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Abstract

In this paper, we present a system level design
methodology which allows designers to model and
analyze their systems from the early stages of the
design process until final implementation. The de-
sign methodology targets heterogeneous embedded
systems and is based on a formal modeling frame-
work, called ForSyDe. ForSyDe is available under
the open Source approach, which allows small and
medium enterprises (SME) to get easy access to
advanced modeling capabilities and tools. We give
an introduction to the design methodology through
the system level modeling of a simple industrial use
case, and we outline the basics of the underlying
ForSyDe model.

1 Introduction

Industry is facing a crisis in the design of complex
hardware/software systems. Due to the increasing
complexity, the gap between the generation of a
product idea and the realization of a working sys-
tem is expanding rapidly. To manage complexity
and to shorten design cycles, industry is forced to
look at system level languages towards specifica-
tion and design. Such languages allows the designer
to capture the system functionality from the very
early stages in the design process and to use this
system model as a basis for evaluating design de-
cisions and for a stepwise refinement of the system
specification into a final implementation.

Figure 1 shows the classical design flow. The ini-
tial requirement specification, which captures both
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Figure 1: Current design methodology.

the functional and non-functional properties of the
system, is partitioned into a software and a hard-
ware specification. This partition is usually based
on the experience of the designers and on avail-
ability of existing hardware platforms. Although
this may be a good starting point, the lack of be-
ing able to explore different design alternatives in
a systematic way, seriously impact the quality and
competitiveness of the resulting solution.

In this paper, we present a system level modelling
approach aimed at capturing the early stages of
the design, allowing the designer to explore trade-
offs and support design decisions. The proposed
modeling approach is captured in a system de-
sign framework (SFF: System Functionality Frame-
work), which has been developed as part of the
SYSMODEL1 project. The aim of this project
has been to support the competitiveness of small

1Funded by ARTEMIS JU
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Figure 2: Design methodology using system mod-
elling. Green area symbolises the modelling part
of the design process. The red area is the design
exploration part.

and medium-sized enterprises (SMEs). The general
availability of the design framework is facilitated by
the Open Source approach, where all tools are made
available free of charge. Figure 2 shows how the
proposed modeling approach extends the classical
design flow with system level modelling. The ini-
tial requirement specification is partitioned into a
functional specification and a non-functional speci-
fication. The functional specification is first trans-
lated into a suitable model of the application. Rele-
vant non-functional properties, such as latency and
power consumption, are used to guide this trans-
lation. Likewise, the non-functional properties are
used to guide the selection of an appropriate ex-
ecution platform, expressed as a platform model.
Finally, the application model is mapped onto the
platform model in order to form a model of the inte-
grated system. As there are many ways to achieve
this mapping, there is a need for being able to per-
form an exploration of the design space.

The proposed SFF framework is based on

ForSyDe (Formal System Design) [4], a formal de-
sign methodology which allows several models of
computation to be integrated in a single heteroge-
neous model, in order to capture and model dif-
ferent types of components, such as analog, digital
and software components, and to describe a system
at different stages in the design process. A formal
modelling approach with clear semantics, makes it
possible to formally reason about properties of the
design, such as risks, price, power, and timing, al-
ready in the early stages of the design process.

We illustrate the design methodology outlined in
Figure 2 through a system level design of a sim-
ple use case, a hearing aid calibration device. As
the calibration device is a medical device, it has to
apply to medical safety regulations [1, 3], which is
always a challenge. One of the major advantages of
the device as compared to competitors, is its small
size and ease of use, which adds to the challenges.
in order to work correctly according to safety reg-
ulations and medical specifications for hearing aid
calibration devices, strict timing requirements are
given. Now one of the key challenges in the early
stage of the design process, where the complete sys-
tem is being designed, is to ensure that a given ap-
plication design when executed on the selected plat-
form will always meet these timing requirements.

In the following, we first describe the use case
and how the initial requirement specification may
be transformed into an application model, and how
this model may be bound to a platform model, in
order to form an integrated system model. We ex-
plain how the models may be validated through
simulation. After the use case, we turn to the
modelling framework and outline the basics of the
ForSyDe model. Finally, we give a summary and
some concluding remarks.

