3 characters
long. So, we use the built-in | en function to get the length and if the length is less than 3, we skip the
rest of the statements in the block by using the cont i nue statement. Otherwise, the rest of the state-
ments in the loop are executed and we can do any kind of processing we want to do here.

Note that the cont i nue statement works with the f or loop aswell.

Summary

We have seen how to use the three control flow statements- i f, whi | e and f or aong with their asso-
ciated br eak and cont i nue statements. These are some of the most often used parts of Python and
hence, becoming comfortable with them is essential.

30

Control Flow

Next, we will see how to create and use functions.

31

Chapter 7. Functions
Introduction

Functions are reusable pieces of programs. They alow you to give a name to a block of statements and
you can run that block using that name anywhere in your program and any number of times. This is
known as calling the function. We have aready used many built-in functions such as the | en and
range.

Functions are defined using the def keyword. This is followed by an identifier name for the function
followed by a pair of parentheses which may enclose some names of variables and the line ends with a
colon. Next follows the block of statements that are part of this function. An example will show that this
isactualy very simple:

Defining a Function

Example 7.1. Defining a function

#!/ usr/ bi n/ pyt hon
Fil enane: functionl. py

def sayHello():
print 'Hello World!" # block belonging to the function
End of function

sayHel lo() # call the function

Output
$ python functionl. py
Hello Worl d!

How It Works

We define a function called sayHel | o using the syntax as explained above. This function takes no
parameters and hence there are no variables declared in the parentheses. Parameters to functions are just
input to the function so that we can passin different values to it and get back corresponding results.

Function Parameters

A function can take parameters which are just values you supply to the function so that the function can
do something utilising those values. These parameters are just like variables except that the values of

32

Functions

these variables are defined when we call the function and are not assigned values within the function it-
self.

Parameters are specified within the pair of parentheses in the function definition, separated by commas.
When we call the function, we supply the values in the same way. Note the terminology used - the
names given in the function definition are called parameters whereas the values you supply in the func-
tion call are called arguments.

Using Function Parameters

Example 7.2. Using Function Parameters

#!/ usr/ bi n/ pyt hon
Fil enane: func_param py

def printMax(a, b):
if a>b:
print a, 'is naxinmn
el se:
print b, '"is maxinmmn

printMax(3, 4) # directly give literal values

printMax(x, y) # give variables as argunents

Output

yt hon func_param py
S maxi mum
S

p
[
i's maximum

$
Yl
7

How It Works

Here, we define a function called pri nt Max where we take two parameters called a and b. We find
out the greater number using asimplei f . . el se statement and then print the bigger number.

In the first usage of pri nt Max, we directly supply the numbersi.e. arguments. In the second usage, we
call the function using variables. pri nt Max(x, Yy) causes vaue of argument x to be assigned to

parameter a and the value of argument y assigned to parameter b. The printMax function works the
same in both the cases.

Local Variables

When you declare variables inside a function definition, they are not related in any way to other vari-

33

Functions

ables with the same names used outside the function i.e. variable names are local to the function. Thisis
called the scope of the variable. All variables have the scope of the block they are declared in starting
from the point of definition of the name.

Using Local Variables

Example 7.3. Using Local Variables

#!/ usr/ bi n/ pyt hon
Fil enane: func_| ocal . py

def func(x):
print 'x is', X
X =2
print 'Changed local x to', x

x = 50
func(x)
print "x is still', x

Output

$ python func_local . py

X 1s 50
Changed local x to 2
X is still 50

How It Works

In the function, the first time that we use the value of the name x, Python uses the value of the parameter
declared in the function.

Next, we assign the value 2 to x. The name x islocal to our function. So, when we change the value of
x in the function, the x defined in the main block remains unaffected.

Inthelast pri nt statement, we confirm that the value of x in the main block is actually unaffected.

Using the global statement

If you want to assign a value to a name defined outside the function, then you have to tell Python that
the name is not local, but it is global. We do this using the gl obal statement. It isimpossible to assign
avalue to avariable defined outside a function without the gl obal statement.

Y ou can use the values of such variables defined outside the function (assuming there is no variable with
the same name within the function). However, this is not encouraged and should be avoided since it be-
comes unclear to the reader of the program as to where that variable's definition is. Using the gl obal

34

Functions

statement makes it amply clear that the variable is defined in an outer block.

Example 7.4. Using the global statement

#! [/ usr/ bi n/ pyt hon
Fil enane: func_gl obal . py

def func():
gl obal x

print "x is', X
X =2
print 'Changed global x to', X

x = 50
func()
print 'Value of x is', X

Output

$ pyt hon func_gl obal . py
X Is 50

Changed global x to 2
Value of x is 2

How It Works

Thegl obal statement is used to decare that x isaglobal variable - hence, when we assign avalue to x
inside the function, that change is reflected when we use the value of x in the main block.

Y ou can specify more than one global variable using the same gl obal statement. For example, gl ob-
al x, y, z.

Default Argument Values

For some functions, you may want to make some of its parameters as optional and use default values if
the user does not want to provide values for such parameters. This is done with the help of default argu-
ment values. You can specify default argument values for parameters by following the parameter name
in the function definition with the assignment operator (=) followed by the default value.

Note that the default argument value should be a constant. More precisely, the default argument value
should be immutable - thisis explained in detail in later chapters. For now, just remember this.

Using Default Argument Values

35

Functions

Example 7.5. Using Default Argument Values

#1/ usr/ bi n/ pyt hon
Fil enane: func_default. py

def say(nessage, tinmes = 1):
print nmessage * tines

say(' Hello")
say('World' , 5)

Output

$ python func_defaul t. py
Hel |l o
Wor | dVor | dWor | dWor | dWer | d

How It Works

The function named say is used to print a string as many times as want. If we don't supply avalue, then
by default, the string is printed just once. We achieve this by specifying a default argument value of 1 to
the parameter t i mes.

In the first usage of say, we supply only the string and it prints the string once. In the second usage of
say, we supply both the string and an argument 5 stating that we want to say the string message 5
times.

I mportant

Only those parameters which are at the end of the parameter list can be given default argument
values i.e. you cannot have a parameter with a default argument value before a parameter
without a default argument value in the order of parameters declared in the function parameter
list.

This is because the values are assigned to the parameters by position. For example, def
func(a, b=5) isvalid, butdef func(a=5, b) isnotvalid.

Keyword Arguments

If you have some functions with many parameters and you want to specify only some of them, then you
can give values for such parameters by naming them - this is called keyword arguments - we use the
name (keyword) instead of the position (which we have been using all along) to specify the arguments to
the function.

There are two advantages - one, using the function is easier since we do not need to worry about the or-

36

Functions

der of the arguments. Two, we can give values to only those parameters which we want, provided that
the other parameters have default argument values.

Using Keyword Arguments

Example 7.6. Using Keyword Arguments

#!/ usr/ bi n/ pyt hon
Fil enane: func_key. py

def func(a, b=5, c¢=10):
print '"ais', a, 'and bis', b, "and c is', c

func(3, 7)
func(25, c=24)
func(c=50, a=100)

Output
$ python func_key. py
als 3and bis 7 and c is 10
ais 25 and bis 5 and c is 24
ais 100 and b is 5 and c is 50
How It Works

The function named f unc has one parameter without default argument values, followed by two para-
meters with default argument values.

Inthefirst usage, f unc(3, 7),the parameter a gets the value 3, the parameter b getsthe value 5 and
c getsthe default value of 10.

In the second usage f unc (25, c¢=24), the variable a gets the value of 25 due to the position of the
argument. Then, the parameter ¢ gets the value of 24 due to naming i.e. keyword arguments. The vari-
able b getsthe default value of 5.

In the third usage f unc(¢c=50, a=100), we use keyword arguments completely to specify the val-

ues. Notice, that we are specifying value for parameter ¢ before that for a even though a is defined be-
fore ¢ in the function definition.

The return statement

Ther et ur n statement is used to return from a function i.e. break out of the function. We can option-
ally return a value from the function as well.

37

Functions

Using the literal statement

Example 7.7. Using the literal statement

#1/ usr/ bi n/ pyt hon
Fil enane: func_return. py

def maxi mum(x, y):
if x>y
return x
el se:
returny

print maxi num(2, 3)

$ python func_return. py
3

How It Works

The maxi mumfunction returns the maximum of the parameters, in this case the numbers supplied to the
function. It usesasimplei f . . el se statement to find the greater value and then returns that value.

Note that ar et ur n statement without avalue is equivalenttor et ur n None. None is a specia type
in Python that represents nothingness. For example, it is used to indicate that a variable has no value if it

has avalue of None.

Every function implicitly containsar et ur n None statement at the end unless you have written your
own r et ur n statement. Y ou can see this by running pri nt sonmeFuncti on() where the function
soneFunct i on doesnot usether et ur n statement such as:

def someFunction():
pass

The pass statement is used in Python to indicate an empty block of statements.

DocStrings

Python has a nifty feature called documentation strings which is usually referred to by its shorter name
docstrings. DocStrings are an important tool that you should make use of since it helps to document the

38

Functions

program better and makes it more easy to understand. Amazingly, we can even get back the docstring
from, say afunction, when the program is actually running!

Using DocStrings

Example 7.8. Using DocStrings

#!/ usr/ bi n/ pyt hon
Fil enane: func_doc. py

def printMax(x, y):
""'"Prints the maxi mum of two nunbers.

The two val ues nust be integers.'''

X = int(x) # convert to integers, if possible
y = int(y)
if x >vy:
print x, '"is maximmn
el se:
print y, "is maxinmm

print Max(3, 5)
print printMax._ doc_

Output

$ python func_doc. py
5 1s maxi mum
Prints the maxi num of two nunbers.

The two val ues nust be integers.

How It Works

A string on the first logical line of afunction is the docstring for that function. Note that DocStrings also
apply to modules and classes which we will learn about in the respective chapters.

The convention followed for a docstring is a multi-line string where the first line starts with a capital let-
ter and ends with adot. Then the second line is blank followed by any detailed explanation starting from
the third line. Y ou are strongly advised to follow this convention for al your docstrings for all your non-
trivial functions.

We can access the docstring of the pri nt Max function using the __doc__ (notice the double under-
scores) attribute (name belonging to) of the function. Just remember that Python treats everything as an
object and this includes functions. We'll learn more about objects in the chapter on classes.

If you have used the hel p() in Python, then you have already seen the usage of docstrings! What it

39

Functions

doesisjust fetchthe doc__ attribute of that function and displays it in a neat manner for you. You
can try it out on the function above - just include hel p(pri nt Max) in your program. Remember to
press g to exit the hel p.

Automated tools can retrieve the documentation from your program in this manner. Therefore, | strongly

recommend that you use docstrings for any non-trivial function that you write. The pydoc command that
comes with your Python distribution works similarly to hel p() using docstrings.

Summary

We have seen so many aspects of functions but note that we still haven't covered all aspects of it.

However, we have already covered most of what you'll use regarding Python functions on an everyday
basis.

Next, we will see how to use aswell as create Python modules.

40

Chapter 8. Modules
Introduction

Y ou have seen how you can reuse code in your program by defining functions once. What if you wanted
to reuse a number of functionsin other programs that you write? As you might have guessed, the answer
is modules. A module is basically a file containing all your functions and variables that you have
defined. To reuse the module in other programs, the filename of the module must havea. py extension.

A module can be imported by another program to make use of its functionality. Thisis how we can use
the Python standard library as well. First, we will see how to use the standard library modules.

Using the sys module

Example 8.1. Using the sys module

#!/ usr/ bi n/ pyt hon
Fil enane: using_sys. py

i mport sys
print ' The conmand |ine argunents are:'
for i in sys.argv:

print i

print "\ n\nThe PYTHONPATH is', sys.path, "\n'

Output

$ python using_sys.py we are arguments
The conmand |ine argunents are:

usi ng_sys. py
we

are
argunent s

The PYTHONPATH is ['/home/ swaroop/ byte/ code', '/usr/lib/python23.zip',
"fusr/libl/python2.3", '/usr/lib/python2.3/plat-Iinux2',
"fusr/lib/python2.3/lib-tk', "/usr/lib/python2.3/Iib-dynload',
"fusr/lib/python2.3/site-packages', '/usr/lib/python2.3/site-packages/gtk-2.0"]

How It Works

41

Modules

First, we import the sys module using thei nport statement. Basically, this trandates to us telling Py-
thon that we want to use this module. The sys module contains functionality related to the Python inter-
preter and its environment.

When Python executesthei nport sys statement, it looks for the sys. py module in one of the dir-
ectoreslisted initssys. pat h variable. If the file is found, then the statementsin the main block of that
module is run and then the module is made available for you to use. Note that the initialization is done
only the first time that we import amodule. Also, 'sys is short for 'system'.

The ar gv variable in the sys module is referred to using the dotted notation - sys. ar gv - one of the
advantages of this approach is that the name does not clash with any ar gv variable used in your pro-
gram. Also, it indicates clearly that this nameis part of the sys module.

The sys. ar gv variable is a list of strings (lists are explained in detail in later sections). Specifically,
the sys. ar gv contains the list of command line arguments i.e. the arguments passed to your program
using the command line.

If you are using an IDE to write and run these programs, look for a way to specify command line argu-
ments to the program in the menus.

Here, when we execute pyt hon usi ng_sys. py we are argunents, we run the module us-
i ng_sys. py with the python command and the other things that follow are arguments passed to the
program. Python storesit inthesys. ar gv variable for us.

