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ABSTRACT. We provide an introduction to the 2-representation theory of Kac-Moody algebras,
starting with basic properties of nil Hecke algebras and quiver Hecke algebras, and continuing
with the resulting monoidal categories, which have a geometric description via quiver vari-
eties, in certain cases. We present basic properties of 2-representations and describe simple
2-representations, via cyclotomic quiver Hecke algebras, and through microlocalized quiver va-
rieties.

1. INTRODUCTION
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This text provides an introduction and complements to some basic constructions and results
in 2-representation theory of Kac-Moody algebras. We discuss quiver Hecke algebras [Rou2],
which have been introduced independently by Khovanov and Lauda [KhoLaul] and [KhoLau2],
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and their cyclotomic versions, which have been considered independently in the case of level 2
weights for type A, by Brundan and Stroppel [BrStr]. We discuss the 2-categories associated
with Kac-Moody algebras and their 2-representations: this has been introduced in joint work
with Joe Chuang [ChRou] for sly and implicitly for type A (finite or affine). While the general
philosophy of categorifications was older (cf for example [BeFrKho]), the new idea in [ChRou]
was to introduce some structure at the level of natural transformations: an endomorphism of £
and an endomorphism of E? satisfying Hecke-type relations. The generalization to other types
is based on quiver Hecke algebras, which account for a half Kac-Moody algebra. We discuss
the geometrical construction of the quiver Hecke algebras via quiver varieties, which was our
starting point for the definition of quiver Hecke algebras, and that of cyclotomic quiver Hecke
algebras.

The first chapter gives a gentle introduction to nil (affine) Hecke algebras of type A. We
recall basic properties of Hecke algebras of symmetric groups and provide the construction via
BGG-Demazure operators of the nil Hecke algebras. We also construct symmetrizing forms.

The second chapter is devoted to quiver Hecke algebras. We explain that the more com-
plicated relation involved in the definition is actually a consequence of the other ones, up
to polynomial torsion: this leads to a new, simpler, definition of quiver Hecke algebras. We
construct next the faithful polynomial representation. This generalizes the constructions of
the first chapter, that correspond to a quiver with one vertex. We explain the relation, for
type A quivers, with affine Hecke algebras. Finally, we explain how to put together all quiver
Hecke algebras associated with a quiver to obtain a monoidal category that categorifies a half
Kac-Moody algebra (and its quantum version).

The third chapter introduces 2-categories associated with Kac-Moody algebras and discusses
their integrable representations. We provide various results that reduce the amount of condi-
tions to check that a category is endowed with a structure of an integrable 2-representation,
once the quiver Hecke relations hold: for example, the sly-relations imply all other relations,
and it can be enough to check them on K. We explain the universal construction of “simple”
2-representations, and give a detailed description for sl,. We present a Jordan-Holder type
result. We move next to cyclotomic quiver Hecke algebras, and present Kang-Kashiwara and
Webster’s construction of 2-representations on cyclotomic quiver Hecke algebras. We prove that
the 2-representation is equivalent to the universal simple 2-representation. Finally, we explain
the construction of Fock spaces from representations of symmetric groups in this framework.

The last chapter brings in geometrical methods available in the case of symmetric Kac-Moody
algebras. We start with a brief recollection of Ringel’s construction of quantum groups via Hall
algebras and Lusztig’s construction of enveloping algebras via constructible functions. We move
next to the construction of nil affine Hecke algebras in the cohomology of flag varieties. We
introduce Lusztig’s category of perverse sheaves on the moduli space of representations of a
quiver and show that it is equivalent to the monoidal category of quiver Hecke algebras (a result
obtained independently by Varagnolo and Vasserot). As a consequence, the indecomposable
projective modules for quiver Hecke algebras over a field of characteristic 0, and for “geometric”
parameters, correspond to the canonical basis. Finally, we show that Zheng’s microlocalized
categories of sheaves can be endowed with a structure of 2-representation isomorphic to the
universal simple 2-representation. As a consequence, the indecomposable projective modules for
cyclotomic quiver Hecke algebras over a field of characteristic 0, and for “geometric” parameters,
correspond to the canonical basis of simple representations.
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This article is based on a series of lectures at the National Taiwan University, Taipei, in
December 2008 and a series of lectures at BICMR, Peking University, in March—April 2010. I
wish to thank Professors Shun-Jen Cheng and Weiqgiang Wang, and Professor Jiping Zhang for
their invitations to give these lecture series.

2. ONE VERTEX QUIVER HECKE ALGEBRAS
The results of this section are classical (cf for example [Rou2, §3]).

2.1. Nil Hecke algebras.

2.1.1. The symmetric group as a Weyl group. Let n > 1. Given i € {1,...,n — 1}, we put
si=(i,i+1) € 6,

We define a function r : &,, — Zso. Given w € &, let R,, = {(4,7)]i < j and w(i) > w(j)}
and let r(w) = |R(w)| be the number of inversions.

The length l(w) of w € &,, is the minimal integer r such that there exists iy, ... %, with
w = 8;, -+ S;,.. Such an expression is called a reduced decomposition of w. Proposition 2.1 says
that since sq,...,s,_1 generate G,,, these notions make sense.

Note that reduced decompositions are not unique: we have for example (13) = s15281 =
$98182. Simpler is s183 = s357.

Proposition 2.1. The set {s1,...,s,_1} generates S,,. Given w € &,,, we have r(w) = l(w).

Proof. Let w € &,,, w # 1. Note that R,#0. Consider (i,j) € R,, such that j — i is minimal.
Assume j # i + 1. By the minimality assumption, (i, + 1)€R,, and (i + 1, j)E R, so w(j) >
w(i+1) > w(i), a contradiction. So, j =i+ 1. Let w’ = ws;. We have R,y = R, — {(i,i+1)},
hence r(w’) = r(w) — 1. We deduce by induction that there exist iy,...,%w) € {1,...,n — 1}
such that w = s; -+ s;,. In particular, the set {sy,...,s, 1} generates &, and I(g) < r(g)
for all g € G,,.

Let j € {1,...,n} and v = ws;. Assume (j,j + 1)¢R,,. Then, R, = R, U{(j,7 +1)}. It
follows that r(v) = r(w)+ 1. If (j,j+ 1) € Ry, then r(v) = r(w) — 1. We deduce by induction
that I(g) > r(g) for all g € &,,. O

Proposition 2.2. The element w[l,n] = (1,n)(2,n — 1)(3,n —2)--- is the unique element of

S, with mazimal length. We have l(w[1,n]) = "("2_1).

Proof. Note that Ry, = {(,7)]7 < j} and this contains any set R, for w € &,,, with equality

if and only if w = w[1,n|. The result follows from Proposition 2.1. O
The set
Co={lsn-1=(Mn—1,n),8p-25-1=M—2,n—1,n),...,8 - Sp_asp_1=(1,2,...,n)}

is a complete set of representatives for left cosets &,,/S,,_1. Let w € &,,_1 and g € C,,. We
have R(gw) = R(w) [[ R(g), so l(gw) = I(g) + l(w). Consider now w € &,,. There is a unique
decomposition w = ¢, ¢, - - - ¢a where ¢; € C; and we have [(w) = I(c,)+- - -+1(cy). Each ¢; has
a unique reduced decomposition and that provides us with a canonical reduced decomposition
of w:

W= (8,841 Siy ) (SjaSja+1 7+ Sip) (85, 85,417+ Si, )
where 71 > iy > -+ >4, and 1 < j,. < 4,.



4 RAPHAEL ROUQUIER

In the case of the longest element, we obtain
wll,n] = (s1 - S$p_1)(S1- Sp_2) 81 = (81 Sp_1)w[l,n —1].

Using canonical reduced decompositions, we can count the number of elements with a given
length and deduce the following result.

. l(w) — (1=¢)(1—¢*)(1—q")
Proposition 2.3. We have Y, s ¢'*) = =2 T

Lemma 2.4. Let w € &,,. Then, l(w™) = l(w) and I(w[l,n]w™!) = l(w[1,n]) — I(w).

Proof. The first statement is clear, since w = s;, ---s;, is a reduced expression if and only if

wl=s - s;, 1s a reduced expression.

We have Ry nw = {(4,4)[(¢ < j) and w(i) < w(j)}. The second statement follows. O
We recall the following classical result.
Proposition 2.5. The group &,, has a presentation with generators sy, ..., s,—1 and relations
sisj = 8;8; if |i — j| > 1 and $;8;418; = Si+15iSi+1.

