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Abstract. We provide an introduction to the 2-representation theory of Kac-Moody algebras,
starting with basic properties of nil Hecke algebras and quiver Hecke algebras, and continuing
with the resulting monoidal categories, which have a geometric description via quiver vari-
eties, in certain cases. We present basic properties of 2-representations and describe simple
2-representations, via cyclotomic quiver Hecke algebras, and through microlocalized quiver va-
rieties.

1. Introduction

This text provides an introduction and complements to some basic constructions and results
in 2-representation theory of Kac-Moody algebras. We discuss quiver Hecke algebras [Rou2],
which have been introduced independently by Khovanov and Lauda [KhoLau1] and [KhoLau2],
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and their cyclotomic versions, which have been considered independently in the case of level 2
weights for type A, by Brundan and Stroppel [BrStr]. We discuss the 2-categories associated
with Kac-Moody algebras and their 2-representations: this has been introduced in joint work
with Joe Chuang [ChRou] for sl2 and implicitly for type A (finite or affine). While the general
philosophy of categorifications was older (cf for example [BeFrKho]), the new idea in [ChRou]
was to introduce some structure at the level of natural transformations: an endomorphism of E
and an endomorphism of E2 satisfying Hecke-type relations. The generalization to other types
is based on quiver Hecke algebras, which account for a half Kac-Moody algebra. We discuss
the geometrical construction of the quiver Hecke algebras via quiver varieties, which was our
starting point for the definition of quiver Hecke algebras, and that of cyclotomic quiver Hecke
algebras.

The first chapter gives a gentle introduction to nil (affine) Hecke algebras of type A. We
recall basic properties of Hecke algebras of symmetric groups and provide the construction via
BGG-Demazure operators of the nil Hecke algebras. We also construct symmetrizing forms.

The second chapter is devoted to quiver Hecke algebras. We explain that the more com-
plicated relation involved in the definition is actually a consequence of the other ones, up
to polynomial torsion: this leads to a new, simpler, definition of quiver Hecke algebras. We
construct next the faithful polynomial representation. This generalizes the constructions of
the first chapter, that correspond to a quiver with one vertex. We explain the relation, for
type A quivers, with affine Hecke algebras. Finally, we explain how to put together all quiver
Hecke algebras associated with a quiver to obtain a monoidal category that categorifies a half
Kac-Moody algebra (and its quantum version).

The third chapter introduces 2-categories associated with Kac-Moody algebras and discusses
their integrable representations. We provide various results that reduce the amount of condi-
tions to check that a category is endowed with a structure of an integrable 2-representation,
once the quiver Hecke relations hold: for example, the sl2-relations imply all other relations,
and it can be enough to check them on K0. We explain the universal construction of “simple”
2-representations, and give a detailed description for sl2. We present a Jordan-Hölder type
result. We move next to cyclotomic quiver Hecke algebras, and present Kang-Kashiwara and
Webster’s construction of 2-representations on cyclotomic quiver Hecke algebras. We prove that
the 2-representation is equivalent to the universal simple 2-representation. Finally, we explain
the construction of Fock spaces from representations of symmetric groups in this framework.

The last chapter brings in geometrical methods available in the case of symmetric Kac-Moody
algebras. We start with a brief recollection of Ringel’s construction of quantum groups via Hall
algebras and Lusztig’s construction of enveloping algebras via constructible functions. We move
next to the construction of nil affine Hecke algebras in the cohomology of flag varieties. We
introduce Lusztig’s category of perverse sheaves on the moduli space of representations of a
quiver and show that it is equivalent to the monoidal category of quiver Hecke algebras (a result
obtained independently by Varagnolo and Vasserot). As a consequence, the indecomposable
projective modules for quiver Hecke algebras over a field of characteristic 0, and for “geometric”
parameters, correspond to the canonical basis. Finally, we show that Zheng’s microlocalized
categories of sheaves can be endowed with a structure of 2-representation isomorphic to the
universal simple 2-representation. As a consequence, the indecomposable projective modules for
cyclotomic quiver Hecke algebras over a field of characteristic 0, and for “geometric” parameters,
correspond to the canonical basis of simple representations.
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This article is based on a series of lectures at the National Taiwan University, Taipei, in
December 2008 and a series of lectures at BICMR, Peking University, in March–April 2010. I
wish to thank Professors Shun-Jen Cheng and Weiqiang Wang, and Professor Jiping Zhang for
their invitations to give these lecture series.

2. One vertex quiver Hecke algebras

The results of this section are classical (cf for example [Rou2, §3]).

2.1. Nil Hecke algebras.

2.1.1. The symmetric group as a Weyl group. Let n ≥ 1. Given i ∈ {1, . . . , n − 1}, we put
si = (i, i+ 1) ∈ Sn.

We define a function r : Sn → Z≥0. Given w ∈ Sn, let Rw = {(i, j)|i < j and w(i) > w(j)}
and let r(w) = |R(w)| be the number of inversions.

The length l(w) of w ∈ Sn is the minimal integer r such that there exists i1, . . . , ir with
w = si1 · · · sir . Such an expression is called a reduced decomposition of w. Proposition 2.1 says
that since s1, . . . , sn−1 generate Sn, these notions make sense.

Note that reduced decompositions are not unique: we have for example (13) = s1s2s1 =
s2s1s2. Simpler is s1s3 = s3s1.

Proposition 2.1. The set {s1, . . . , sn−1} generates Sn. Given w ∈ Sn, we have r(w) = l(w).

Proof. Let w ∈ Sn, w 6= 1. Note that Rw 6=∅. Consider (i, j) ∈ Rw such that j − i is minimal.
Assume j 6= i + 1. By the minimality assumption, (i, i + 1)6∈Rw and (i + 1, j)6∈Rw, so w(j) >
w(i+ 1) > w(i), a contradiction. So, j = i+ 1. Let w′ = wsi. We have Rw′ = Rw−{(i, i+ 1)},
hence r(w′) = r(w)− 1. We deduce by induction that there exist i1, . . . , ir(w) ∈ {1, . . . , n− 1}
such that w = sir(w)

· · · si1 . In particular, the set {s1, . . . , sn−1} generates Sn and l(g) ≤ r(g)
for all g ∈ Sn.

Let j ∈ {1, . . . , n} and v = wsj. Assume (j, j + 1)6∈Rw. Then, Rv = Rw ∪ {(j, j + 1)}. It
follows that r(v) = r(w) + 1. If (j, j + 1) ∈ Rw, then r(v) = r(w)− 1. We deduce by induction
that l(g) ≥ r(g) for all g ∈ Sn. �

Proposition 2.2. The element w[1, n] = (1, n)(2, n− 1)(3, n− 2) · · · is the unique element of

Sn with maximal length. We have l(w[1, n]) = n(n−1)
2

.

Proof. Note that Rw[1,n] = {(i, j)|i < j} and this contains any set Rw for w ∈ Sn, with equality
if and only if w = w[1, n]. The result follows from Proposition 2.1. �

The set

Cn = {1, sn−1 = (n− 1, n), sn−2sn−1 = (n− 2, n− 1, n), . . . , s1 · · · sn−2sn−1 = (1, 2, . . . , n)}
is a complete set of representatives for left cosets Sn/Sn−1. Let w ∈ Sn−1 and g ∈ Cn. We
have R(gw) = R(w)

∐
R(g), so l(gw) = l(g) + l(w). Consider now w ∈ Sn. There is a unique

decomposition w = cncn−1 · · · c2 where ci ∈ Ci and we have l(w) = l(cn)+· · ·+l(c2). Each ci has
a unique reduced decomposition and that provides us with a canonical reduced decomposition
of w:

w = (sj1sj1+1 · · · si1)(sj2sj2+1 · · · si2) · · · (sjrsjr+1 · · · sir)
where i1 > i2 > · · · > ir and 1 ≤ jr < ir.
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In the case of the longest element, we obtain

w[1, n] = (s1 · · · sn−1)(s1 · · · sn−2) · · · s1 = (s1 · · · sn−1)w[1, n− 1].

Using canonical reduced decompositions, we can count the number of elements with a given
length and deduce the following result.

Proposition 2.3. We have
∑

w∈Sn q
l(w) = (1−q)(1−q2)···(1−qn)

(1−q)n .

Lemma 2.4. Let w ∈ Sn. Then, l(w−1) = l(w) and l(w[1, n]w−1) = l(w[1, n])− l(w).

Proof. The first statement is clear, since w = si1 · · · sir is a reduced expression if and only if
w−1 = sir · · · si1 is a reduced expression.

We have Rw[1,n]w = {(i, j)|(i < j) and w(i) < w(j)}. The second statement follows. �

We recall the following classical result.

Proposition 2.5. The group Sn has a presentation with generators s1, . . . , sn−1 and relations

sisj = sjsi if |i− j| > 1 and sisi+1si = si+1sisi+1.

2.1.2. Finite Hecke algebras. Let us recall some classical results about Hecke algebras of sym-
metric groups.

Let R = Z[q1, q2]. Let Hf
n be the Hecke algebra of Sn: this is the R-algebra generated by

T1, . . . , Tn−1, with relations

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi if |i− j| > 1 and (Ti − q1)(Ti − q2) = 0.

There is an isomorphism of algebras

Hf
n ⊗R R/(q1 − 1, q2 + 1)

∼→ Z[Sn], Ti 7→ si.

Let w ∈ Sn with a reduced decomposition w = si1 · · · sir . We put Tw = Ti1 · · ·Tir ∈ Hf
n . One

shows that Tw is independent of the choice of a reduced decomposition of w and that {Tw}w∈Sn
is an R-basis of the free R-module Hf

n .
Given w,w′ ∈ Sn with l(ww′) = l(w) + l(w′), we have TwTw′ = Tww′ .

The algebra Hf
n is a deformation of Z[Sn]. At the specialization q1 = 1, q2 = −1, the element

Tw becomes the group element w.

2.1.3. Nil Hecke algebras of type A. Let 0H
f
n = Hf

n ⊗R R/(q1, q2). Given w,w′ ∈ Sn, we have

TwTw′ =

{
Tww′ if l(ww′) = l(w) + l(w′)

0 otherwise.

So, the algebra 0H
f
n is graded with deg Tw = −2l(w). The choice of a negative sign will become

clear soon. The factor 2 comes from the cohomological interpretation.

Given M =
⊕

i∈ZMi a graded Z-module and r ∈ Z, we denote by M〈r〉 the graded module
given by (M〈r〉)i = Mi+r.

We have (0H
f
n)i =

⊕
w∈Sn,l(w)=−i/2 ZTw. So, (0H

f
n)i = 0 unless i ∈ {0,−2, . . . ,−n(n− 1)}.

Let k be a field and k0H
f
n = 0H

f
n ⊗Z k.
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Proposition 2.6. The Jacobson radical of k0H
f
n is rad(k0H

f
n) =

⊕
w 6=1 kTw and k0H

f
n has

a unique minimal non-zero two-sided ideal soc(k0H
f
n) = kTw[1,n]. The trivial module k, with

0-action of the Ti’s, is the unique simple k0H
f
n-module.

Proof. Let A = k0H
f
n. Let J = A<0 =

⊕
w 6=1 kTw. We have Jn(n−1)+1 = 0. So, J is a nilpotent

two-sided ideal of A and A/J ' k. It follows that J = rad(A): the algebra A is local and k is
the unique simple module.

Let M be a non-zero left ideal of A. Let m =
∑

w αwTw ∈ M be a non-zero element.
Consider w ∈ Sn of minimal length such that αw 6= 0. We have Tw[1,n]w−1m = αwTw[1,n]

because Tw[1,n]w−1Tw′ = 0 if l(w′) ≥ l(w) and w′ 6= w. It follows that kTw[1,n] ⊂M . That shows
that kTw[1,n] is the unique minimal non-zero left ideal of A. A similar proof shows it is also the
unique minimal non-zero right ideal. �

Remark 2.7. Let k be a field and A be a finite dimensional graded k-algebra. Assume A0 = k
and Ai = 0 for i > 0. Then rad(A) = A<0.

2.1.4. BGG-Demazure operators. We refer to [Hi, Chapter IV] for a general discussion of the
results below.

Let Pn = Z[X1, . . . , Xn]. We let Sn act on Pn by permutation of the Xi’s. We define an
endomorphism of abelian groups ∂i ∈ EndZ(Pn) by

∂i(P ) =
P − si(P )

Xi+1 −Xi

.

Note that the operators ∂w are PSn
n -linear. Note also that im ∂i ⊂ P si

n = ker ∂i.

The following lemma follows from easy calculations.

Lemma 2.8. We have ∂2
i = 0, ∂i∂j = ∂j∂i for |i− j| > 1 and ∂i∂i+1∂i = ∂i+1∂i∂i+1.

We deduce that we have obtained a representation of the nil Hecke algebra.

Proposition 2.9. The assignment Ti 7→ ∂i defines a representation of 0H
f
n on Pn.

Define a grading of the algebra Pn by degXi = 2. Then, the representation above is com-
patible with the gradings.

Given w ∈ Sn, we denote by ∂w the image of Tw.

The following result is clear.

Lemma 2.10. Let P ∈ Pn. We have ∂i(P ) = 0 for all i if and only if P ∈ PSn
n .

If M is a free graded module over a commutative ring k with dimkMi <∞ for all i ∈ Z, we
put grdim(M) =

∑
i∈Z q

i/2 dim(Mi).

Theorem 2.11. The set {∂w(X2X
2
3 · · ·Xn−1

n )}w∈Sn is a basis of Pn over PSn
n .

Proof. Let us show by induction on n that

∂w[1,n](X2X
2
3 · · ·Xn−1

n ) = 1.

We have w[1, n] = sn−1 · · · s1w[2, n] and l(w[1, n]) = l(w[2, n]) + n− 1. By induction,

∂w[2,n](X2X
2
3 · · ·Xn−1

n ) = X2 · · ·Xn · ∂w[2,n](X3 · · ·Xn−2
n ) = X2 · · ·Xn.
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On the other hand, ∂n−1 · · · ∂1(X2 · · ·Xn) = 1 and we deduce that ∂w[1,n](X2X
2
3 · · ·Xn−1

n ) = 1.

Let M be a free PSn
n -module with basis {bw}w∈Sn , with deg bw = 2l(w[1, n]w−1) = n(n −

1)− 2l(w). Define a morphism of PSn
n -modules

φ : M → Pn, bw 7→ ∂w(X2X
2
3 · · ·Xn−1

n ).

This is a graded morphism.
Let k be a field. Let a =

∑
wQwbw ∈ ker(φ ⊗ k), where Qw ∈ k[X1, . . . , Xn]Sn . Assume

a 6= 0. Consider v ∈ Sn with Qv 6= 0 and such that l(v) is minimal with this property. We
have ∂w[1,n]v−1(φ(a)) = Qv, hence we have a contradiction. It follows that φ⊗ k is injective.

We have grdimPn = (1− q)−n. On the other hand, we have PSn
n = Z[e1, . . . , en], where er =

er(X1, . . . , Xn) =
∑

1≤i1<···<ir≤nXi1 · · ·Xir . So, grdimPSn
n = (1− q)−1(1− q2)−1 · · · (1− qn)−1.

We deduce that

grdimM = (1− q)−1 · · · (1− qn)−1
∑
w∈Sn

ql(w).

The formula of Proposition 2.3 shows that grdimM = grdimPn. Lemma 2.13 shows that φi⊗ k
is an isomorphism and then Lemma 2.12 shows that φi is an isomorphism for all i. �

The following two lemmas are clear.

Lemma 2.12. Let f : M → N be a morphism between free finitely generated Z-modules. If
f ⊗Z (Z/p) is surjective for all prime p, then f is surjective.

Lemma 2.13. Let k be a field and M,N be two graded k-modules with dimMi = dimNi finite
for all i. If f : M → N is an injective morphism of graded k-modules, then f is an isomorphism.

Remark 2.14. Note that {Xa2
2 · · ·Xan

n }0≤ai≤i−1 is the more classical basis of Pn over PSn
n .

2.2. Nil affine Hecke algebras.

2.2.1. Definition. Let 0Hn be the nil affine Hecke algebra of GLn: this is the Z-algebra with
generators X1, . . . , Xn, T1, . . . , Tn−1 and relations

XiXj = XjXi, T
2
i = 0, TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi if |i− j| > 1,

TiXj = XjTi if j − i 6= 0, 1, TiXi+1 −XiTi = 1 and TiXi −Xi+1Ti = −1.

It is a graded algebra, with degXi = 2 and deg Ti = −2.
The following lemma is easy.

Lemma 2.15. Given P,Q ∈ Pn, we have ∂i(PQ) = ∂i(P )Q+ si(P )∂i(Q).

Lemma 2.15 is the key ingredient to prove the following lemma.

Lemma 2.16. We have a representation ρ of 0Hn on Pn given by

ρ(Ti)(P ) = ∂i(P ) and ρ(Xi)(P ) = XiP.

Proposition 2.17. We have a decomposition 0Hn = Pn ⊗ 0H
f
n as a Z-module and the repre-

sentation of 0Hn on Pn is faithful.
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Proof. Let {Pw}w∈Sn be a family of elements of Pn. Let a =
∑

w PwTw. If a 6= 0, there is
w ∈ Sn of minimal length such that Pw 6= 0. We have aTw−1w[1,n] = PwTw[1,n] and

ρ(a)(∂w−1w[1,n](X2 · · ·Xn−1
n )) = Pw∂w[1,n](X2 · · ·Xn−1

n ) = Pw

(cf Proof of Proposition 2.11). We deduce that ρ(a) 6= 0. Consequently, the multiplication

map Pn ⊗ 0H
f
n → 0Hn is injective and the representation is faithful. On the other hand, the

multiplication map is easily seen to be surjective. �

Note that Pn and 0H
f
n are subalgebras of 0Hn.

The module Pn is an induced module: we have an isomorphism of 0Hn-modules

Pn
∼→ 0Hn ⊗0Hf

n
Z, P 7→ P ⊗ 1.

Remark 2.18. Given P ∈ Pn, one shows that TiP − si(P )Ti = PTi − Tisi(P ) = ∂i(P ).

2.2.2. Description as a matrix ring. Let bn = Tw[1,n]X2X
2
3 · · ·Xn−1

n .

Lemma 2.19. We have b2
n = bn and 0Hn = 0Hnbn

0Hn.