2 Industry case

Throughout the paper, we will use a hearing aid cal-
ibration device as a use case for our proposed design
methodology. The use case is provided by the Dan-
ish company Auditdata. Figure 3 shows the cali-
bration device in context, i.e., the physical setup,
where the calibration device controls sound genera-
tion and samples the sound in the ear through two
microphones, one in front of the hearing aid device
and one inside the ear right behind the hearing aid.
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Figure 3: The problem that needs to be solved. A patient (the ear) needs to have a new hearing aid
adjusted. The doctor places two microphones on the patient, one inside the ear canal and one just
outside. In the room there is a loudspeaker. This setup is called a Real Ear Measurement (REM).

This is called the Real Ear Measurement (REM).
The sampled sound signals are processed in the cal-
ibration device and send to the doctors PC via an
USB interface for display. Figure 3 only shows the
setup for one ear, however, the calibration device is
able to handle both ears at the same time, with a
total of sampling four microphones (using the same
speaker for both ears).

2.1 Functional specification

The desired functionality of the product is to pro-
duce sound streams that are played in a loud
speaker and record by up to four sound streams
simultaneously that are then displayed on a com-
puter screen as histograms in real time.

2.2 Non-functional specification

As the calibration process involves the patient to be
able to relate visual and audio input, the calibra-
tion device has certain timing requirements. Fur-
thermore, medical safety regulations require the
signal processing to be done under real-time re-
quirements and to deliver a certain accuracy. These
timing and accuracy requirements, together with a
wish to produce a low cost and low power device

that are connected to the PC through a USB inter-
face, challenges the design of the calibration device.

3 Application model

The functional part of the requirement specification
can be expressed as an application model (block
Application model in Figure 2). The benefits of
such a model are that it can be used to validate the
application behaviour, for instance by simulation
of the model. Depending on the formalism used to
describe the model, formal verification of system
properties may also be a possibility.

3.1 ForSyDe model

An application model of the use case is shown in
Figure 4. This particular model models the be-
haviour of producing one continuous sound stream
for a speaker while continuously sampling two
sound streams. Each of these sampled sound
streams are transformed into histograms by a fast
Fourier transformation (FFT)2. This represents
one scenario/configuration of the product.

2A fast Fourier transformation is an efficient algorithm
to compute the discrete Fourier transformation.
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Figure 4: Simplified behavioural model of the product. This is a setup where two channels are actively
being used.

In order to simulate this model, a standard FFT
implementation can be used for each of the FFT
blocks. This will produce the same functional be-
haviour as a version which have been optimised
with respect to a given platform and non functional
requirements.

We use a Synchronous Data Flow (SDF) [5] as
the underlining Models of Computation (MoC).
Synchronous Data Flow models the dataflow be-
tween processes and is hence, well suited for mod-
elling streaming applications. Each process con-
sumes a static number of tokens on each input and
produces a static number of tokens on each output.
A process will execute when sufficient tokens are
ready on all inputs. The Models of Computation is
without any notion of time. SDF can relatively easy
be analyzed for required buffer sizes between pro-
cesses. In the use case in Figure 4 the calculation of
buffer sizes is not complex (maximum 4096 tokens
before each FFT), but in more complex situations,
e.g., where interaction would happen between the
two streams of sampling followed by FFT, the anal-
ysis could quickly become much more complex.

3.2 Simulation

The application model can be simulated with very
simple definitions of each process. This particular
application model is simple enough that the be-
haviour is obvious. However, in more complex ap-
plications, only the behaviour of sub parts may be
obvious while the global behaviour might not. Sim-
ulation can then be used to validate the behaviour.

An example of a simulation for this use case is
to feed the application model with sine waves in
the “Gen” process and verify that one frequency is
dominating the output. Due to the discrete calcu-
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Figure 5: Example of simulation input and result.

lation of the Fourier transformation, the tone might
not always be transformed into only one frequency,
but will cover a small band. A result from a simula-
tion of the application model is shown in Figure 5.