2.1.2. Finite Hecke algebras. Let us recall some classical results about Hecke algebras of sym-
metric groups.
Let R = Z[q1,q)]. Let H! be the Hecke algebra of &,,: this is the R-algebra generated by
Ti,...,T,_1, with relations
1T, = Tip TiTi, T =TT, if [i — j| > 1 and (T; — ¢1)(T; — q2) = 0.
There is an isomorphism of algebras
HI @r R/(q1 — 1,q0 + 1) > Z[S,], T; = s;.

Let w € 6,, with a reduced decomposition w = s;, - --s;,. Weput T, =15, ---T;, € HT{. One
shows that T, is independent of the choice of a reduced decomposition of w and that {7, }wes,
is an R-basis of the free R-module H/.

Given w,w' € &, with l(ww') = l(w) + I(w'), we have T, T,y = Tipy-

The algebra H/ is a deformation of Z[&,,]. At the specialization ¢; = 1, go = —1, the element
T, becomes the group element w.

2.1.3. Nil Hecke algebras of type A. Let OHfL = H/ ®r R/(q1,q2). Given w,w' € &, we have

3 AN /
T. T, — Ty if l(ww.) = l(w) + l(w)
0 otherwise.

So, the algebra OHfl is graded with deg T, = —2l(w). The choice of a negative sign will become
clear soon. The factor 2 comes from the cohomological interpretation.

Given M = @, .5 M; a graded Z-module and r € Z, we denote by M (r) the graded module
given by (M(r)); = Miy,.

We have ("HY), = Doce, iw)=—ija LTw- So, (CH?); =0 unless i € {0,-2,...,—n(n —1)}.
Let k be a field and k°HY = °H! ©y k.



QUIVER HECKE ALGEBRAS AND 2-LIE ALGEBRAS 5

Proposition 2.6. The Jacobson radical of K°H’ is rad(k°H’) = D.p1 kT and KH has
a unique minimal non-zero two-sided ideal soc(kOHfL) = kTypn- The trivial module k, with
0-action of the T;’s, is the unique simple kOHﬁ-module.

Proof. Let A =FK'H’. Let J = Ay = @D.,.1 kT We have Jr=D+1 — 0. So, J is a nilpotent
two-sided ideal of A and A/J ~ k. It follows that J = rad(A): the algebra A is local and k is
the unique simple module.

Let M be a non-zero left ideal of A. Let m = > «,T, € M be a non-zero element.
Consider w € &, of minimal length such that a, # 0. We have T, pjw-1m = Ty n
because Ty pjw-1 T = 0 if [(w') > I(w) and w’ # w. It follows that kT, C M. That shows
that kT,[1 ) is the unique minimal non-zero left ideal of A. A similar proof shows it is also the
unique minimal non-zero right ideal. U

Remark 2.7. Let k be a field and A be a finite dimensional graded k-algebra. Assume Ay = k
and A; =0 for ¢ > 0. Then rad(A4) = Ay.

2.1.4. BGG-Demazure operators. We refer to [Hi, Chapter IV] for a general discussion of the
results below.

Let P, = Z[X;,...,X,]. We let &,, act on P, by permutation of the X;’s. We define an
endomorphism of abelian groups 9; € Endz(F,) by
Xipn = Xi
Note that the operators 9, are PS"-linear. Note also that im d; C P% = ker d;.

The following lemma follows from easy calculations.

Lemma 2.8. We have 822 = O, (910] = 8]82 fO?" ’Z — j| > 1 and azalﬂ& = @H@@H.

ai<P) =

We deduce that we have obtained a representation of the nil Hecke algebra.

Proposition 2.9. The assignment T; — 0; defines a representation of OHfi on P,.

Define a grading of the algebra P, by deg X; = 2. Then, the representation above is com-
patible with the gradings.
Given w € 6,,, we denote by 0, the image of T,,.

The following result is clear.
Lemma 2.10. Let P € P,. We have 0;(P) =0 for all i if and only if P € PSn.

If M is a free graded module over a commutative ring k£ with dim, M; < oo for all ¢ € Z, we
put grdim(M) = 3, ., ¢"/* dim(M;).

Theorem 2.11. The set {0,(Xo X2+ X" ) }yes, is a basis of P, over PSm.
Proof. Let us show by induction on n that
Owii ) (Xo X5 - X071 = 1.
We have w[l,n] = s,_1---s;w[2,n] and l[(w[1,n]) = I(w[2,n]) + n — 1. By induction,
awpm()ﬁxg XD =Xy X, Do) (X3 - - X = Xy X,
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On the other hand, d,_1 -+ (X2 -+ X,,) = 1 and we deduce that Oy (X2 X3 -+ X271) = 1.

)
Let M be a free PS"-module with basis {b, }uwes,, with degb, = 2l(w[l,nJw™!) = n(n —
1) — 2l(w). Define a morphism of PS"-modules

¢ M — Py, by Op(XoXa--- X27h).

This is a graded morphism.
Let k be a field. Let a = >, Quby € ker(¢p ® k), where Q, € k[X1,...,X,]%". Assume
a # 0. Consider v € &,, with @, # 0 and such that [(v) is minimal with this property. We
have Oy njv-1(¢(a)) = Q,, hence we have a contradiction. It follows that ¢ ® k is injective.
We have grdimP, = (1 —¢)™™. On the other hand, we have PS" = Zley, ..., e,], where ¢, =
er( X1, Xn) = D 1ciiconciycn Xin -+ X, S0, grdimPe = (1 —¢) 7' (1 —¢*)7 - (1 —=¢")7 "
We deduce that

grdimM = (1 —¢) ™' (1 —¢")! Z 4@

weGy,
The formula of Proposition 2.3 shows that grdimM = grdimP,. Lemma 2.13 shows that ¢; ® k
is an isomorphism and then Lemma 2.12 shows that ¢; is an isomorphism for all 4. U

The following two lemmas are clear.

Lemma 2.12. Let f : M — N be a morphism between free finitely generated Z-modules. If
f ®z (Z/p) is surjective for all prime p, then f is surjective.

Lemma 2.13. Let k be a field and M, N be two graded k-modules with dim M; = dim N; finite
foralli. If f : M — N is an injective morphism of graded k-modules, then f is an isomorphism.

Remark 2.14. Note that {X32 -+ X% }o<a,<i—1 is the more classical basis of B, over Po".

2.2. Nil affine Hecke algebras.
2.2.1. Definition. Let °H,, be the nil affine Hecke algebra of GL,: this is the Z-algebra with
generators Xq,...,X,,T1,...,T,_1 and relations

XiX; = X;X;, T2 =0, Tl Ty = Tin T, T =TT if i — j| > 1,

T,X;=X;T;itj—i#0,1, T, Xip1 — X;T; =1 and TX; — X1 T = —1.

It is a graded algebra, with deg X; = 2 and degT; = —2.
The following lemma is easy.

Lemma 2.15. Given P,Q € P,, we have 0;(PQ) = 0;(P)Q + s;(P)%(Q).
Lemma 2.15 is the key ingredient to prove the following lemma.
Lemma 2.16. We have a representation p of °H,, on P, given by
p(T)(P) = 0(P) and p(X)(P) = X;P.

Proposition 2.17. We have a decomposition °H, = P, ® OH{L as a Z-module and the repre-
sentation of °H,, on P, is faithful.
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Proof. Let {P,}yees, be a family of elements of P,. Let a = ) P,T,,. If a # 0, there is
w € 6, of minimal length such that P, # 0. We have aT',-1,1,n] = PuTiw[,n and
p(a)(awflw[l,n}(XQ T X:;_l)) - Pwaw[l,n] (X2 T Xg_l) - Pw

(cf Proof of Proposition 2.11). We deduce that p(a) # 0. Consequently, the multiplication

map P, ® °H i — OH,, is injective and the representation is faithful. On the other hand, the
multiplication map is easily seen to be surjective. U

Note that P, and °H? are subalgebras of °H,.
The module P, is an induced module: we have an isomorphism of °H,-modules

P, 5 H, ®oyr Z, Prs PO L.
Remark 2.18. Given P € P,, one shows that T;P — s;(P)T; = PT; — T;s;(P) = 0;(P).
2.2.2. Description as a matriz ring. Let b, = Ty X2 X3 - X271
Lemma 2.19. We have b2 = b,, and °H,, = °H,,b,°H,,.
Proof. Note that Ty, is the unique element of Endpe. (P,) that sends XoX2--- X" ! to 1
and 0, (XoXZ2--- X" 1) to 0 for w # 1 (cf Proof of Theorem 2.11 for the first fact). We have
P(Tw[l,n]X2X§ o -Xg_lTw[Ln})(ﬁw(XQXg T 'Xg_l)) =0
for w # 1 and
P(Tupm XXy - X0 Do) (X Xy -+ X371) = O,y (Xo X5 - X071 = 1.
It follows that b,Ty(1n = Twi,n)-
We show now by induction on n that 1 € °H, Ty, Hp. Given 1 <7 <n — 1, we have
T T aTupn-1Xn — XoTr - T Typin—1 = Tog1 - TocaTwpin—1),

where we use the convention that T, ---T, 1 = Hr+1§j§n—1 T; = 1if r = n—1. By induction
on r, we deduce that Ty 1] € "HToi )" Hy, since Ty ) = Tt -+ Ty 11 n—1)- By induction
on n, it follows that 1 € OHnTw[ljn]OHn =9H,b,"H,. O

Remark 2.20. Given w € &, and P € P,, one shows that T,,PT,p ., = Ow(P)Twpy (a
particular case was obtained in the proof of Lemma 2.19).
We have an isomorphism of °H,,-modules
P, = °H,b,, P~ Pb,

This shows that P, is a progenerator as a °H,-module: it is a finitely generated projective
OH,-module and °H,, is a direct summand of a multiple of P,, as a °H,-module.