Proof. Note that Tw[1,n] is the unique element of EndPSn
n

(Pn) that sends X2X
2
3 · · ·Xn−1

n to 1

and ∂w(X2X
2
3 · · ·Xn−1

n ) to 0 for w 6= 1 (cf Proof of Theorem 2.11 for the first fact). We have

ρ(Tw[1,n]X2X
2
3 · · ·Xn−1

n Tw[1,n])(∂w(X2X
2
3 · · ·Xn−1

n )) = 0

for w 6= 1 and

ρ(Tw[1,n]X2X
2
3 · · ·Xn−1

n Tw[1,n])(X2X
2
3 · · ·Xn−1

n ) = ∂w[1,n](X2X
2
3 · · ·Xn−1

n ) = 1.

It follows that bnTw[1,n] = Tw[1,n].

We show now by induction on n that 1 ∈ 0HnTw[1,n]
0Hn. Given 1 ≤ r ≤ n− 1, we have

Tr · · ·Tn−1Tw[1,n−1]Xn −XrTr · · ·Tn−1Tw[1,n−1] = Tr+1 · · ·Tn−1Tw[1,n−1],

where we use the convention that Tr+1 · · ·Tn−1 =
∏

r+1≤j≤n−1 Tj = 1 if r = n− 1. By induction

on r, we deduce that Tw[1,n−1] ∈ 0HnTw[1,n]
0Hn, since Tw[1,n] = T1 · · ·Tn−1Tw[1,n−1]. By induction

on n, it follows that 1 ∈ 0HnTw[1,n]
0Hn = 0Hnbn

0Hn. �

Remark 2.20. Given w ∈ Sn and P ∈ Pn, one shows that TwPTw[1,n] = ∂w(P )Tw[1,n] (a
particular case was obtained in the proof of Lemma 2.19).

We have an isomorphism of 0Hn-modules

Pn
∼→ 0Hnbn, P 7→ Pbn

This shows that Pn is a progenerator as a 0Hn-module: it is a finitely generated projective
0Hn-module and 0Hn is a direct summand of a multiple of Pn, as a 0Hn-module.

Given A a ring, we denote by Aopp the opposite ring: it is A as an abelian group, but the
multiplication of a and b in Aopp is the product ba computed in A.

Proposition 2.21. The action of 0Hn on Pn induces an isomorphism of PSn
n -algebras

0Hn
∼→ EndPSn

n
(Pn)opp.

Since Pn is a free PSn
n -module of rank n!, the algebra 0Hn is isomorphic to a (n! × n!)-matrix

algebra over PSn
n .



8 RAPHAËL ROUQUIER

Proof. Since Pn is a progenerator for 0Hn, we deduce that the canonical map 0Hn → EndPSn
n

(Pn)

is a split injection of PSn
n -modules (Lemma 2.22). The proposition follows from the fact that

0Hn is a free PSn
n -module of rank (n!)2. �

Lemma 2.22. Let R be a commutative ring and A an R-algebra, projective and finitely gen-
erated as an R-module. Let M be a progenerator for A. Then, the canonical map A →
EndR(M)opp is a split injection of R-modules.

Proof. Let f : A → EndR(M) be the canonical map and L its cokernel. The composition of
morphisms of R-modules

M
m 7→id⊗m−−−−−→ EndR(M)⊗AM

α⊗m 7→α(m)−−−−−−−→M

is the identity. So, f ⊗A 1M is a split injection of R-modules, hence L ⊗A M is a projective
R-module, since EndR(M) is a projective R-module and M is a projective A-module.

By Morita theory, there is N an (EndA(M), A)-bimodule that is projective as an EndA(M)-
module and such that M ⊗EndA(M) N ' A as (A,A)-bimodules. The R-module L ' (L ⊗A
M)⊗EndA(M) N is projective, since N is a projective EndA(M)-module. Since L is a projective
R-module, we deduce that f is a split injection of R-modules. �

We give now a second proof of Proposition 2.21. The proof of the faithfulness of the rep-
resentation Pn of 0Hn works also to show that Pn ⊗PSn

n
(PSn

n /m) is a faithful representation

of 0Hn ⊗PSn
n

(PSn
n /m), for any maximal ideal m of PSn

n . Proposition 2.21 follows now from
Lemma 2.23.

Lemma 2.23. Let R be a commutative ring, f : M → N a morphism between free R-modules
of the same finite rank. If f ⊗R 1R/m is injective for every maximal ideal m of R, then f is an
isomorphism.

Proof. Fix bases of M and N and let d be the determinant of f with respect to those bases. Let
I be the ideal of R generated by d. Assume d 6∈R×. There is a maximal ideal m of R containing
I. Since f ⊗R 1R/m is an injective map between vector spaces of the same finite rank, it is an
isomorphism, so we have d · 1R/m 6=0, a contradiction. �

2.3. Symmetrizing forms.

2.3.1. Definition and basic properties. Let R be a commutative ring and A an R-algebra, finitely
generated and projective as an R-module. A symmetrizing form for A is an R-linear map
t ∈ HomR(A,R) such that

• t is a trace, i.e., t(ab) = t(ba) for all a, b ∈ A
• the morphism of (A,A)-bimodules

t̂ : A→ HomR(A,R), a 7→ (b 7→ t(ab))

is an isomorphism.

Consider now a commutative ring R′ such that R is an R′-algebra, finitely generated and
projective as an R′-module. Consider t ∈ HomR(A,R) a trace and t′ ∈ HomR′(R,R

′). We have
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a commutative diagram

A
t̂ //

t̂′t ((QQ
QQQ

QQQ
QQQ

QQQ
QQ HomR(A,R)

HomR(A,t̂′)
// HomR(A,HomR′(R,R

′))

HomR′(A,R
′)

adjunction

∼
33hhhhhhhhhhhhhhhhhhh

We deduce the following result.

Lemma 2.24. If two of the forms t, t′ and t′t are symmetrizing, then so is the third one.

Let now B be another symmetric R-algebra and M an (A,B)-bimodule, finitely generated
and projective as an A-module and as a right B-module. We have isomorphisms of functors

HomA(M,−)
can←−−
∼

HomA(M,A)⊗A −
f 7→tf−−−→
∼

HomR(M,R)⊗A −

and similarly HomB(HomR(M,R),−)
∼→ M ⊗B −. We deduce that M ⊗B − is left and right

adjoint to HomA(M,−).

2.3.2. Polynomials.

Proposition 2.25. The linear form ∂w[1,n] is a symmetrizing form for the PSn
n -algebra Pn.

We will prove this proposition in §2.3.4: it will be deduced from a corresponding statement
for the nil affine Hecke algebra, that is easier to prove.

Together with Lemma 2.24, Proposition 2.25 provides more general symmetrizing forms.

Corollary 2.26. Given 1 ≤ i ≤ n, then the linear form ∂w[1,n]∂w[1,i]∂w[i+1,n] is a symmetrizing

form for the PSn
n -algebra P

S{1,...,i}×S{i+1,...,n}
n .

2.3.3. Nil Hecke algebras. Define the Z-linear form t0 : 0H
f
n → Z by t0(Tw) = δw,w[1,n].

Define an algebra automorphism σ (the Nakayama automorphism) of 0H
f
n by σ(Ti) = Tn−i.

Note that σ(Tw) = Tw[1,n]ww[1,n].
The form t0 is not symmetric, it nevertheless gives rise to a Frobenius algebra structure.

Proposition 2.27. Given a, b ∈ 0H
f
n, we have t0(ab) = t0(σ(b)a). The form t0 induces an

isomorphism of right 0H
f
n-modules

t̂0 : 0H
f
n
∼→ HomZ(0H

f
n,Z), a 7→ (b 7→ t0(ab)).

Proof. Let w,w′ ∈ Sn. We have t0(TwTw′) = 0 unless w′ = w−1w[1, n], in which case we
have t0(TwTw−1w[1,n]) = 1. We have t0(σ(Tw′)Tw) = t0(Tw[1,n]w′w[1,n]Tw). This is 0, unless
w = (w[1, n]w′w[1, n])−1w[1, n], or equivalently, unless w = w[1, n]w′−1. In that case, we get
t0(σ(Tw−1w[1,n], Tw) = 1. This shows that t0(TwTw′) = t0(σ(Tw′)Tw) for all w,w′ ∈ Sn.

Let p be a prime number. The kernel I of t̂0 ⊗Z Fp is a two-sided ideal of Fp
0H

f
n. On the

other hand, t̂0(Tw[1,n])(1) = t0(Tw[1,n]) = 1, hence Tw[1,n] 6∈I. It follows from Proposition 2.6 that

I = 0. Lemma 2.23 shows now that t̂0 is an isomorphism. �
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2.3.4. Nil affine Hecke algebras. We define a PSn
n -linear form t on 0Hn

t : 0Hn → PSn
n , t(PTw) = δw,w[1,n]∂w[1,n](P ) for P ∈ Pn and w ∈ Sn.

Let γ be the Z-algebra automorphism of 0Hn defined by

γ(Xi) = Xn−i+1 and γ(Ti) = −Tn−i.
Lemma 2.28. We have t(ab) = t(γ(b)a) for a, b ∈ 0Hn.

Proof. Let i ∈ {1, . . . , n}. By induction on l(w), one shows that

TwXi −Xw(i)Tw ∈
⊕

w′∈Sn,l(w′)<l(w)

PnTw′ .

It follows that
Tw[1,n]Xi −Xn−i+1Tw[1,n] ∈

⊕
w 6=w[1,n]

PnTw.

We deduce that t(PTwXi) = t(PXn−iTw) for w ∈ Sn and P ∈ Pn.
Let i ∈ {1, . . . , n− 1} and P ∈ Pn. Remark 2.18 shows that

t(Tn−iPTw) = t(sn−i(P )Tn−iTw) + t(∂n−i(P )Tw).

We have ∂w[1,n](∂n−i(P )) = 0, so t(∂n−i(P )Tw) = 0. We have ∂w[1,n](P + sn−i(P )) = 0, hence
∂w[1,n](sn−i(P )) = −∂w[1,n](P ). Since sn−iw = w[1, n] if and only if wsi = w[1, n], we deduce
that t(sn−i(P )Tn−iTw) = −t(PTwTi). This shows that t(PTwTi) = t(−Tn−iPTw) for w ∈ Sn

and P ∈ Pn. The lemma follows. �

When viewed as a subalgebra of EndZ(Pn), then 0Hn contains Sn, since the action of Sn

is trivial on PSn
n (Proposition 2.21). The injection of Sn in 0Hn is given explicitly by si 7→

(Xi −Xi+1)Ti + 1.

The following lemma is an immediate calculation involving endomorphisms of Pn.

Lemma 2.29. We have w[1, n] · a · w[1, n] = γ(a) for all a ∈ 0Hn.

Let t′ be the linear form on 0Hn defined by t′(a) = t(aw[1, n]).

Proposition 2.30. The form t′ is symmetrizing for the PSn
n -algebra 0Hn.

Proof. Lemmas 2.28 and 2.29 show that t′(ab) = t′(ba) for all a, b ∈ 0Hn.
Let m be a maximal ideal of PSn

n and k = PSn
n /m. We have k0Hn ' Mn!(k) by Proposition

2.21. We have t′(X2 · · ·Xn−1
n Tw[1,n]w[1, n]) = 1 (cf the proof of Theorem 2.11), hence the form

t′ ⊗PSn
n

1k is not zero. As a consequence, it is a symmetrizing form, since k0Hn ' Mn!(k) by

Proposition 2.21. We deduce that t̂′ ⊗PSn
n

k is an isomorphism, so t̂′ is an isomorphism by
Lemma 2.23. �

Proof of Proposition 2.25. Let m be a maximal ideal of PSn
n and k = PSn

n /m. Let P be a non-
zero element of Pn ⊗PSn

n
k. By Proposition 2.30, there is a ∈ k0Hn such that t′(PTw[1,n]a) 6= 0.

So, t(PTw[1,n]aw[1, n]) 6= 0. There are elements Qw ∈ Pn⊗PSn
n
k such that aw[1, n] =

∑
w TwQw.

Then

t(PTw[1,n]aw[1, n]) = t(PTw[1,n]Q1) = t(γ(Q1)PTw[1,n]) = ∂w[1,n](γ(Q1)P ) 6= 0.

We deduce that ∂̂w[1,n] ⊗PSn
n

(PSn
n /m) is injective for any maximal ideal m of PSn

n . It follows

from Lemma 2.23 that ∂̂w[1,n] is an isomorphism. �
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Remark 2.31. One can show that the automorphism σ of 0H
f
n is not inner for n ≥ 3.

3. Quiver Hecke algebras

3.1. Representations of quivers. We refer to [GaRoi] for a general discussion of quivers and
their representations.

3.1.1. Quivers. Let Q be a quiver (= an oriented graph), i.e.,

• a finite set Q0 (the vertices)
• a finite set Q1 (the arrows)
• maps p, q : Q1 → Q0 (tail=source and head=target of an arrow).

Let k be a commutative ring. A representation of Q over k is the data of (Vs, φa)s∈Q0,a∈Q1

where Vs is a k-module and φa ∈ Homk(Vp(a), Vq(a)).
A morphism from (Vs, φa)s,a to (V ′s , φ

′
a)s,a is the data of a family (fs)s∈Q0 , where fs ∈

Homk(Vs, V
′
s ), such that for all a ∈ Q1, the following diagram commutes:

Vp(a)
φa //

fp(a)

��

Vq(a)

fq(a)

��
V ′p(a) φ′a

// V ′q(a)

The quiver algebra k(Q) associated to Q is the k-algebra generated by the set Q0 ∪Q1 with
relations

sa = δq(a),sa, as = δp(a),sa, ss′ = δs,s′s for s, s′ ∈ Q0 and a ∈ Q1 and 1 =
∑
t∈Q0

t

Let γ = (s1, a1, s2, a2, . . . , sn) be a path in Q, i.e., a sequence of vertices si ∈ Q0 and arrows
ai ∈ Q1 such that p(ai) = si and q(ai) = si+1. We put γ̃ = snan−1 · · · a2s2a1s1 ∈ k(Q).

The following proposition is clear.

Proposition 3.1. The set of γ̃, where γ runs over the set of paths of Q, is a basis of k(Q).

Note that k(Q) is a graded algebra, with Q0 in degree 0 and Q1 in degree 1. In general, a
path of length n is homogeneous of degree n.

There is an equivalence from the category of representations of Q to the category of (left)
k(Q)-modules: given (Vs, φa) a representation of Q, let M =

⊕
s Vs. We define a structure of

k(Q)-module as follows: s ∈ Q0 is the projection onto Vs. An element a ∈ Q1 acts by zero on⊕
s6=p(a) Vs and sends Vp(a) to Vq(a) via φa.

Assume k is a field. Given s ∈ Q0, there is a simple representation S = S(s) of Q given by
St = 0 for t 6= s, Ss = k and φa = 0 for all a ∈ Q1. When k(Q) is finite dimensional, we obtain
all simple representations of Q, up to isomorphism.

Example 3.2. For each of the following quivers, we give the list of finite dimensional inde-
composable representations (up to isomorphism) and we indicate the isomorphism type of the
quiver algebra. We assume k is a field.

(i) • : (k). The quiver algebra is k.
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(ii) 1 // 2 : S(1) = (S1 = k, S2 = 0, φ = 0), S(2) = (S1 = 0, S2 = k, φ = 0) and
M = (M1 = k,M2 = k, φ = 1). The quiver algebra is isomorphic to the algebra of 2× 2
upper triangular matrices.

(iii) •99 : (kn, φ(n, λ))n≥1,λ∈k with φ(n, λ) =


λ 1

. . .
. . .
. . . 1

λ

, assuming k is an alge-

braically closed. The quiver algebra is isomorphic to k[x].

3.1.2. Quivers with relations. Let Q be a quiver and k a commutative ring. A set R of relations
for Q over k is a finite set of elements of k(Q)≥2. We denote by I = (R) the two-sided ideal of
k(Q) generated by R and we put A = k(Q)/I.

Remark 3.3. Assume k is an algebraically closed field. Let A be a basic finite dimensional
k-algebra (i.e., all simple A-modules have dimension 1). One shows that there is a quiver Q
with relations R such that A ' k(Q)/(R). The vertices of Q are in bijection with the set of
simple A-modules, up to isomorphism, while the set of arrows is in bijection with a basis of
rad(A)/ rad(A)2.

3.2. Quiver Hecke algebras. We review some constructions and results of [Rou2, §3.2] and
provide some complements. We will give three definitions of quiver Hecke algebras:

• By generators and relations, modulo polynomial torsion
• By (more complicated) generators and relations
• As a subalgebra of a ring of endomorphisms of a polynomial ring (over a quiver)

3.2.1. Wreath and nil-wreath products. Let k be a commutative ring. Let I be a finite set and
n ≥ 0. We define a quiver ΨI,n with vertex set In. We will use the action of the symmetric
group Sn on In. The arrows are

• si = si,v : v → si(v) for 1 ≤ i ≤ n− 1 and v ∈ In
• xi = xi,v : v → v for 1 ≤ i ≤ n and v ∈ In.

We define the quiver algebra A = A(ΨI,n, R1) over k with the quiver above and relations R1:

s2
i = 1, sisj = sjsi if |i− j| > 1, sisi+1si = si+1sisi+1

xixj = xjxi, sixj = xjsi if j 6= i, i+ 1 and sixi = xi+1si.

When |I| = 1, we have A = k[x1, . . . , xn] oSn = k[x] oSn. In general, A = k[x]I oSn.

We can construct a similar algebra, based on the nil Hecke algebra instead of kSn. We use Ti
to denote the arrow called si earlier. We define a quiver algebra A′ = A(ΨI,n, R0) with relations
R0:

T 2
i = 0, TiTj = TjTi if |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1

xixj = xjxi, Tixj = xjTi if j 6= i, i+ 1, Tixi = xi+1Ti and Tixi+1 = xiTi.

Remark 3.4. Let B be a k-algebra and n ≥ 0. There is a (unique) k-algebra structure on

(B⊗kn)⊗ (0H
f
n) such that B⊗kn = B ⊗k B ⊗k · · · ⊗k B︸ ︷︷ ︸

n factors

and 0H
f
n are subalgebras and (1⊗ Tw) ·(

(a1⊗ · · · ⊗ an)⊗ 1
)

=
(
(aw(1)⊗ · · · ⊗ aw(n))⊗ Tw

)
. We denote by B o (0H

f
n) the corresponding

algebra.
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We have A′ = k[x]I o (0H
f
n).