Remember, the name of the script running is always the first argument in the sys. ar gv list. So, in this
case we will have ' usi ng_sys. py' as sys.argv[0], 'we' assys.argv[l], 'are' as
sys.argv[2] and' argunments' assys. argv[3] . Notice that Python starts counting from O
and not 1.

The sys. pat h containsthe list of directory names where modules are imported from. Observe that the
first string in sys. pat h is empty - this empty string indicates that the current directory is aso part of
the sys. pat h which is same as the PYTHONPATH environment variable. This means that you can dir-
ectly import modules located in the current directory. Otherwise, you will have to place your module in
one of the directorieslistedinsys. pat h ..

Byte-compiled .pyc files

Importing amodule is arelatively costly affair, so Python does some tricks to make it faster. One way is
to create byte-compiled files with the extension . pyc which is related to the intermediate form that Py-
thon transforms the program into (remember the intro section on how Python works ?). This. pyc file
is useful when you import the module the next time from a different program - it will be much faster
since part of the processing required in importing a module is already done. Also, these byte-compiled
files are platform-independent. So, now you know what those . pyc filesreally are.

The from..import statement

If you want to directly import the ar gv variable into your program (to avoid typing the sys. everytime
for it), then you can usethef r om sys i nport ar gv statement. If you want to import al the names
used in the sys module, then you can usethefrom sys inport * statement. This works for any
module. In general, avoid using the f rom . i mport statement and use the i nport statement instead
since your program will be much more readable and will avoid any name clashes that way.

A module's _ _name

Every module has a name and statements in a module can find out the name of its module. Thisis espe-

42

Modules

cialy handy in one particular situation - As mentioned previously, when a module is imported for the
first time, the main block in that module is run. What if we want to run the block only if the program
was used by itself and not when it was imported from another module? This can be achieved using the
__name__ attribute of the module.

Using a module's __name_

Example 8.2. Usingamodule's__name__

#! / usr/ bi n/ pyt hon
Fil enane: using_nane. py

if _name_ ="' _ min__':
print 'This programis being run by itself’
el se:
print 'I am being inported from another nodul e’
Output

$ pyt hon usi ng_nane. py
This programis being run by itself

$ python
>>> j mport usi ng_nane

| am being inported from anot her nodul e
>>>

How It Works

Every Python module hasit's__nanme__ defined and if thisis' __main__" , it implies that the mod-
uleis being run standalone by the user and we can do corresponding appropriate actions.

Making your own Modules

Creating your own modulesis easy, you've been doing it al along! Every Python program is also a mod-
ule. You just haveto make sureit hasa. py extension. The following example should make it clear.

Creating your own Modules

Example 8.3. How to create your own module

43

Output

Modules

#1/ usr/ bi n/ pyt hon
Fil ename: nynodul e. py

def sayhi ():
print 'Hi, this is nynodul e speaking.'

version = '0.1'

End of nynodul e. py

The above was a sample module. As you can seeg, there is nothing particularly special about compared to
our usua Python program. We will next see how to use this module in our other Python programs.

Remember that the module should be placed in the same directory as the program that we import it in, or
the module should be in one of the directorieslistedinsys. pat h .

#1/ usr/ bi n/ pyt hon
Fil enane: nmynodul e_deno. py

i mport nynodul e

nmynodul e. sayhi ()
print 'Version', mynodul e.version

$ python nynodul e_deno. py
Hi, this is nmynodul e speaking.
Version 0.1

How It Works

from..

Notice that we use the same dotted notation to access members of the module. Python makes good reuse
of the same notation to give the distinctive 'Pythonic' feel to it so that we don't have to keep learning
new waysto do things.

import

Hereisaversion utilisingthef r om . i nport syntax.

#!/ usr/ bi n/ pyt hon
Fil enane: mynodul e_denp2. py

from nynodul e i nport sayhi, version
Al ternative:

44

Modules

from nmynodul e i mport *

sayhi ()
print 'Version', version

The output of mynodul e_deno2. py issame asthe output of mynodul e_deno. py.

The dir() function

Y ou can use the built-in di r function to list the identifiers that a module defines. The identifiers are the
functions, classes and variables defined in that module.

When you supply a module name to the di r () function, it returns the list of the names defined in that
module. When no argument is applied to it, it returns the list of names defined in the current module.

Using the dir function

Example 8.4. Using the dir function

$ python
>>> jnport sys
>>> dir(sys) # get list of attributes for sys nodul e

[' __displayhook ', ' doc_ ', ' excepthook ', ' nane_ ', ' stderr__ ',
" _stdin__', " _ stdout__', ' _getframe', "api_version', ‘argv',
"builtin_nodul e_names', 'byteorder', 'call _tracing , 'callstats',
"copyright', 'displayhook', 'exc_clear', '"exc_info', 'exc_type'
'except hook', 'exec_prefix', 'executable', 'exit', 'getcheckinterval'
'getdefaul tencoding', 'getdlopenflags', 'getfilesystenmencoding'
"getrecursionlinmt', 'getrefcount', 'hexversion', 'nmaxint', 'maxuni code'
"meta_path',' nodules', 'path', 'path_hooks', 'path_inporter_cache'
"platform, 'prefix', 'psl', 'ps2', 'setcheckinterval', 'setdlopenflags',
"setprofile', 'setrecursionlimt', 'settrace', 'stderr', 'stdin', 'stdout',
"version', 'version_info', 'warnoptions']
>>> dir() # get list of attributes for current nodul e
['" __builtins_', ' doc_ ', ' name__ ', 'sys']
>>>
>>> a = 5 # create a new variable 'a'
>>> dir()
['_builtins_ ', ' _doc_', '__name__', '"a', 'sys']
>>>
>>> del a # delete/renove a nane
>>>
>>> dir()
['" __builtins__', ' doc_ ', ' name__', 'sys']
>>>

How It Works

First, we see the usage of di r ontheimported sys module. We can see the huge list of attributes that it

45

Modules

contains.

Next, we use the di r function without passing parameters to it - by default, it returns the list of attrib-
utes for the current module. Notice that the list of imported modulesis also part of thislist.

In order to observe the di r in action, we define a new variable a and assign it a value and then check
di r and we observe that there is an additional value in the list of the same name. We remove the vari-
able/attribute of the current module using the del statement and the change is reflected again in the out-
put of thedi r function.

A noteon del - this statement is used to delete a variable/name and after the statement has run, in this
casedel a,you canno longer accessthevariablea - itisasif it never existed before at all.

Summary

Modules are useful because they provide services and functionality that you can reuse in other programs.
The standard library that comes with Python is an example of such a set of modules. We have seen how
to use these modules and create our own modules as well.

Next, we will learn about some interesting concepts called data structures.

46

Chapter 9. Data Structures

Introduction

List

Data structures are basically just that - they are structures which can hold some data together. In other
words, they are used to store a collection of related data.

There are three built-in data structures in Python - list, tuple and dictionary. We will see how to use each
of them and how they make life easier.

A li st is adata structure that holds an ordered collection of items i.e. you can store a sequence of
itemsin alist. Thisis easy to imagine if you can think of a shopping list where you have a list of items
to buy, except that you probbly have each item on a separate line in your shopping list whereas in Py-
thon you put commas in between them.

The list of items should be enclosed in square brackets so that Python understands that you are specify-
ing alist. Once you have created alist, you can add, remove or search for itemsin the list. Since, we can
add and remove items, we say that alist is amutable datatypei.e. thistype can be altered.

Quick introduction to Objects and Classes

Although, I've been generally delaying the discussion of objects and classes till now, alittle explanation
is needed right now so that you can understand lists better. We will still explore this topic in detail in its
own chapter.

A list is an example of usage of objects and classes. When you use avariablei and assign avaluetoiit,
say integer 5 to it, you can think of it as creating an object (instance) i of class (type) i nt . In fact, you
canseehel p(i nt) tounderstand this better.

A class can aso have methodsi.e. functions defined for use with respect to that class only. Y ou can use
these pieces of functionality only when you have an object of that class. For example, Python provides
an append method for the | i st class which allows you to add an item to the end of the list. For ex-
ample, nyl i st. append(' an item) will add that string to the list ny| i st . Note the use of dot-
ted notation for accessing methods of the objects.

A class can aso have fields which are nothing but variables defined for use with respect to that class
only. You can use these variables/names only when you have an object of that class. Fields are aso ac-
cessed by the dotted notation, for example, nmyl i st. fiel d.

Using Lists

Example 9.1. Using lists

#!/ usr/ bi n/ pyt hon
Filenane: using list.py

This is nmy shopping |ist
shoplist = ['"apple', 'nmango', 'carrot', 'banana']

47

Output

Data Structures

print 'I have', len(shoplist), '"itens to purchase.’
print 'These itens are:', # Notice the comma at end of the line
for itemin shoplist:

print item

print '"\nl also have to buy rice.’
shopl i st.append('rice')
print "My shopping list is now, shoplist

print "I will sort my list now
shoplist.sort()
print 'Sorted shopping list is', shoplist

print 'The first iteml will buy is', shoplist[O0]
ol ditem = shoplist[0]

del shoplist[0]

print 'l bought the', olditem

print "My shopping list is now, shoplist

$ python using_list.py

| have 4 itens to purchase.

These itens are: apple mango carrot banana
| also have to buy rice.

My shopping list 1s now ['apple', 'mango', 'carrot', 'banana', 'rice']
I will sort my list now
Sorted shopping list is ['apple', 'banana', 'carrot', 'mango', 'rice']

The first iteml will buy is apple
| bought the apple
My shopping list is now ['banana', 'carrot', 'mango', 'rice']

How It Works

The variable shopl i st isashopping list for someone who is going to the market. In shopl i st , we
only store strings of the names of the items to buy but remember you can add any kind of object to alist
including numbers and even other lists.

We have also used the f or . . i n loop to iterate through the items of the list. By now, you must have
realised that alist is also a sequence. The speciality of sequences will be discussed in alater section

Notice that we use a comma at the end of the pri nt statement to suppress the automatic printing of a
line break after every pri nt statement. Thisisabit of an ugly way of doing it, but it is simple and gets
the job done.

Next, we add an item to the list using the append method of the list object, as already discussed before.
Then, we check that the item has been indeed added to the list by printing the contents of the list by
simply passing thelist to the pr i nt statement which printsit in aneat manner for us.

Then, we sort the list by using the sort method of the list. Understand that this method affects the list

48

Data Structures

itself and does not return a modified list - this is different from the way strings work. This is what we
mean by saying that lists are mutable and that strings are immutable.

Next, when we finish buying an item in the market, we want to remove it from the list. We achieve this
by using the del statement. Here, we mention which item of the list we want to remove and the del
statement removes it fromt he list for us. We specify that we want to remove the first item from the list
and henceweusedel shopli st[0] (remember that Python starts counting from 0).

If you want to know all the methods defined by the list object, seehel p(1i st) for complete details.

Tuple

Tuples are just like lists except that they are immutable like strings i.e. you cannot modify tuples.
Tuples are defined by specifying items separated by commas within a pair of parentheses. Tuples are
usually used in cases where a statement or a user-defined function can safely assume that the collection
of valuesi.e. the tuple of values used will not change.

Using Tuples

Example 9.2. Using Tuples

#!/ usr/ bi n/ pyt hon
Fil enane: using _tuple. py

zoo = (‘wolf', "elephant', 'penguin')

print 'Nunmber of animals in the zoo is', |en(zoo)

new zoo = (' nmonkey', 'dolphin', zoo)

print 'Nurmber of animals in the new zoo is', |en(new_zoo)

print "All animals in new zoo are', new_zoo
print 'Animals brought fromold zoo are', new_zoo[2]
print 'Last aninmal brought fromold zoo is', new zoo[2][2]

Output

$ pyt hon using_tuple.py

Nurmber of animals in the zoo is 3

Nurmber of animals in the new zoo is 3

Al animals in new zoo are ('nonkey', 'dolphin', ("wolf', '"elephant', 'penguin'))
Ani mal s brought fromold zoo are ("wolf', "elephant', 'penguin')

Last ani mal brought fromold zoo i s penguin

How It Works

The variable zoo refers to a tuple of items. We see that the | en function can be used to get the length
of the tuple. This also indicates that atuple is a sequence as well.

49

Data Structures

We are now shifting these animals to a new zoo since the old zoo is being closed. Therefore, the
new_zoo tuple contains some animals which are already there along with the animals brought over
from the old zoo. Back to reality, note that a tuple within a tuple does not lose its identity.

We can access the items in the tuple by specifying the item's position within a pair of square brackets
just like we did for lists. Thisis called the indexing operator. We access the third item in new_zoo by
specifying new_zoo[2] and we access the third item in the third item in the new_z oo tuple by spe-
cifyingnew_zoo[2] [2] . Thisis pretty simple once you've understood the idiom.

Tuplewith O or 1 items. An empty tuple is constructed by an empty pair of parentheses such as ny-

enpty = (). However, atuple with a single item is not so simple. You have to specify it using a
comma following the first (and only) item so that Python can differentiate between a tuple and a pair of
parentheses surrounding the object in an expression i.e. you have to specify si ngl et on

if you mean you want atuple containing the item 2.

Note for Perl programmers

A list within a list does not lose its identity i.e. lists are not flattened as in Perl. The same ap-
plies to a tuple within a tuple, or atuple within alist, or alist within atuple, etc. As far as Py-
thon is concerned, they are just objects stored using another object, that's all.