Given A a ring, we denote by A°PP the opposite ring: it is A as an abelian group, but the
multiplication of @ and b in A°PP is the product ba computed in A.

Proposition 2.21. The action of °H,, on P, induces an isomorphism of PS"-algebras
°mH, > End pe, (P,).

Since P, is a free PS"-module of rank n!, the algebra °H, is isomorphic to a (n! x n!)-matriz
algebra over PSn.
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Proof. Since P, is a progenerator for ° H,,, we deduce that the canonical map °H,, — End pSn (P)

is a split injection of PS"-modules (Lemma 2.22). The proposition follows from the fact that
0H, is a free PS"-module of rank (n!)?. O

Lemma 2.22. Let R be a commutative ring and A an R-algebra, projective and finitely gen-
erated as an R-module. Let M be a progenerator for A. Then, the canonical map A —
Endg(M)°PP is a split injection of R-modules.

Proof. Let f : A — Endgr(M) be the canonical map and L its cokernel. The composition of
morphisms of R-modules

a@m—a(m)

M 22NE prdp(M) @4 M M

is the identity. So, f ®4 157 is a split injection of R-modules, hence L ®4 M is a projective
R-module, since Endg(M) is a projective R-module and M is a projective A-module.

By Morita theory, there is N an (End (M), A)-bimodule that is projective as an End4(M)-
module and such that M ®gna,) N ~ A as (A, A)-bimodules. The R-module L ~ (L ®4
M) ®gna, ) N is projective, since N is a projective End (M )-module. Since L is a projective
R-module, we deduce that f is a split injection of R-modules. U

We give now a second proof of Proposition 2.21. The proof of the faithfulness of the rep-
resentation P, of °H,, works also to show that P, ®pe. (Py"/m) is a faithful representation

of °H, ®pe, (P /m), for any maximal ideal m of Py». Proposition 2.21 follows now from
Lemma 2.23.

Lemma 2.23. Let R be a commutative ring, f: M — N a morphism between free R-modules
of the same finite rank. If f @r 1g/m is injective for every maximal ideal m of R, then f is an
1somorphism.

Proof. Fix bases of M and N and let d be the determinant of f with respect to those bases. Let
I be the ideal of R generated by d. Assume dZ¢R*. There is a maximal ideal m of R containing
I. Since f ®g 1r/m is an injective map between vector spaces of the same finite rank, it is an
isomorphism, so we have d - 1p/n7#0, a contradiction. Il

2.3. Symmetrizing forms.

2.3.1. Definition and basic properties. Let R be a commutative ring and A an R-algebra, finitely
generated and projective as an R-module. A symmetrizing form for A is an R-linear map
t € Hompg(A, R) such that

e { is a trace, i.e., t(ab) = t(ba) for all a,b € A
e the morphism of (A, A)-bimodules

t: A — Homg(A, R), a+s (b t(ab))
is an isomorphism.

Consider now a commutative ring R’ such that R is an R’-algebra, finitely generated and
projective as an R’-module. Consider ¢t € Hompg(A, R) a trace and ' € Hompg (R, R’). We have
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a commutative diagram

Hompg(A,t")

A——' . Hompg(A,R) Hompg(A, Homp (R, R'))

Homp (A, R')

We deduce the following result.
Lemma 2.24. If two of the forms t, t' and t't are symmetrizing, then so is the third one.

Let now B be another symmetric R-algebra and M an (A, B)-bimodule, finitely generated
and projective as an A-module and as a right B-module. We have isomorphisms of functors

Hom (M, —) €2 Homu(M, A) @4 — 222 Homp(M, R) @4 —

and similarly Homg(Hompg(M, R), —) = M ®p —. We deduce that M ®p — is left and right
adjoint to Hom (M, —).

2.3.2. Polynomials.
Proposition 2.25. The linear form Oy is a symmetrizing form for the Pom-algebra P,.

We will prove this proposition in §2.3.4: it will be deduced from a corresponding statement
for the nil affine Hecke algebra, that is easier to prove.

Together with Lemma 2.24, Proposition 2.25 provides more general symmetrizing forms.

Corollary 2.26. Given 1 <i < n, then the linear form Oy1 5)0w(1,i]Owli+1,n) S @ symmetrizing

2.3.3. Nil Hecke algebras. Define the Z-linear form tg : OHfL — Z by to(Tw) = Ow,wiin)-

Define an algebra automorphism o (the Nakayama automorphism) of *H fl by o(T;) = T,—;.
Note that J(Tw) = Tw[l,n}ww[l,n]-

The form ¢, is not symmetric, it nevertheless gives rise to a Frobenius algebra structure.

Proposition 2.27. Given a,b € H’, we have to(ab) = to(o(b)a). The form to induces an
1somorphism of right OHf;—modules

to : OHfL = Homz(OHfL7 Z),a — (b to(ab)).

Proof. Let w,w' € &,. We have to(T,,T,y) = 0 unless w' = w™'w[l,n], in which case we
have to(TwTy-1uwpn) = 1. We have to(0(Tw)Tw) = to(Twppwwinlw). This is 0, unless
w = (w[l, nJw'w[1,n])tw[l, n|, or equivalently, unless w = w[l,nJw'~t. In that case, we get
to(0(Tw-1win)s Tw) = 1. This shows that to(T, T ) = to(o(Tw)Ty) for all w,w' € G,

Let p be a prime number. The kernel I of {y ®z F, is a two-sided ideal of F,°H fl On the
other hand, fo(Tw[l,n})(l) = to(Twp,n) = 1, hence Ty €1. It follows from Proposition 2.6 that

~

I = 0. Lemma 2.23 shows now that t; is an isomorphism. Il
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2.3.4. Nil affine Hecke algebras. We define a PS-linear form t on °H,,
t:°H, — P2, t(PTy) = SwwinOuin(P) for P € P, and w € &,
Let v be the Z-algebra automorphism of °H,, defined by
Y(Xi) = Xpiy1 and Y(T3) = =T, .
Lemma 2.28. We have t(ab) = t(y(b)a) for a,b € °H,,.
Proof. Let i € {1,...,n}. By induction on I(w), one shows that
T.Xi - XupTwe @ Pl
w €Sy, l(w")<l(w)
It follows that
T Xi = Xn—isiTupn € 6P PuTo
ww[l,n]

We deduce that t(PT,X;) = t(PX,_/T,) for w € &, and P € P,.
Let i€ {1,...,n — 1} and P € P,. Remark 2.18 shows that

We have Oy1,4)(On—i(P)) = 0, s0 t(On—i(P)T) = 0. We have Oy (P + s,—i(P)) = 0, hence

Owli,n)(8n—i(P)) = —Ow1,n(P). Since s,_;w = w[l,n] if and only if ws; = w[l,n|, we deduce
that t(s,—;(P)T,-iT,) = —t(PT,T;). This shows that t(PT,T;) = t(-1,-;PT,) for w € &,
and P € P,. The lemma follows. ]

When viewed as a subalgebra of Endz(P,), then °H,, contains &,, since the action of &,
is trivial on PS" (Proposition 2.21). The injection of &, in °H,, is given explicitly by s; —
(X; — X;)T; + 1.

The following lemma is an immediate calculation involving endomorphisms of P,.

Lemma 2.29. We have w[l,n] - a-w[l,n] =~(a) for alla € °H,,.

Let ¢’ be the linear form on YH,, defined by #(a) = t(aw][1, n]).

Proposition 2.30. The form t' is symmetrizing for the P -algebra °H,,.