3.2.2. Definition. We come now to the definition of the quiver Hecke algebras [Rou2, §3.2]. Fix
a matrix Q = (Qij)i,j∈I in k[u, u′]. Assume

• Qii = 0
• Qij is not a zero-divisor in k[u, u′] for i 6= j and
• Qij(u, u

′) = Qji(u
′, u).

We define the algebra H ′n(Q) = A(ΨI,n, R
′
Q) with relations R′Q (we use τi to denote the arrow

called si earlier):

τi,si(v)τi,v = Qvi,vi+1
(xi,v, xi+1,v), τiτj = τjτi if |i− j| > 1

τi+1,sisi+1(v)τi,si+1(v)τi+1,v = τi,si+1si(v)τi+1,si(v)τi,v if vi 6= vi+2 or vi = vi+1 = vi+2

xixj = xjxi, τi,vxa,v − xsi(a),si(v)τi,v =


−1v if a = i and vi = vi+1

1v if a = i+ 1 and vi = vi+1

0 otherwise.

We define Hn(Q) = A(ΨI,n, RQ) where RQ consist of the relations R′Q together with

τi+1,sisi+1(v)τi,si+1(v)τi+1,v − τi,si+1si(v)τi+1,si(v)τi,v =

(xi+2,v − xi,v)−1
(
Qvi,vi+1

(xi+2,v, xi+1,v)−Qvi,vi+1
(xi,v, xi+1,v)

)
when vi = vi+2 6= vi+1

Note that the relation is written using (xi+2,v−xi,v)−1 to simplify the expression: the fraction
is actually a polynomial in xi,v, xi+1,v and xi+2,v.

The following lemma shows that, up to multiplication by a polynomial, these extra relations
follow from the ones in R′Q. Since Hn(Q) has no polynomial torsion, it follows that Hn(Q) is
the quotient of H ′n(Q) by the polynomial torsion.

Lemma 3.5. The kernel of the canonical surjective morphism of quiver algebras H ′n(Q) �
Hn(Q) is the subspace of elements a such that there is P ∈ k[x1, . . . , xn] that is not a zero-
divisor and such that Pa = 0.

Proof. The property of Hn(Q) to have no polynomial torsion is a consequence of Proposition
3.7 below. We show here that the kernel of the canonical map H ′n(Q) → Hn(Q) is made of
torsion elements, i.e., that suitable polynomial multiples of the relations in RQ but no in R′Q
come from relations in R′Q.

Consider v ∈ In with vi = vi+2 6= vi+1. We have the following equalities in H ′n(Q):

(τi,vτi+1,si+1(v)τi,si+1(v))τi+1,v = (τi+1,si(v)τi,vτi+1,si+1(v))τi+1,v = τi+1,si(v)τi,vQvi+1,vi(xi+1,v, xi+2,v)

(τi,vτi,si(v))τi+1,si(v)τi,v = Qvi+1,vi(xi,si(v), xi+1,si(v))τi+1,si(v)τi,v =

τi+1,si(v)τi,vQvi+1,vi(xi+1,v, xi+2,v)+τi,v(xi+2,v−xi+1,v)
−1(Qvi,vi+1

(xi+2,v, xi+1,v)−Qvi,vi+1
(xi,v, xi+1,v))

Let

a = τi+1,sisi+1(v)τi,si+1(v)τi+1,v − τi,si+1si(v)τi+1,si(v)τi,v−
− (xi+2,v − xi,v)−1(Qvi,vi+1

(xi+2,v, xi+1,v)−Qvi,vi+1
(xi,v, xi+1,v))
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We have shown that τi,va = 0, hence

0 = τi,si(v)τi,va = Qvi,vi+1
(xi,v, xi+1,v)a

and the lemma follows. �

When |I| = 1, we have A = k0Hn.

Let J be a set of finite sequences of elements of {1, . . . , n− 1} such that {sir · · · si1}(i1,...,ir)∈J
is a set of minimal length representatives of elements of Sn.

The following lemma is straightforward.

Lemma 3.6. The set

S = {τir,sir−1
···si1 (v) · · · τi1,vxa1

1,v · · ·xann,v}(i1,...,ir)∈J,(a1,...,an)∈Zn≥0,v∈In

generates Hn(Q) as a k-module.

Proof. Given a product a of generators τi and xi, one shows by induction on the number of
τi’s in the product, then on the number of pairs of an xi to the left of a τj, that a is a linear
combination of elements in S. �

Note that the generating set is compatible with the quiver algebra structure, as it is made
of paths. Given v, v′ ∈ In, the set

{τir,sir−1
···si1 (v) · · · τi1,vxa1

1,v · · ·xann,v}(i1,...,ir)∈J,(a1,...,an)∈Zn≥0,sir ···si1 (v)=v′

generates 1v′Hn(Q)1v as a k-module.

The algebraHn(Q) is filtered with 1v and xi,v in degree 0 and τi,v in degree 1. The relationsRQ

become the relations R0 after neglecting terms of lower degree, i.e., the morphism A(ΨI,n) →
Hn(Q) gives rise to a surjective algebra morphism f : A′ = k[x]I o 0H

f
n → grHn(Q), where

grHn(Q) =
⊕

i≥0 F
iHn(Q)/F i−1Hn(Q) is the graded algebra associated with the filtration.

Proposition 3.7. The algebra Hn(Q) satisfies the Poincaré-Birkhoff-Witt property, i.e., the
morphism f is an isomorphism. Furthermore, Hn(Q) is a free k-module with basis S

We will prove this proposition by constructing a faithful polynomial representation. This is
similar to the case of the nil affine Hecke algebra (case |I| = 1).

Assume there is d ∈ ZI such that Qij(u
di , vdj) is a homogeneous polynomial for all i 6= j. We

denote by pij the degree of Qij(u
di , vdj). Then, the algebra Hn(Q) is a graded k-algebra with

deg xi = 2dνi and deg τij = pνiνj .

The quiver Hecke algebras have been introduced and studied independently by Khovanov
and Lauda [KhoLau1, KhoLau2] for particular Q’s.

3.2.3. Polynomial realization. Let P = (Pij)i,j∈I be a matrix in k[u, u′] with Pii = 0 for all i ∈ I
and such that Pij is not a zero-divisor for i 6= j. Let Qi,j(u, u

′) = Pi,j(u, u
′)Pj,i(u

′, u).
We consider the following representation M = (Mv)v∈In of our quiver algebra. We put

Mv = k[x1, . . . , xn]. We let xi act by multiplication by xi and

τi,v : Mv →Msi(v) acts by

{
(xi − xi+1)−1(si − 1) if si(v) = v

Pvi,vi+1
(xi+1, xi)si otherwise.
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Proposition 3.8. The construction above defines a faithful representation of Hn(Q) on M .

Proof of Propositions 3.7 and 3.8. Let τ ′i,v =

{
(xi − xi+1)−1(si − 1) if vi = vi+1

Pvi,vi+1
(xi+1, xi)si otherwise.

We have τ ′i,si+1(v)τ
′
i+1,v =

(xi − xi+1)−1 ((xi − xi+2)−1(sisi+1 − si)− (xi+1 − xi+2)−1(si+1 − 1)) if vi = vi+1 = vi+2

Pv,vi+1
(xi+1, xi)(xi − xi+2)−1(sisi+1 − si) if vi+1 = vi+2 6= vi

(xi − xi+1)−1
(
Pvi+1,vi+2

(xi+2, xi)sisi+1 − Pvi+1,vi+2
(xi+2, xi+1)si+1

)
if vi = vi+2 6= vi+1

Pvi,vi+2
(xi+1, xi)Pvi+1,vi+2

(xi+2, xi)sisi+1 if vi+2 6∈ {vi, vi+1}.

One checks then easily that the defining relations of Hn(Q) hold.

It is easy to check that the image of S in EndkIn (M) is linearly independent over k: this
can be done by extending scalars to k(x1, . . . , xn) and relating by a triangular base change the
bases {∂w}w∈Sn and {w}w∈Sn of Endk(x1,...,xn)Sn (k(x1, . . . , xn)) as a left k(x1, . . . , xn)-module.
It follows that the canonical map Hn(Q) → EndkIn (M) is injective and that S is a basis of
Hn(Q) over k. Also, the image of S in grHn(Q) lifts to a basis of A′.

Note finally that given (Qij), we can construct a matrix (Pij) as follows: for i 6= j, choose an
order. When i < j, we define Pij = Qij and Pji = 1. �

Let ν ∈ In. We put 1|ν| =
∑

σ∈Sn/ Stab(ν) 1σ(ν) and H(|ν|) = 1|ν|Hn(Q)1|ν|. The next propo-

sition shows that H(|ν|) doesn’t have “non-obvious” quotients that remain torsion-free over
polynomials.

Let ni = #{r|νr = i} and let γi : {1, . . . , ni} → {1, . . . , n} be the increasing map such that
νγi(r) = i for all r.

For every σ ∈ Sn, we have a morphism of algebras⊗
i

k[Xi,1, . . . , Xi,ni ]→ 1σ(ν)Hn(Γ)1σ(ν), Xi,r 7→ xi,σ(γi(r)).

The diagonal map restricts to an algebra morphism
⊗

i k[Xi,1, . . . , Xi,ni ]
Sni → Z(H(|ν|))

(this is actually an isomorphism by [Rou2, Proposition 3.9]).

Proposition 3.9. Let J be a non-zero two-sided ideal of H(|ν|). Then, there is a non-zero
P ∈

⊗
i k[Xi,1, . . . , Xi,ni ]

Sni such that P · idM ∈ J .

Proof. Consider the algebra A = kI [x] o Sn =
(⊕

µ∈In k[x1, . . . , xn]1µ

)
o Sn. Let O =⊕

µ k[x1, . . . , xn][{(xi−xj)−1}]i 6=j,µi=µj1µ andA′ = O⊗(kI [x])⊗nA. LetB =
⊕

σ,σ′∈Sn 1σ(ν)A
′1σ′(ν).

The algebra B is Morita-equivalent to its center which is isomorphic to⊗
i∈I

(
k[x1, . . . , xni ][{(xa − xb)−1}]a6=b

)Sni .
It follows that any non-zero ideal of B intersects non-trivially Z(B). The proposition fol-
lows now from the embedding of EndB(M) in B and the properties of that embedding [Rou2,
Proposition 3.12]. �
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3.2.4. Cartan matrices and quivers. A generalized Cartan matrix is a matrix C = (aij)i,j∈I such
that aii = 2, aij ≤ 0 for i 6= j and aij = 0 if and only if aji = 0. The matrix C is symmetrizable
if in addition there is a diagonal matrix D with diagonal coefficients in Z>0 such that DC is
symmetric.

Consider now a graph with vertex set I and with no loop. We define a symmetric Cartan
matrix by putting aij = −mij for i 6= j, where mij is the number of edges between i and j. This
correspondence gives a bijection between graphs with no loops and symmetric Cartan matrices.

Let Γ be a quiver (with no loops) and I its vertex set. This defines a graph by forgetting the
orientation, hence a symmetric Cartan matrix. Let dij be the number of arrows i→ j, so that
mij = dij + dji. Let Qij = (−1)dij(u− v)mij for i 6= j. We put Hn(Γ) = Hn(Q), where k = Z.

This is a graded algebra, with deg xi = 2 and deg τv,i = −avi,vi+1
.

Let v, v′ ∈ In. Let ni = #{r|vr = i} and n′i = #{r|v′r = i}. We have 1v′Hn(Γ)1v = 0 unless
ni = n′i for all i. Assume this holds. Define γi, γ

′
i : {1, . . . , ni} → {1, . . . , n} to be the increasing

maps such that vγi(r) = v′γ′i(r)
= i for all r. Let W =

∏
iSni .

Lemma 3.10. The left (resp. right) Z[x1, . . . , xn]-module 1v′Hn(Γ)1v is free: there is a graded
Z-module L such that

• 1v′Hn(Γ)1v ' Z[x1, . . . , xn]⊗Z L as graded left Z[x1, . . . , xn]-modules and
• 1v′Hn(Γ)1v ' L⊗Z Z[x1, . . . , xn] as graded right Z[x1, . . . , xn]-modules.

We have
grdimL =

∑
w∈W

q
1
2

∑
s,t∈I ast·#{a,b|γs(a)<γt(b) and γ′s(ws(a))>γ′t(wt(b))}.

Proof. The first part of the lemma follows from Proposition 3.7 (and its right counterpart). We
have

grdimL =
∑

(i1,...,ir)∈J
sir ···si1 (v)=v′

q
1
2

deg(τir,sir−1
···si1 (v)···τi1,v)

.

The set E of elements h ∈ Sn such that h(v) = v′ is a left (and right) principal homogeneous
set under the action of W , via the maps γi and γ′i. Denote by g ∈ Sn the unique element of
minimal length such that g(v) = v′. Then, we obtain a bijection W

∼→ E, w 7→ w ◦ g. The
formula follows from a variant of Proposition 2.1. �

3.2.5. Relation with (degenerate) affine Hecke algebras. We show in this section that quiver
Hecke algebras associated with quivers of type A (finite or affine) are connected with (degen-
erate) affine Hecke algebras for GLn.

Let R̄ = Z[q±1] = R[q±1]/(q1 − q, q2 + 1). Let Hn be the affine Hecke algebra: it is the
R̄-algebra generated by elements X1, . . . , Xn, T1, . . . , Tn−1 where the Xi are invertible and the
relations are

(Ti − q)(Ti + 1) = 0, TiTj = TjTi if |i− j| > 1, TiTi+1Ti = Ti+1TiTi+1

XiXj = XjXi, TiXj = XjTi if j − i 6= 0, 1 and TiXi+1 −XiTi = (q − 1)Xi+1.

As in the nil affine Hecke case (Proposition 2.17), we have a decomposition as R̄-modules

Hn = R̄[X±1
1 , . . . , X±1

n ]⊗R̄ R̄Hf
n

and R̄[X±1
1 , . . . , X±1

n ] and R̄Hf
n are subalgebras.
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Let k be field endowed with an R̄-algebra structure and assume q1k 6= 1k.
Given M a k-vector space and x an endomorphism of M , we say that x is locally nilpotent on

M if M is the union of subspaces on which x is nilpotent or, equivalently, if for every m ∈M ,
there is N > 0 such that xNm = 0.

Let M be a kHn-module. Given v ∈ (k×)n, we denote by Mv the subspace of M on which
Xi − vi acts locally nilpotently for 1 ≤ i ≤ n.

Let I be a subset of k× and let CI be the category of kHn-modules M such that M =⊕
v∈InMv. Note that a finite dimensional kHn-module is in CI if and only if the eigenvalues of

the Xi acting on M are in I.

We define a quiver Γ with vertex set I and arrows i → qi. Assume q 6= 1. Denote by e the
multiplicative order of q. When Γ is connected, the possible types of the underlying graph are

• An if |I| = n < e.
• Ãe−1 if |I| = e.
• A∞ if I is bounded in one direction but not finite.
• A∞,∞ if I is unbounded in both directions.

We denote by C0
Γ the category of kHn(Γ)-modules M such that for every v ∈ In, then xi,v

acts locally nilpotently on Mv.
The proof of the following Theorem (and the next one) relies on checking relations and

writing formulas for an inverse functor.

Theorem 3.11 ([Rou2, Theorem 3.20]). There is an equivalence of categories C0
Γ
∼→ CI given

by (Mv)v 7→
⊕

vMv and where Xi acts on Mv by (xi + vi) and Ti acts on Mv by

• (qxi − xi+1)τi + q if vi = vi+1

• (q−1xi − xi+1)−1(τi + (1− q)xi+1) if vi+1 = qvi

• (vixi − vi+1xi+1)−1 ((qvixi − vi+1xi+1)τi + (1− q)vi+1xi+1) otherwise.

There is yet another version of affine Hecke algebras: the degenerate affine Hecke algebra H̄n,
a Z-algebra generated by X1, . . . , Xn and s1, . . . , sn−1 with relations

s2
i = 1, sisj = sjsi if |i− j| > 1, sisi+1si = si+1sisi+1

XiXj = XjXi, siXj = Xjsi if j − i 6= 0, 1 and siXi+1 −Xisi = 1.

We have a Z-module decomposition

H̄n = Z[X1, . . . , Xn]⊗ ZSn

and Z[X1, . . . , Xn] and ZSn are subalgebras.
Let k be a field.
Let I a subset of k. We denote by Γ the quiver with set of vertices I and with arrows

i→ i+ 1.
When Γ is connected, the possible types of the underlying graph are

• An if |I| = n and k has characteristic 0 or p > n.
• Ãp−1 if |I| = p is the characteristic of k.
• A∞ if I is bounded in one direction but not finite.
• A∞,∞ if I is unbounded in both directions.
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Given M a kH̄n-module and v ∈ kn, we denote by Mv the subspace of M where Xi− vi acts
locally nilpotently for all i. Let I be a subset of k× and let C̄I be the category of kH̄n-modules
M such that M =

⊕
v∈InMv.

Theorem 3.12 ([Rou2, Theorem 3.17]). There is an equivalence of categories C0
Γ
∼→ C̄I given

by (Mv)v 7→
⊕

vMv and where Xi acts on Mv by (xi + vi) and si acts on Mv by

• (xi − xi+1 + 1)τi + 1 if vi = vi+1

• (xi − xi+1 − 1)−1(τi − 1) if vi+1 = vi + 1

• (xi − xi+1 + vi+1 − vi + 1)(xi − xi+1 + vi+1 − vi)−1(τi − 1) + 1 otherwise.

3.3. Half 2-Kac-Moody algebras.

3.3.1. Monoidal categories. Recall that a strict monoidal category is a category equipped with
a tensor product with a unit and satisfying (V ⊗W )⊗X = V ⊗ (W ⊗X). We will write XY
for X ⊗ Y . We will also denote by X the identity endomorphism of an object X.