Tuples and the print statement

One of the most common usage of tuplesis with the print statement. Here is an example:

Example 9.3. Output using tuples

#!/ usr/ bi n/ pyt hon
Fil enane: print_tuple.py

age = 22
name = ' Swar oop'

print "% is %l years old % (nanme, age)
print "Wy is % playing with that python?'

Output

$ python print_tuple.py
Swaroop is 22 years old
Wiy is Swaroop playing with that python?

How It Works

The pri nt statement can take a string using certain specifications followed by the %symbol followed
by atuple of items matching the specification. The specifications are used to format the output in a cer-

50

Data Structures

tain way. The specification can be like %s for strings and %@ for integers. The tuple must have items
corresponding to these specifications in the same order.

Observe the first usage where we use % first and this corresponds to the variable name which is the
first item in the tuple and the second specification is %l corresponding to age which is the second item
in the tuple.

What Python does here is that it converts each item in the tuple into a string and substitutes that string
value into the place of the specification. Therefore the %s is replaced by the value of the variable nane
and so on.

This usage of the pri nt statement makes writing output extremely easy and avoids lot of string manip-
ulation to achieve the same. It also avoids using commas everywhere as we have done till now.

Most of the time, you can just use the %s specification and let Python take care of the rest for you. This
works even for numbers. However, you may want to give the correct specifications since this adds one
level of checking that your program is correct.

In the second pr i nt statement, we are using a single specification followed by the %symbol followed
by a single item - there are no pair of parentheses. This works only in the case where there is a single
specification in the string.

Dictionary

A dictionary is like an address-book where you can find the address or contact details of a person by
knowing only his’her name i.e. we associate keys (name) with values (details). Note that the key must
be unique just like you cannot find out the correct information if you have two persons with the exact
same name.

Note that you can use only immutable objects (like strings) for the keys of a dictionary but you can use
either immutable or mutable objects for the values of the dictionary. This basically trandates to say that
you should use only simple objects for keys.

Pairs of keys and valus are specified in a dictionary by using the notationd = {keyl : val uel,
key2 : val ue2 }. Noticethat they key/value pairs are separated by a colon and the pairs are separ-
ated themselves by commas and all thisis enclosed in a pair of curly brackets.

Remember that key/value pairs in a dictionary are not ordered in any manner. If you want a particular
order, then you will have to sort them yourself before using it.

The dictionaries that you will be using are instances/objects of the di ct class.

Using Dictionaries

Example 9.4. Using dictionaries

#!/ usr/ bi n/ pyt hon
Fil enane: using_dict. py

'"ab' is short for 'a' ddress'b' ook

ab = { ' Swar oop' . 'swar oopch@yt eof pyt hon.info',
"Larry’ : 'larry@wall.org',
"Mat sumot o' @ ' matz@ uby- | ang. org',
' Spanmer’ : ' spanmmer @ot mai | . con

51

Output

Data Structures

}
print "Swaroop's address is %" % ab[' Swaroop']

Addi ng a key/val ue pair
ab[' Guido'] = 'guido@ython.org'

Deleting a key/value pair
del ab[' Spamer']

print '"\nThere are %l contacts in the address-book\n' %l en(ab)

for nane, address in ab.itens():
print 'Contact % at %' % (nanme, address)

if "Quido' in ab: # OR ab. has_key(' Gui do')
print "\nGuido's address is %" % ab[' Gui do']

$ python using_dict.py
Swar oop' s address i s swaroopch@yt eof pyt hon. i nfo

There are 4 contacts in the address-book

Cont act Swaroop at swaroopch@yt eof pyt hon. i nfo
Contact Matsunpoto at matz@ uby-1ang.org
Contact Larry at larry@wall.org

Contact Cuido at gui do@yt hon. org

Qui do's address is gui do@ython. org

How It Works

We create the dictionary ab using the notation already discussed. We then access key/value pairs by
specifying the key using the indexing operator as discussed in the context of lists and tuples. Observe
that the syntax is very simple for dictionaries as well.

We can add new key/value pairs by simply using the indexing operator to access a key and assign that
value, aswe have done for Guido in the above case.

We can delete key/value pairs using our old friend - the del statement. We simply specify the diction-
ary and the indexing operator for the key to be removed and pass it to the del statement. There is no
need to know the value corresponding to the key for this operation.

Next, we access each key/value pair of the dictionary using thei t ens method of the dictionary which
returns a list of tuples where each tuple contains a pair of items - the key followed by the value. We re-
trieve this pair and assign it to the variables nane and addr ess correspondingly for each pair using
thef or. . i n loop and then print these values in the for-block.

We can check if a key/value pair exists using the i n operator or even the has_key method of the
di ct class. You can see the documentation for the complete list of methods of the di ct class using

52

Data Structures

hel p(dict).

Keyword Arguments and Dictionaries. On a different note, if you have used keyword arguments in
your functions, you have already used dictionaries! Just think about it - the key/value pair is specified by
you in the parameter list of the function definition and when you access variables within your function,
itisjust akey access of adictionary (which is called the symbol tablein compiler design terminology).

Sequences

Lists, tuples and strings are examples of sequences, but what are sequences and what is so specia about
them? Two of the main features of a sequence is the indexing operation which allows us to fetch a par-
ticular item in the sequence directly and the dlicing operation which allows us to retrieve a slice of the
sequencei.e. apart of the sequence.

Using Sequences

Example 9.5. Using Sequences

#!/ usr/ bi n/ pyt hon
Fil enane: seq. py

shoplist = ["apple', 'nango', 'carrot', 'banana']

I ndexi ng or 'Subscription' operation

print "ItemO is', shoplist[O0]

print "Item21 is', shoplist[1]

print "Item2 is', shoplist][2]

print "Item3 is', shoplist][3]

print 'Item-1is', shoplist[-1]

print "Item-2 is', shoplist[-2]

Slicing on a list

print "Item1 to 3 is', shoplist[1:3]
print 'Item2 to end is', shoplist[2:]
print "Item1 to -1is', shoplist[1l:-1]
print "Itemstart to end is', shoplist[:]

Slicing on a string

name = 'swaroop'

print 'characters 1 to 3 is', name[1: 3]
print 'characters 2 to end is', nang[2:]
print 'characters 1 to -1 is', name[1l:-1]
print 'characters start to end is', nanme[:]

Output
$ pyt hon seq. py
ItemO is apple
Iltem1 is mango
Item2 is carrot
Item 3 is banana

53

Data Structures

Item-1 is banana

Item-2 is carrot

Iltem1l to 3 is ['mango’', 'carrot']

Iltem?2 to end is ['carrot', 'banana']

Ilteml to -1 is ['mango', 'carrot']

Itemstart to end is ['apple', 'mango', 'carrot', 'banana']
characters 1 to 3 is wa

characters 2 to end is aroop

characters 1 to -1 is waroo

characters start to end is swaroop

How It Works

First, we see how to use indexes to get individual items of a sequence. Thisis also referred to as the sub-
scription operation. Whenever you specify a number to a sequence within square brackets as shown
above, Python will fetch you the item corresponding to that position in the sequence. Remember that Py-
thon starts counting numbers from 0. Hence, shopl i st [0] fetches the first item and shopl i st [3]
fetchesthe fourth item in theshopl i st segquence.

The index can also be a negative number, in which case, the position is calculated from the end of the
sequence. Therefore, shopl i st - 1] refers to the last item in the sequence and shopl i st - 2]
fetches the second last item in the sequence.

The dlicing operation is used by specifying the name of the sequence followed by an optional pair of
numbers separated by a colon within square brackets. Note that thisis very very similar to the indexing
operation you have been using til Inow. Remember the numbers are optional but the colon isn't.

The first number (before the colon) in the slicing operation refers to the position from where the slice
starts and the second number (after the colon) indicates where the slice will stop at. If the first number is
not specified, Python will start at the beginning of the sequence. If the second number is left out, Python
will stop at the end of the sequence. Note that the dlice returned starts at the start position and will end
just before the end position i.e. the start position is included but the end position is excluded from the se-
guence dlice.

Thus, shopl i st [1: 3] returns a slice of the sequence starting at position 1, includes position 2 but
stops at position 3 and therefore a slice of two items is returned. Similarly, shopl i st[:] returnsa
copy of the whole sequence.

Y ou can aso do dicing with negative positions. Negative numbers are used for positions from the end of
the sequence. For example, shopl i st[: - 1] will return a slice of the sequence which excludes the
last item of the sequence but contains everything else.

Try various combinations of such slice specifications using the Python interpreter interactively i.e. the
prompt so that you can see the results immediately. The great thing about sequences is that you can ac-
cesstuples, lists and strings all in the same way!

References

When you create an object and assign it to a variable, the variable only refers to the object and does not
represent the object itself! That is, the variable name points to that part of your computer's memory
where the object is stored. Thisis called as binding of the name to the object.

Generally, you don't need to be worried about this, but there is a subtle effect due to references which
you need to be aware of. Thisis demonstrated by the following example.

Data Structures

Objects and References

Output

Example 9.6. Objects and References

#1/ usr/ bi n/ pyt hon
Fil enane: reference. py

print 'Sinmple Assignnent'
shoplist = ["apple', 'nmango', 'carrot', 'banana']
nylist = shoplist # nylist is just another name pointing to the sanme object!

del shoplist[0] # | purchased the first item so | renmove it fromthe |ist

print 'shoplist is', shoplist

print "nylist is', nylist

notice that both shoplist and nylist both print the same |ist wthout
the "apple' confirmng that they point to the sane object

print 'Copy by making a full slice'
nylist = shoplist[:] # nake a copy by doing a full slice
del nylist[0] # renmove first item

print 'shoplist is', shoplist
print "nylist is', nylist
notice that nowthe two lists are different

$ python reference. py
Si npl e Assi gnment

shoplist is ['nmango', 'carrot', 'banana']
nylist is ['mango’, 'carrot', 'banana']
Copy by making a full slice
shoplist is ['nmango', 'carrot', 'banana']
nylist is ['carrot', 'banana']

How It Works

Most of the explanation is available in the comments itself. What you need to remember is that if you
want to make a copy of alist or such kinds of sequences or complex objects (not simple objects such as
integers), then you have to use the dlicing operation to make a copy. If you just assign the variable name
to another name, both of them will refer to the same object and this could lead to al sorts of trouble if
you are not careful.

Note for Perl programmers

Remember that an assignment statement for lists does not create a copy. You have to use dli-
cing operation to make a copy of the sequence.

55

Data Structures

More about Strings

We have aready discussed strings in detail earlier. What more can there be to know? Well, did you
know that strings are also objects and have methods which do everything from checking part of a string
to stripping spaces!

The strings that you use in program are all objects of the class st r . Some useful methods of this class
are demonstrated in the next example. For a complete list of such methods, see hel p(str).

String Methods

Example 9.7. String Methods

#!/ usr/ bi n/ pyt hon
Fil enane: str_nethods. py

nane = 'Swaroop' # This is a string object

if nane.startswith('Swa'):

print 'Yes, the string starts with "Swa"'
if "a in nane:

print 'Yes, it contains the string "a"'

if name.find('war') != -1:

print 'Yes, it contains the string "war"'
delimter ="' _* '
nylist = ['Brazil', '"Russia', 'India', 'China']

print delimter.join(nylist)

Output

$ python str_net hods. py

Yes, the string starts with "Swa"
Yes, it contains the string "a"
Yes, it contains the string "war"
Brazil _* Russia_*_India_*_ China

How It Works

Here, we see alot of the string methods in action. The st art swi t h method is used to find out wheth-
er the string starts with the given string. Thei n operator is used to check if agiven string is a part of the
string.

Thef i nd method is used to do find the position of the given string in the string or returns -1 if it is not
successful to find the substring. The st r class also has a neat method to j oi n the items of a sequence

56

Data Structures

with the string acting as a delimiter between each item of the sequence and returns a bigger string gener-
ated from this.

Summary

We have explored the various built-in data structures of Python in detail. These data structures will be
essential for writing programs of reasonable size.

Now that we have alot of the basics of Python in place, we will next see how to design and write areal-
world Python program.

57

Chapter 10. Problem Solving - Writing a
Python Script

We have explored various parts of the Python language and now we will take a look at how al these
parts fit together, by designing and writing a program which does something useful.

The Problem

The problem is'l want a program which creates a backup of all my important files'.

Although, this is a simple problem, there is not enough information for us to get started with the solu-
tion. A little more analysisis required. For example, how do we specify which files are to be backed up?
Where is the backup stored? How are they stored in the backup?

After analyzing the problem properly, we design our program. We make a list of things about how our
program should work. In this case, | have created the following list on how | want it to work. If you do
the design, you may not come up with the same kind of problem - every person has their own way of do-
ing things, thisis ok.

1. Thefilesand directoriesto be backed up are specified in alist.

2. The backup must be stored in amain backup directory.

3. Thefilesarebacked upinto azipfile.

4. The name of the zip archive isthe current date and time.

5. We use the standard zip command available by default in any standard Linux/Unix distribution.

Windows users can use the Info-Zip program. Note that you can use any archiving command you
want aslong asit has acommand line interface so that we can pass arguments to it from our script.

The Solution

As the design of our program is now stable, we can write the code which is an implementation of our
solution.