Proof. Lemmas 2.28 and 2.29 show that ¢'(ab) = t'(ba) for all a,b € "H,,.

Let m be a maximal ideal of P°» and k = P~ /m. We have k°H,, ~ M,,(k) by Proposition
2.21. We have t'(Xy- - X' Typnw[l,n]) = 1 (cf the proof of Theorem 2.11), hence the form
' ® psn Ly s not zero. As a consequence, it is a symmetrizing form, since k°H,, ~ M, (k) by

Proposition 2.21. We deduce that ¢ @ pen k is an isomorphism, so t' is an isomorphism by
Lemma 2.23. U

Proof of Proposition 2.25. Let m be a maximal ideal of P and k = PS" /m. Let P be a non-
zero element of P, ® ps. k. By Proposition 2.30, there is a € k°H,, such that t'(PT, a) # 0.
So, t(PTypnow[l,n]) # 0. There are elements Q,, € P, ® psn k such that aw[l,n] =", TwQuw.
Then

t(PTupmaw(l, n]) = t(PTynn Q1) = t(7(Q1) PTufin) = Oupim (7(Q1)P) # 0.
We deduce that éw[m] ®pen ( PS» /m) is injective for any maximal ideal m of PS». It follows

from Lemma 2.23 that 0,1, is an isomorphism. ]
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Remark 2.31. One can show that the automorphism o of °H £ is not inner for n > 3.

3. QUIVER HECKE ALGEBRAS

3.1. Representations of quivers. We refer to [GaRoi| for a general discussion of quivers and
their representations.

3.1.1. Quivers. Let @ be a quiver (= an oriented graph), i.e.,

e a finite set Qo (the vertices)
e a finite set @1 (the arrows)
e maps p,q : Q1 — @ (tail=source and head=target of an arrow).
Let k be a commutative ring. A representation of @) over k is the data of (Vi, ¢4)sc0q.ac:
where V; is a k-module and ¢, € Homy,(Vy(a), Vy(a))-
A morphism from (Vi, ¢)sa to (V] ¢))sa is the data of a family (fs)seq,, where fs €
Homy (V;, V), such that for all a € @, the following diagram commutes:

ba
Via) — Va(a)

fp<a>l lqu

/ !/
Vo 5 Vata

The quiver algebra k(Q) associated to @ is the k-algebra generated by the set Qg U @)1 with
relations

Sa4 = Oy(a),s@; AS = Op(a) 50, S8 =0gys fors, s’ € Qpandaec @y and 1= Zt
t€Qo
Let v = (s1,a1, S2,as,...,8,) be a path in @, i.e., a sequence of vertices s; € Qg and arrows
a; € Qq such that p(a;) = s; and g(a;) = s;41. We put 5 = s,a,-1 -+ - ags2a181 € k(Q).
The following proposition is clear.

Proposition 3.1. The set of 7, where vy runs over the set of paths of Q, is a basis of k(Q).

Note that k(Q) is a graded algebra, with @y in degree 0 and @); in degree 1. In general, a
path of length n is homogeneous of degree n.

There is an equivalence from the category of representations of @) to the category of (left)
k(Q)-modules: given (Vi, ¢,) a representation of @), let M = @, V;. We define a structure of
k(Q)-module as follows: s € Qg is the projection onto V. An element a € @)y acts by zero on
@s#(a) V; and sends Vj(q) to V(e via ¢,.

Assume k is a field. Given s € @, there is a simple representation S = S(s) of @) given by
Sy =0fort#s, S;=kand ¢, =0 for all a € Q1. When k(Q) is finite dimensional, we obtain
all simple representations of (), up to isomorphism.

Example 3.2. For each of the following quivers, we give the list of finite dimensional inde-
composable representations (up to isomorphism) and we indicate the isomorphism type of the
quiver algebra. We assume k is a field.

(i) e : (k). The quiver algebra is k.
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(11) 1—2 S(l) = (Sl = k,SQ = 0,¢ = 0), 5(2) = (Sl = 0,52 = k,¢ = 0) and
M = (M; =k, My = k,¢ = 1). The quiver algebra is isomorphic to the algebra of 2 x 2
upper triangular matrices.

Al

(iii) C o : (K", 0(n,A\))n>12ex With ¢(n,\) = o , assuming k is an alge-
S
A

braically closed. The quiver algebra is isomorphic to k[z].

3.1.2. Quivers with relations. Let () be a quiver and k£ a commutative ring. A set R of relations
for @ over k is a finite set of elements of k(Q))>2. We denote by I = (R) the two-sided ideal of
k(Q) generated by R and we put A = k(Q)/I.

Remark 3.3. Assume k is an algebraically closed field. Let A be a basic finite dimensional
k-algebra (i.e., all simple A-modules have dimension 1). One shows that there is a quiver @
with relations R such that A ~ k(Q)/(R). The vertices of @) are in bijection with the set of
simple A-modules, up to isomorphism, while the set of arrows is in bijection with a basis of
rad(A)/rad(A)>2.

3.2. Quiver Hecke algebras. We review some constructions and results of [Rou2, §3.2] and
provide some complements. We will give three definitions of quiver Hecke algebras:

e By generators and relations, modulo polynomial torsion
e By (more complicated) generators and relations
e As a subalgebra of a ring of endomorphisms of a polynomial ring (over a quiver)

3.2.1. Wreath and nil-wreath products. Let k be a commutative ring. Let I be a finite set and
n > 0. We define a quiver ¥y, with vertex set I”. We will use the action of the symmetric
group &,, on I™. The arrows are

5, =5i,:0—>s(v)for1<i<n—1landvel"

o1, =x;,:v—viorl <i<nandvel"
We define the quiver algebra A = A(V;,,, Ry) over k with the quiver above and relations R;:

S? =1, 8;8; = 88 if |Z —j| > 1, SiSi4+18;i = Si4+1SiSi+1
T = x;%;, 5,75 = x;8; if § #1414+ 1 and 8,2 = 4418

When |I| = 1, we have A = k[zy,...,2,] X &, = k[z] 1 &,,. In general, A = k[z]"1 &,,.

We can construct a similar algebra, based on the nil Hecke algebra instead of k&,,. We use T;
to denote the arrow called s; earlier. We define a quiver algebra A’ = A(V;,,, Ry) with relations
Roi

T2 =0, T, = TyTy it [i — j| > 1, T T = Ton T
2 = v, Tixy = o1 if j #1,0+ 1, Tixy = x0T and Tz = 2,715,
Remark 3.4. Let B be a k-algebra and n > 0. There is a (unique) k-algebra structure on
(B®") ® (OHi) such that B¥" = B®;, B®}, -+ ®; B and 0H£ are subalgebras and (1® Ty,) -
n fa\crtors

(a1 @ ®ay) ®1) = ((aw) ® -+ @ aym)) ®T,,). We denote by B2 (OHfl) the corresponding
algebra.
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We have A’ = k[z]' 1 ("HY).
3.2.2. Definition. We come now to the definition of the quiver Hecke algebras [Rou2, §3.2]. Fix

a matrix Q = (Qyj)ijer in kfu,v']. Assume
® ;=0
e ();; is not a zero-divisor in k[u, '] for i # j and
o Qij(u,u') = Qji(v/, u).
We define the algebra H, (Q) = A(V;,, Ry) with relations R, (we use 7; to denote the arrow
called s; earlier):

Tisi(v) Ty = Qvi,vi+1 (xi,va xi—l—l,v)a TiT; = T;T; if |Z - .]| > 1
Ti+1,sisi+1(v)Ti,s,-+1(v)7-i+1,v = Ti,si_;,_lsi(U)Ti—l—l,si(v)Ti,v lf U; # Vi42 O VU = Vi41 = Vj42
-1, ifa=1and v; = v
Tilj = TjXs, TiwLlaw — $si(a),si(v)7-i,v = 11, ifa=1 +1 and Vi = Vi1
0 otherwise.
We define H,(Q) = A(V;,, Rg) where Rq consist of the relations Ry, together with

Ti+1,sisi+1(v)Ti,si+1(v)Ti+1,v - Ti,sH.lsi(v)Ti—l-l,si(v)Ti,v =
($i+2,u - sz‘,v)_l (Qvi,vi+1(xz‘+2,v7 $i+1,v) - Qvi,vi+1<xi,v7 $i+1,v))

when v; = vipp # Vip1

Note that the relation is written using (2,42, —a:m)_l to simplify the expression: the fraction
is actually a polynomial in x;,, Zi11, and x;42,.

The following lemma shows that, up to multiplication by a polynomial, these extra relations
follow from the ones in Ry,. Since H,(Q) has no polynomial torsion, it follows that H,(Q) is
the quotient of H/ (Q) by the polynomial torsion.