We have a canonical map Hom(V1, V2) × Hom(W1,W2) → Hom(V1 ⊗W1, V2 ⊗W2). Given
f : V1 → V2 and g : W1 → W2, there is a commutative diagram

V1 ⊗W1
f⊗W1 //

V1⊗g
��

f⊗g

))RRR
RRRR

RRRR
RRR

V2 ⊗W1

V2⊗g
��

V1 ⊗W2
f⊗W2

// V2 ⊗W2

A typical example of a monoidal category is the category of vector spaces over a field (or
more generally, modules over a commutative algebra).

A more interesting example is the following. Let A be a category and C be the category of
functors A → A. Then, C is a strict monoidal category where the product is the composition
of functors. The Hom-spaces are given by natural transformations of functors.

Let C be an additive category. We define the idempotent completion Ci of C as the additive
category obtained from C by adding images of idempotents: its objects are pairs (M, e) where
M is an object of C and e is an idempotent of EndC(M). We put HomCi((M, e), (N, f)) =
f HomC(M,N)e. We have a fully faithful functor C → Ci given by M 7→ (M, idM). If A is
an algebra, the idempotent completion of the category of free A-modules is equivalent to the
category of projective A-modules.

We say that C is idempotent complete if the canonical functor C → Ci is an equivalence, i.e.,
if every idempotent has an image.

3.3.2. Symmetric groups. Let us start with an example of monoidal category based on sym-
metric groups. We define C to be the strict monoidal Z-linear category generated by an object
E and by an arrow s : E2 → E2 subject to the relations

s2 = E2, (Es) ◦ (sE) ◦ (Es) = (sE) ◦ (Es) ◦ (sE).

This category is easy to describe: its objects are direct sums of copies of En for various n’s.
We have Hom(En, Em) = 0 if m 6= n and End(En) = Z[Sn]: this is given by si 7→ En−i−1sEi−1.
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Note that, as a monoidal category, C is equipped with maps End(Em)×End(En)→ End(Em+n).
They correspond to the embedding Sm×Sn ↪→ Sm+n, where Sn goes to S{1, . . . , n} and Sm

goes to S{n+ 1, . . . , n+m}.

Remark 3.13. The category C can also be defined as the free symmetric monoidal Z-linear
category on one object E.

3.3.3. Half. Let us follow now [Rou2, §4.1.1]. Let C = (aij)i,j∈I be a generalized Cartan matrix.
We construct a matrix Q satisfying the conditions of §3.2.2.

Let {ti,j,r,s} be a family of indeterminates with i 6= j ∈ I, 0 ≤ r < −aij and 0 ≤ s < −aji
and such that tj,i,s,r = ti,j,r,s. Let {tij}i 6=j be a family of indeterminates with tij = tji if aij = 0.

Let k = kC = Z[{ti,j,r,s} ∪ {t±1
ij }]. Given i, j ∈ I, we put

Qij =


0 if i = j

tij if i 6= j and aij = 0

tiju
−aij +

∑
0≤r<−aij
0≤s<−aji

ti,j,r,su
rvs + tjiv

−aji if i 6= j and aij 6= 0.

We define B = B(C) as the strict monoidal k-linear category generated by objects Fs for s ∈ I
and by arrows

xs : Fs → Fs and τst : FsFt → FtFs for s, t ∈ I
with relations

(1) τst ◦ τts = Qst(Ftxs, xtFs)

(2) τtuFs◦Ftτsu◦τstFu−Fuτst◦τsuFt◦Fsτtu =

{Qst(xsFt,Fsxt)Fs−FsQst(Ftxs,xtFs)
xsFtFs−FsFtxs Fs if s = u

0 otherwise.

(3) τst ◦ xsFt − Ftxs ◦ τst = δst
(4) τst ◦ Fsxt − xtFs ◦ τst = −δst

Given n ≥ 0, we denote by Bn the full subcategory of B whose objects are direct sums of
objects of the form Fvn · · ·Fv1 for v1, . . . , vn ∈ I. We have B =

⊕
n Bn (as k-linear categories).

The relations state that the maps xs and τst give an action of the quiver Hecke algebra
associated with Q on sum of products of Fs. More precisely, we have an isomorphism of
algebras

Hn(Q)
∼→
⊕
v,v′∈In

HomB(Fvn · · ·Fv1 , Fv′n · · ·Fv′1)

1v 7→ idFvn ···Fv1
xi,v 7→ Fvn · · ·Fvi+1

xviFvi−1
· · ·Fv1

τi,v 7→ Fvn · · ·Fvi+2
τvi+1,viFvi−1

· · ·Fv1

Note that divided powers can be defined in Bi, following [ChRou, §5.2.1]. We have an

isomorphism k⊗Z
0Hn

∼→ End(En
i ). The endomorphism of En

i induced by Tw[1,n] has an image

E
(n)
i ∈ Bi. We have En

i ' E
(n)
i ⊗k kn!.

Assume now C is symmetrizable, withD = diag(di)i∈I . We define kgr = kC/({ti,j,r,s}dir+djs 6=−diaij)
and Bgr = B ⊗k kgr. This category can be graded by setting deg xs = 2ds, deg τst = dsast and
deg εs,λ = ds(1− 〈λ, α∨s 〉).
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Let Γ be quiver with no loops whose underlying graph corresponds to C (which is then
symmetric). Let J be the ideal of k generated by the coefficients of the polynomials Qij −
(−1)dij(u − v)−aij (cf §3.2.4) and kΓ = kC/J = Z. We put B(Γ) = B ⊗k kΓ. This is again
graded, as above.

Similar monoidal categories have been constructed independently by Khovanov and Lauda
[KhoLau1, KhoLau2], who have shown that, over a field, they provide a categorification of
UZ(n−) and UZ[q±1/2](n

−), where n− is the half Kac-Moody algebra associated to C (cf §4.1.1).

Given an additive category C, we denote by K0(C) the Grothendieck group of C. Assume
C is enriched in graded Z-modules. We can define a new additive category C-gr with objects
families {Mi}i∈Z of objects of C with Mi = 0 for almost all i. We put HomC-gr({Mi}, {Ni}) =⊕

m,n HomC(Mm, Nn)n−m. The category C-gr is Z-graded, i.e., it is equipped with an automor-

phism T given by T ({Mi})n = Mn+1. The action of T on K0(C-gr) endows it with a structure
of Z[q±1/2]-module, where q1/2 acts by [T ].

Theorem 3.14 ([KhoLau2, Corollary 7 and Theorem 8]). Given s 6= t ∈ I, there are isomor-
phisms in Bi ⊕

i even

F (−ast−i+1)
s FtF

(i)
s '

⊕
i odd

F (−ast−i+1)
s FtF

(i)
s .

Let K be a field that is a k-algebra. The relations above provide isomorphisms of rings

UZ(n−)
∼→ K0(Bi ⊗k K).

When C is symmetrizable and K is in addition a kgr-algebra, this gives an isomorphism of
Z[q±1/2]-algebras

UZ[q±1/2](n
−)

∼→ K0((B(Γ)i ⊗k K)-gr).

4. 2-Kac-Moody algebras

4.1. Kac-Moody algebras. We recall some basic facts on Kac-Moody algebras and their
representations [Kac] and quantum counterparts [Lu1].

Given an algebra A, we denote by A-Mod the category of A-modules, by A-mod the category
of finitely generated A-modules and by A-proj the category of finitely generated projective
A-modules.

4.1.1. Data. Let C = (aij)i,j∈I be a generalized Cartan matrix. Let

(X, Y, 〈−,−〉, {αi}i∈I , {α∨i }i∈I)
be a root datum of type C, i.e.,

• X and Y are finitely generated free abelian groups and 〈−,−〉 : X×Y → Z is a perfect
pairing
• {αi} is a linearly independent set in X and {α∨i } is a linearly independent set in Y
• 〈αj, α∨i 〉 = aij.

Associated with this data, there is a Kac-Moody algebra g (over C) generated by elements
ei, fi and hζ for i ∈ I and ζ ∈ Y . When C is symmetrizable, there is also a quantum enveloping
algebra Uq(g). When C corresponds to a Dynkin diagram, we recover complex reductive Lie
algebras and their corresponding quantum groups.
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We denote by n− the Lie subalgebra of g generated by the fi, i ∈ I. We denote by UZ(n−) the

subring of U(n−) generated by the elements
fni
n!

for i ∈ I and n ≥ 1. Assume C is symmetrizable.

The quantum algebra Uq(n
−) is the C(q1/2)-algebra with generators fi, i ∈ I, and relations

1−aij∑
r=0

(−1)r
[
1− aij
r

]
q

f ri fjf
1−aij−r
i = 0

for i 6= j, where

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
,

[
n
r

]
q

=
[n]q!

[r]q![n− r]q!
and [n]q! = [2]q · · · [n]q.

In the symmetrizable case, we denote by UZ[q±1/2](n
−) the Z[q±1/2]-subalgebra of Uq(n

−)

generated by the
fni
[n]q

.

Example 4.1. Let C = (2), X = Y = Z, α = 2 and α∨ = 1. Then g = sl2(C).

4.1.2. Integrable representations. Let M be a representation of g. We say that it is integrable
if

• M =
⊕

λ∈XMλ, where Mλ = {m ∈M |hζ ·m = 〈λ, ζ〉m, ∀ζ ∈ Y }
• ei and fi are locally nilpotent on M for every i, i.e., given m ∈ M , there is an integer
n such that f l(m) = el(m) = 0 for l ≥ n.

Define a quiver with vertex set X and arrows ei = ei,λ : λ→ λ+αi and fi = fi,λ : λ→ λ−αi.
Let A(g) be its quiver algebra over C, subject to the relations

ei,λ−αjfj,λ − fj,λ+αiei,λ = δij〈λ, α∨i 〉1λ.

The following proposition has a proof based on the representation theory of sl2. It says that
the Serre relations are automatically satisfied under integrability conditions.

Proposition 4.2. The functor M 7→ (Mλ)λ∈X is an equivalence from the category of integrable
representations of g to the category of representations of the quiver algebra A(g) on which the
ei’s and fi’s are locally nilpotent.

We define a category U(g) with C-linear Hom-spaces. Its set of objects is X. The morphisms
are generated by ei : λ→ λ+ αi, fi : λ→ λ− αi, subject to the relations

[ei, fj]|λ = δij〈λ, α∨i 〉.
Then, a C-linear functor U(g)→ C-Mod is the same as a representation of the quiver algebra

A(g).

Remark 4.3. A representation of a k-algebra A is the same as a functor compatible with the
k-linear structure C → k-Mod, where C is the category with one object ∗ and End(∗) = A.

4.1.3. Quantum counterpart. Assume C is symmetrizable. One can proceed similarly and show
that the category of integrable representations of Uq(g) is equivalent to the category of repre-
sentations of the quiver algebra Aq(g), defined as the C(

√
q)-algebra with the same quiver as

above and relations

(1) ei,λ−αjfj,λ − fj,λ+αiei,λ = δij[〈λ, α∨i 〉]q1λ.
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4.1.4. Category Oint. Define the set of integral dominant weights X+ = {λ ∈ X|〈λ, α∨i 〉 ≥
0 ∀i ∈ I}. We denote by Oint

g the category of integrable highest weight modules M of g, i.e.,
g-modules such that

• M =
⊕

λ∈XMλ and dimMλ <∞ for all λ
• ei and fi are locally nilpotent on M for i ∈ I
• there is a finite set K ⊂ X such that {λ ∈ X|Mλ 6=0} ⊂

⋃
µ∈K(µ+

∑
i∈I Z≤0αi).

Let b be the Lie subalgebra of g generated by the elements ei, i ∈ I and hζ , ζ ∈ Y . Let
λ ∈ X+. We denote by Cvλ the one-dimensional representation of b where ei acts by 0 and hi
acts by 〈λ, α∨i 〉. We define the Verma module

∆(λ) = Ind
U(g)
U(b) Cvλ ' U(n−)

and

Lmax(λ) = ∆(λ)/
(∑
i∈I

U(n−)f
〈λ,α∨i 〉+1
i vλ

)
.

This is the largest quotient of ∆(λ) in Oint
g . The Verma module ∆(λ) has a unique simple

quotient L(λ) and there is a surjection Lmax(λ) � L(λ). When C is symmetrizable, Lmax(λ) =
L(λ). The set {L(λ)}λ∈X+ is a complete set of representatives of isomorphism classes of simple
integrable highest weight modules. These are the finite-dimensional simple U(g)-modules when
g is finite-dimensional. When C is symmetrizable, integrable highest weight modules are semi-
simple.

Note that Lmax(λ) is characterized by the fact that it represents the functor

Oint
g → C-Mod, M 7→Mhw

λ := {m ∈Mλ | ei(m) = 0 ∀i ∈ I},

i.e.,

Homg(L
max(λ),M)

∼→Mhw
λ , f 7→ f(vλ).

4.1.5. ŝln. Consider the complex simple Lie algebra sln(C). This is a Kac-Moody algebra
associated with the following graph:

An−1 = ��������
1

��������
2

��������
3

��������
n−2

��������
n−1

The Lie algebra sln(C) is generated by the elements ei = ei,i+1, fi = ei+1,i and hi = ei,i−ei+1,i+1

for 1 ≤ i ≤ n − 1. We have Ysln = Zh1 ⊕ · · · ⊕ Zhn−1, Xsln = ZΛ1 ⊕ · · · ⊕ ZΛn−1 where
〈Λi, hj〉 = δij. We have αi = e∗i,i − e∗i+1,i+1 and α∨i = hi for 1 ≤ i ≤ n− 1.

Consider now the Lie algebra gl = sln(C) ⊗C C[t, t−1]. We define g′ = gl ⊕ Cc, a central
extension of gl given by

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +mδm,−ntr(ab)c for a, b ∈ sln(C).

Finally, we define g = g′ ⊕Cd. We endow it with a Lie algebra structure where

• g′ is a Lie subalgebra
• [d, atn] = natn for a ∈ sln(C)
• [d, c] = 0.
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Note that g′ = [g, g].
Let e0 = en,1 ⊗ t, f0 = e1,n ⊗ t−1 and h0 = (en,n − e1,1) + c.
Let Y = Zh0⊕· · ·⊕Zhn−1⊕Zd = Ysln⊕Zc⊕Zd and X = HomZ(Y,Z), with (Λ0, . . . ,Λn−1, ∂)

the basis dual to (h0, . . . , hn−1, d).
Let α0 = ∂ − (α1 + · · · + αn−1) and α∨0 = h0. This provides an identification of g with a

Kac-Moody algebra of graph

Ân−1 = ��������
1

��������
2

��������0

��������
n−2

��������
n−1

lllllllllllllll
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4.1.6. Fock spaces. We recall in this section some classical results on representations of sym-
metric groups and related Hecke algebras, and the relation with Fock spaces [Ari, Gr, Kl, Ma].

Let F be the complex vector space with basis all partitions. Let p ≥ 2 be an integer.
Let us construct an action of ŝlp on F . Let λ be a partition. We consider the associated

Young diagram, whose boxes we number modulo p. We define ei(λ) (resp. fi(λ)) as the sum
of the partitions obtained by removing (resp. adding) an i-node to λ. We put d(λ) = N0(λ)λ,
where N0(λ) is the number of 0-nodes of λ.

Example 4.4. Let us consider for example p = 3 and λ = (3, 1).

0

0 1 2 0
2 +

0 1 2
2 0

0

0 1 2
2

e0

ddHHHHHHHHHHHHHHHH

e1oo

e2

zzvv
vv
vv
vv
vv
v

f0

99sssssssssssssssss
f1 //

f2

%%KK
KKK

KKK
KKK

KKK
KKK

KKK
K

0 1 2
2
1

0 1
2 + 0 1 2 0

The construction above defines an action of ŝlp on F , where c acts by 1 (i.e., the level is 1).
This defines an object of Oint.

Let K0(QSn) be the Grothendieck group of the category QSn-mod. It is a free abelian
group with basis the isomorphism classes of irreducible representations of Sn over Q.

There is an isomorphism

F ∼→
⊕
n≥0

C⊗K0(QSn)

It sends a partition λ to the class of the corresponding simple module Sλ of QSn. We identify
F with the sum of Grothendieck groups via this isomorphism.

We consider now a prime number p and F̄ =
⊕

n≥0 C⊗K0(FpSn). The decomposition map

defines a surjective morphism of abelian groups dec : F → F̄ . There is a ZSn-module S̃λ, free
over Z, such that Sλ ' Q⊗Z S̃λ. We have dec([Sλ]) = [Fp ⊗Z S̃λ].
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The action of ŝlp on F stabilizes the kernel of the decomposition map: this provides us with

an action on F̄ . The action of ŝlp on F̄ is irreducible and F̄ ' L(Λ0).

Let V =
⊕

n≥0 FpSn-mod. Define E =
⊕

n≥0 Res
Sn+1

Sn
and F =

⊕
n≥0 Ind

Sn+1

Sn
, two exact

endofunctors of V . They are left and right adjoint. We have Ind
Sn+1

Sn
= FpSn+1 ⊗FpSn −.

Left multiplication by (1, n+1)+· · ·+(n, n+1) defines an endomorphism of the (FpSn+1,FpSn)-

bimodule FpSn+1, hence an endomorphism of the functor Ind
Sn+1

Sn
. We denote by X the corre-

sponding endomorphism of F .

Given M an FpSn-module, all eigenvalues of X acting on F (M) = Ind
Sn+1

Sn
M are in Fp. We

denote by Fi(M) the generalized i-eigenspace of X, for i ∈ Fp. This gives us a decomposition
F =

⊕
i∈Fp Fi. Similarly, we have a decomposition E =

⊕
i∈Fp Ei, where Ei is left and right

adjoint to Fi.

The following proposition shows that the action of ŝl
′
n on F̄ comes from the i-induction and

i-restriction functors.

Proposition 4.5. Given M ∈ FpSn-mod, we have [Ei(M)] = ei([M ]) and [Fi(M)] = fi([M ]).

We denote by Ŝp the affine symmetric group, a Coxeter group of type Âp−1.

Proposition 4.6. The decomposition of F̄ into weight spaces corresponds to the decomposition
into blocks. Two blocks are in the same orbit under the adjoint action of Ŝp if and only if they
have the same defect.

Let k be a field and q ∈ k× be an element with finite order p ≥ 2 (p needs not be a prime).
The construction above extends with QSn replaced by Hf

n ⊗k[q1,q2]

(
k[q2]/(q2 + 1)

)
(q1) and

FpSn replaced by Hf
n ⊗k[q1,q2] k[q1, q2]/(q2 + 1, q1 − q). This provides a realization of L(λ0) as⊕

n≥0 C⊗K0(Hf
n ⊗k[q1,q2] k[q1, q2]/(q2 + 1, q1 − q)), via i-induction and i-restriction functors.