The “REM” process can be used to model differ-
ent changes to the sound as it travel through the
air and ear channel.

3.3 Verification

In broad terms the application model can be used
to estimate non-functional properties, verify that
non-functional requirements are met, and explore
behaviour to achieve certain non-functional prop-
erties. Such properties could be buffersizes needed
for communication between processes or a static
schedule of the processes. The verification tech-
niques used to determine the properties depends
on the MoCs used to model the application. It is
possible to combine multiple MoCs in an applica-
tion model, but some verification techniques will
then only apply to certain parts of the application
model.

Since the application model of the use case is
modelled using only one Model of Computation
(MoC), specifically the untimed MoC Synchronous
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Data Flow (SDF), it is possible to perform verifi-
cation on the entire structure of the model. One
such verification is a buffer analysis, i.e. how much
memory is (at most) required to contain all the
data which is streamed through the device while
operating. As an example, the difference between
a 16MB and a 64MB memory solution is approx-
imately a factor 4 in energy consumption (respec-
tively 0.125W and 0.5W). The power used by the
memory can therefore be a significant amount of
the total power budget of the 2.5W provided by a
USB port at maximum.

4 Platform model

The SFF framework can be used to represent de-
tails of all components and interconnections of the
platform, i.e. a detailed representation of the hard-
ware circuits. However, at the early stages of the
design process, we are more interested in having a
high level system model, which captures how the
application interacts with the platform. In other
words, the platform model provides the execution
details, such as schedule and duration of the vari-
ous application processes. In this context, the plat-
form model defines the execution of the application
model. This may be done by connecting the appli-
cation model to the platform through control sig-
nals. Control signals from the platform model to
the application model releases a process in the ap-
plication model, and the opposite returns the con-
trol to the platform.

A platform model may start as a relative high
level model with very few details. During the de-
sign process, it may be gradually refined with more
and more details. For a platform containing a sin-
gle processor core, may simply model the sequence
of the application processes. This can be done by
sequencing the control output from the application
model to the next control input to the application
model. A more complex platform model which in-
cludes some model of an operating system, may
make more elaborate decisions on which applica-
tion process to release, effectively modeling the be-
havior of a dynamic execution sequence, such as
a fixed priority based real-time operation system.
The execution semantics of SDF, ensures that the
application processes will not execute until both
data and control input are ready. Since the ap-

plication model is without any notion of time and
the timing of the execution of application processes
are platform dependent, the platform is annotated
with execution time of each application process.

In our use case, the platform is given and based
on a single processor core. This core executes all
digital signal processing and controls the A/D and
D/A converters. The interface to the PC is done
through a USB chip, which only has a single packet
buffer for receiving data. The platform may also
have to capture the behavior of an operating sys-
tem which in our use case is described as round
robin cooperative multitasking. In our case it sim-
plifies into a static series of function calls to each
application process.

As the application is presented as four streams
(the pairs of sample and FFT processes), it may
benefit from a platform supporting multiple cores.
Hence, it would be interesting to explore alternative
platforms, such as a platform with two processor
cores or even four processor cores, each servicing
a single stream. Although this may seems obvi-
ous, a challenge is that the operating system or the
USB process system may be more complex, since
synchronisation between the processor cores has to
take place when collecting data for transport to the
PC. Only a careful exploration of the design space
will reveal the best tradeoff.

5 Integrated system model

The integrated system model is the combination of
the application model and the platform model. The
integration of the application model is performed
by adding extra control dependencies to each pro-
cess, such that the platform activates the process at
the appropriate point in time. The estimated exe-
cution time of each application process is modelled
through these control dependencies. These control
dependencies are shown in Figure 6 as red arrows.

The platform controls the execution of each pro-
cess in the application model by sending a release
for execution through the input control dependen-
cies. The output control dependencies to an appli-
cation returns the control to the platform.

An important property of this modeling ap-
proach is that the application model with anno-
tated control input/output dependencies, is inde-
pendent of the actual platform. This means that
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Figure 6: Integrated system model, the combination of the application model and the platform model.

the application model and the platform model are
kept separate in the integrated system model, ef-
fectively applying a separation of concerns.