First Version

Example 10.1. Backup Script - The First Version

#!/ usr/ bi n/ pyt hon
Fil enane: backup_ver1. py

i mport os
i mport time

1. The files and directories to be backed up are specified in a list.
source = ['/hone/swaroop/ byte', '/honme/swaroop/bin']

58

Problem Solving - Writing a Python Script

If you are using Wndows, use source = [r'C \Docurments', r'D:\Wrk'] or sonethin

2. The backup nust be stored in a main backup directory
target _dir = '/mt/el/backup/' # Remenber to change this to what you will be using

3. The files are backed up into a zip file.
4. The nane of the zip archive is the current date and tine
target = target _dir + tine.strftime(' W%ad%WoME) + '.zip'

5. We use the zip command (in Unix/Linux) to put the files in a zip archive
zip_comand = "zip -qr '%' %" % (target, ' '.join(source))

Run t he backup
if os.system(zi p_command) == O:

print 'Successful backup to', target
el se:

print 'Backup FAI LED

Output

$ python backup_ver 1. py
Successful backup to /mt/ e/ backup/20041208073244. zi p

Now, we are in the testing phase where we test that our program works properly. If it doesn't behave as
expected, then we have to debug our program i.e. remove the bugs (errors) from the program.

How It Works

Y ou will notice how we have converted our design into code in a step-by-step manner.

We make use of the os and t i me modules and so we import them. Then, we specify the files and dir-
ectories to be backed up in the sour ce list. The target directory is where store all the backup files and
thisis specifiedinthet ar get _di r variable. The name of the zip archive that we are going to create is
the current date and time which we fetch using thet i ne. strfti ne() function. It will also have the
. zi p extension and will be stored inthet ar get _di r directory.

Thetinme.strftime() function takes a specification such as the one we have used in the above pro-

gram. The % specification will be replaced by the year without the cetury. The %mspecification will be
replaced by the month as a decimal number between 01 and 12 and so on. The complete list of such

specifications can be found in the [Python Reference Manual] that comes with your Python distribution.

Notice that this is similar to (but not same as) the specification used in pri nt statement (using the %
followed by tuple).

We create the name of the target zip file using the addition operator which concatenates the stringsi.e. it
joins the two strings together and returns a new one. Then, we create a string zi p_conmand which
contains the command that we are going to execute. Y ou can check if this command works by running it
on the shell (Linux terminal or DOS prompt).

The zip command that we are using has some options and parameters passed. The - q option is used to
indicate that the zip command should work quietly. The - r option specifies that the zip command
should work recursively for directoriesi.e. it should include subdirectories and files within the subdir-

59

Problem Solving - Writing a Python Script

ectories as well. The two options are combined and specified in a shorter way as - qr . The options are
followed by the name of the zip archive to create followed by the list of files and directories to backup.
We convert the sour ce list into a string using the j oi n method of strings which we have already seen
how to use.

Then, we finally run the command using the 0s. syst emfunction which runs the command as if it was
run from the systemi.e. in the shell - it returns O if the command was successfully, else it returns an er-
ror number.

Depending on the outcome of the command, we print the appropriate message that the backup has failed
or succeeded and that's it, we have created a script to take a backup of our important files!

Note to Windows Users

You can set the sour ce list and t ar get directory to any file and directory names but you
have to be alittle careful in Windows. The problem is that Windows uses the backslash (\) as
the directory separator character but Python uses backslashes to represent escape sequences!

So, you have to represent a backsash itself using an escape sequence or you have to use raw
strings. For example, use ' C:\\ Docunment s’ or r' C:\ Docunents' but do not use
" C:\ Docunents' -you areusing an unknown escape sequence\ D!

Now that we have a working backup script, we can use it whenever we want to take a backup of the
files. Linux/Unix users are advised to use the executable method as discussed earlier so that they can run
the backup script anytime anywhere. Thisis called the operation phase or the deployment phase of the
software.

The above program works properly, but (usually) first programs do not work exactly as you expect. For
example, there might be problems if you have not designed the program properly or if you have made a
mistake in typing the code, etc. Appropriately, you will have to go back to the design phase or you will
have to debug your program.

Second Version

The first version of our script works. However, we can make some refinements to it so that it can work
better on adaily basis. Thisis called the maintenance phase of the software.

One of the refinements | felt was useful is a better file-naming mechanism - using the time as the name
of the file within a directory with the current date as a directory within the main backup directory. One
advantage is that your backups are stored in a hierarchical manner and therefore it is much easier to
manage. Another advantage is that the length of the filenames are much shorter this way. Y et another
advantage is that separate directories will help you to easily check if you have taken a backup for each
day since the directory would be created only if you have taken a backup for that day.

Example 10.2. Backup Script - The Second Version

#!/ usr/ bi n/ pyt hon
Fil enane: backup_ver 2. py

i mport os

i mport time

1. The files and directories to be backed up are specified in a list.

source = ['/hone/swaroop/byte', '/home/swaroop/bin']

If you are using Wndows, use source = [r'C \Docunments', r'D:\Wrk'] or sonethin

60

Output

Problem Solving - Writing a Python Script

2. The backup nust be stored in a main backup directory

target _dir = '/ mmt/el/backup/' # Remenber to change this to what you will

3. The files are backed up into a zip file.

be using

4. The current day is the nanme of the subdirectory in the main directory

today = target _dir + tine.strftine(' %%d')
The current tine is the name of the zip archive
now = tine.strftime(' %G)

Create the subdirectory if it isn't already there
i f not os.path.exists(today):
os. nkdi r (today) # make directory
print 'Successfully created directory', today

The nane of the zip file
target = today + 0s.sep + now +

.zip'

5. W use the zip command (in Unix/Linux) to put the files in a zip archive

zip_comand = "zip -qgr '%' %" % (target, '.join(source))
Run the backup
if os.system(zi p_command) == O:
print 'Successful backup to', target
el se:
print 'Backup FAI LED

$ python backup_ver 2. py
Successfully created directory /mt/ e/ backup/ 20041208
Successful backup to /mt/ e/ backup/ 20041208/ 080020. zi p

$ python backup_ver 2. py
Successful backup to /mt/e/backup/ 20041208/ 080428. zi p

How It Works

Third

Most of the program remains the same. The changes is that we check if there is a directory with the cur-
rent day as name inside the main backup directory using the os. exi st s function. If it doesn't exist,
we create it using the os. nkdi r function.

Notice the use of 0s. sep variable - this gives the directory separator according to your operating sys-
temi.e itwill be' /' inLinux, Unix, itwill be' \\"' inWindowsand' : ' in Mac OS. Using 0s. sep
instead of these characters directly will make our program portable and work across these systems.

Version

The second version works fine when | do many backups, but when there are lots of backups, | am find-
ing it hard to differentiate what the backups were for! For example, | might have made some major
changes to a program or presentation, then | want to associate what those changes are with the name of

61

Output

Problem Solving - Writing a Python Script

the zip archive. This can be easily achieved by attaching a user-supplied comment to the name of the zip
archive.

Example 10.3. Backup Script - The Third Version (does not work!)

#!/ usr/ bi n/ pyt hon
Fil enane: backup_ver 2. py

i mport os
i mport tine

1. The files and directories to be backed up are specified in a list.
source = ['/hone/swaroop/byte', '/home/swaroop/bin']
If you are using Wndows, use source = [r'C \Docunments', r'D:\Wrk'] or sonethin

2. The backup nust be stored in a main backup directory
target _dir = '/mt/el/backup/' # Remenber to change this to what you will be using

3. The files are backed up into a zip file.

4. The current day is the nanme of the subdirectory in the main directory
today = target _dir + tinme.strftine(' %%d)

The current tine is the name of the zip archive

now = tinme.strftime(' %G)

Take a comment fromthe user to create the nane of the zip file
comment = raw_i nput (' Enter a comment --> ')
if len(comment) == 0: # check if a comrent was entered

target = today + o0s.sep + now + '.zip'
el se:
target = today + os.sep + now + '_' +
coment.replace(" ', '_") +"'.zip

Create the subdirectory if it isn't already there
i f not os.path. exists(today):
os. nkdi r (today) # nmke directory
print 'Successfully created directory', today

5. We use the zip command (in Unix/Linux) to put the files in a zip archive
zip_comand = "zip -qgr '%' %" % (target, ' '.]oin(source))

Run t he backup
if os.system(zi p_command) == O:

print 'Successful backup to', target
el se:

print 'Backup FAI LED

$ python backup_ver 3. py
File "backup_ver3.py", line 25
target = today + os.sep + now + '_"' +

SyntaxError: invalid syntax

62

Problem Solving - Writing a Python Script

How This (does not) Work

This program does not work!. Python says there is a syntax error which means that the script does not
satisfy the structure that Python expects to see. When we observe the error given by Python, it also tells
us the place where it detected the error as well. So we start debugging our program from that line.

On careful observation, we see that the single logical line has been split into two physical lines but we
have not specified that these two physical lines belong together. Basically, Python has found the addi-
tion operator (+) without any operand in that logical line and hence it doesn't know how to continue. Re-
member that we can specify that the logical line continues in the next physical line by the use of a back-
dlash at the end of the physical line. So, we make this correction to our program. Thisis called bug fix-
ing.

Fourth Version

Example 10.4. Backup Script - The Fourth Version

#!/ usr/ bi n/ pyt hon
Fil enane: backup_ver 2. py

i mport os, tine

1. The files and directories to be backed up are specified in a list.
source = ['/hone/swaroop/ byte', '/honme/swaroop/bin']
If you are using Wndows, use source = [r'C \Docunents', r'D:\Wrk'] or sonethin

2. The backup nust be stored in a main backup directory
target _dir = '/mt/e/backup/' # Remenber to change this to what you will be using

3. The files are backed up into a zip file.

4. The current day is the name of the subdirectory in the main directory
today = target _dir + time.strftine(' %%d')

The current tine is the nane of the zip archive

now = tine.strftime(" %AWE)

Take a comment fromthe user to create the nane of the zip file
comment = raw_input('Enter a comment --> ')
if len(coment) == 0: # check if a comment was entered

target = today + os.sep + now + '.zip'
el se:

target = today + os.sep + now + ' ' +\

coment.replace(’ ', '_") +'.zip
Notice the backsl ash!

Create the subdirectory if it isn't already there
i f not os.path. exists(today):
os. nkdi r (today) # nmke directory
print 'Successfully created directory', today

5. We use the zip command (in Unix/Linux) to put the files in a zip archive
zip_command = "zip -qr '%' %" % (target, ' '.join(source))

Run t he backup

63

Problem Solving - Writing a Python Script

if os.system(zi p_command) == O:

print 'Successful backup to', target
el se:

print 'Backup FAI LED

Output

$ pyt hon backup_ver4. py
Enter a comment --> added new exanpl es
Successful backup to /mt/ e/ backup/ 20041208/ 082156 _added_new_exanpl es. zi p

$ python backup_ver4. py
Enter a comment -->
Successful backup to /mt/ e/ backup/ 20041208/ 082316. zi p

How It Works

This program now works! Let us go through the actual enhancements that we had made in version 3. We
take in the user's comments using the r aw_i nput function and then check if the user actually entered
something by finding out the length of the input using the | en function. If the user has just pressed
enter for some reason (maybe it was just a routine backup or no special changes were made), then we
proceed as we have done before.

However, if a comment was supplied, then thisis attached to the name of the zip archive just before the
. zi p extension. Notice that we are replacing spaces in the comment with underscores - this is because
managing such filenames are much easier.

More Refinements

The fourth version is a satisfactorily working script for most users, but there is aways room for im-
provement. For example, you can include a verbosity level for the program where you can specify a- v
option to make your program become more talkative.

Another possible enhancement would be to allow extra files and directories to be passed to the script at
the command line. We will get these from the sys. ar gv list and we can add them to our sour ce list
using the ext end method provided by thel i st class.

One refinement | prefer is the use of the tar command instead of the zip command. One advantage is
that when you use the tar command aong with gzip, the backup is much faster and the backup created
is also much smaller. If 1 need to use this archive in Windows, then WinZip handles such . t ar. gz
files easily as well. The tar command is available by default on most Linux/Unix systems. Windows
users can download [http://gnuwin32.sourceforge.net/packages/tar.ntm] and install it aswell.

The command string will now be;

tar = "tar -cvzf % % -X /hone/ swaroop/excludes.txt' % (target, ' '.join(srcdir))

http://gnuwin32.sourceforge.net/packages/tar.htm

Problem Solving - Writing a Python Script

The options are explained below.

e - c indicates creation of an archive.
* -v indicatesverbosei.e. the command should be more takative.
e -z indicatesthe gzip filter should be used.

» -f indicates force in creation of archive i.e. it should replace if there is a file by the same name
aready.

e - Xindicates a file which contains a list of filenames which must be excluded from the backup. For
example, you can specify * ~ in thisfile to not include any filenames ending with ~ in the backup.

I mportant

The most preferred way of creating such kind of archives would be using the zi pfil e or
tarfil e modulerespectively. They are part of the Python Standard Library and available for
you to use already. Using these libraries also avoids the use of the 0s. syst emwhich is gen-
eraly not advisable to use because it is very easy to make costly mistakes using it.

However, | have been using the 0s. syst emway of creating a backup purely for pedagogical
purposes, so that the example is simple enough to be understood by everybody but real enough
to be useful.

The Software Development Process

We have now gone through the various phases in the process of writing a software. These phases can be
summarised as follows:

1. What (Anaysis)

2. How (Design)

3. Dot (Implementation)

4. Test (Testing and Debugging)
5. Use (Operation or Deployment)

6. Maintain (Refinement)

I mportant

A recommended way of writing programs is the procedure we have followed in creating the
backup script - Do the analysis and design. Start implementing with a simple version. Test and
debug it. Use it to ensure that it works as expected. Now, add any features that you want and
continue to repeat the Do It-Test-Use cycle as many times as required. Remember, 'Software is
grown, not built'.