4.2. 2-categories.

4.2.1. Duals. Let C be a strict monoidal category and V ∈ C. A right dual to V is an object
V ∗ ∈ C together with maps εV : V ⊗ V ∗ → 1 and ηV : 1→ V ∗ ⊗ V such that the following two
compositions are the identity maps:

V
V⊗ηV−−−→ V ⊗ V ∗ ⊗ V εV ⊗V−−−→ V and V ∗

ηV ⊗V ∗−−−−→ V ∗ ⊗ V ⊗ V ∗ V ∗⊗εV−−−−→ V ∗.

When C is the category of finite dimensional vector spaces, we obtain the usual dual.
When C is the category of endofunctors of a category, the notion of right dual coincides with

that of right adjoint.

4.2.2. 2-categories. A strict 2-category C is a category enriched in categories: i.e., it is the data
of a set of objects, and given M,N two objects, the data of a category Hom(M,N) together
with composition functors Hom(L,M) × Hom(M,N) → Hom(L,N) satisfying associativity
conditions. We also require that End(M) comes with an identity object for the composition,
which makes it into a strict monoidal category.

We can think of this as the data of objects, 1-arrows (the objects of the categoriesHom(M,N))
and 2-arrows (the arrows of the categories Hom(M,N)).



QUIVER HECKE ALGEBRAS AND 2-LIE ALGEBRAS 25

A strict monoidal category C is the same data as a strict 2-category with one object ∗ and
End(∗) = C.

While the typical example of a category is the category of sets, the typical example of a strict
2-category is the 2-category Cat of categories: its objects are categories, and Hom(C, C ′) is the
category of functors C → C ′.

A related example of a 2-category is that Bimod of bimodules: its objects are algebras over
a fixed commutative ring k and Hom(A,B) is the category of (B,A)-bimodules. Composition
is given by tensor product.

4.2.3. 2-Kac Moody algebras. We come now to the definition of 2-Kac-Moody algebras [Rou2,
§4.1.3]. Our aim now is to add Es’s to B and construct maps which we will make formally
invertible to enforce the relations [ei, fi]|λ = 〈λ, α∨i 〉. In order to make sense of this, we will
need to add formally “idempotents” corresponding to weights λ ∈ X: this requires moving
from a monoidal category to a 2-category.

Let C be a generalized Cartan matrix and let B′ be the strict monoidal k-linear category
obtained from B = B(C) by adding Es right dual to Fs for every s ∈ I. Define

εs = εFs : FsEs → 1 and ηs = ηFs : 1→ EsFs.

Consider now a root datum (X, Y, 〈−,−〉, {αi}i∈I , {α∨i }i∈I) of type C.
Consider the strict 2-category A

′ with set of objects X and where Hom(λ, λ′) is the full
k-linear subcategory of B′ with objects direct sums of objects of the form Ean

sn F
bn
tn · · ·Ea1

s1
F b1
t1

where al, bl ≥ 0, sl, tl ∈ I and λ′ − λ =
∑

l(alαsl − blαtl).
Let A = A(g) be the k-linear strict 2-category deduced from A

′ by inverting the following
2-arrows:

• when 〈λ, α∨s 〉 ≤ 0,

ρs,λ = σss +

−〈λ,α∨s 〉+1∑
i=0

εs ◦ (xisEs) : FsEs1λ → EsFs1λ ⊕ 1
−〈λ,α∨s 〉
λ

• when 〈λ, α∨s 〉 ≥ 0,

ρs,λ = σss +

−1+〈λ,α∨s 〉∑
i=0

(Esx
i
s) ◦ ηs : FsEs1λ ⊕ 1

〈λ,α∨s 〉
λ → EsFs1λ

• σst : FsEt1λ → EtFs1λ for all s 6= t and all λ

where we define

σst = (EtFsεt) ◦ (EtτtsEs) ◦ (ηtFsEt) : FsEt → EtFs.

We put Agr = A⊗k kgr as in §3.3.3. The grading defined on Bgr extends to a grading on A
gr

with deg εs,λ = ds(1 + 〈λ, α∨s 〉) and deg ηs,λ = ds(1− 〈λ, α∨s 〉).
Given a quiver Γ with no loops corresponding to C, we put AΓ = A⊗k kΓ, a 2-category with

graded spaces of 2-arrows.

Remark 4.7. One shows easily by passing to the Grothendieck groups, the graded category
A

gr-gr gives rise to the relations (1) of §4.1. Khovanov and Lauda have constructed a related



26 RAPHAËL ROUQUIER

2-category and shown that the canonical morphism from the integral form of Uq(g) to the K0

is an isomorphism in type An [Lau1, KhoLau3].

It can be shown that the isomorphisms ρi,λ give rise to commutation isomorphisms between
Em
i and F n

i (cf [Rou2, Lemma 4.12] for a version with explicit isomorphisms).

Lemma 4.8 ([Rou2, [Lemma 4.12]). Let m,n ≥ 0, λ ∈ X and i ∈ I. Let r = m− n+ 〈λ, α∨i 〉.
There are isomorphisms

F n
i E

m
i 1λ

∼→
min(m,n)⊕

l=0

Em−l
i F n−l

i 1λ ⊗k k
m!n!

(m−l)!(n−l)!(
−r
l ) if r ≤ 0

min(m,n)⊕
l=0

F n−l
i Em−l

i 1λ ⊗k k
m!n!

(m−l)!(n−l)!(
r
l) ∼→ Em

i F
n
i 1λ if r ≥ 0.

Remark 4.9. We have chosen to switch the roles of E and F , compared to [Rou2], as we will
deal here with highest weight representations, while in [Rou2] we dealt with lowest weight rep-
resentations. The two definitions are equivalent, as there is a strict equivalence of 2-categories

I : Aopp ∼→ A, 1λ 7→ 1−λ, Es 7→ Fs, Fs 7→ Es, τst 7→ −τts, xs 7→ xs.

Given a 2-category C, we have denoted by Copp the 2-category with the same set of objects as
C and with HomC

opp(c, c′) = HomC(c, c′)opp.

4.3. 2-representation theory. We are now reaching our main object of study. We review
[Rou2, §5] (based in part on [ChRou]) and provide some complements.

4.3.1. Integrable 2-representations. A representation of A on k-linear categories is defined to be
a strict 2-functor from A to the strict 2-category of k-linear categories. This is the same thing
as the data of

• a k-linear category Vλ for λ ∈ X
• a k-linear functor Fi : Vλ → Vλ−αi for λ ∈ X and i ∈ I admitting a right adjoint Ei
• xi ∈ End(Fi) and τij ∈ Hom(FiFj, FjFi)

such that

• the quiver Hecke algebra relations for xi and τij
• the maps ρi,λ and σij (i 6= j) are isomorphisms.

A representation of A such that Ei and Fi are locally nilpotent for all i will be called an
integrable 2-representation of A (or of g).

In the definition on an integrable 2-representations, the condition that the maps σij are
isomorphisms for i 6= j is a consequence of the other conditions [Rou2, Theorem 5.25].

Remark 4.10. One can equivalently start with the functors Ei’s, and natural transformations
xi and τij between products of E’s.

The definition provides Ei as a right adjoint of Fi, but the next result shows that Ei will
actually also be a left adjoint (cf [Rou1, §4.1.4] for the explicit units and counits).

Theorem 4.11 ([Rou2, Theorem 5.16]). Let V be an integrable 2-representation of A. Then
Ei is a left adjoint of Fi, for all i.
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It is often unreasonable to check directly that the maps ρi,λ and σij are isomorphisms in
examples. It turns out that, under finiteness assumptions, it is enough to check that the
sl2-relations hold on the Grothendieck group (the crucial part is [ChRou, Theorem 5.27]).

Theorem 4.12 ([Rou2, Theorem 5.27]). Let K be a field that is a K-algebra and let V =⊕
λ∈X Vλ be a K-linear abelian category such that all objects have finite composition series and

simple objects have endomorphism ring K. Assume given

• a K-linear exact functor Fi : Vλ → Vλ−αi for λ ∈ X and i ∈ I with an exact right
adjoint Ei
• xi ∈ End(Fi) and τij ∈ Hom(FiFj, FjFi)

such that

• Ei and Fi are locally nilpotent
• Ei is left adjoint to Fi
• the quiver Hecke algebra relations for xi and τij
• the endomorphisms [Ei] and [Fi] define an integrable representation of sl2 on C⊗K0(V),

and [Ei][Fi]− [Fi][Ei] acts by 〈λ, α∨i 〉 on K0(Vλ), for all i and λ.

Then, the data above defines an integrable 2-representation of g on V.

Let us give a variant, based on “abstract” sl2-relations between functors.

Corollary 4.13. Let k′ be a commutative k-algebra. Let {Vλ}λ∈X be a family of k′-linear
categories whose Hom’s are finitely generated k′-modules.

Assume given

• Fs : Vλ → Vλ−αs with a right adjoint Es for s ∈ I
• xs ∈ End(Fs) and τst ∈ Hom(FsFt, FtFs) for every s, t ∈ I.

We assume that

• Es is a left adjoint of Fs
• Es and Fs are locally nilpotent
• given λ ∈ X, there are isomorphisms of functors

(EsFs)|Vλ ' (FsEs)|Vλ ⊕ Id
〈λ,α∨s 〉
Vλ if 〈λ, α∨s 〉 ≥ 0

(FsEs)|Vλ ' (EsFs)|Vλ ⊕ Id
−〈λ,α∨s 〉
Vλ if 〈λ, α∨s 〉 ≤ 0

• the quiver Hecke algebra relations hold.

Then, the data above defines an integrable action of A(g) on V =
⊕

λ Vλ.

Proof. Let K be an algebraically closed field that is a k′-algebra. Let W = V-modK be the
category of k′-linear functors Vopp → K-mod. The functors Fs and Es induce adjoint exact
functors on W satisfying the conditions of Theorem 4.12. Consequently, the maps ρs,λ and σst
(for s 6= t), taken in V , are isomorphisms after applying −⊗k′ K. Since this holds for all K, a
variant of Lemma 2.23 shows that those maps are isomorphisms. �

4.3.2. Some 2-representations of sl2. We assume here |I| = 1, X = Z and α = 2. We have
k = Z. Fix a field K.

The most obvious example of a 2-representation is L̄(0) defined by L̄(0)λ = 0 for λ 6= 0 and
L̄(0)0 = K-mod. All the extra data vanishes.
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Consider now L̄(1), a categorification of the simple 2-dimensional representation of sl2. We
put

L̄(1)λ = 0 for λ6=± 1, L̄(1)1 = K-mod and L̄(1)−1 = K-mod .

We define E and F to be the identity functors between L̄(1)1 and L̄(1)−1 and we set x = τ = 0.

A categorification of the simple 3-dimensional representation is given by

L̄(2)λ = 0 for λ 6=− 2, 0, 2, L̄(2)−2 = L̄(2)2 = K-mod and L̄(2)0 = (K[y]/y2)-mod .

The functors E and F are induction and restriction functors. We define x as multiplication by
−y on F = Ind : L̄(2)2 → L̄(2)0 and as multiplication by y on F = Res : L̄(2)0 → L̄(2)−2. We
define τ ∈ EndK(K[y]/y2) by τ(1) = 0 and τ(y) = 1.

Let us construct more generally L̄(n). LetHi,n be the subalgebra of 0Hn generated by 0H i and

PSn
n . We haveHi,n = 0H

f
i⊗ZP

S{i+1,...,n}
n as Z-modules andHi,n = 0H i⊗ZZ[Xi+1, . . . , Xn]S{i+1,...,n}

as algebras. By Proposition 2.21, we have a Morita equivalence between the PSn
n -algebras Hi,n

and P
S{1,...,i}×S{i+1,...,n}
n . Since 0H i is a symmetric algebra over PSi

i (Proposition 2.30) and

P
S{1,...,i}×S{i+1,...,n}
n is symmetric over PSn

n (Corollary 2.26), we deduce from Lemma 2.24 that
Hi,n is a symmetric algebra over PSn

n .
We have a chain of algebras

H0,n = PSn
n ⊂ H1,n ⊂ · · · ⊂ Hn,n = 0Hn

and Hi+1,n is a free left (and right) Hi,n-module of rank (i+ 1)(n− i).
Let H̄i,n = Hi,n ⊗PSn

n
K, where the morphism of rings PSn

n → K is given by sending ho-
mogeneous polynomials of positive degree to 0. This is a finite-dimensional K-algebra Morita-

equivalent to its center P
S{1,...,i}×S{i+1,...,n}
n ⊗PSn

n
K. That center is Z≥0-graded, with degree

0 part of dimension 1, hence it is local. It follows that H̄i,n has a unique simple module, of
dimension i!.

We put L̄(n)λ = H̄(n−λ)/2,n-mod for λ ∈ {n, n− 2, . . . , 2− n,−n} and L̄(n)λ = 0 otherwise.
We denote by E the restriction functor and F the induction functor: they are both exact

functors. Since the algebras H̄i,n are symmetric over K, we deduce that E is both right and
left adjoint to F . It is immediate to check that [E] and [F ] induce an action of sl2(C) on
C⊗K0(L̄(n)) = Cn+1.

We denote by x the endomorphism of the (H̄i+1,n, H̄i,n)-bimodule H̄i+1,n given by right mul-
tiplication by Xi+1: this provides a corresponding endomorphism of the functor F . Similarly,
we define an endomorphism τ of F 2 corresponding to the right multiplication by Ti on the
(H̄i+2,n, H̄i,n)-bimodule H̄i+2,n.

Theorem 4.12 provides the following result. These are the “minimal categorifications” of
[ChRou, §5.3].

Proposition 4.14. The data above defines an action of A on L̄(n).

Let us now consider a deformed additive version L(n). They are necessary to have Jordan-
Hölder type decompositions in the additive setting. We put L(n)λ = H(n−λ)/2,n-proj, and we
define E, F , X and T as above. Proposition 4.14 shows that the morphisms of bimodules
corresponding to the maps ρλ become isomorphisms after applying ⊗PSn

n
K, for any field K. A

graded version of Lemma 2.23 enables us to deduce that the maps ρλ are isomorphisms. We
obtain consequently the following proposition.
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Proposition 4.15. The data above defines an action of A on L(n).

The categories L(n) and L̄(n) are enriched in graded vector spaces, and the actions are
compatible with the gradings.

4.3.3. Simple 2-representations L(λ). Let λ ∈ X. Given V a 2-representation, we put

Vhw
λ = {M ∈ Vλ|Ei(M) = 0 ∀i}.

Note that Vhw
λ = 0 if λ 6∈X+.

A consequence of the relations in Lemma 4.8 is the following description of highest weight
objects.

Lemma 4.16. Let λ ∈ X+ and i ∈ I. Let d = 〈λ, α∨i 〉+ 1. Then

• Ei1λ is a direct summand of Ed+1
i F d

i 1λ
• F d

i 1λ is a direct summand of F d+1
i Ei1λ.

As a consequence, given V a 2-representation and M ∈ Vλ, we have M ∈ Vhw
λ if and only if

F
〈λ,α∨i 〉+1
i (M) = 0 for all i ∈ I.

Assume λ ∈ X+. There is a 2-representation L(λ) with an object vλ ∈ L(λ)λ that has the
following property: given V a 2-representation, there is an equivalence

HomA(L(λ),V)
∼→ Vhw

λ , Φ 7→ Φ(vλ).

So, L(λ) represents the 2-functor V 7→ Vhw
λ and it thus unique up to an equivalence unique up

to a unique isomorphism.

Let us provide a construction of L(λ). We define a 2-representation M(λ) by setting
M(λ)µ = HomA(λ, µ). The composition in A provides a natural action of A on M(λ). Define
now N (λ), a sub-2-representation, by setting N (λ)µ as the full additive subcategory ofM(λ)µ
generated by objects of the form REi, where R is a 1-arrow in A from λ+ αi to µ and i ∈ I.

We put now L(λ) =M(λ)/N (λ) (quotient as additive categories) and we denote by vλ the
image of 1λ. We put Zλ = EndL(λ)(vλ).

Remark 4.17. A important fact is that this construction provides a higher version of Lmax(λ)
(= L(λ) in the symmetrizable case), not of ∆(λ): this is a consequence of Lemma 4.16.

4.3.4. Isotypic 2-representations. An isotypic representation is a multiple of a simple represen-
tation, or equivalently, the tensor product of a simple representation by a multiplicity vector
space. The 2-categorical version of that requires to take a tensor product by a multiplicity
category.

Let A be a commutative ring and C be an A-linear category. Let B a commutative A-algebra.
We denote by C⊗AB the B-linear category with same objects as C and with HomC⊗AB(M,N) =
HomC(M,N)⊗AB. Let now C ′ be another A-linear category. We denote by C⊗AC ′ the A-linear
category with objects finite families ((M1,M

′
1), . . . , (Mm,M

′
m)) where Mi ∈ C and M ′

i ∈ C ′. We
put

Hom(((M1,M
′
1), . . . , (Mm,M

′
m)), ((N1, N

′
1), . . . , (Nn, N

′
n))) =

⊕
i,j

HomC(Mi, Nj)⊗AHomC′(M
′
i , N

′
j).
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Let V be a k-linear 2-representation of A and let λ ∈ X+. There is a canonical fully faithful
functor compatible with the A-action

Rλ : L(λ)⊗Zλ Vhw
λ → V , M ⊗N 7→M(N).

If V is idempotent-closed and every object of V is a direct summand of an object of A(Vhw
λ ),

then Rλ induces an equivalence
(
L(λ)⊗Zλ Vhw

λ

)i ∼→ V .

The only full sub-2-representations of isotypic 2-representations are the obvious ones.

Proposition 4.18. Let λ ∈ X+, let M be a Zλ-linear category, and let W be an idempotent-

complete full k-linear sub-2-representation of
(
L(λ)⊗ZλM

)i
. Let N be the subcategory of Mi

image of Wλ under the canonical equivalence
(
L(λ)⊗ZλM

)i
λ

∼→Mi

Then W =
(
L(λ)⊗Zλ N

)i
.