Furthermore, this allows us to perform what-if
analysis of possible design choices. We may ex-
plore possible changes in the mapping, the platform
or even in the application itself. Such explorations
could be based on simulation or on an analytical
approach which would allow for fast automated de-
sign space exploration. Hence, the aim of the ex-
ploration is to find the best solution which fulfills
all non functional requirements. However, It is also
possible to evaluate other relevant parameters of
the design. Parameters which are not strictly be-
ing expressed as requirements, but are secondary
optimization goals, such as the sensitivity of the
proposed design. I.e. evaluating the amount of
slack in the design which can be used to adjust the
final solution in order to compensate for inaccurate
estimates made in the early stages. This may lead
to better solutions than those obtained from ap-
plying very conservative rules, which often leads to
over designed systems.

5.1 Simulation

Simulating the integrated system model, can pro-
vide important insight into the design. We may
be able to decide if the platform supports the ap-
plication with the given requirements on execution
time, power consumption, etc. Another important
aspect of simulating a model of the system, is that
we can easily get access to information, such as
signals, components, variables and software blocks,
which may be inaccessible in the final implementa-

tion. Further, we may use this information to easily
infer start and end times of application processes as
well as the preemption of these.

6 The ForSyDe framework

ForSyDe (Formal System Design) [4, 7] is a formal
design methodology that targets heterogeneous em-
bedded systems. ForSyDe uses the theory of mod-
els of computation (MoCs) [6] as its underlying
formal foundation, which gives access to powerful
analysis techniques during system design. ForSyDe
designers do not need to have expertise in the un-
derlying formal foundation, but will have access to
the ForSyDe library, which encapsulates the math-
ematical base of ForSyDe. ForSyDe provides li-
braries for several MoCs, which allow to develop
executable system models from which an analyz-
able mathematical model can be extracted. This
analyzable model can then serve as a base for dif-
ferent tools in the following phases of the design
flow, such as design space exploration and synthe-
sis.

6.1 System Model

Figure 7 illustrates the ForSyDe system model. A
system is modeled as concurrent process network,
where processes belonging to the same MoC com-
municate via signals. ForSyDe system models do
not have a global state, only local states are al-
lowed. Rules for individual processes and mech-
anisms for concurrency and composition are de-
fined within each MoC. At present ForSyDe pro-
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Figure 7: A ForSyDe System Model

vides libraries for four different MoCs, which allow
to model heterogeneous embedded systems contain-
ing not only software but also digital and analog
hardware at an abstract level: synchronous data-
flow (SDF) MoC, synchronous MoC, discrete-time
MoC, and continuous-time MoC. Processes belong-
ing to different MoCs communicate via domain in-
terfaces, which define how signals from one MoC
are interpreted in another MoC. A typical exam-
ple for a domain interface is an abstract analog-to-
digital converter, which connects the continuous-
time MoC to the synchronous or the discrete-event
MoC.

Every novel design methodology has to cope
with the existence of existing models or legacy
code. Since these foreign models are not based on
the ForSyDe formalism they cannot be treated as
ForSyDe processes. However, using ForSyDe wrap-
pers foreign models can be integrated into an ex-
isting ForSyDe model and co-simulated with the
’pure’ ForSyDe processes (Section 6.4).

6.2 Process Constructors

A key concept in ForSyDe is the concept of process
constructors. Process constructors lead to well-
structured system models, which can then easily be
converted to mathematical descriptions for which
powerful analysis and synthesis methods exist.

=

ProcessValues

+

Functions

+

Process Constructor

Figure 8: Process Constructor mooreSY

Each process is created by a process construc-
tor. The process constructor defines the MoC, its

interface to the environment, and a number of ar-
guments that have to be supplied to the process
constructor. Figure 8 illustrates this concept by
means of the process constructor mooreSY, which
is used to model a finite state machine and belongs
to the synchronous MoC. mooreSY takes two func-
tions and a value as arguments. The function next
returns the next state of the state machine based on
the present state and the current input values, the
function out returns the output value based on the
present statue, and the value init gives the initial
state.