Lemma 3.5. The kernel of the canonical surjective morphism of quiver algebras H](Q) —»
H,(Q) is the subspace of elements a such that there is P € k[zy,...,x,] that is not a zero-
divisor and such that Pa = 0.

Proof. The property of H,(Q) to have no polynomial torsion is a consequence of Proposition
3.7 below. We show here that the kernel of the canonical map H/(Q) — H,(Q) is made of
torsion elements, i.e., that suitable polynomial multiples of the relations in Rq but no in Ry,
come from relations in R,.

Consider v € I"™ with v; = v; 19 # v;1. We have the following equalities in H/,(Q):

(Ti,vTi+1,Si+1(v)Tz‘,sm(v))Tm,v = (Ti+1,s@-(v)7i,v7z‘+1,sl-+1(v))Tz'+1,v = Tit1,5:(0) Ti Qi 1,0, (Tit1,0) Tivaw)
(Ti,vTi,si(v))TiJrl,si(v)Ti,v = Qvi+1,vi (xi,si(v)a J:iJrl,s,'(v))TiJrl,si(v)Ti,v =
Ti+1,si(v)7_i,vai+1,vi (:UH—LU, xi+2,v)+7_i,v (xi—i-Q,v_xi—i-l,v)_l (Qvi,viJrl (xi+27v7 xi+1,v)_Qvi,vi+1 (xi,va xi—f—l,v))

Let

A = Tit1,5;801(0) Ti,5i01 () Tid 1,0 = Tisip1si(v) Tit1,s:(v) Ti,o ™

- ($i+2,u - xi,v)_l(Qvi,vi+1(fL‘i+2,va $i+1,v) - Qvi,vi+1(xi,v7 $i+1,y))
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We have shown that 7;,a = 0, hence

0= Ti,s;(v) Ti,wd = Qvi,vi+1 (xi,va xiJrl,v)@

and the lemma follows. Il

When |I| = 1, we have A = k°H,,.

Let J be a set of finite sequences of elements of {1,...,n — 1} such that {s; -+ }g,..i)es
is a set of minimal length representatives of elements of &,,.
The following lemma is straightforward.

Lemma 3.6. The set

an

— ay
S - {TiT‘ysiril"'Sil (’U) e Til,U‘rl,v e :Cn,v (il7'“77:7‘)6‘]7(&1""?an)ezgoyveln

generates H,(Q) as a k-module.

Proof. Given a product a of generators 7; and x;, one shows by induction on the number of
7;’s in the product, then on the number of pairs of an z; to the left of a 7;, that a is a linear
combination of elements in S. U

Note that the generating set is compatible with the quiver algebra structure, as it is made
of paths. Given v, v € I"™, the set

. . o o . al . o an . .
{Tirsiy s (0) 7 Tir ol Tl Y (i1 i )1 esan JEBL, 85 w85, (0)=0

generates 1, H,(Q)1, as a k-module.

The algebra H,,(Q) is filtered with 1, and z; ,, in degree 0 and 7; ,, in degree 1. The relations R¢
become the relations Ry after neglecting terms of lower degree, i.e., the morphism A(¥;,,) —
H,(Q) gives rise to a surjective algebra morphism f : A’ = k[z]' 1 °H! — grH,(Q), where
grH,(Q) = @,oo F'H,(Q)/F'"'H,(Q) is the graded algebra associated with the filtration.

Proposition 3.7. The algebra H,(Q) satisfies the Poincaré-Birkhoff-Witt property, i.e., the
morphism f is an isomorphism. Furthermore, H,(Q) is a free k-module with basis S

We will prove this proposition by constructing a faithful polynomial representation. This is
similar to the case of the nil affine Hecke algebra (case |I| = 1).

Assume there is d € Z' such that Q;;(u®,v%) is a homogeneous polynomial for all 7 # j. We
denote by p;; the degree of Q;;(u%,v%). Then, the algebra H,(Q) is a graded k-algebra with
deg x; = 2d,, and deg Tij = py,u;-

The quiver Hecke algebras have been introduced and studied independently by Khovanov
and Lauda [KhoLaul, KhoLau2| for particular @’s.

3.2.3. Polynomial realization. Let P = (P;;); jer be a matrix in kfu, u'| with P; = 0forall i € 1
and such that P,; is not a zero-divisor for i # j. Let @Q; j(u,v') = P, ;(u,u') P (v, u).

We consider the following representation M = (M,),e» of our quiver algebra. We put
M, = k[zy,...,x,]. We let z; act by multiplication by z; and

(v —wip1) s — 1) ifsi(v) =w

Pm,vm ($¢+17 371)51 otherwise.

Tiw : My — Mg, ) acts by {
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Proposition 3.8. The construction above defines a faithful representation of H,(Q) on M.

(@ — l‘i+1)_1(3i —1) ifv;,=v

Proof of Propositions 3.7 and 3.8. Let 7/, = {P (11, 21)5 otherwise
V;, V341 \Yi+1y L5 )91 .

/ /
We have 7/ () Tij10 =

(i — i) T (3 — @ig2) 7' (8381 — i) — (Tig1 — Tiga) (51 — 1)) if v = V41 = vigo

Pv,vi+1(90i+1, %)(Iz - xi+2)71(3i3i+1 - Si) if vig1 = vigo # vy
(xi - xi-‘rl)_l (P”Uz'+1,vi+2 (Ii-‘r?? xi)sisi-‘rl - P'Ui+17'Ui+2 (xi+27 Ii—i—l)si—i-l) it Vi = Vjy2 7& Vi+1
Py oio(Tig1, Ti) Poy 3 oo (Tig2, Ti)SiSia if viyo & {vi, viga}

One checks then easily that the defining relations of H,(Q) hold.

It is easy to check that the image of S in Endjm (M) is linearly independent over k: this
can be done by extending scalars to k(xy, ..., x,) and relating by a triangular base change the
bases {0y fwes, and {w}ees, of Endyy,  zen(k(z1, ..., 2,)) as a left k(zy,. .., z,)-module.

It follows that the canonical map H,(Q) — End;m» (M) is injective and that S is a basis of
H,(Q) over k. Also, the image of S in grH,(Q) lifts to a basis of A’

Note finally that given (Q;;), we can construct a matrix (P,;) as follows: for i # j, choose an
order. When i < j, we define P;; = Q;; and Pj; = 1. O

Let v € I". We put 1| = >° s, /stab() Low) and H([v|) = 1, H,(Q)1. The next propo-
sition shows that H(|v|) doesn’t have “non-obvious” quotients that remain torsion-free over
polynomials.

Let n; = #{r|lv, =i} and let v, : {1,...,n;} — {1,...,n} be the increasing map such that
U,y = 4 for all r.

For every o € G,,, we have a morphism of algebras

® k[Xi,lv s 7Xi,n,-] — 10’(1/)H7L(F)]-O'(l/)7 Xi,r = Lio(vi(r))-

The diagonal map restricts to an algebra morphism @), k[X;1, ..., Xin]% — Z(H(|v|))
(this is actually an isomorphism by [Rou2, Proposition 3.9]).

Proposition 3.9. Let J be a non-zero two-sided ideal of H(|v|). Then, there is a non-zero
Pe®,k[Xit1,...,Xin] such that P-idy € J.

Proof. Consider the algebra A = k[z] 16, = (@ueln k[xl,...,xn]lu) x 6,. Let O =
D, klrr, .. wal[{(i—25) " Higjpimpy Lu and A = O@gupyen A. Let B =D, e, Lot A Lorw)-
The algebra B is Morita-equivalent to its center which is isomorphic to
_ Gn,
@) (Kl ] {0 — ) Ham) ™ -
iel

It follows that any non-zero ideal of B intersects non-trivially Z(B). The proposition fol-
lows now from the embedding of Endg(M) in B and the properties of that embedding [Rou2,
Proposition 3.12]. O
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3.2.4. Cartan matrices and quivers. A generalized Cartan matrix is a matrix C' = (a;;); jer such
that a; = 2, a;; < 0for ¢ # j and a;; = 0 if and only if aj;; = 0. The matrix C' is symmetrizable
if in addition there is a diagonal matrix D with diagonal coefficients in Z-, such that DC' is

symmetric.
Consider now a graph with vertex set I and with no loop. We define a symmetric Cartan
matrix by putting a;; = —m;; for i # j, where m;; is the number of edges between ¢ and j. This

correspondence gives a bijection between graphs with no loops and symmetric Cartan matrices.