Proof. Let V =
(
L(λ) ⊗Zλ M

)i
. Every object M of V is a direct summand of a direct

sum of objects of the form Fir · · ·Fi1(N), where N ∈ Vλ. Since Ei1 · · ·Eir is right adjoint
to Fir · · ·Fi1 , we deduce that Fir · · ·Fi1 is a direct summand of Fir · · ·Fi1Ei1 · · ·EirFir · · ·Fi1 (in
A). As a consequence, any M ∈ V is a direct summand of a direct sum of objects of the form
Fir · · ·Fi1Ei1 · · ·Eir(M), where Ei1 · · ·Eir(M) ∈ Vλ.

This shows that every object of W is a direct summand of an object of A(Wλ), hence the

canonical functor
(
L(λ)⊗Zλ Wλ

)i →W is an equivalence. �

4.3.5. Structure. We explain here a counterpart of Jordan-Hölder series. This provides a pow-
erful tool to reduce statements to the case of L(λ)’s and this is one the key ideas of [ChRou].

Let V be a 2-representation. Given ξ ∈ X/(
⊕

i Zαi), let Vξ =
⊕

λ∈ξ Vλ. Then V =
⊕

ξ Vξ is
a decomposition as a direct sum of 2-representations. This gives a direct sum decomposition
of the 2-category of 2-representations.

Theorem 4.19 ([Rou2, Theorem 5.8]). Let V be a k-linear category acted on by A. Assume
that given λ ∈ X and M ∈ Vλ, there is r > 0 such that Ei1 · · ·Eir(M) = 0 for all i1, . . . , ir ∈ I.

Then V is integrable and there are Zλ-linear categories Mλ,r for λ ∈ X+ and r ∈ Z≥1, there
is a filtration by full k-linear sub-2-representations closed under taking direct summands

0 = V{0} ⊂ V{1} ⊂ · · · ⊂ V

with
⋃
r V{r} = V, and there are isomorphisms of 2-representations(

V{r + 1}/V{r}
)i ∼→ ⊕

λ∈X+

(L(λ)⊗ZλMλ,r)
i .

Note that the assumption of the theorem is automatically satisfied if g is a finite-dimensional
Lie algebra.

Proposition 4.20. Assume C is a finite Cartan matrix, i.e., g is a finite-dimensional Lie
algebra. Let V be an integrable 2-representation of A. Then given λ ∈ X and M ∈ Vλ, there is
r > 0 such that Ei1 · · ·Eir(M) = 0 for all i1, . . . , ir ∈ I.

Proof. We switch the roles of E’s and F ’s in the proof. There are positive integers ni, such
that F ni

i (M) = 0. It follows that the canonical B-functor B → V , L 7→ L(M), factors through
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the additive quotient B̄ of B by its full additive subcategory generated by the BF ni
i for i ∈ I.

We will be done by showing that there is r > 0 such that B̄r = 0
Note that the corresponding property holds in C⊗K0(B̄), which is a quotient of the vector

space U(n−)/(
∑

i U(n−)fnii ) by Theorem 3.14: this is an L(µ) for some µ ∈ X+, hence it is
finite-dimensional (cf §4.1.4). We deduce that K0(B̄r) = 0 for some r. The Hom-spaces in Br
are modules of finite rank modules over Z(Br), which is a noetherian ring [Rou2, Proposition
3.10], and the same holds for B̄r. So, the vanishing of K0 forces B̄r = 0. �

Extensions between L(λ)’s can occur only in one direction.

Lemma 4.21. Let V be a k-linear 2-representation of A andW a full k-linear sub-2-representation
closed under taking direct summands. Let λ ∈ X+ and let M be a Zλ-linear category.

Assume there is a morphism Φ : V → L(λ)⊗ZλM of 2-representations of A with Φ(W) = 0

and inducing an isomorphism V/W ∼→ L(λ)⊗ZλM.
If Wλ+α = 0 for all α ∈

⊕
i∈I Z≥0αi, then there is a morphism of 2-representations Ψ :

L(λ) ⊗ZλM → V that is a right inverse to Φ. As a consequence, V ' W ⊕ L(λ) ⊗ZλM as
2-representations of A.

Proof. By assumption, Vλ+αi = 0 for all i. It follows that the restriction of Φ to Vλ is an

equivalence Φ′ : Vhw
λ

∼→M. The functor Φ′−1 induces a fully faithful functor Ψ : L(λ)⊗ZλM→
V that is a right inverse to Φ. �

As a consequence, we can order terms and obtain a Jordan-Hölder filtration under stronger
finiteness assumptions from Theorem 4.19.

Theorem 4.22. Let V be an integrable k-linear 2-representation of A. Assume there is a finite
set K ⊂ X such that {λ ∈ X|Vλ 6=0} ⊂

⋃
µ∈K(µ+

∑
i∈I Z≤0αi).

Then there are

• λ1, λ2, . . . ∈ X+ such that λa − λb ∈
∑

i Z≥0αi implies a < b
• Zλr-linear categories Mr

• and a filtration by full k-linear sub-2-representations closed under taking direct sum-
mands

0 = V{0} ⊂ V{1} ⊂ · · · ⊂ V

such that
⋃
r V{r} = V and

(
V{r + 1}/V{r}

)i ∼→ (
L(λr)⊗Zλr Mr

)i
as 2-representations of A.

4.4. Cyclotomic quiver Hecke algebras.

4.4.1. Construction of B(λ). Let λ ∈ X+. Let ni = 〈λ, α∨i 〉, let Aλ = Z[{zi,r}i∈I,1≤r≤ni ] and let
kλ = k ⊗Z Aλ. We define the additive category quotient

B(λ) = (B ⊗Z Aλ)/(

ni∑
r=0

xni−ri ⊗ zi,r)i∈I

where we put zi,0 = 1 for i ∈ I.
We define now the cyclotomic quiver Hecke algebras

Hn(λ) = EndB(λ)(
⊕

(i1,...,in)∈In
Fi1 · · ·Fin).
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We have

Hn(λ) = (Hn(Q)⊗Z Aλ)/(

ni∑
r=0

xni−r1,i ⊗ zi,r)i∈I

and in particular H0(λ) = kλ.
One can also consider the reduced cyclotomic quiver Hecke algebras H̄n(λ) = Hn(λ) ⊗Aλ Z,

where zi,r acts by 0 on Z for r 6= 0.
Note that these constructions depend only on {ni}i∈I , not on λ.

4.4.2. Fock spaces. We explain how to construct a 2-representation of affine Lie algebras of
type A, following [ChRou], and we explain the relation with B(Λ0). We consider the setting of
§4.1.6.

Similarly to the construction of X, we construct an endomorphism T of F 2 =
⊕

n≥0 Ind
Sn+2

Sn

by left multiplication by (n+ 1, n+ 2) on the (FpSn+2,FpSn)-bimodule FpSn+2.
We have a morphism of algebras

H̄n → End(F n), Xi 7→ F n−iXF i−1, si 7→ F n−i−1TF i−1.

Let Γ be the quiver with vertex set I = Fp and with arrows i→ i+ 1. Theorem 3.12 shows
how to deduce a morphism of algebras Hn(Γ)→ End(

⊕
ν∈In Fν1 · · ·Fνn).

Theorem 4.23. The constructions above endow V with a 2-representation of A(ŝlp). We have
an equivalence of 2-representations(

Fp ⊗ZΛ0
L(Λ0)

)i '⊕
n≥0

FpSn-proj

Proof. We need to show that the maps ρi,λ and are isomorphisms. The corresponding relations
hold at the level of the Grothendieck groups. It follows from Theorem 4.12 that the required
maps are isomorphisms. The equivalence follows from the fact that V is a highest weight
2-representation, with highest weight Λ0. �

Since the left side of the equivalence is graded, this provides us with gradings of group algebras
of symmetric groups over Fp. This can be made explicit. Indeed, Theorem 3.12 induces an

isomorphism of algebras Fp ⊗Z H̄n(Γ)
∼→ FpSn, and the right hand side has homogeneous

generators.

The constructions above extend to arbitrary p ≥ 2, with the group algebra of the symmetric
group replaced by its Hecke algebra, as explained in §4.1.6.

The isomorphism and the gradings above have been constructed and studied independently by
Brundan and Kleshchev [BrKl1, BrKl2]. They have built a new approach to the representation
theory of symmetric groups and their Hecke algebras using these gradings.

Such gradings had been shown to exist earlier (using derived equivalences and good blocks)
for blocks with abelian defect [Rou1, Remark 3.11]. Leonard Scott had raised the question
in the mid-nineties to construct gradings for group algebras of symmetric groups and more
generally Hecke algebras of finite Coxeter groups.
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4.4.3. Simple 2-representations. We explain here how cyclotomic quiver Hecke algebras provide
a vast generalization of the constructions of §4.1.6 and §4.4.2, as conjectured by Khovanov-
Lauda and ourselves.

The left action of B on itself induces an action of B on B(λ)i =
⊕

nHn(λ)-proj.

Theorem 4.24 (Kang-Kashiwara, Webster). Given s ∈ I, the functor Fs : B(λ)i → B(λ)i has
a right adjoint. This provides an action of A on B(λ)i, with highest weight (B(λ)i)λ = kλ-proj.

There is an isomorphism of g-modules C⊗Z K0(B(λ)i)
∼→ L(λ).

Kang-Kashiwara’s result [KanKas, Theorem 4.6] is given in the case of symmetrizable Cartan
matrices and in a graded setting, but it extends with no change to our setting. Webster’s result
[We1] is also in a graded setting.

Note that the algebras Hn(λ) are finitely generated projective kλ-modules [KanKas, Remark
4.20(ii)].

There is a canonical morphism of k-algebras Zλ → kλ and an equivalence of additive A-
categories (cf §4.3.4)

Ψ :
(
L(λ)⊗Zλ kλ

)i ∼→ B(λ)i

Theorem 4.25. The canonical map gives an isomorphism Zλ
∼→ kλ. In particular, there is an

equivalence of categories L(λ)i
∼→ B(λ)i compatible with the action of A.

Proof. The proof is similar to that of [Rou2, Proposition 5.15]. Let i ∈ I. We have F ni
i (vλ) 6= 0,

while F ni+1
i (vλ) = 0. It follows that the canonical map F

(ni)
i E

(ni)
i (vλ)→ vλ is an isomorphism

[Rou2, Lemma 4.12]. The action of Z[x1,i, . . . , xni,i]
Sni on E(ni) gives then an action on vλ.

We let zi,r act on vλ as (−1)rer(x1,i, . . . , xni,i) for 1 ≤ r ≤ ni. This provides a morphism of
k-algebras kλ → End(vλ) = Zλ.

We have a canonical functor B ⊗k kλ → L(λ) given by M 7→ M(vλ). It induces a functor

Φ : B(λ)→ L(λ) compatible with the B-action: there are canonical isomorphisms ΦFi
∼→ FiΦ

compatible with the xi’s and τij’s. Note that the functor L(λ)
can−−→ L(λ) ⊗Zλ kλ

Ψ−→ B(λ) is a
left inverse to Ψ.

Let us show that Φ can be endowed with a compatibility for the A-action. We need to show
that the composition

ΦEi
ηiΦEi−−−→ EiFiΦEi

Ei(can−1)Ei−−−−−−−→ EiΦFiEi
EiΦεi−−−→ EiΦ

is an isomorphism for all i ∈ I (cf [ChRou, §5.1.2]). Let us show that the composition above is
an isomorphism when applied to L ∈ B(λ). Consider M,γ, α as in Lemma 4.26 below. Since
ΦΨ(α) is an isomorphism, we deduce that the composition

Φ(M)
Φ(ηi•)−−−→ Φ(EiFiM)

Φ(Eiγ)−−−−→ Φ(EiL)
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is an isomorphism. To clarify the exposition, we identify ΦFi with FiΦ. There is a commutative
diagram

Φ(EiL)
ηi• // EiFiΦ(EiL)

EiΦ(εi•) // EiΦ(L)

Φ(EiFiM)

Φ(Eiγ)

OO

ηi• // EiFiΦ(EiFiM)
EiΦ(εi•)//

•Φ(Eiγ)

OO

EiΦ(FiM)

EiΦ(γ)

OO

Φ(M)

@A BC
∼

EDoo

∼

;;

Φ(ηi•)

OO

ηi• // EiFiΦ(M)

id

66mmmmmmmmmmmm
•Φ(ηiM)

OO

This completes the proof that Φ is compatible with the action of A. Since Φ(kλ) = vλ, we
obtain a morphism of Zλ-algebras kλ → Zλ that is a left inverse to the canonical morphism
Zλ → kλ. Consequently, these morphisms are isomorphisms. �

Lemma 4.26. Given i and L ∈ B(λ), there are M ∈ B(λ) and γ : FiM → L such that the
composition

α : Φ(M)
ηi•−→ EiFiΦ(M) = EiΦ(FiM)

EiΦ(γ)−−−−→ EiΦ(L)

is an isomorphism.

Proof. It is enough to prove the lemma for L = Fir · · ·Fi1(kλ) for any i1, . . . , ir ∈ I. We prove
this by induction on r. Assume the lemma holds for r. Consider i1, . . . , ir ∈ I. Let M , α and
γ be provided by the lemma.

Consider now j = ir+1 ∈ I. Let M ′ = FjM . Let

γ′ = (FiFjM
τij•−−→ FjFiM

Fjγ−−→ FjL).

There is a commutative diagram

Φ(FjM)
ηi• //

Fjηi•
��

∼

&&

EiFiΦ(FjM)
Eiτij• //

•ηiΦ(M)

��

EiΦ(FjFiM)
EiΦ(Fjγ)

//

•ηiΦ(M)

��

∼

yy

EiΦ(FjL)

BC

id

@A
OO

FjEiFiΦ(M)

•Φ(γ)

��

ηi• // EiFiFjEiFiΦ(M)
Eiτij•//

•Φ(γ)

��

EiFjFiEiFiΦ(M)

•Φ(γ)

{{vv
vv
vv
vv
vv
vv
vv
vv
vv
vv
vv
v

EiFjεi•

��

FjEiΦ(L)
ηi• //

σji•
��

EiFiFjEiΦ(L)

Eiτij•
��

EiFjΦ(L) EiFjFiEiΦ(L)
•εiΦ(L)
oo EiFjFiΦ(M)

•Φ(γ)

ll

If j 6= i, then σij is an isomorphism, hence (M ′, γ′) satisfies the requirements. We assume
now i = j. Let n = 〈λ+ αi1 + · · ·+ αir , α

∨
i 〉.
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Assume n ≥ 0. Let M ′′ = M ′ ⊕ L⊕n and γ′′ = γ′ +
∑n−1

a=0(xai •) : FiM
′′ → FiL. Then,

(M ′′, γ′′) satisfies the required properties.

Assume finally n ≤ 0. Consider g =
∑1−n

l=0 γ ◦ (xliM) : FiM → L⊕−n. The map Φ(g) is equal
to the composition

FiΦ(M)
Fiηi• //

∼
22FiEiFiΦ(M)

FiEiΦ(γ)
// FiEiΦ(L)

∑
l x
l
i• // (FiEiΦ(L))⊕−n

εi• // Φ(L)⊕−n

which is a split surjection. As a consequence, g = ΨΦ(g) is a split surjection. Let M ′′ be its
kernel and γ′′ = γ′|FiM ′ . The composition

Φ(M ′′) ↪→ Φ(FiM)
Fiηi•−−−→ FiEiFiΦ(M)

•Φ(γ)−−−→ FiEiΦ(L)
σji•−−→ EiFiΦ(L)

is an isomorphism and we deduce that (M ′′, γ′′) satisfies the requirements. �

Note that Lauda and Vazirani had shown earlier that B(λ) gives rise to the crystal graph of
L(λ), in the symmetrizable case [LauVa].

4.4.4. Cyclotomic Hecke algebras for sl2. Let n ∈ Z≥0. We have Hn(Q) = 0Hn. One can
deduce from Theorem 4.25 that the 2-representations L(n) of §4.3.2 and §4.3.3 are equivalent.
One can also show this directly without using B(n), by using the same method as in the proof
of Theorem 4.25. Let us prove the more concrete fact that B(n) coincides with the category
L(n) of §4.3.2.

Lemma 4.27. Given i ≤ n, then there is an isomorphism of rings

φ : Hi(n)
∼→ Hi,n, Tj 7→ Tj, Xj′ 7→ Xj′ and zl 7→ (−1)lel(x1, . . . , xn)

for 1 ≤ j ≤ i− 1, 1 ≤ j′ ≤ i and 1 ≤ l ≤ n. If i > n, then Hi(n) = 0.

Proof. Assume i ≤ n. In order to prove that the map φ of the lemma is well defined, it is
enough to consider the case i = n. We have

xn1 − e1(x1, . . . , xn) + · · ·+ (−1)nen(x1, . . . , xn) = 0,

hence the map is well defined. It is clear that the map is surjective.

Let Ai = Z[z1, . . . , zn] ⊗Z
0H i and Vi = Z[z1, . . . , zn] ⊗Z Pi, a faithful Ai-module. Let

Mi be the Ai-submodule of Vi generated by Xn
1 + Xn−1

1 z1 + · · · + X1zn−1 + zn and let Li =∑
aj≤n−j Z[z1, . . . , zn]xa1

1 · · · x
ai
i . Let V ′i = Li +Mi. Let us show by induction on i that Vi = V ′i .

This is true for n = 1. Assume V ′i = Vi. Note that V ′i+1 is stable under the action of Ai and

the action of Ti. It follows that ∂i(X
n−i+1
i ) ∈ V ′i+1, hence Xn−i

i+1 ∈ V ′i+1. This shows that V ′i+1

is stable under multiplication by Xi+1, hence under the action of Ai+1. Since Vi+1 is generated
by 1 ∈ V ′i+1 under the action of Ai+1, we deduce that V ′i+1 = Vi+1.

We deduce that Hi(n) has a faithful module of rank ≤ n!
(n−i)! over Z[z1, . . . , zn]. As a con-

sequence, the image of Pi ⊗ Z[z1, . . . , zn] in Hi(n) has rank ≤ n!
(n−i)! over Z[z1, . . . , zn], hence

Hi(n) has rank ≤ i!n!
(n−i)! over Z[z1, . . . , zn]. That is the rank of Hi,n over PSn

n : it follows that φ

is an isomorphism. �

5. Geometry

5.1. Hall algebras. We refer to [Sch] for a general text on Hall algebras.
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5.1.1. Definition. Let A be an abelian category such that given M,N ∈ A, then HomA(M,N)
and Ext1

A(M,N) are finite sets. One can take for example the category of finite dimensional
representations of a quiver over a finite field.