Summary

65

Problem Solving - Writing a Python Script

We have seen how to create our own Python programs/scripts and the various stages involved in writing
such programs. Y ou may find it useful to create your own program just like we did in this chapter so that
you become comfortable with Python as well as problem-solving.

Next, we will discuss object-oriented programming.

66

Chapter 11. Object-Oriented
Programming

Introduction

In all our programs till now, we have designed our program around functions or blocks of statements
which manipulate data. Thisis called the procedure-oriented way of programming. There is another way
of organizing your program which is to combine data and functionality and wrap it inside what is called
an object. Thisis called the object oriented programming paradigm. Most of the time you can use pro-
cedural programming but sometimes when you want to write large programs or have a solution that is
better suited to it, you can use object oriented programming techniques.

Classes and objects are the two main aspecs of object oriented programming. A class creates a new type
where objects are instances of the class. An analogy is that you can have variables of typei nt which
translates to saying that variables that store integers are variables which are instances (objects) of the
i nt class.

Note for C/C++/Java/C# Programmers

Note that even integers are treated as objects (of the i nt class). Thisis unlike C++ and Java
(before version 1.5) where integers are primitive native types. See hel p(i nt) for more de-
tails on the class.

C# and Java 1.5 programmers will be familiar with this concept since it is similar to the boxing
and unboxing concept.

Objects can store data using ordinary variables that belong to the object. Variables that belong to an ob-
ject or class are called as fields. Objects can also have functionality by using functions that belong to a
class. Such functions are called methods of the class. This terminology is important because it helps us
to differentiate between functions and variables which are separate by itself and those which belong to a
class or object. Collectively, the fields and methods can be referred to as the attributes of that class.

Fields are of two types - they can belong to each instance/object of the class or they can belong to the
classitself. They are called instance variables and class variables respectively.

A classis created using the cl ass keyword. The fields and methods of the class are listed in an inden-
ted block.

The self

Class methods have only one specific difference from ordinary functions - they must have an extra first
name that has to be added to the beginning of the parameter list, but you do do not give a vaue for this
parameter when you call the method, Python will provide it. This particular variable refers to the object
itself, and by convention, it isgiven the namesel f .

Although, you can give any name for this parameter, it is strongly recommended that you use the name
sel f - any other name is definitely frowned upon. There are many advantages to using a standard name

- any reader of your program will immediately recognize it and even specialized IDEs (Integrated De-
velopment Environments) can help you if you usesel f .

Note for C++/Java/C# Programmers

Thesel f in Python is equivalent to the sel f pointer in C++ and the t hi s reference in Java

67

Object-Oriented Programming

and C#.

Y ou must be wondering how Python gives the value for sel f and why you don't need to give a value
for it. An example will make this clear. Say you have a class called MyCl ass and an instance of this
class caled MyQbj ect. When you call a method of this object as MyQbj ect . net hod(ar g1,
ar g2), this is automaticaly converted by Python into MyCl ass. net hod(MyObj ect, argl,
ar g2 - thisiswhat the special sel f isall about.

This also means that if you have a method which takes no arguments, then you still have to define the
method to haveasel f argument.

Classes

The simplest class possible is shown in the following example.

Creating a Class

Example 11.1. Creating a Class

#1/ usr/ bi n/ pyt hon
Fil enane: sinplestclass. py

cl ass Person:
pass # An enpty bl ock

p = Person()
print p

Output

$ python sinplestcl ass. py
< _main__.Person instance at Oxf6fcbl8c>

How It Works

We create a new class using the cl ass statement followed by the name of the class. Thisfollowsanin-
dented block of statements which form the body of the class. In this case, we have an empty block which
isindicated using the pass statement.

Next, we create an object/instance of this class using the name of the class followed by a pair of paren-
theses. (We will learn more about instantiation in the next section). For our verification, we confirm the
type of the variable by simply printing it. It tells us that we have an instance of the Per son classin the
__mai n__ module.

Notice that the address of the computer memory where your object is stored is also printed. The address
will have a different value on your computer since Python can store the object wherever it finds space.

68

Object-Oriented Programming

object Methods

We have already discussed that classes/objects can have methods just like functions except that we have
anextrasel f variable. We will now see an example.

Using Object Methds

Example 11.2. Using Object Methods

#!/ usr/ bi n/ pyt hon
Fil enane: nethod. py

cl ass Person:
def sayHi (self):
print 'Hello, how are you?

p = Person()
p. sayHi ()

This short exanple can also be witten as Person().sayHi ()

Output

pyt hon net hod. py
Il o, how are you?

$
He
How It Works

Here we see the sel f in action. Notice that the sayH method takes no parameters but still has the
sel f inthefunction definition.

The __init__ method

There are many method names which have specia significance in Python classes. We will see the signi-
ficanceof the__init__ method now.

The __init__ method isrun as soon as an object of aclassisinstantiated. The method is useful to do

any initialization you want to do with your object. Notice the double underscore both in the beginning
and at the end in the name.

Using the init_ method

Example 11.3. Using the __init__ method

69

Object-Oriented Programming

#1 [/ usr/ bi n/ pyt hon
Filenane: class_init.py

cl ass Person:
def __init_ (self, nane):
sel f. name = nane
def sayHi (self):
print "Hello, nmy name is', self.nane

p = Person(' Swaroop')
p. sayHi ()

This short exanple can also be witten as Person(' Swaroop'). sayHi ()

Output

pyt hon class_init.py
[1o

$
He , My name is Swaroop

How It Works

Here, wedefinethe i ni t __ method as taking a parameter nane (along with the usual sel). Here,
we just create a new field also called nane. Notice these are two different variables even though they
have the same name. The dotted notation allows us to differentiate between them.

Most importantly, notice that we do not explicitly call the i ni t __ method but pass the argumentsin
the parentheses following the class name when creating a new instance of the class. This is the special
significance of this method.

Now, we are able to use the sel f. nane field in our methods which is demonstrated in the sayHi
method.

Note for C++/Java/C# Programmers

The i nit__ method is analogous to a constructor in C++, C# or Java.

Class and Object Variables

We have aready discussed the functionality part of classes and objects, now we'll see the data part of it.
Actualy, they are nothing but ordinary variables which are bound to the classes and objects namespaces
i.e. the names are valid within the context of these classes and objects only.

There are two types of fields - class variables and object variables which are classified depending on
whether the class or the object owns the variables respectively.

Class variables are shared in the sense that they are accessed by all objects (instances) of that class.
Thereisonly copy of the class variable and when any one object makes a change to a class variable, the
change isreflected in all the other instances as well.

70

Object-Oriented Programming

Object variables are owned by each individual object/instance of the class. In this case, each object has
its own copy of thefield i.e. they are not shared and are not related in any way to the field by the samen
name in a different instance of the same class. An example will make this easy to understand.

Using Class and Object Variables

Example 11.4. Using Class and Object Variables

#!/ usr/ bi n/ pyt hon
Fil enane: objvar. py

cl ass Person:
""" Represents a person.'"’
popul ation = 0

def __init__(self, nane):
"*"Initializes the person's data.'"'
sel f. name = nane
print '"(lnitializing %)' % self.nanme

When this person is created, he/she
adds to the popul ation
Per son. popul ation += 1

def _ del _(self):
"''"1 amdying.'""'
print '% says bye.' % self.nanme

Per son. popul ation -= 1
i f Person. popul ation == 0:
print 'I amthe |ast one.'
el se:
print 'There are still % people left.' % Person. popul atio

def sayHi (self):
"''"Greeting by the person.

Really, that's all it does.'"''
print "Hi, ny nane is %."' %self.nane

def howiany(sel f):
"'""Prints the current population.'"’
i f Person. popul ation == 1:
print 'l amthe only person here.'
el se:
print 'We have % persons here.' % Person. popul ation

swar oop = Person(' Swaroop')
swar oop. sayHi ()
swar oop. howvany ()

kal am = Person(' Abdul Kal ani)
kal am sayHi ()
kal am howvany()

swar oop. sayHi ()
swar oop. howivany ()

71

Object-Oriented Programming

Output

$ python objvar. py
(I'nitializing Swaroop)

H, nmy nanme is Swaroop.

I amthe only person here.
(I'nitializing Abdul Kal am
H, my name is Abdul Kal am
We have 2 persons here.

H, my name is Swaroop.

We have 2 persons here.
Abdul Kal am says bye.

There are still 1 people left.
Swar oop says bye.

| amthe I ast one.

How It Works

Thisis along example but helps demonstrate the nature of class and object variables. Here, popul a-
t i on belongs to the Per son class and hence is a class variable. The name variable belongs to the ob-
ject (itisassigned using sel f) and hence is an object variable.

Thus, we refer to the popul ation class variable as Person. popul ation and not as
sel f. popul ati on. Note that an object variable with the same name as a class variable will hide the
class variable! We refer to the object variable nane using sel f . name notation in the methods of that
object. Remember this simple difference between class and object variables.

Observe that the i nit__ method is used to initialize the Per son instance with a name. In this
method, we increase the popul at i on count by 1 since we have one more person being added. Also
observe that the values of sel f. namne is specific to each object which indicates the nature of object
variables.

Remember, that you must refer to the variables and methods of the same object using the sel f variable
only. Thisis called an attribute reference.

In this program, we also see the use of docstrings for classes as well as methods. We can access the
class docstring a runtime using Person. _doc__ and the method docstring as Per -
son.sayH . doc_

Just likethe __i ni t __ method, there is another special method __del __ whichis called when an ob-
ject is going to diei.e. it is no longer being used and is being returned to the system for reusing that
piece of memory. In this method, we simply decrease the Per son. popul at i on count by 1.

The __del __ method is run when the object is no longer in use and there is no guarantee when that

method will be run. If you want to explicitly do this, you just have to use the del statement which we
have used in previous examples.

Note for C++/Java/C# Programmers

72

Object-Oriented Programming

All class members (including the data members) are public and all the methods are virtual in
Python.

One exception: If you use data members with names using the double underscore prefix such as
__privat evar, Python uses name-mangling to effectively make it a private variable.

Thus, the convention followed is that any variable that isto be used only within the class or ob-
ject should begin with an underscore and all other names are public and can be used by other
classes/objects. Remember that thisis only a convention and is not enforced by Python (except
for the double underscore prefix).

Also, notethat the _del __ method is analogous to the concept of a destructor.

Inheritance

One of the major benefits of object oriented programming is reuse of code and one of the ways thisis
achieved is through the inheritance mechanism. Inheritance can be best imagined as implementing a
type and subtype relationship between classes.

Suppose you want to write a program which has to keep track of the teachers and students in a college.
They have some common characteristics such as name, age and address. They also have specific charac-
teristics such as salary, courses and leaves for teachers and, marks and fees for students.

Y ou can create two independent classes for each type and process them but adding a new common char-
acteristic would mean adding to both of these independent classes. This quickly becomes unwieldy.

A better way would be to create a common class called School Menber and then have the teacher and
student classes inherit from this classi.e. they will become sub-types of thistype (class) and then we can
add specific characteristics to these sub-types.

There are many advantages to this approach. If we add/change any functionality in School Menber ,
this is automatically reflected in the subtypes as well. For example, you can add a new ID card field for
both teachers and students by ssmply adding it to the SchoolMember class. However, changes in the sub-
types do not affect other subtypes. Another advantage is that if you can refer to ateacher or student ob-
ject asa School Merber object which could be useful in some situations such as counting of the num-
ber of school members. This is caled polymor phism where a sub-type can be substituted in any situ-
ation where a parent type is expected i.e. the object can be treated as an instance of the parent class.

Also observe that we reuse the code of the parent class and we do not need to repeat it in the different
classes as we would have had to in case we had used independent classes.

The School Menber classin this situation is known as the base class or the superclass. The Teacher
and St udent classes are called the derived classes or subclasses.

We will now see this example as a program.

Using Inheritance

Example 11.5. Using Inheritance

#!/ usr/ bi n/ pyt hon
Fil enane: inherit.py

73

Object-Oriented Programming

cl ass School Menber:
""" Represents any school nenber.''
def __init__(self, nanme, age):
sel f. name = nane
sel f.age = age
print "(lnitialized School Menber: %)' % sel f. nane

def tell(self):
"""Tell nmy details."'
print 'Nane:"9%" Age:"%"' % (self.name, self.age),

cl ass Teacher (School Menber) :
''"Represents a teacher.''
def __init__(self, name, age, salary):
School Menber. __init__ (self, nane, age)
self.salary = salary
print '(Initialized Teacher: %)' % self.nane

def tell(self):
School Menber.tell (sel f)
print 'Salary: "%l"' %self.salary

cl ass Student (School Menber):
""" Represents a student.''
def __init__ (self, name, age, marks):
School Menber. __init__ (sel f, nane, age)

sel f. marks = marks
print '(Initialized Student: %)' % self.nane

def tell(self):
School Menber.tell (sel f)
print 'Marks: "%d"' % sel f. marks

t
S

Teacher (' Ms. Shrividya', 40, 30000)
St udent (' Swar oop', 22, 75)

print # prints a blank |ine

menbers = [t, s]
for menber in nenbers:
menber.tell () # works for both Teachers and Students

Output
$ python inherit.py
(I'nitialized School Menber: Ms. Shrividya)
(I'nitialized Teacher: Ms. Shrividya)
(I'nitialized School Menber: Swar oop)
(Initialized Student: Swaroop)
hhnE:"Nrs. Shrividya" Age: " 40" Sal ary: "30000"
Nanme: " Swar oop" Age:"22" Marks: "75"

How It Works

74

Object-Oriented Programming

To use inheritance, we specify the base class names in a tuple following the class name in the class
definition. Next, we observe that the i nit __ method of the base class is explicitly called using the
sel f variable so that we can initialize the base class part of the object. This is very important to re-
member - Python does not automatically call the constructor of the base class, you have to explicitly call
it yourself.