Let I' be a quiver (with no loops) and [ its vertex set. This defines a graph by forgetting the
orientation, hence a symmetric Cartan matrix. Let d;; be the number of arrows ¢ — j, so that
mi; = dij + dj;. Let Qi = (=1)%i (u — v)™i for i # j. We put H,(T') = H,(Q), where k = Z.

This is a graded algebra, with degx; = 2 and deg7,; = —ay,,v;,,-

Let v,v" € I™. Let n; = #{r|v, =i} and n} = #{r|v. = i}. We have 1,,H,(I")1, = 0 unless
n; = n, for all i. Assume this holds. Define ~;, v/ : {1,...,n;} — {1,...,n} to be the increasing
maps such that v,y = v’%(r) =i forallr. Let W =[], &,,.

Lemma 3.10. The left (resp. right) Z[x,. .., x,])-module 1, H,(T")1, is free: there is a graded
Z-module L such that

o 1,H,(D)1, ~Z[xy,...,2z,) ®z L as graded left Z[xy, . .., x,]|-modules and

o 1,H,(I)1, ~ L®zZxy,...,x,] as graded right Z[z, . .., x,]-modules.

We have
grdimL = 3 gb eer an ot @< and v @)= O}

weWw

Proof. The first part of the lemma follows from Proposition 3.7 (and its right counterpart). We

have 1
grdlmL = E qa deg(n“sir71'”sil(”)"'Til’U)

(i1, ir)Ed
Sip8ip (V)=0

The set E of elements h € &,, such that h(v) = v’ is a left (and right) principal homogeneous
set under the action of W, via the maps 7; and ~;. Denote by g € &,, the unique element of
minimal length such that g(v) = ¢v’. Then, we obtain a bijection W = E, w — wo g. The
formula follows from a variant of Proposition 2.1. O

3.2.5. Relation with (degenerate) affine Hecke algebras. We show in this section that quiver
Hecke algebras associated with quivers of type A (finite or affine) are connected with (degen-
erate) affine Hecke algebras for GL,,.

_Let R = Z[¢*'] = Rl¢*"]/(¢1 — ¢,¢2 + 1). Let H, be the affine Hecke algebra: it is the
R-algebra generated by elements X;,..., X, T1,...,T,_1 where the X, are invertible and the
relations are

(Ts — )T, + 1) = 0, TLTy = TyT, if i — j| > 1, T\Toi1 Ty = Ton T
XX, =X;X;, TLX; =X,;T; it j —i#0,1 and T;X; 11 — X;T; = (¢ — 1) X;41.
As in the nil affine Hecke case (Proposition 2.17), we have a decomposition as R-modules
H, = R[X{', ... X @z RH/
and R[X{', ..., X*] and RH/ are subalgebras.
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Let k be field endowed with an R-algebra structure and assume gl # 1.

Given M a k-vector space and x an endomorphism of M, we say that x is locally nilpotent on
M if M is the union of subspaces on which z is nilpotent or, equivalently, if for every m € M,
there is N > 0 such that 2¥m = 0.

Let M be a kH,-module. Given v € (k*)", we denote by M, the subspace of M on which
X; — v; acts locally nilpotently for 1 < i < n.

Let I be a subset of k* and let C; be the category of kH,-modules M such that M =
@Ue i M,. Note that a finite dimensional kH,-module is in C; if and only if the eigenvalues of
the X; acting on M are in [.

We define a quiver I with vertex set I and arrows ¢ — ¢i. Assume ¢ # 1. Denote by e the
multiplicative order of g. When I' is connected, the possible types of the underlying graph are

o A, if |I|=n<e.

o A if |I| =e.

e A if I is bounded in one direction but not finite.
e Ay  if I is unbounded in both directions.

We denote by C2 the category of kH, (T')-modules M such that for every v € I", then z;,
acts locally nilpotently on M,,.

The proof of the following Theorem (and the next one) relies on checking relations and
writing formulas for an inverse functor.

Theorem 3.11 ([Rou2, Theorem 3.20]). There is an equivalence of categories C2 — C; given
by (M,), — D, M, and where X; acts on M, by (z; +v;) and T; acts on M, by

[ ] (QCL’Z — xi—&-l)Ti + q Zf Vi = Vi1
o (¢t — xi1) N+ (1= @)wiga) if vy = qui
o (viw; — vip1min) "t ((quizi — vig1wi1)Ti + (1 — @)vi12i41) otherwise.

There is yet another version of affine Hecke algebras: the degenerate affine Hecke algebra H,,,
a Z-algebra generated by Xi,...,X,, and sq,...,s,_1 with relations

) - .
S, = 1, $iS; = S;S; if |Z —j| > 1, §;S8;4+1S8; = S4415iSi+1
XZ'XJ‘ = Xin7 Sin = sti lfj —1 7é O, 1 and SiXi+1 - Xisi =1.

We have a Z-module decomposition

o, =17Z[X.,...,X,]| ® Z&,

and Z[X1,...,X,] and Z&,, are subalgebras.
Let k be a field.
Let I a subset of k. We denote by I' the quiver with set of vertices I and with arrows
t— 1+ 1.
When I' is connected, the possible types of the underlying graph are
o A, if |I| =n and k has characteristic 0 or p > n.
e A, if |I| = pis the characteristic of k.
e A if I is bounded in one direction but not finite.
o Ao if I is unbounded in both directions.
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Given M a kH,-module and v € k", we denote by M, the subspace of M where Xi —v; acts
locally nilpotently for all 7. Let I be a subset of £* and let C; be the category of kH,-modules
M such that M = @, ;. M,.

Theorem 3.12 ([Rou2, Theorem 3.17]). There is an equivalence of categories C2 = Cr given
by (M), — B, M, and where X; acts on M, by (x; +v;) and s; acts on M, by

o (v; —xip1 + )T+ 1 if vy = v
o (zi—ximi— 1) —1) tfvi =v; +1

o (z;— i1 +vip1 — v + D) — 2ip1 +vigy —v;) N7 — 1) + 1 otherwise.

3.3. Half 2-Kac-Moody algebras.

3.3.1. Monoidal categories. Recall that a strict monoidal category is a category equipped with
a tensor product with a unit and satisfying (V@ W)@ X =V @ (W ® X). We will write XY
for X ® Y. We will also denote by X the identity endomorphism of an object X.

We have a canonical map Hom(Vy, V,) x Hom(W;, Ws) — Hom(V; @ Wi, Vo ® W), Given
f:Vi—=Vyand g: W; — W, there is a commutative diagram

feWw

Vi W, Vo @ W
V1®gl [ lV2®g
Vi @ Wy ToWs Vo @ Wy

A typical example of a monoidal category is the category of vector spaces over a field (or
more generally, modules over a commutative algebra).

A more interesting example is the following. Let A be a category and C be the category of
functors A — A. Then, C is a strict monoidal category where the product is the composition
of functors. The Hom-spaces are given by natural transformations of functors.

Let C be an additive category. We define the idempotent completion C* of C as the additive
category obtained from C by adding images of idempotents: its objects are pairs (M, e) where
M is an object of C and e is an idempotent of Ende¢(M). We put Homei((M,e), (N, f)) =
fHome(M, N)e. We have a fully faithful functor C — C given by M — (M, idy). If A is
an algebra, the idempotent completion of the category of free A-modules is equivalent to the
category of projective A-modules.

We say that C is idempotent complete if the canonical functor C — C° is an equivalence, i.e.,
if every idempotent has an image.

3.3.2. Symmetric groups. Let us start with an example of monoidal category based on sym-
metric groups. We define C to be the strict monoidal Z-linear category generated by an object
E and by an arrow s : E? — E? subject to the relations

s* = E?, (Es)o(sE)o(Es) = (sE)o(Es)o(sE).

This category is easy to describe: its objects are direct sums of copies of E™ for various n’s.
We have Hom(E™, E™) = 0 if m # n and End(E"™) = Z[&,,]: this is given by s; — E" " 1sEi—1,
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Note that, as a monoidal category, C is equipped with maps End(E™)xEnd(E™) — End(E™").
They correspond to the embedding &,, x &,, — &,,1,,, where &,, goes to &{1,...,n} and &,,
goes to S{n+1,...,n+m}.

Remark 3.13. The category C can also be defined as the free symmetric monoidal Z-linear
category on one object E.