Given M,N ∈ A, let FL
M,N be the number of submodules N ′ of L such that N ′ ' N and

L/N ′ 'M .
Let PL

M,N denote the number of exact sequences 0→ N → L→M → 0. Then,

(2) FL
M,N =

PL
M,N

|Aut(M)| · |Aut(N)|
.

Let H ′A be the free abelian group with basis the isomorphism classes of objects of A

H ′A =
⊕
L∈A/∼

Z[L].

We define a product in H ′A by

[M ] ∗ [N ] =
∑

L∈A/∼

FL
M,N [L].

The class [0] is a unit for the product. The algebra H ′A is the Hall algebra of A.
One shows that the product is associative and more generally, that an iterated product counts

filtrations.
Given N1, . . . , Nn, L ∈ A, let FL

N1,...,Nn
be the number of filtrations

L = L0 ⊃ · · · ⊃ Ln = 0

with Li−1/Li ' Ni.

Proposition 5.1. We have [N1] ∗ · · · ∗ [Nn] =
∑

L∈A/∼

FL
N1,...,Nn

[L].

Remark 5.2. When A is semi-simple, then H ′A is commutative. The “next” case is the
following. Let A be the category of finite abelian p-groups. The algebra H ′A has a basis
parametrized by partitions and H ′A = Z[u1, u2, . . .] is a polynomial ring in the countably many
variables ui = [(Z/p)i] (Steinitz-Hall).

5.1.2. Hall algebra for an A2 quiver. Let us now describe the Hall algebra for A the category of
finite dimensional representations of the quiver Γ = 1→ 2 over a finite field k with q elements.

The indecomposable representations of Γ are S(1), S(2) and M (cf Example 3.2). Let f1 =
[S(1)], f2 = [S(2)] and f12 = [M ]. We find f1∗f2 = f12+[S(1)⊕S(2)] and f2∗f1 = [S(1)⊕S(2)].
The algebra H ′A is not commutative. We have [f1, f2] = f12.

We have f1 ∗ f12 = q[M ⊕S(1)] and f12 ∗ f1 = [M ⊕S(1)]. So, f1 ∗ f12 = qf12 ∗ f1. If we view
q as an indeterminate and specialize it to 1, then the Lie subalgebra of H ′A generated by f1, f2

and f12 is isomorphic to the Lie algebra of strictly upper triangular 3× 3-matrices:

f1 7→

0 1 0
0 0 0
0 0 0

 , f2 7→

0 0 0
0 0 1
0 0 0

 , f12 7→

0 0 1
0 0 0
0 0 0

 .
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5.1.3. Quantum groups as Ringel-Hall algebras. Let Γ be a quiver with vertex set I and assume
Γ has no loops. Let A be the category of finite dimensional representations of Γ over a finite
field k with q elements.

The Euler form is defined by

〈M,N〉 = dim Hom(M,N)− dim Ext1(M,N)

for M,N ∈ A.
We define the Ringel-Hall algebra HA as the C-vector space C⊗Z H

′
A with the product

[M ] · [N ] = q〈M,N〉/2[M ] ∗ [N ].

The graph underlying Γ encodes a symmetric Cartan matrix, hence give rise to the nilpotent
part n− of a Kac-Moody algebra.

We can now state Ringel’s Theorem.

Theorem 5.3 (Ringel). There is an injective morphism of C-algebras Uq(n
−) ↪→ HA, fi 7→

[S(i)]. If Γ corresponds to a Dynkin diagram, then this morphism is an isomorphism.

In the next section we will explain, following Lusztig, how to construct directly the non-
quantum enveloping algebra U(n−).

5.2. Functions on moduli stacks of representations of quivers. We refer to [ChrGi] for
a general introduction to geometric representation theory.

5.2.1. Moduli stack of representations of quivers. Let Γ be a quiver with vertex set I. Let
Rep = Rep(Γ) be the moduli stack of representations of Γ over C. This is a geometrical object
whose points are isomorphism classes of finite dimensional representations of Γ over C. The
moduli stack also encodes the information of the group Aut(M), given M a representation of Γ.
We have Rep =

∐
d∈ZI≥0

Repd, where Repd corresponds to representations V with dimVi = di

for i ∈ I. We refer to §5.3.4 for a more precise description.

This stack can be described explicitly as a quotient. Let d ∈ ZI
≥0. The data of a representation

of Γ with underlying vector spaces {Cdi}i is the same as the data of an element of Md =⊕
a:i→j HomC(Cdi ,Cdj), where a runs over the arrows of Γ. This vector space has an action by

conjugation of the group Gd =
∏

i GLdi(C):

g · (fa)a = (gjfag
−1
i )a for g = (gi)i.

Two representations are isomorphic is they correspond to elements of Md in the same Gd-
orbit. Given f ∈ Md, we have StabGd(f) = Aut(M), where M is the representation of Γ
defined by f .

We have Repd =Md/Gd.

5.2.2. Convolution of functions. Let X be a set and F(X) the vector space of functions X → C.
Consider a map φ : X → Y between sets.
We define φ∗ : F(Y )→ F(X) by φ∗(f)(x) = f(φ(x)).
Assume φ−1(y) is finite for all y ∈ Y . Define φ∗ : F(X)→ F(Y ) by φ∗(f)(y) =

∑
x∈φ−1(y) f(x).
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Now, given a diagram

Z
p

~~}}
}}
}}
}}
q
��

r

  A
AA

AA
AA

A

X X X

with the fibers of r finite, we define a convolution of functions

F(X)×F(X)→ F(X), (f, g) 7→ f ◦ g = r∗(p
∗(f) · q∗(g)).

5.2.3. Convolution of constructible functions. We want now to extend the constructions of
§5.2.2 to the case of varieties, or rather stacks. The main problem is to give a sense to φ∗ when
φ doesn’t have finite fibers.

Let X be a stack over C. We define Fc(X), the space of constructible functions, as the
subspace of F(X) generated by the functions 1V , where V runs over locally closed subspaces
of X. Here, 1V (x) = 1 if x ∈ V and 1V (x) = 0 otherwise.

Given X a stack, we denote by χ(X) =
∑

i≥0(−1)i dimH i(X) the Euler characteristic of
X. There is a unique extension of χ to disjoint unions of locally closed subsets of stacks that
satisfies χ(X) = χ(V ) + χ(X − V ).

Given φ : X → Y a morphism of stacks, we define φ∗ as follows. Let f =
∑

αmα1Vα , where
the Vα are locally closed subsets of X and mα ∈ C. We put

φ∗(f)(y) =
∑
α

mαχ(Vα ∩ φ−1(y)).

5.2.4. Realization of U(n−). Denote by X the stack over Rep × Rep of pairs (V ⊂ V ′). We
have three morphisms p, q, r : X → Rep

X
p

||xx
xx
xx
xx
x
q

��

r

""F
FF

FF
FF

FF

Rep Rep Rep

p(V ⊂ V ′) = V, q(V ⊂ V ′) = V ′/V and r(V ⊂ V ′) = V ′.

Define a convolution

Fc(Rep)×Fc(Rep)→ Fc(Rep), (f, g) 7→ f ◦ g = r∗(p
∗(f) · q∗(g)).

Let ai = 1Repi : we have ai(S(i)) = 1 and ai(M) = 0 if M is a representation of Γ not
isomorphic to S(i).

Theorem 5.4 (Lusztig). There is an injective morphism of C-algebras U(n−)→ Fc(Rep), fi 7→
ai. If Γ corresponds to a Dynkin diagram, this is an isomorphism.

5.3. Flag varieties. We recall classical facts on affine Hecke algebra actions and flag varieties
in type A (cf e.g. [ChrGi]) and then flags of representations of quivers [Lu1].
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5.3.1. Notations. We fix a prime number l and put Λ = Q̄l. By scheme, we mean a separated
scheme of finite type over C. Given X a scheme or a stack, we denote by D(X) the bounded
derived category of l-adic constructible sheaves on X (cf [LaOl1, LaOl2]). All quotients will be
taken in the category of stacks.

Given X a smooth stack and i : Z → X a smooth closed substack, both of pure dimension, we
have a Gysin morphism i∗ΛZ → ΛX [2(dimX − dimZ)]. Let D be the duality functor. Via the

canonical identifications D(ΛZ)
∼→ ΛZ [2 dimZ], D(ΛX)

∼→ ΛX [2 dimX] and D ◦ i∗
∼→ i∗ ◦ D,

the Gysin morphism is the dual of the canonical map ΛX → i∗ΛZ . Note finally that the
automorphism of Ext∗(ΛX ,ΛX) induced by taking α to D(α) is the identity.

Let C be a graded additive category and M,N two objects of C. We put Hom•C(M,N) =⊕
i Hom(M,N [i]).
Given a graded ring A, we define the graded dimension of a free finitely generated graded

A-module by grdim(A[i]) = q−i/2 and grdim(M) = grdim(M1) + grdim(M2) if M 'M1 ⊕M2.

5.3.2. Nil affine Hecke algebra and P1-bundles. Let X be a stack, E a rank 2 vector bundle on
X and π : Y = P(E)→ X the projectivized bundle.

Let α = c1(Oπ(−1)) and β = c1(π∗E/Oπ(−1)). Let x = π∗(α) and y = π∗(β), viewed in
Hom(π∗ΛY , π∗ΛY [2]).

Let T ∈ Hom(π∗ΛY , π∗ΛY [−2]) be the composition

T : π∗ΛY
t−→ ΛX [−2]

can−−→ π∗ΛY [−2]

where t : π∗ΛY
can−−→ H2(π∗ΛY )[−2]

tr−→
∼

ΛX [−2] is the trace map.

Proposition 5.5. We have T 2 = 0 yT − Tx = 1 xy = yx and T (x + y) = (x + y)T . This
defines a morphism of algebras

0H2 → End•(π∗ΛY ), X1 7→ x, X2 7→ y, T1 7→ T.

Proof. We have α + β = c1(π∗E) and αβ = c2(π∗E). The composition

π∗π
∗ΛX

can−−→
∼

π∗ΛY
T−→ π∗ΛY [−2]

can−−→
∼

π∗π
∗ΛX [−2]

comes from natural transformations of functors, hence it commutes with End•(ΛX). It follows
that T commutes with c1(E) = x+ y and c2(E) = xy.

Since T 2 factors through a map ΛX [−2]→ ΛX [−4], we have T 2 = 0.

The composition

ΛX
can−−→ π∗ΛY

−x−→ π∗ΛY [2]
t−→ ΛX

is the identity. Indeed, after taking the fiber at a point P ∈ X, the composition is

Λ
c1(O(1))−−−−−→ H2(π−1(P ),Λ)

t−→ Λ

and c1(O(1)) is the class of a point.
So, we have an isomorphism

(can, x ◦ can) : ΛX ⊕ ΛX [−2]
∼→ π∗ΛY .

Note that the composition

ΛX
can−−→ π∗ΛY

y−→ π∗ΛY [2]
t−→ ΛX
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is also the identity.

The composition

ΛX
can−−→ π∗ΛY

T−→ π∗ΛY [−2]

vanishes since it factors through a map ΛX → ΛX [−2]. It follows that

ΛX
can−−→ π∗ΛY

yT−Tx−−−−→ π∗ΛY

is equal to the canonical map.

We have a commutative diagram

ΛX
can //

c2(E) ""E
EE

EE
EE

EE
π∗ΛY

xy // π∗ΛY [4]
T // π∗ΛY [2]

ΛX [4]

can

::ttttttttt

.

So, the composition ΛX → π∗ΛY [2] vanishes since it factors through a map ΛX [4]→ ΛX [2].
It follows that the composition

ΛX
can−−→ π∗ΛY

y−→ π∗ΛY [2]
yT−Tx−−−−→ π∗ΛY [2]

is equal to the composition

ΛX
can−−→ π∗ΛY

y−→ π∗ΛY [2].

So, yT − Tx = 1. �

5.3.3. Nil affine Hecke algebras and flag varieties. We recall now the construction of an action
of 0Hn on H∗(Grn/GLn) (cf [Ku]), where Grn is the variety of complete flags in Cn.

Let ψ : Grn/GLn → pt/GLn be the canonical map.
Consider the first Chern class of the line bundle defined by Vd/Vd−1 over a complete flag

(0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn) and let Xd be the corresponding element Xd : ψ∗Λ→ ψ∗Λ[2].
Let Grn(d) the the variety of flags (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 = Cn) such that dimVr/Vr−1 =

1 for r 6= d and dimVd/Vd−1 = 2. The canonical map

Grn → Grn(d)

(0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn) 7→ (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ Vd+1 ⊂ · · · ⊂ Vn = Cn)

is the projectivization of the 2-dimensional vector bundle Vd/Vd−1 over Grn(d). It induces a
map pd : Grn/GLn → Grn(d)/GLn.

Let T ∈ Hom(pd∗Λ, pd∗Λ[−2]) be the composition

T : pd∗Λ
t−→ Λ[−2]

can−−→ pd∗Λ[−2]

where t : pd∗Λ
can−−→ H2(pd∗Λ)[−2]

tr−→
∼

Λ[−2] is the trace map. We denote by Td : ψ∗Λ→ ψ∗Λ[−2]

the induced map.

Let X be a stack. The data of a rank n vector bundle L on X is equivalent to the data of a
morphism of stacks X → pt/GLn. Let Y be the stack of full flags in a rank n vector bundle L
on X and φ : Y → X be the associated map: this is the pullback of ψ via l.

The following Theorem follows from Proposition 5.5, together with a verification of the braid
relations between Td’s.
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Theorem 5.6. The construction above provides by base change a morphism 0Hn → End•(φ∗Λ).

Let j : X ′ → X be a closed immersion. Assume X and X ′ are smooth of pure dimension.
Then, the canonical morphism φ∗Λ → φ′∗Λ and the morphism induced by the Gysin map
φ′∗Λ→ φ∗Λ[2(dimX − dimX ′)] commute with the action of 0Hn.

5.3.4. Sheaves on moduli stacks of quivers. We follow Lusztig [Lu1, §9]. Instead of working with
equivariant derived categories of varieties, we work with derived categories of the corresponding
quotient stacks. Given X a variety acted on by G, our perverse sheaves on X/G correspond to
shifts by dimG of the G-equivariant perverse sheaves on X considered by Lusztig. The duality
is similarly shifted.

Given X a scheme, we have an abelian category OX [Γ]-Mod of representations of Γ over X,
i.e., sheaves of (ZΓ⊗Z OX)-modules. Its objects can be viewed as pairs V = (V , ρ) where V is
an OX-module and ρ : ZΓ→ End(V) is a morphism of rings.

Given J a subset of I, we put VJ =
∑

i∈J ρ(i)V .

We denote by Rep = Rep(Γ) the algebraic stack of representations of Γ. It is defined by
assigning to a scheme X the subcategory of OX [Γ]-Mod defined as follows:

• objects are pairs (V , ρ) such that V is a vector bundle (of finite rank) over X
• maps are isomorphisms.

Given a morphism of schemes f : X → Y , we have a functor f ∗ : Rep(Γ)(Y ) → Rep(Γ)(X)
given by base change.

We define the rank vector of V = (V , ρ) as rkV =
∑

i∈I(rkVi)i ∈ N[I]. We have a decom-
position into connected components

Rep =
∐

α∈N[I]

Repα

where Repα is the substack of representations with rank vector α. We denote by jα the em-
bedding of the component Repα. We have dim Repα = −〈α, α〉. Note that Rep0 is a point. We
denote by Wα the tautological vector bundle {V } on Repα.

Given i ∈ I, we put Li = ji∗Λ[−1], a perverse sheaf on Rep.

Given M ∈ D(Repµ) and N ∈ D(Repµ′), we put M ◦ N = r!(p
∗M ⊗ q∗N)[−〈µ′, µ〉]. This

endows D(Rep) with a structure of monoidal category (it is the reverse of the tensor structure
defined by Lusztig).

5.3.5. Flags of representations. Given ν = (ν1, . . . , νn) ∈ N[I]n, we consider the stack Repν of
flags (0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V n) of representations of Γ such that rkV r/V r−1 = νr. We have a
proper morphism

πν : Repν → Rep∑
r ν

r , (0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V n) 7→ V n

and we put ρν = j∑
r ν

r ◦ πν : Repν → Rep.

Given ε1, . . . , εn ∈ {empty, ss}, we define Rep(ν1
ε1
,...,νnεn ) as the closed substack of Rep(ν1,...,νn)

of flags (0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V n) such that for any r such that εr = ss, then V r/V r−1 '⊕
i(V

r/V r−1)i as a representation of Γ.
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5.3.6. Flags and quotients. Let Γ̄ be the discrete quiver with vertex set I and let Rep = Rep(Γ̄).
The restriction map defines a morphism Repν → Repν . This is a vector bundle of rank∑

i 6=j

dij
∑
r

νri (ν
1
j + · · ·+ νrj ).

Let α =
∑

i αii ∈ N[I]. We denote by R̃epα the variety
∏

h:i→j HomC(Cαi ,Cαj), where

h runs over the set of arrows of Γ. There is an action of Gα =
∏

i GLαi on R̃epα given by

g ·f = (gjfhg
−1
i )h:i→j, where g = (gi)i∈I and f = (fh)h. A point of R̃epα defines a representation

of Γ of dimension vector α: this provides an isomorphism R̃epα/Gα
∼→ Repα. In particular, we

obtain BGα
∼→ Repα.