The ForSyDe methodology obliges the designer
to create processes using process constructors. This
gives several important benefits: (1) A system
model is well-structured and well-defined, because
each process constructor has a mathematical for-
mulation, (2) process constructors separate com-
munication (process constructor) from computa-
tion (function), (3) process constructors can have
an implementation pattern (the process mooreSY
can be efficiently implemented in software or hard-
ware using a well-known design pattern).

6.3 Implementation of the ForSyDe
Library

ForSyDe has originally been implemented in the
functional language Haskell. Haskell fits perfectly
with the formal foundation of ForSyDe, since it en-
forces side-effect free processes, provides lazy eval-
uation, and allows to express the process construc-
tors with higher-order functions. The Haskell im-
plementation supports four MoCs, and provides
a hardware synthesis back-end, which allows to
generate synthesizable VHDL from a synchronous
MoC ForSyDe model [4].

After demonstrating the potential of ForSyDe
with Haskell, a SystemC version of ForSyDe
has been developed within the European Artemis
project SYSMODEL [8] to increase industrial us-
ability. SystemC is an industrial standard and
widely used in industry for system modeling. How-
ever, SystemC lacks a clear formal semantics, which
makes it very difficult to use it in its plain form for
other purposes than modeling and simulation. In-
side the SYSMODEL project we have created Sys-
temC libraries based on ForSyDe for four MoCs,
which ensures that ForSyDe SystemC models have
a formal base and that abstract analyzable mod-
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els, such as SDF-graphs, can be easily extracted
from an executable ForSyDe SystemC model. Al-
though compared to Haskell SystemC suffers from
some drawbacks, in particular SystemC does not
enforce side-effect-free processes, there is in addi-
tion to industrial acceptance another very impor-
tant advantage: SystemC is a C++ class library
and all functions are written in C/C++, which al-
lows to directly implement the function arguments
to the process constructors as C-code on the target
processors.

The ForSyDe SystemC libraries implement pro-
cess constructors as abstract classes, where argu-
ments to the process constructors are implemented
as pure virtual functions and initial values as argu-
ments to the class constructor. For each process,
the designer derives from the abstract class imple-
menting the desired process constructor and writes
the required virtual functions and then provides the
class constructor arguments during instantiation.
Then the processes are connected via ForSyDe Sys-
temC channels. Simple SystemC channels imple-
ment ForSyDe signals, while more complex chan-
nels can implement domain interfaces.

6.4 Foreign Model Integration and
Legacy Code

As part of the SYSMODEL project ForSyDe wrap-
pers have been implemented, which allow to inte-
grate foreign models into a formal ForSyDe model
as illustrated in Figure 7. These ForSyDe wrappers
isolate foreign models from the formal ForSyDe
model, but allow the co-simulation of a formal
ForSyDe model with a foreign model. The con-
cept of SystemC wrappers does not only allow to
include existing models or legacy code into an ab-
stract model, but facilitates also a refinement-by-
replacement approach, where processes inside an
abstract system model are replaced by low-level
implementations, which run on their target plat-
form and are encapsulated in a wrapper. In [2]
we have demonstrated how wrappers can be used
to integrate C-models running on a target proces-
sor, Matlab/Simulink-, and VHDL models and to
co-execute these foreign models with the abstract
ForSyDe model.

7 Summary

We have presented a system level design methodol-
ogy based on the ForSyDe formal modeling frame-
work, which allows designers to model and ana-
lyze both functional and non-functional properties
of their system at the very early stages of the de-
sign process. The methodology has been illustrated
through the modeling and analysis of a rather sim-
ple industry case of a hearing aid calibration device.
Early decision support is a very critical factor in
handling the design of complex hardware/software
systems and to achieve high quality products in
short design cycles. We have illustrated how the
separation of application and platform in the inte-
grated system model may provide easy explorations
of different platforms or mappings. Finally, having
a complete and formal system model, may lead to
an easier handling of outsourcing sub-parts of the
system, as the requirements of the sub-parts may
be extracted directly from the system model.
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