We also observe that we can call methods of the base class by prefixing the class name to the method
call and then passinthesel f variable along with any arguments.

Notice that we can treat instances of Teacher or St udent as just instances of the School Menber
when we usethet el | method of the School Menber class.

Also, observe that thet el | method of the subtype is called and not thet el | method of the School -
Menber class. One way to understand this is that Python always starts |ooking for methods in the type,
which in this caseit does. If it could not find the method, it starts looking at the methods belonging to its
base classes one by one in the order they are specified in the tuple in the class definition.

A note on terminology - if more than one classis listed in the inheritance tuple, then it is called multiple
inheritance.

Summary

We have now explored the various aspects of classes and objects as well as the various terminologies as-
sociated with it. We have also seen the benefits and pitfalls of object-oriented programming. Python is
highly object-oriented and understanding these concepts carefully will help you alot in the long run.

Next, we will learn how to deal with input/output and how to accessfilesin Python.

75

Chapter 12. Input/Output

There will be lots of times when you want your program to interact with the user (which could be your-
self). You would want to take input from the user and then print some results back. We can achieve this
using the raw_i nput and pri nt statements respectively. For output, we can aso use the various
methods of the st r (string) class. For example, you can usether j ust method to get a string which is
right justified to a specified width. See hel p(str) for more details.

Another common type of input/output is dealing with files. The ability to create, read and write filesis
essential to many programs and we will explore this aspect in this chapter.

Files

Y ou can open and use files for reading or writing by creating an object of thef i | e class and using its
read, readl i ne orw it e methods appropriately to read from or write to the file. The ability to read
or write to the file depends on the mode you have specified for the file opening. Then finally, when you
are finished with the file, you call the cl ose method to tell Python that we are done using the file.

Using file

Example 12.1. Using files

#1/ usr/ bi n/ pyt hon
Filenane: using file.py

poem= """\

Progranmming is fun

When the work i s done

i f you wanna nake your work al so fun:
use Pyt hon!

f =file('poemtxt', '"wW) # open for "writing
f.wite(poem) # wite text to file
f.close() # close the file

f =file('poemtxt') # if no node is specified, 'r'ead node is assumed by default
whil e True:
line = f.readline()
if len(line) == 0: # Zero length indicates EOF
br eak
print line, # Notice conma to avoid automatic new i ne added by Pyt hon
f.close() # close the file

Output

$ python using_file.py

76

I nput/Output

Programming is fun

When the work i s done

i f you wanna nake your work al so fun:
use Pyt hon!

How It Works

First, we create an instance of thef i | e class by specifying the name of the file and the mode in which
we want to open the file. The mode can be a read mode (' r'), write mode (' W) or append mode
(' @'). There are actually many more modes available and hel p(fil e) will give you more details
about them.

We first open the file in write mode and use the wr i t e method of the f i | e class to write to the file
and then wefinally cl ose thefile.

Next, we open the same file again for reading. If we don't specify a mode, then the read mode is the de-
fault one. Weread in each line of the file using ther eadl i ne method, in aloop. This method returns a
complete line including the newline character at the end of the line. So, when an empty string is re-
turned, it indicates that the end of the file has been reached and we stop the loop.

Notice that we use a comma with the pri nt statement to suppress the automatic newline that the
print statement adds because the line that is read from the file already ends with a newline character.
Then, wefinaly cl ose thefile.

Now, see the contents of thepoem t xt fileto confirm that the program has indeed worked properly.

Pickle

Python provides a standard module called pi ckl e using which you can store any Python object in a
file and then get it back later intact. Thisis called storing the object persistently.

There is another module called cPi ckl e which functions exactly same as the pi ckl e module except
that it is written in the C language and is (upto 1000 times) faster. Y ou can use either of these modules,
although we will be using the cPi ckl e module here. Remember though, that we refer to both these
modules as simply the pi ckl e module.

Pickling and Unpickling

Example 12.2. Pickling and Unpickling

#! [/ usr/ bi n/ pyt hon
Fil enane: pickling. py

i mport cPickle as p
#import pickle as p

shoplistfile = '"shoplist.data' # the name of the file where we will store the obje
shoplist = ["apple', 'nango', 'carrot']

Wite to the file

77

I nput/Output

f =file(shoplistfile, '"wW)
p. dump(shoplist, f) # dunp the object to a file
f.close()

del shoplist # renmove the shopli st

Read back fromthe storage
f = file(shoplistfile)
storedlist = p.load(f)

print storedlist

Output
$ pyt hon pickling. py
['apple', 'mango', 'carrot']
How It Works

First, notice that we use thei nport. . as syntax. Thisis handy since we can use a shorter name for a
module. In this case, it even alows us to switch to a different module (cPi ckl e or pi ckl e) by
simply changing oneline! In the rest of the program, we simply refer to this module as p.

To store an object in afile, first we open af i | e object in write mode and store the object into the open
file by calling the dunp function of the pickle module. This processis called pickling.

Next, we retrieve the object using the | oad function of the pi ckl e module which returns the object.
This processis called unpickling.

Summary

We have discussed various types of input/output and also file handling and using the pickle module.

Next, we will explore the concept of exceptions.

78

Chapter 13. Exceptions

Exceptions occur when certain exceptional situations occur in your program. For example, what if you
are going to read afile and the file does not exist? Or what if you accidentally deleted it when the pro-
gram was running? Such situations are handled using exceptions.

What if your program had some invalid statements? This is handled by Python which raises its hands
and tellsyou thereisan error.

Errors

Consider asimple pri nt statement. What if we misspelt pri nt asPri nt ? Note the capitalization. In
this case, Python raises a syntax error.

>>> Print "Hello Wirld'
File "<stdin>", line 1
Print "Hello Worl d'
N
SyntaxError: invalid syntax

>>> print 'Hello Wirld'
Hello Worl d

Observe that a Synt axEr r or is raised and also the location where the error was detected is printed.
Thisiswhat an error handler for this error does.

Try..Except

We will try to read input from the user. Press Ctrl-d and see what happens.

>>> g = raw_i nput (' Enter sonething -->

Enter sonething --> Traceback (nobst recent call last):
File "<stdin>", line 1, in ?
ECFErr or

Python raises an error called EOFEr r or which basically means it found an end of file when it did not
expect to (which is represented by Ctrl-d)

Next, we will see how to handle such errors.
Handling Exceptions

We can handle exceptions using thet ry. . except statement. We basically put our usua statements
within the try-block and put all our error handlers in the except-block.

79

Exceptions

Example 13.1. Handling Exceptions

#1/ usr/ bi n/ pyt hon
Filenane: try_except. py

i mport sys

try:
s = raw_i nput (' Enter something --> ")
except ECFError:
print "\ nWiy did you do an EOF on ne?'
sys.exit() # exit the program

except:
print '\ nSome error/exception occurred."’
here, we are not exiting the program
print 'Done'
Output

$ python try_except. py
Enter sonething -->
Wy did you do an EOF on ne?

$ python try_except. py
Enter sonmething --> Python is exceptional!
Done

How It Works

We put all the statements that might raise an error in the t r y block and then handle al the errors and
exceptions in the except clause/block. The except clause can handle a single specified error or ex-
ception, or a parenthesized list of errors/exceptions. If no names of errors or exceptions are supplied, it
will handle all errors and exceptions. There has to be at least one except clause associated with every
try clause.

If any error or exception is not handled, then the default Python handler is called which just stops the ex-
ecution of the program and prints a message. We have aready seen thisin action.

You can also have an el se clause associated withat ry. . cat ch block. Theel se clauseis executed
if no exception occurs.

We can also get the exception object so that we can retrieve additional information about the exception
which has occurred. Thisis demonstrated in the next example.

Raising Exceptions

80

Exceptions

You can raise exceptions using the r ai se statement. Y ou also have to specify the name of the error/
exception and the exception object that is to be thrown along with the exception. The error or exception
that you can arise should be class which directly or indirectly is a derived class of the Er r or or Ex-
cept i on classrespectively.

How To Raise Exceptions

Example 13.2. How to Raise Exceptions

#!/ usr/ bi n/ pyt hon
Fil enane: raising.py

cl ass Shortl nput Excepti on(Exception):
"'" A user-defined exception class."'
def __init_ (self, length, atleast):
Exception. __init__ (self)
self.length = I ength
sel f.atl east = atl east

try:

s = raw_input (' Enter sonething --> ")

if len(s) < 3:

rai se Shortl nput Exception(len(s), 3)

O her work can continue as usual here
except ECFError:

print '\ nWiy did you do an EOF on ne?
except Shortl nput Exception, x:

print 'Shortlnput Exception: The input was of |ength %, \
I was expecting at least %' % (x.length, x.atleast)
el se:

print 'No exception was raised."'

Output

$ python rai sing. py
Enter sonething -->
Wiy did you do an ECF on ne?

$ pyt hon rai sing. py
Enter sonething --> ab
Short | nput Excepti on: The input was of length 2, was expecting at |east 3

$ python raising. py

Enter sonething --> abc
No exception was raised

How It Works

81

Exceptions

Here, we are creating our own exception type although we could've used any predefined exception/error
for demonstration purposes. This new exception typeisthe Shor t | nput Except i on class. It hastwo
fields- | engt h which isthe length of the given input, and at | east which isthe minimum length that
the program was expecting.

Intheexcept clause, we mention the class of error aswell as the variable to hold the corresponding er-
ror/exception object. This is analogous to parameters and arguments in a function call. Within this par-
ticular except clause, weusethel engt h and at | east fields of the exception object to print an ap-
propriate message to the user.

Try..Finally

Using

Output

What if you were reading afile and you wanted to close the file whether or not an exception was raised?
This can be done using thef i nal | y block. Note that you can use an except clause along withafi -

nal | y block for the same corresponding t r y block. You will have to embed one within another if you
want to use both.

Finally

Example 13.3. Using Finally

#!/ usr/ bi n/ pyt hon
Filenane: finally.py

i mport tine

try:
f =file('poemtxt')
while True: # our usual file-reading idiom
line = f.readline(
if len(line) == 0O:
br eak
time. sl eep(2)
print |ine,
finally:
f.close()
print 'Cleaning up...closed the file'

$ python finally. py

Programming is fun

When the work i s done

Cleaning up...closed the file

Traceback (nobst recent call |ast):
File "finally.py", line 12, in ?

tinme. sl eep(2)
Keyboar dl nt err upt

82

Exceptions

How It Works

We do the usual file-reading stuff, but I've arbitrarily introduced a way of sleeping for 2 seconds before
printing each line using the t i me. sl eep method. The only reason is so that the program runs slowly
(Python is very fast by nature). When the program is still running, press Ctrl-c to interrupt/cancel the
program.

Observe that a Keyboar dI nt er r upt exception is thrown and the program exits, but before the pro-
gram exits, the finally clause is executed and thefile is closed.

Summary

We have discussed the usage of thetry. . except andtry..final |y statements. We have seen
how to create our own exception types and how to raise exceptions as well.

Next, we will explore the Python Standard Library.

83

Chapter 14. The Python Standard
Library

Introduction

The Python Standard Library is available with every Python installation. It contains a huge number of
very useful modules. It is important that you become familiar with the Python Standard Library since
most of your problems can be solved more easily and quickly if you are familiar with this library of
modules.

We will explore some of the commonly used modules in this library. Y ou can find complete details for
all of the modules in the Python Standard Library in the ‘Library Reference' section in the documenta-
tion that comes with your Python installation.

The sys module

The sys module contains system-specific functionality. we have already seen that the sys. ar gv list
contains the command-line arguments.

Command Line Arguments

Example 14.1. Using sys.argv

#!/ usr/ bi n/ pyt hon
Fil enane: cat.py

i mport sys
def readfile(filenane):
"'""Print afile to the standard output."'’
f =file(fil ename)
whil e True:
line = f.readline()
if len(line) == 0:
br eak
print line, # notice comm
f.close()

Script starts from here

if len(sys.argv) < 2:
print 'No action specified."'
sys.exit()

if sys.argv[1].startswith('--"):
option = sys.argv[1][2:]
fetch sys.argv[1] but without the first two characters

if option == 'version':
print 'Version 1.2

elif option == "help":
print """\

This programprints files to the standard out put.

84

Output

The Python Standard Library

Any nunber of files can be specified.
Options include:
--version : Prints the version nunber

--help : Display this help' "'
el se:
print ' Unknown option.'
sys.exit()
el se:
for filename in sys.argv[1l:]:
readfil e(fil enane)

$ python cat. py
No action specified.

$ python cat.py --help
This programprints files to the standard out put.
Any nunber of files can be specified.
Options include:
--version : Prints the version nunber
--help : Display this help

$ python cat.py --version
Version 1.2

$ python cat.py --nonsense
Unknown opti on.

$ python cat.py poemtxt

Programm ng is fun

VWen the work i s done

i f you wanna nmake your work al so fun:
use Pyt hon!