3.3.3. Half. Let us follow now [Rou2, §4.1.1]. Let C' = (a;;)i jer be a generalized Cartan matrix.
We construct a matrix @) satisfying the conditions of §3.2.2.
Let {t; s} be a family of indeterminates with i # j € I, 0 <7 < —a;; and 0 < s < —aj;
and such that ¢;; s, = t; 5. Let {t;;}iz; be a family of indeterminates with ¢;; = ¢;; if a;; = 0.
Let k = kY = Z[{t; s} U {t;?l ]. Given i,j € I, we put

0 ifi=j
Qij — tij lf’L 7é] and CLZ']' = O
tiju’a”’ + 28§r<—aij ti7j7r75UT’US + tjﬂliaji if ¢ 7£ j and Q5 7é 0.
78<*aj¢

We define B = B((C') as the strict monoidal k-linear category generated by objects Fy for s € I
and by arrows

v, Fy— Fyand 7y . F,F, — FF, for s,t € 1
with relations

(1) Tst O Tygs = Qst(ﬂxsa C(71,‘P15)
Qst(sttyFsivt)Fs_Fstt(ths,ths) F
S

2o Py Fs—FsFyas if s=u

(2) TtquoFthuOTstFu_FuTstoTsuFtoFsTtu - {
0 otherwise.
(3) Tt 0w Fy — Fyxg o Ty = g
(4) Tgp 0 Fyxy — 2y Fg 0 gy = —0g
Given n > 0, we denote by B, the full subcategory of B whose objects are direct sums of
objects of the form F, --- F,, for vy,...,v, € I. We have B =D, B, (as k-linear categories).

The relations state that the maps x, and 7, give an action of the quiver Hecke algebra
associated with ) on sum of products of F,. More precisely, we have an isomorphism of
algebras

H,(Q) > @D Homg(F,, - F,,Fy - Fy)
v’ €I
1, — idFvn“'Fvl
T HF’UTL..‘FUZ'+1

1
Tiw 7 F'Un e F'Ui-Q—QTUi-!—lvUiFUi—l U FU1

Note that divided powers can be defined in B, following [ChRou, §5.2.1]. We have an
isomorphism k ®z °H, = End(E}"). The endomorphism of E! induced by T, has an image
E™ € B\. We have E" ~ E™ @, k™.

xviFvi,1 Fv

Assume now C'is symmetrizable, with D = diag(d;)ic;. We define k% = £/ ({tijrs Ydir+d;st—dia;)
and B = B ®; k#. This category can be graded by setting degx, = 2d,, deg 7y = dsas and
degesn = ds(1 — (N, ).
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Let T be quiver with no loops whose underlying graph corresponds to C' (which is then
symmetric). Let J be the ideal of k generated by the coefficients of the polynomials Q;; —
(—=1)%i(u — v)~% (cf §3.2.4) and k' = k°/J = Z. We put B(I') = B ®,, k¥'. This is again
graded, as above.

Similar monoidal categories have been constructed independently by Khovanov and Lauda
[KhoLaul, KhoLau2|, who have shown that, over a field, they provide a categorification of
Uz(n™) and Ugpge1/2(n”), where n™ is the half Kac-Moody algebra associated to C' (cf §4.1.1).

Given an additive category C, we denote by Ky(C) the Grothendieck group of C. Assume
C is enriched in graded Z-modules. We can define a new additive category C-gr with objects
families {M, }iez of objects of C with M; = 0 for almost all i. We put Home o, ({M;}, {N;}) =
@mm Home (M, Np)n—m- The category C-gr is Z-graded, i.e., it is equipped with an automor-
phism T given by T'({M;}), = M,+1. The action of 7" on K,(C-gr) endows it with a structure
of Z[g*'/?]-module, where ¢/? acts by [T].

Theorem 3.14 ([KhoLau2, Corollary 7 and Theorem 8]). Given s # t € I, there are isomor-
phisms in B
@ F§7a5t71+1)FtF§i) ~ @ Fs(*ast*i+l)Fth(i).

i even i odd

Let K be a field that is a k-algebra. The relations above provide isomorphisms of rings
Uz(n™) = Ko(B' @ K).
When C' is symmetrizable and K is in addition a k% -algebra, this gives an isomorphism of
Z[q*/?)-algebras
Uz (n") = Ko((B(T)' @ K)-gr).

4. 2-KAC-MOODY ALGEBRAS

4.1. Kac-Moody algebras. We recall some basic facts on Kac-Moody algebras and their
representations [Kac| and quantum counterparts [Lul].

Given an algebra A, we denote by A-Mod the category of A-modules, by A-mod the category
of finitely generated A-modules and by A-proj the category of finitely generated projective
A-modules.

4.1.1. Data. Let C = (a;5)ijer be a generalized Cartan matrix. Let

(X, Y, (=, =) {evbier, {o Yier)
be a root datum of type C, i.e.,

e X and Y are finitely generated free abelian groups and (—, —) : X x Y — Z is a perfect
pairing

e {a;} is a linearly independent set in X and {«;'} is a linearly independent set in Y’

* (a;,q)) = aj;.

Associated with this data, there is a Kac-Moody algebra g (over C) generated by elements
ei, fi and h¢ for i € I and ¢ € Y. When C is symmetrizable, there is also a quantum enveloping
algebra U,(g). When C' corresponds to a Dynkin diagram, we recover complex reductive Lie
algebras and their corresponding quantum groups.



QUIVER HECKE ALGEBRAS AND 2-LIE ALGEBRAS 21

We denote by n~ the Lie subalgebra of g generated by the f;, i € I. We denote by Uz(n~) the
subring of U(n~) generated by the elements % fort € I and n > 1. Assume C'is symmetrizable.
The quantum algebra U,(n~) is the C(q'/?)-algebra with generators f;, i € I, and relations
1—a;;
Z (_1)7' [1 —Taij:| firfjfil—aij—r -0
r=0 q

for ¢ # j, where

/2 Iy n),!
=L |1 = g o et = Bl ol

q

In the symmetrizable case, we denote by Ugp+i/2(n™) the Z[g*!/?]-subalgebra of U,(n~)

generated by the [ﬁi'
Example 4.1. Let C = (2), X =Y =Z, a =2 and oY = 1. Then g = sl,(C).
4.1.2. Integrable representations. Let M be a representation of g. We say that it is integrable
if

o M =@,y My, where My = {m € M|h¢-m = (\,()m, V(€ Y}

e ¢; and f; are locally nilpotent on M for every i, i.e., given m € M, there is an integer

n such that f!{(m) = e'(m) =0 for [ > n.
Define a quiver with vertex set X and arrowse; = e,y : A = A+, and f; = fir: A = A—ay.
Let A(g) be its quiver algebra over C, subject to the relations
ei,/\fajfj,)\ — firtai€in = 0ij (N, Oé;/>1/\-

The following proposition has a proof based on the representation theory of sly. It says that
the Serre relations are automatically satisfied under integrability conditions.

Proposition 4.2. The functor M — (M) ex is an equivalence from the category of integrable
representations of g to the category of representations of the quiver algebra A(g) on which the
e;’s and f;’s are locally nilpotent.

We define a category U(g) with C-linear Hom-spaces. Its set of objects is X. The morphisms
are generated by e; : A = A+, fi : A = A — q, subject to the relations

=2 fj]P\ = 05 (A, O‘;/>
Then, a C-linear functor U(g) — C-Mod is the same as a representation of the quiver algebra
Alg).

Remark 4.3. A representation of a k-algebra A is the same as a functor compatible with the
k-linear structure C — k-Mod, where C is the category with one object * and End(x) = A.

4.1.3. Quantum counterpart. Assume C' is symmetrizable. One can proceed similarly and show
that the category of integrable representations of U,(g) is equivalent to the category of repre-
sentations of the quiver algebra A,(g), defined as the C(,/g)-algebra with the same quiver as
above and relations

(1) €ida; i — irta€in = 0i[(A, )1
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4.1.4. Category O™ . Define the set of integral dominant weights X* = {\ € X|(\, o)) >
0 Vi € 1}. We denote by (’)3“t the category of integrable highest weight modules M of g, i.e.,
g-modules such that

o M =@, x My and dim M), < oo for all A

e ¢, and f; are locally nilpotent on M for i € I
o there is a finite set ' C X such that {\ € X|My#£0} C U, cr(p+ 2 i Z<owi).

Let b be the Lie subalgebra of g generated by the elements e;, 7 € I and h¢, ¢ € Y. Let
A € X*. We denote by Cv, the one-dimensional representation of b where ¢; acts by 0 and h;
acts by (), ;). We define the Verma module

A(N) = Indy(l) Cvy ~ U(n")

and
Lmx(3) = AW/ (U [ ).
iel

This is the largest quotient of A(X) in O. The Verma module A()) has a unique simple
quotient L(\) and there is a surjection L™**(\) — L(\). When C' is symmetrizable, L™**()\) =
L(X). The set {L(A)}rex+ is a complete set of representatives of isomorphism classes of simple
integrable highest weight modules. These are the finite-dimensional simple U(g)-modules when
g is finite-dimensional. When C' is symmetrizable, integrable highest weight modules are semi-
simple.