Given d1, . . . , dr ≥ 0, we denote by Grd1,...,dr the variety of flags (0 = V0 ⊂ V1 ⊂ · · · ⊂
Vr = C

∑
dl) such that dimVl/Vl−1 = dl. Let ν = (ν1, . . . , νn) ∈ N[I]n. Let α =

∑
r ν

r and

ni =
∑n

r=1 ν
r
i . We denote by R̃epν the subvariety of

∏
i Grν1

i ,...,ν
n
i
× R̃epα given by families

((0 = Vi,0 ⊂ · · · ⊂ Vi,n = Cni)i, (fh)h) such that fh(Vi,r) ⊂ Vj,r for all h : i → j and all r. The

diagonal action of G = Gα restricts to an action on R̃epν . Sending a point to the associated

filtered representation of Γ defines an isomorphism R̃epν/G
∼→ Repν . Let Pi be the parabolic

subgroup of GLni stabilizing the standard flag Fi = (Vi,0 = 0 ⊂ Vi,1 = Cν1
i ⊕ 0 ⊂ · · · ⊂ Vi,n =

Cν1
i ⊕ · · · ⊕ Cνni ) and let P =

∏
i Pi. We have a canonical isomorphism G/P

∼→
∏

i Grν1
i ,...,ν

n
i

inducing an isomorphism G \G/P ∼→ Repν .

Let ν ′ = (ν ′1, . . . , ν ′n
′
) ∈ N[I]n

′
. We assume α =

∑
r ν
′r. This defines as above a parabolic

subgroup P ′ of G. We denote by W , WP and WP ′ the Weyl groups of G, P and P ′. We have
an isomorphism (

R̃epν ×R̃epα
R̃epν′

)
/G

∼→ Repν ×Rep Repν′ .

The isomorphisms above induce an isomorphism

P ′ \G/P ∼→ Repν ×Rep Repν′ .

Its closed points are in bijection with WP ′\W/WP and each such point w defines a locally closed
closed substack Xw. This corresponds to the decomposition∏

i

(
Grν1

i ,...,ν
n
i
×Grν′1i ,...,ν′n

′
i

)
=
∐
w

Ow

into orbits under the action of G, i.e., Ow/G
∼→ Xw.

The restriction map V → {Vi}i∈I induces a map κ : Repν ×Rep Repν′ → Repν ×Rep Repν′ .
The restriction of κ over each Xw is a vector bundle. Note that H∗c (Repν ×Rep Repν′) is a free

graded H∗(BG)-module of graded rank equal to the graded rank of H∗c (R̃epν ×R̃epα
R̃epν′) as a

Λ-module. The pullback of κ is the projection map

κ̃ : R̃epν ×R̃epα
R̃epν′ →

∏
i

(
Grν1

i ,...,ν
n
i
×Grν′1i ,...,ν′n

′
i

)
.

Assume now νr ∈ I for all r. We have WP = WP ′ = 1. Define γi, γ
′
i : {1, . . . , ni} → {1, . . . , n}

to be the increasing maps such that νγi(r) = ν ′γ
′
i(r) = i for all r.
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We identify W with
∏

iSni . Let w = (wi)i ∈ W . The fiber of κ̃ over ((Fi, wi(F
′
i )))i ∈ O(w)

has dimension ∑
s 6=t

dst ·#{a, b|γt(b) < γs(a) and γ′t(w
−1
t (b)) < γ′s(w

−1
s (a))}.

We deduce that

grdimH∗c (R̃epν ×R̃epα
R̃epν′) = P (W, q)

∑
w∈W

q(l(w)+
∑
s 6=t dst·#{a,b|γt(b)<γs(a) and γ′t(w

−1
t (b))<γ′s(w

−1
s (a))})

where P (W, q) =
∏

i

∏ni
r=1

qr−1
q−1

is the Poincaré polynomial of W .

5.4. Quiver Hecke algebras and geometry.

5.4.1. Monoidal category of semi-simple perverse sheaves. We denote by P the smallest full
additive monoidal subcategory of D(Rep) closed under translations and containing the objects
Li for i ∈ I.

The following theorem gives a presentation of P by generators and relations. It has been
proven independently by Varagnolo and Vasserot [VarVas].

Theorem 5.7. There is an equivalence of graded monoidal categories R : (Q̄l⊗ZB(Γ))i-gr
∼→ P.

The category B(Γ) is defined by generators and relations and in §5.4.3 we define the images
of the generating objects and arrows. The verification of the relations and the proof that the
induced functor is an equivalence start in §5.4.4.

Theorem 5.7 shows that quiver Hecke algebras Hn(Γ) are Ext-algebras of certain sums of
shifted simple perverse sheaves on quiver varieties, as all objects of P are of that form.

5.4.2. Canonical basis. There is an isomorphism of Z[q±1/2]-algebras [Lu1, §14]

(3) UZ[q±1/2](n
−)

∼→ K0(P), fs 7→ [Ls].

Let B be the set of isomorphism classes of simple perverse sheaves on Rep that are contained
in P . Every object of P is isomorphic to a direct sum of shifts of objects of B. The canonical
basis C of UZ[q±1/2](n

−) corresponds, via the isomorphism (3), to {[L]}L∈B.

Recall that there is a duality ∆ [Rou2, §4.2.1] on B(Γ), i.e., a graded equivalence of monoidal

categories B(Γ)opp ∼→ B(Γ) with ∆2 = Id given by

Fs[n] 7→ Fs[−n], xs 7→ xs and τst 7→ τts.

Let C ′ be the set of classes in K0 of indecomposable objects M of (Q̄l⊗Z B(Γ))i-gr such that
∆(M) 'M .

Corollary 5.8. We have an isomorphism UZ[q±1/2](n
−)

∼→ K0((Q̄l ⊗Z B(Γ))i-gr). It induces a

bijection C
∼→ C ′.
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5.4.3. Hecke generators. We set R(Fs) = Ls. Let us now define the value of R on the generating
arrows of B(Γ).

• Let s ∈ I. We denote by xs ∈ Hom(Ls, Ls[2]) the image of c1(Ws) ∈ H2(Reps,Λ).

• The forgetful morphism π(s,s) : Rep(s,s) → Rep2s is the P1-fibration associated to the rank
2 bundle W2s. We denote by τss ∈ Hom(Ls ◦ Ls, Ls ◦ Ls[−2]) the image of the composition

π(s,s)∗Λ
trace−−→ Λ[−2]

can−−→ π(s,s)∗Λ[−2].

• Let s 6= t ∈ I. Consider the morphism

fst : Rep(s,t) → Reps×Rept, (V ⊂ V ′) 7→ (V, V ′/V ).

LetMst = fst∗O: this is the vector bundle Ext1(V ′, V ) over Reps×Rept = {(V, V ′)}. We have
Mst ' (Ws �W−1

t )⊕dts .
The vector bundle f ∗stMst has a section given by assigning to (V ⊂ V ′) the class of the

extension 0 → V → V ′ → V ′/V → 0. The zero substack of that section is Zst = Rep(s+t)ss
, a

closed substack of codimension dts in Rep(s,t).
We denote by τst ∈ Hom(Ls ◦ Lt, Lt ◦ Ls[mst]) the image of the composition

ρ(t,s)∗(ΛZst

Gysin−−−→ ΛRep(t,s)
[2dst]) ◦ ρ(s,t)∗(ΛRep(s,t)

can−−→ ΛZst).

5.4.4. Polynomial actions. Let us first study Hom-spaces in the category P under the action
of polynomial rings.

Let ν ∈ In and ν ′ ∈ In′ . Given i ∈ I, let ni = #{r|νr = i} and n′i = #{r|ν ′r = i}. By [ChrGi,
§8.6], there is an isomorphism of (Λ[xν1 , . . . , xνn ],Λ[xν′1 , . . . , xν′n′ ])-bimodules

Ext∗(Lν1 ◦ · · · ◦ Lνn , Lν′1 ◦ · · · ◦ Lν′n′ )
∼→ Hσ−∗

c (Repν ×Rep Repν′)

where σ = dim Repν + dim Repν′ . If Ext∗(Lν1 ◦ · · · ◦ Lνn , Lν′1 ◦ · · · ◦ Lν′n′ ) 6= 0, then the stack

Repν ×Rep Repν′ is non-empty, so ni = n′i for all i. Assume this holds. It follows from §5.3.5
that Ext∗(Lν1 ◦ · · · ◦ Lνn , Lν′1 ◦ · · · ◦ Lν′n) is a free graded H∗(BG)-module of graded rank

N = vσP (W, q−1)
∑
w∈W

q−(l(w)+
∑
s 6=t dst·#{a,b|γt(b)<γs(a) and γ′t(w

−1
t (b))<γ′s(w

−1
s (a))}).

We have

σ = 2
∑
s

ns(ns − 1) +
∑
s 6=t

dst (#{a, b|γt(b) < γs(a)}+ #{a, b|γ′t(b) < γ′s(a)}) .

On the other hand,

l(w) =
∑
s

#{a, b|γs(b) < γs(a) and γ′s(w
−1
s (b)) > γ′s(w

−1
s (a))}.

It follows that

N = P (W, q)
∑
w∈W

q
1
2

∑
s,t∈I mst·#{a,b|γs(a)<γt(b) and γ′s(ws(a))>γ′t(wt(b))}

and we deduce from Lemma 3.10 that the graded dimensions of the free
(⊗

i Λ[Xi,1, . . . , Xi,ni ]
Sni
)
-

modules HomQ̄l⊗ZB(Γ)(Fν1 · · ·Fνn , Fν′1 · · ·Fν′n) and Ext∗(Lν1 ◦ · · · ◦ Lνn , Lν′1 ◦ · · · ◦ Lν′n) coincide.
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5.4.5. Relations τ 2. Let s 6= t ∈ I. The self-intersection formula shows that

ΛZst

Gysin−−−→ ΛRep(t,s)
[2dst]

can−−→ ΛZst [2dst]

is equal to

cdst(f
∗
tsMts) = (c1((Wt)|Zst)− c1((Ws)|Zst))

dst .

On the other hand, the composition

ΛRep(s,t)

can−−→ ΛZst

Gysin−−−→ ΛRep(s,t)
[2dts]

is equal to

[Zst] = cdts(f
∗
stMst) = (c1((Ws)|Zst)− c1((Wt)|Zst))

dts .

We have shown that

τts ◦ τst = (−1)dst(xsLt − Lsxt)dst+dts .
It follows from §5.3.3 that τ 2

ss = 0.

5.4.6. Relations τ 3. Consider now s, t, u ∈ I.
• Assume first s, t and u are distinct. The intersection of the closed substacks Rep((s+t)ss,u)

and Rep(t,(s+u)ss) of Rep(t,s,u) is transverse, since the intersection of 0 × Cdus and Cdst × 0 in

Cdst ×Cdus is transverse.
It follows that the composition (Ltτsu) ◦ (τstLu) is equal to the image of the composition

ρ(t,u,s)∗(CZ
Gysin−−−→ CRep(t,u,s)

[2(dsu + dst)]) ◦ ρ(s,t,u)∗(CRep(s,t,u)

can−−→ CZ)

where Z is the substack of Rep(t,u,s) (resp. of Rep(s,t,u)) of triples (L ⊂ L′ ⊂ L′′) such that
(L′′)s is a direct summand of L′′.

Similarly, the intersection of Z and Rep((t+u)ss,s) in Rep(t,u,s) is transverse and we deduce that
(τtuLs) ◦ (Ltτsu) ◦ (τstLu) is equal to the image of

ρ(u,t,s)∗(CRep(s+t+u)ss

Gysin−−−→ CRep(u,t,s)
[2(dst + dsu + dtu)]) ◦ ρ(s,t,u)∗(CRep(s,t,u)

can−−→ CRep(s+t+u)ss
).

A similar calculation provides the same description of (Luτst) ◦ (τsuLt) ◦ (Lsτtu), so we have

(τtuLs) ◦ (Ltτsu) ◦ (τstLu) = (Luτst) ◦ (τsuLt) ◦ (Lsτtu).

• We consider now the case where s = t 6= u. As above, we obtain that the composition
(τsuLs) ◦ (Lsτsu) is equal to the image of the composition

ρ(u,s,s)∗(CRep(s,s,u)ss

Gysin−−−→ CRep(u,s,s)
[4dsu]) ◦ ρ(s,s,u)∗(CRep(s,s,u)

can−−→ CRep(s,s,u)ss
).

The commutation of the action of the nil affine Hecke algebra in §5.3.3 shows that

(τsuLs) ◦ (Lsτsu) ◦ (τssLu) = (Luτss) ◦ (τsuLs) ◦ (Lsτsu).

• The case s = t = u follows from the results of §5.3.3.
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5.4.7. Conclusion. The relations (3) and (4) in §3.3.3 are clear when s 6= t and follow from
§5.3.3 when s = t. The results of §5.4.5 and 5.4.6 complete the verification of the defining
relations for the category B(Γ). Thanks to §5.4.4, we obtain a monoidal Q̄l-linear graded
functor R : (Q̄l ⊗ B(Γ))i-gr → P . That functor is essentially surjective. It follows from
Proposition 3.9 and from §5.4.4 that R is faithful.

Let ν ∈ In and ν ′ ∈ In′ . By Nakayama’s Lemma, it follows from §5.4.4 that R induces an
isomorphism

HomB(Γ)(Fν1 · · ·Fνn , Fν′1 · · ·Fν′n)
∼→ Ext∗(Lν1 ◦ · · · ◦ Lνn , Lν′1 ◦ · · · ◦ Lν′n′ ).

This completes the proof that R is an equivalence.

5.5. 2-Representations.

5.5.1. Framed quivers and construction of representations. Nakajima introduced new quiver
varieties in order to construct irreducible representations L(λ) of Kac-Moody algebras. We
present a modification due to Hao Zheng [Zh].

Let Γ̂ be the quiver obtained from Γ by adding vertices î for i ∈ I and arrows i → î. We
have Rep(Γ̂) =

∐
µ,ν∈ZI≥0

Repν̂+µ(Γ̂).

Assume i is a source of Γ. Let Ui be the substack of Rep of representations V such that the
canonical map Vi →

⊕
a:i→j Vj is injective, where a runs over arrows of Γ̂ starting at i. Let Ni

be the thick subcategory of D(Rep(Γ̂)) of complexes of sheaves with 0 restriction to Ni.
If i is not a source, consider a quiver Γ′i corresponding to a different orientation of Γ and

such that i is a source of Γ′i. Define N ′i ⊂ D(Rep(Γ̂′i) as above. Now, there is an equivalence

D(Rep(Γ̂′i)
∼→ D(Rep(Γ̂)) given by Fourier transform and we define Ni to be the image of N ′i .

Finally, let N be the thick subcategory of D(Rep(Γ̂)) generated by Ni for i ∈ I. This is

independent of the choice of the quivers Γ′i. Let D = D(Rep(Γ̂))/N .

Consider now a root datum (X, Y, 〈−,−〉, {αi}i∈I , {α∨i }i∈I) with Cartan matrix that afforded
by Γ.

Let λ ∈ X+. Let νi = 〈λ, α∨i 〉 and ν = (νi)i ∈ ZI
≥0. We put Rep(λ) =

∐
µ∈ZI≥0

Repν̂+µ(Γ̂) and

we denote by D(λ) the image of D(Rep(λ)) in D.
The convolution functor Li ◦ − stabilizes N and induces an endofunctor Ei of D(λ).
It has a right adjoint Fi. Let P(λ) be the smallest full subcategory of D(λ) containing CRepν̂ ,

stable under Ei for i ∈ I, and stable under direct summands and direct sums.

Theorem 5.9 (Zheng). The functors Ei and Fi satisfy Serre relations, and abstract versions of
the ρi,λ and σij isomorphisms. In particular, they induce an action of Uq(g) on C⊗ZK0(P(λ))
and the resulting module is isomorphic to the simple module of highest weight λ.

5.5.2. 2-representations. The action by convolution of B(Γ) on D(Rep(Γ̂)) (cf Theorem 5.7)
induces a graded action on P(λ).

Theorem 5.10. The graded action of B(Γ) on P(λ) extends to a graded action of A(Γ). There
is an equivalence of graded 2-representations of A(Γ)(

L(λ)⊗k kΓ ⊗Z Q̄l

)i
-gr

∼→ P(λ).
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Proof. We have End•(ΛRepν ) ' H∗(BGν). Given M,N ∈ P(λ), the space Hom•(M,N) is
a finitely generated H∗(BGν)-module [Zh, proof of Proposition 3.2.5]. By Theorem 5.9, the
functors Ei and Fi induce an action of sl2 on K0(P(λ))⊗Z[q±1/2] C[q±1/2]/(q1/2− 1). We deduce
from Corollary 4.13 that we have a 2-representation of A(Γ) (the grading can be forgotten to
check that the maps ρs,λ are isomorphisms).

Let i ∈ I and 0 ≤ r ≤ νi. We have Repν̂+rαi
=
∏

j 6=iBGLνj ×BPr, where Pr is the maximal

parabolic subgroup of GLνi with Levi GLr×GLνi−r. The graded action of H∗(BGLνi) on

E
(νi)
i (ΛRepν ) corresponds to the action of Q̄l[X1, . . . , Xνi ]

Sνi . We deduce that the canonical
map Pλ ⊗Z Q̄l → H∗(BGν) is an isomorphism. This proves the last part of the theorem. �

Remark 5.11. Zheng provides more generally a construction of tensor products of simple
representations, and the first part of Theorem 5.10, and its proof, generalize immediately to
that case: this provides graded 2-representations with Grothendieck group that tensor product
of simple representations.

Putting Theorems 4.25 and 5.10 together, we obtain

Corollary 5.12. There is an equivalence compatible with the graded action of A(Γ)

(B(λ)⊗k kΓ ⊗Z Q̄l)
i-gr

∼→ P(λ).

As a consequence, the indecomposable projective modules for cyclotomic quiver Hecke alge-
bras over Q̄l⊗Z k

Γ correspond to the canonical basis elements of L(λ). When Γ has type An or
Ãn, this is Ariki’s Theorem (formerly, the Lascoux-Leclerc-Thibon conjecture). Here, we used
the geometry of quiver varieties, which carry the same singularities as flag varieties, in type A.

Remark 5.13. It would be interesting to extend Theorems 5.7 and 5.10 to the case of coeffi-
cients Z or Fp.

Lauda has given an independent proof of the results of §5.5.2 for sl2: in this case, the
geometry is that of flag varieties of type A [Lau2]. An earlier geometrical approach has been
given by Cautis, Kamnitzer and Licata for sl2, based on coherent sheaves on cotangent bundles
of flag varieties and compactifications of those [CauKaLi1], later generalized to arbitrary Γ
[CauKaLi2].

Webster has given a presentation of our results and constructions in §5.5.2 and has used
this to develop a categorification of the Reshetikhin-Turaev invariants [We1, We2]. He has also
constructed a counterpart of the categories B(λ) for tensor products.
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