How It Works

This program tries to mimic the cat command familiar to Linux/Unix users. You just speicfy the names
of sometext filesand it will print them to the output.

When a Python program is run i.e. not an interactive mode, there is always at least one item in the
sys. ar gv list which is the name of the current program being run and is available as sys. ar gv[0]
since Python starts counting from 0. Other command line arguments follow this item.

To make the program user-friendly we have supplied certain options that the user can specify to learn
more about the program. We use the first argument to check if any options have been specified to our
program. If the - - ver si on option is used, the version number of the program is printed. Similarly,
when the - - hel p option is specified, we give a bit of explanation about the program. We make use of
thesys. exi t function to exit the running program. As always, see hel p(sys. exi t) for more de-
tails.

When no options are specified and filenames are passed to the program, it ssimply prints out each line of

85

The Python Standard Library

each file, one after the other in the order specified on the command line.

As an aside, the name cat is short for concatenate which is basically what this program does - it can
print out afile or attach/concatenate two or more files together in the output.

More sys

The sys. ver si on string gives you information about the version of Python that you have installed.
Thesys. versi on_i nf o tuple gives an easier way of enabling Python-version specific parts of your
program.

[swar oop@ ocal host code] $ pyt hon

>>> jmport sys

>>> sys.Vversion

'2.3.4 (#1, Cct 26 2004, 16:42:40) \n[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.fc3)]"
>>> gys.version_info

(2, 3, 4, 'final', 0)

For experienced programmers, other items of interest in the sys module include sys. stdin,
sys. st dout and sys. st derr which correspond to the standard input, standard output and standard
error streams of your program respectively.

The os module

This module represents generic operating system functionality. This module is especially important if

you want to make your programs platform-independent i.e. it allows the program to be written such that

it will run on Linux as well as Windows without any problems and without requiring changes. An ex-

ample of thisisusing the 0s. sep variable instead of the operation system-specific path separator.

Some of the more useful parts of the os module are listed below Most of them are self-explanatory.

* The os. nane string specifies which platform you are using, such as ' nt' for Windows and
' posi x' for Linux/Unix users.

e« Theos. getcwd() function gets the current working directory i.e. the path of the directory from
which the curent Python script is working.

» Theos.getenv() and os. put env() functions are used to get and set environment variables
respectively.

 Theos. listdir() functionreturnsthe name of al files and directoriesin the specified directory.
e« Theos. renove() functionisused to delete afile.
* Theos. systen() functionisused to run ashell command.

* Theos. | inesep string gives the line terminator used in the current platform. For example, Win-
dowsuses' \r\n',Linuxuses'\n' andMacuses' \r" .

* Theos. path. split() function returnsthe directory name and file name of the path.

86

The Python Standard Library

>>> os. path.split('/honme/swaroop/byte/code/ poemtxt')
(' /' home/ swar oop/ byt e/ code', 'poemtxt')

e Theos.path.isfile() andtheos. path.isdir() functions check if the given path refers
to afile or directory respectively. Similarly, the os. pat h. exi st s() function is used to check if
agiven path actually exists.

Y ou can explore the Python Standard Documentation for more details on these functions and variables.
You canusehel p(sys), etc. aswell.

Summary

We have seen some of the functionality of the sys module and sys modules in the Python Standard
Library. You should explore the Python Standard Documentation to find out more about these and other
modules as well.

Next, we will cover various aspects of Python that will make our tour of Python more complete.

87

Chapter 15. More Python

Till now, we have covered magjority of the various aspects of Python that you will use. In this chapter,
we will cover some more aspects that will make our knowledge of Python more complete.

Special Methods

There are certain special methods which have special significancein classessuchasthe _init__ and
__del __ methods whose significance we have aready seen.

Generally, special methods are used to mimic certain behavior. For example, if you want to use the
X[key] indexing operation for your class (just like you use for lists and tuples) then just implement the
__getitem_ () method and your job is done. If you think about it, this is what Python does for the
l'i st classitself!

Some useful specia methods are listed in the following table. If you want to know about all the specia
methods, then ahuge list is available in the Python Reference Manual.

Table 15.1. Some Special Methods

Name Explanation

__init_ (sdf, ..) This method is called just before the newly created
object isreturned for usage.

__dd__(sdf) Called just before the object is destroyed

__str_(sdlf) Called when we use the pr i nt statement with the
object or when st r () isused.

__ It (self, other) Called when the less than operator (<) is used.

Similarly, there are special methods for al the op-
erators (+, >, etc.)

__getitem__ (self, key) Called when x[key] indexing operation is used.
__len (sdf) Called when the built-in | en() function is used
for the sequence object.

Single Statement Blocks

By now, you should have firmly understood that each block of statementsis set apart from the rest by its
own indentation level. Well, this is true for the most part but it is not 100% accurate. If your block of
statements contains only one single statement, then you can specify it on the same line of, say, a condi-
tional statement or looping statement. The following example should make this clear:

>>> flag = True
>>> |f flag: print 'Yes'

Yes

As we can see, the single statement is used in-place and not as a separate block. Although, you can use

88

More Python

this for making your program smaller, | strongly recommend that you do not use this short-cut method
except for error checking, etc. One major reason isthat it will be much easier to add an extra statement if
you are using proper indentation.

Also naotice that when the Python interpreter is used in interactive mode, it helps you enter the state-
ments by changing prompts appropriately. In the aboe case, after you entered the keyword i f, it
changes the prompt to . . . to indicate that the statement is not yet complete. When we do complete the
statement in this manner, we press enter to confirm that the statement is complete. Then, Python fin-
ishes executing the whole statement and returns to the old prompt waiting for the next input.

List Comprehension

List comprehensions are used to derive a new list from an existing list. For example, you have alist of
numbers and you want to get a corresponding list with all the numbers multiplied by 2 but only when the
number itself is greater than 2. List comprehensions are ideal for such situations.

Using List Comprehensions

Example 15.1. Using List Comprehensions

#!/ usr/ bi n/ pyt hon
Filenane: |ist_conprehension. py

3, 4]

listone [2,
[2¥i for i in listone if i > 2]
t wo

[isttwo =
print list

Output

hon |ist_conprehensi on. py

$ pyt
[6, 8]

How It Works

Here, we derive anew list by specifying the manipulation to be done (2* i) when some condition is sat-
isfied (i f i > 2). Note that the origina list remains unmodified. Many a time, we use loops to pro-
cess each element of alist, the same can be achieved using list comprehensions in a more precise, com-
pact and explicit manner.

Receiving Tuples and Lists in Functions

There is a special way of receiving parameters to a function as a tuple or a dictionary using the * or * *
prefix respectively. Thisis useful when taking variable number of argumentsin the function.

89

More Python

>>>

=0

in args:
t ot al

return total

t ot al
for i

>>> powersun(2, 3, 4)

>>>
100

power sum(2, 10)

def power sun(power,
"'"Return the sum of each argunent

*args):

+= pOMI ’

power)

raised to specified power."'""'

Duetothe* prefix onthe ar gs variable, all extra arguments passed to the function are stored in ar gs
as atuple. If a** prefix had been used instead, the extra parameters would be considered to be key/

value pairs of adictionary.

Lambda Forms

A | anbda statement is used to create new function objects and then return them at runtime.

Using Lambda Forms

Example 15.2. Using Lambda Forms

#! [/ usr/ bi n/ pyt hon
Fil enane: |anbda. py

def nake_repeater(n):

return lanbda s: s * n

twice =

print twi ce('word')
print twi ce(5)

Output

$ python | anbda. py
wor dwor d
10

nmake_repeater(2)

90

More Python

How It Works

Here, we use a function make_r epeat er to create new function objects at runtime and return it. A
| anbda statement is used to create the function object. Essentially, the | anbda takes a parameter fol-
lowed by a single expression only which becomes the body of the function and the value of this expres-
sion is returned by the new function. Note that even apr i nt statement cannot be used inside alambda
form, only expressions.

The exec and eval statements

The exec statement is used to execute Python statements which are stored in a string or file. For ex-
ample, we can generate a string containing Python code at runtime and then execute these statements us-
ing the exec statement. A simple example is shown below.

>>> exec 'print "Hello World"'
Hello World

The eval statement is used to evaluate valid Python expressions which are stored in a string. A simple
example is shown below.

>>> eval (' 2*3")
6

The assert statement

The assert statement is used to assert that something is true. For example, if you are very sure that
you will have at least one element in alist you are using and want to check this, and raise an error if it is
not true, then assert statement isideal in this situation. When the assert statement fails, an Asser -
ti onError israised.

>>> nylist = ["item]

>>> assert len(nylist) >= 1

>>> nylist. pop()

"item

>>> assert len(nylist) >=1

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?

AssertionError

The repr function

Thereprt function is used to obtain a canonical string representation of the object. Backticks (also

91

More Python

caled conversion or reverse quotes) do the same thing. Note that you will have ev-
al (repr(object)) == object most of thetime.

>>> | =[]

>>> i, append('item)
>>> U

II[Iitem]ll

>>> repr(i)
"Ttitem]"

Basically, ther epr function or the backticks are used to obtain a printable representation of the object.
you can control what your objects return for the r epr function by defining the __repr __ method in
your class.

Summary

We have covered some more features of Python in this chapter and yet you can be sure we haven't
covered all the features of Python. However, at this stage, we have covered most of what you are ever

going to use in practice. Thisis sufficient for you to get started with whatever programs you are going to
Cregte.

Next, we will discuss how to explore Python further.

92

Chapter 16. What Next?

If you have read this book thoroughly till now and practiced writing a lot of programs, then you must
have become comfortable and familiar with Python. Y ou have probably created some Python programs
to try out stuff and to exercise your Python skills as well. If you have not done it already, you should.
The question now is'What Next?.

| would suggest that you tackle this problem: create your own command-line address-book program us-
ing which you can add, modify, delete or search for your contacts such as friends, family and colleagues
and their information such as email address and/or phone number. Details must be stored for later re-
trieval.

Thisisfairly easy if you think about it in terms of all the various stuff that we have come acrosstill now.
If you still want directions on how to proceed, then here's a hint.

Hint. (You shouldn't be reading this). Create a class to represent the person's information. Use a dic-
tionary to store person objects with their name as the key. Use the cPickle module to store the objects
persistently on your hard disk. Use the dictionary built-in methods to add, delete and modify the per-
sons.

Once you are able to do this, you can claim to be a Python programmer. Now, immediately send me a
mail thanking me for this great book ;-) . This step is optional but recommended.

Here are some ways to continue your journey with Python:

Graphical Software

GUI Libraries using Python - you need these to create your own graphical programs using Python. You
can create your own IrfanView or Kuickshow or anything like that using the GUI libraries with their Py-
thon bindings. Bindings are what alow you to write programs in Python and use the libraries which are
themselves written in C or C++ or other languages.

There arelots of choices for GUI using Python:

« PyQt. Thisisthe Python binding for the Qt toolkit which is the foundation upon which the KDE is
built. Qt is extremely easy to use and very powerful especially due to the Qt Designer and the amaz-
ing Qt documentation. Y ou can useit for free on Linux but you will have to pay for it if you want to
use it on Windows. PyQt is free if you want to create free (GPL 'ed) software on Linux/Unix and paid
if you want to create proprietary software. A good resource on PyQt is 'GUI Programming with Py-
thon: Qt Edition' [http://www.opendocs.org/pyqt/]. See the officidl homepage
[http://www.riverbankcomputing.co.uk/pyqt/index.php] for more details.

 PyGTK. This is the Python binding for the GTK+ toolkit which is the foundation upon which
GNOME is built. GTK+ has many quirks in usage but once you become comfortable, you can create
GUI apps fast. The Glade graphical interface designer is indispensable. The documentation is yet to
improve. GTK+ works well on Linux but its port to Windows is incomplete. You can create both
free as well as proprietary software using GTK+. See the official homepage [http://www.pygtk.org/]
for more details.

» wxPython. Thisis the Python bindings for the wxWidgets toolkit. wxPython has a learning curve
associated with it. However, it is very portable and runs on Linux, Windows, Mac and even embed-
ded platforms. There are many IDEs available for wxPython which include GUI designers as well
such as SPE (Stani's Python Editor) [http://spe.pycsnet/] and the wxGlade
[http://wxglade.sourceforge.net/] GUI builder. You can create free as well as proprietary software
using wxPython. See the official homepage [http://www.wxpython.org/] for more details.

93

http://www.opendocs.org/pyqt/
http://www.opendocs.org/pyqt/
http://www.riverbankcomputing.co.uk/pyqt/index.php
http://www.pygtk.org/
http://spe.pycs.net/
http://wxglade.sourceforge.net/
http://www.wxpython.org/

What Next?

» Tkinter. Thisisone of the oldest GUI toolkitsin existence. If you have used IDLE, you have seen
a Tkinter program a work. The documentation for Tkinter a PythonWare.org
[http:/lwww.pythonware.com/library/tkinter/introduction/index.htm] is comprehensive. Tkinter is
portable and works on both Linux/Unix as well as Windows. Importantly, Tkinter is part of the
standard Python distribution.

e For more choicess, see the GuiProgramming wiki page a Python.org
[http://www.python.org/cgi-bin/moinmoin/Gui Programming]

Summary of GUI Tools

Unfortunately, there is no one standard GUI tool for Python. | suggest that you choose one of the above
tools depending on your situation. The first factor is whether you are willing to pay to use any of the
GUI tools. The second factor is whether you want the program to run on Linux or Windows or both. The
third factor is whether you are a KDE or GNOME user on Linux.

Future Chapters

| am contemplating writing 1 or 2 chapters for this book on GUI Programming. | will be prob-
ably be choosing wxPython as the choice of toolkit. If you would like to present your views on
the subject, please join the byte-of-python mailing list
[http://lists.ibiblio.org/mailman/listinfo/byte-of -python] where readers discuss with me on what
improvements can be made to the book.

Explore More

* The Python Standard Library is an extensive library. Most of the time, this library will have what
you are looking for. Thisis referred to as the 'batteries included' philosophy of Python. | highly re-
commend that you go through the Python Standard Documentation [http://docs.python.org/] before
you proceed to start writing large Python programs.

» Python.org [http://www.python.org/] - the official homepage of the Python programming language.
You will find the latest versions of the Python language and interpreter here. There are also various
mailing lists where active discussions on various aspects of Python take place.

» comp.lang.python is the usenet newsgroup where discussion about this language takes place. You
can post your doubts and queries to this newsgroup. Y ou can access this online using Google Groups
[http://groups.google.com/groups?hl=en& Ir=& ie=UTF-8& group=comp.lang.python] or join the
mailing list [http://mail.python.org/mailman/listinfo/python-list] which is just a mirror of the news-
group.

» Python Cookbook [http://aspn.activestate.com/A SPN/Python/Cookbook/] is an extremely valuable
collection of recipes or tips on how to solve certain kinds of problems using Python. Thisis a must-
read for every Python user.

» Charming Python [http://gnosis.cx/publish/tech_index_cp.html] is an excellent series of Python-re-
lated articles by David Mertz.

» Dive Into Python [http://www.diveintopython.org/] is a very good book for experienced Python pro-
grammers. If you have thoroughly read the current book you are reading, then | would highly recom-
mend that you read 'Dive Into Python' next. It covers a range of topics including XML Processing,
Unit Testing and Functional Programming.

e Jython [http://www.jython.org/] is an implementation of the Python interpreter in the Java language.
This means that you can write programs in Python and use the Java libraries as well! Jython is a

94

http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.python.org/cgi-bin/moinmoin/GuiProgramming
http://lists.ibiblio.org/mailman/listinfo/byte-of-python
http://docs.python.org/
http://www.python.org/
http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&group=comp.lang.python
http://mail.python.org/mailman/listinfo/python-list
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://gnosis.cx/publish/tech_index_cp.html
http://www.diveintopython.org/
http://www.jython.org/

What Next?

stable and mature software. If you are a Java programmer as well, | highly recommend that you give
Jython atry.

e lronPython [http://www.ironpython.com/] is an implementation of the Python interpreter in C# lan-
guage and can run on the .NET / Mono / DotGNU platform. This means that you can write programs
in Python and use the .NET Libraries and other libraries provided by these 3 platforms as well! Iron-
Python is still pre-alpha software and is suitable only for experimenting as of now. Jm Hugunin,
who wrote IronPython has joined Microsoft and will be working towards a full version of IronPy-
thon in future.

» Lython [http://www.caddr.com/code/lython/] is a Lisp frontend to the Python language. It is similar
to Common Lisp and compiles directly to Python bytecode which means that it will interoperate
with our usual Python code.

e There are many many more resources on Python. Interesting ones are Daily Python-URL!
[http:/iwww.pythonware.com/daily/] which keeps you up to date on the latest Python happenings,
Vaults of Parnassus [http://www.vex.net/parnassus/], ONLamp.com Python DevCenter
[http://lwww.onlamp.com/python/], dirtSimple.org [http://dirtsimple.org/], Python Notes
[http://pythonnotes.blogspot.com/] and many many more.

Summary

We have now come to the end of this book but, as they say, thisis the the beginning of the end!. You are
now an avid Python user and you are no doubt ready to solve many problems using Python. You can
start automating your computer to do all kinds of previously unimaginable things or write your own
games and much much more. So, get started!

95

http://www.ironpython.com/
http://www.caddr.com/code/lython/
http://www.pythonware.com/daily/
http://www.vex.net/parnassus/
http://www.onlamp.com/python/
http://dirtsimple.org/
http://pythonnotes.blogspot.com/

Appendix A. Free/Libre and Open
Source Software (FLOSS)

FLOSS is based on the concept of a community, which itself is based on the concept of sharing, and par-
ticularly the sharing of knowledge. FLOSS are free for usage, modification and redistribution.

If you have aready read this book, then you are familiar with FLOSS as well since you have been using
Python all along!

If you want to know more about FLOSS, you can explore the following list. | have listed some big
FLOSS as well as those FLOSS which are cross-platform (i.e. work on Linux, Windows, etc.) so that
you can try using these software without the need to switch to Linux immediately although you eventu-
ally will ;-)

e Linux. ThisisaFLOSS operating system that the whole world is slowly embracing! It was started
by Linus Torvalds as a student. Now, it is giving competition to Microsoft Windows. The latest 2.6
kernel is a major breskthrough w.r.t. speed, stability and scalability. [Linux Kernel
[http:/Avww .kernel.org]]

* Knoppix. Thisis adistribution of Linux which runs off just the CD! There is no installation re-
quired - you can just reboot your computer, pop the CD in the drive and start using a full-featured
Linux distribution! Y ou can use all the various FLOSS that comes with a standard Linux distribution
such as running Python programs, compiling C programs, watching movies, etc. Then, reboot your
computer again, remove the CD and use your existing OS, as if nothing happened at all. [Knoppix
[http:/iwww.knopper.net]]

* Fedora. Thisisacommunity-driven distribution, sponsored by Red Hat and is one of the most pop-
ular Linux distributions. It contains the Linux kernel, the KDE, GNOME and XFCE desktops, and
the plethora of FLOSS available and all thisin an easy-to-use and easy-to-install manner.

If you care a complete beginner to Linux, then | would recommend that you try Mandrake Linux .
The newly released Mandrake 10.1 is just awesome. [Fedora Linux [http://fedora.redhat.com], Man-
drake Linux [http://www.mandrakelinux.com]]

e OpenOffice.org. Thisisan excellent office suite based on Sun Microsystems' StarOffice software.
OpenOffice has writer, presentation, spreadsheet and drawing components among other things. It
can even open and edit MS Word and M S PowerPoint files with ease. It runs on almost al platforms.
The upcoming OpenOffice 2.0 has some radical improvements. [OpenOffice
[http://www.openoffice.org]]

* Mozilla Firefox. Thisis the next generation web browser which is predicted to beat Internet Ex-
plorer (in terms of market share only ;-) in afew years. It is blazingly fast and has gained critical ac-
claim for its sensible and impressive features. The extensions concept allows any kind of functional-
ity to be added to it.

It's companion product Thunderbird is an excellent email client that makes reading email a snap. [
Mozilla Firefox [http://www.mozilla.org/products/firefox], Mozilla Thunderbird
[http:/Avww.mozilla.org/products/thunderbird)]]

e Mono. Thisis an open source implementation of the Microsoft .NET platform. It allows .NET ap-
plications to be created and run on Linux, Windows, FreeBSD, Mac OS and many other platforms as
well. Mono implements the ECMA standards of the CLI and C# which Microsoft, Intel and HP have
submitted for standardization and they have now become open standards. Thisis a step in the direc-
tion of 1SO standardization for the same.

96

http://www.kernel.org
http://www.knopper.net
http://fedora.redhat.com
http://www.mandrakelinux.com
http://www.mandrakelinux.com
http://www.openoffice.org
http://www.mozilla.org/products/firefox
http://www.mozilla.org/products/thunderbird

Free/Libré and Open Source Software
(FLOSS)

Currently, there is a complete C# mcs (which itself is written in C#!), a feature-complete ASP.NET
implementation, many ADO.NET providers for databases and many many more features that are be-
ing improved and added everyday. [Mono [http://www.mono-project.com], ECMA
[http:/www.ecmarinternational .org], Microsoft .NET [http://www.microsoft.com/net]]

» Apacheweb server. Thisisthe popular open source web server. In fact, it is the most popular web
server on the planet! It runs nearly 60% of the websites out there. Yes, that's right - Apache handles
more websites than all the competition (including Microsoft 11S) combined. [Apache
[http:/lwww.apache.org]]

 MySQL. Thisisan extremely popular open source database server. It is most famous for it's blazing
speed. More features are being added to it's latest versions. [MySQL [http://www.mysgl.com]]

* MPlayer. Thisis avideo player that can play anything from DivX to MP3 to Ogg to VCDs and
DVDsto ... who says open source ain't fun?;-) [MPlayer [http://iwww.mplayerhg.hu]]

e Movix. ThisisaLinux distribution which is based on Knoppix and runs off the CD but is designed
to play movies! You can create Movix CDs which are just bootable CDs and when you reboot the
computer and pop in the CD, the movie starts playing by itself! You don't even need a hard disk to
watch amovie using Movix. [Movix [http://movix.sourceforge.net]]

Thislist isjust intended to give you a brief idea - there are many more excellent FLOSS out there, such
as the Perl language, PHP language, Drupa content management system for websites, PostgreSQL data-
base server, TORCS racing game, KDevelop IDE, Anjuta IDE, Xine - the movie player, VIM editor,
Quantat+ editor, XMM S audio player, GIMP image editing program, ... thislist could go on forever.

Visit the following websites for more information on FLOSS:

SourceForge [http://www.sourceforge.net]

» FreshMeat [http://www.freshmeat.net]

KDE [http://www.kde.org]

GNOME [http://www.gnome.org]

To get the latest buzz in the FLOSS world, check out the following websites:

OSNews [http://www.osnews.com)]

LinuxToday [http://www.linuxtoday.com]
* NewsForge [http://www.newsforge.com]

» SwaroopCH's blog [http://www.swaroopch.info/blog]

So, go ahead and explore the vast, free and open world of FLOSS!

97

http://www.mono-project.com
http://www.ecma-international.org
http://www.microsoft.com/net
http://www.apache.org
http://www.mysql.com
http://www.mplayerhq.hu
http://movix.sourceforge.net
http://www.sourceforge.net
http://www.freshmeat.net
http://www.kde.org
http://www.gnome.org
http://www.osnews.com
http://www.linuxtoday.com
http://www.newsforge.com
http://www.swaroopch.info/blog

Appendix B. About
Colophon

Almost al of the software that | have used in the creation of this book are free and open source
software. In the first draft of this book, | had used Red Hat 9.0 Linux as the foundation of my setup and
now for this sixth draft, | am using Fedora Core 3 Linux as the basis of my setup.

Initialy, | was using KWord to write the book (as explained in the History Lesson in the preface). Later,
| switched to DocBook XML using Kate but | found it too tedious. So, | switched to OpenOffice which
was just excellent with the level of control it provided for formatting as well as the PDF generation, but
it produced very sloppy HTML from the document. Finally, | discovered XEmacs and | rewrote the
book from scratch in DocBook XML (again) after | decided that this format was the long term solution.
In this new sixth draft, | decided to use Quanta+ to do al the editing.

The standard XSL stylesheets that came with Fedora Core 3 Linux are being used. The standard default
fonts are used as well. The standard fonts are used as well. However, | have written a CSS document to
give color and style to the HTML pages. | have aso written a crude lexical analyzer, in Python of
course, which automatically provides syntax highlighting to all the program listings.

About the Author

Swaroop C H loves his job which is being a software developer at Y ahoo! in the Bangalore office in In-
dia. His interests on the technological side include FLOSS such as Linux, DotGNU, Qt and MySQL,
great languages like Python and C#, writing stuff like this book and any software he can create in his
spare time, as well as writing his blog. His other interests include coffee, reading Robert Ludlum novels,
trekking and politics.

If you are still to interested to know more about this guy, check out his blog at www.swaroopch.info
[http://www.swaroopch.info] .

98

http://www.swaroopch.info

Appendix C. Revision History
Timestamp

This document was generated on January 13, 2005 at 00:05

Revision History

Revision 1.20 13/01/2005

Complete rewrite using Quanta+ on FC3 with lot of corrections and updates. Many new examples. Re-
wrote my DocBook setup from scratch.

Revision 1.15 28/03/2004

Minor revisions

Revision 1.12 16/03/2004

Additions and corrections.

Revision 1.10 09/03/2004

More typo corrections, thanks to many enthusiastic and helpful readers.
Revision 1.00 08/03/2004

After tremendous feedback and suggestions from readers, | have made significant revisions to the con-
tent along with typo corrections.

Revision 0.99 22/02/2004
Added anew chapter on modules. Added details about variable number of argumentsin functions.
Revision 0.98 16/02/2004

Wrote a Python script and CSS stylesheet to improve XHTML output, including a crude-yet-functional
lexical analyzer for automatic VIM-like syntax highlighting of the program listings.

Revision 0.97 13/02/2004

Another completely rewritten draft, in DocBook XML (again). Book has improved alot - it is more co-
herent and readable.

Revision 0.93 25/01/2004

Added IDLE talk and more Windows-specific stuff
Revision 0.92 05/01/2004

Changes to few examples.

Revision 0.91 30/12/2003

Corrected typos. Improvised many topics.

Revision 0.90 18/12/2003

Added 2 more chapters. OpenOffice format with revisions.
Revision 0.60 21/11/2003

Fully rewritten and expanded.

Revision 0.20 20/11/2003

Corrected some typos and errors.

Revision 0.15 20/11/2003

Converted to DocBook XML.

Revision 0.10 14/11/2003

Initial draft using KWord.

99