Note that L™**(\) is characterized by the fact that it represents the functor
O — C-Mod, M +— M :={m € M, | e;(m) =0Vi e I},

1.e.,

Homg (L™*(X\), M) = M™, f > f(vy).

4.1.5. sl,. Consider the complex simple Lie algebra sl,(C). This is a Kac-Moody algebra
associated with the following graph:
Ap1 = O—0—0 0—o0
1 2 3 n—2 n—1
The Lie algebra sl,,(C) is generated by the elements e; = e€;;11, fi = €;+1,; and h; = €;;—€i11,41
for 1 <i <n-—1 Wehave Yy, = Zhy ® -+ ® Zh,_1, Xa, = ZA1 § --- & ZA,,_1 where
(Ai hj) = 6ij. We have a; = ¢;; —ejy; ;1 and of = h; for 1 <i<n—1.
Consider now the Lie algebra g; = sl,(C) ®c Cl[t,t7!]. We define g’ = g; ® Cec, a central
extension of g; given by
[a@t™ b t"] = [a,b] @ t™" +mb,, _,tr(ab)c for a,b € sl,(C).

Finally, we define g = g’ & Cd. We endow it with a Lie algebra structure where
e ¢’ is a Lie subalgebra
e [d,at"] = nat™ for a € sl,(C)
e [d,c]=0.
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Note that g’ = [g, g].

Let eg=e,1 ®t, fo=e€1, @t " and hg = (e, —e11) + .

Let Y = Zho®- - - ®Zh, 1®Zd =Yy, ®ZcDZd and X = Homgz(Y,Z), with (Ao, ..., A,_1,0)
the basis dual to (hg,...,h,_1,d).

Let g = 0 — (a1 + -+ + ay—1) and af = ho. This provides an identification of g with a
Kac-Moody algebra of graph

1 2 n—2 n—1
4.1.6. Fock spaces. We recall in this section some classical results on representations of sym-
metric groups and related Hecke algebras, and the relation with Fock spaces [Ari, Gr, K1, Ma).

Let F be the complex vector space with basis all partitions. Let p > 2 be an integer.

Let us construct an action of s:[p on F. Let X be a partition. We consider the associated
Young diagram, whose boxes we number modulo p. We define e;(A) (resp. fi(A\)) as the sum
of the partitions obtained by removing (resp. adding) an i-node to \. We put d(\) = Ny(A)A,
where Ny()) is the number of 0-nodes of .

Example 4.4. Let us consider for example p = 3 and A = (3, 1).

o[1]2]o] [o]1]2]
0 2] +1210
0 fo
0/1]2]
0[1]2] 12]
O el l fl L

01]

2] L[o[1]2 0

The construction above defines an action of sA[p on F, where ¢ acts by 1 (i.e., the level is 1).
This defines an object of O™,

Let K¢(QGS,,) be the Grothendieck group of the category QS,-mod. It is a free abelian
group with basis the isomorphism classes of irreducible representations of &,, over Q.
There is an isomorphism

F 5 EPCeK(QSs,)
n>0
It sends a partition A to the class of the corresponding simple module Sy of Q&,,. We identify
J with the sum of Grothendieck groups via this isomorphism.
We consider now a prime number p and F = ®n20 C® Ky(F,6,,). The decomposition map

defines a surjective morphism of abelian groups dec : F — F. There is a Z&,,-module Sy, free
over Z, such that S\ ~ Q ®z Sy. We have dec([S,]) = [F, ®z S,].
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The action of ﬁ[p on F stabilizes the kernel of the decomposition map: this provides us with
an action on F. The action of sl, on F is irreducible and F =~ L(Ay).

Let V = @,50 FpSn-mod. Define £ = P, Resg"+1 and F' = D, IndG"+1 two exact

endofunctors of V. They are left and right adjoint. We have Indg ortl — pSnt1 OF,6, —

Left multiplication by (1, n+1)+- - -+(n, n+1) defines an endomorphlsm of the (F,6,,41,F,6,)-
bimodule F,&,,;1, hence an endomorphism of the functor IndGZ“. We denote by X the corre-
sponding endomorphism of F'.

Given M an F,&,,-module, all eigenvalues of X acting on F(M) = Inng“ M arein F,. We
denote by F;(M) the generalized i-eigenspace of X, for i € F,. This gives us a decomposition
F = @ier F;. Similarly, we have a decomposition £ = @ieFP E;, where FE; is left and right
adjoint to F;.

The following proposition shows that the action of E:[; on F comes from the i-induction and
i-restriction functors.

Proposition 4.5. Given M € F,8,-mod, we have [E;(M)] = e;([M]) and [F;(M)] = f;([M]).
We denote by ép the affine symmetric group, a Coxeter group of type flp_l.

Proposition 4.6. The decomposition of F into weight spaces corresponds to the decomposition
into blocks. Two blocks are in the same orbit under the adjoint action of &, if and only if they
have the same defect.

Let k be a field and ¢ € k* be an element with finite order p > 2 (p needs not be a prime).
The construction above extends with Q&,, replaced by HJ ®@ujg,.4, (kla2]/ (g2 + 1)) (q1) and
F,S, replaced by HI ®kjg .00 ka1, ¢2)/(¢2 + 1,q1 — q). This provides a realization of L(Ag) as
D,~0 C @ Ko(HI @igr.40) kla1, a2] /(@2 + 1,q1 — q)), via i-induction and i-restriction functors.

4.2. 2-categories.

4.2.1. Duals. Let C be a strict monoidal category and V € C. A right dual to V' is an object
V* € C together with maps ey : V®V* — 1 and ny : 1 = V*® V such that the following two
compositions are the identity maps:

VYV oy ovieV XY v oand vV YEYS vr o v e v L8, v

When C is the category of finite dimensional vector spaces, we obtain the usual dual.
When C is the category of endofunctors of a category, the notion of right dual coincides with
that of right adjoint.

4.2.2. 2-categories. A strict 2-category € is a category enriched in categories: i.e., it is the data
of a set of objects, and given M, N two objects, the data of a category Hom(M, N) together
with composition functors Hom(L, M) x Hom(M,N) — Hom(L, N) satisfying associativity
conditions. We also require that End(M) comes with an identity object for the composition,
which makes it into a strict monoidal category.

We can think of this as the data of objects, 1-arrows (the objects of the categories Hom (M, N))
and 2-arrows (the arrows of the categories Hom(M, N)).
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A strict monoidal category C is the same data as a strict 2-category with one object * and
End(x) =C.

While the typical example of a category is the category of sets, the typical example of a strict
2-category is the 2-category €at of categories: its objects are categories, and Hom(C,C’) is the
category of functors C — C'.

A related example of a 2-category is that Bimod of bimodules: its objects are algebras over
a fixed commutative ring k and Hom(A, B) is the category of (B, A)-bimodules. Composition
is given by tensor product.

4.2.3. 2-Kac Moody algebras. We come now to the definition of 2-Kac-Moody algebras [Rou2,
§4.1.3]. Our aim now is to add E,’s to B and construct maps which we will make formally
invertible to enforce the relations [e;, fi]jx = (A, a;). In order to make sense of this, we will
need to add formally “idempotents” corresponding to weights A € X: this requires moving
from a monoidal category to a 2-category.

Let C be a generalized Cartan matrix and let B’ be the strict monoidal k-linear category
obtained from B = B(C') by adding Ej right dual to Fj for every s € I. Define

es=¢€p,  FsBs = 1and ns =np, : 1 = EF5.

Consider now a root datum (X, Y, (—, =), {a; }ier, {a) }icr) of type C.

Consider the strict 2-category @ with set of objects X and where Hom(\, ') is the full
k-linear subcategory of B’ with objects direct sums of objects of the form Eg:Ftbn" s B Ftbl1
where a;, 0, > 0, s;,t; € T and X — X =) (o, — bioy,).

Let @ = @(g) be the k-linear strict 2-category deduced from @ by inverting the following
2-arrows:

e when (), o)) <0,

Por = Oss + Z ): FyE 1, — E,F,1, @1, %)

e when (), o)) >0,
—14(X, av) y
Ps = Oss + Z 0778 : Fé;Esl)\@lg\)\’%> — B F,1,

e 0y : F,F1, — EF,1, for all s #1t and all A

where we define

Ogt = (EtF5€t) @) (EtTtsEs) @) (ﬁthEt) : FsEt — Eth-

We put ¥ = A ®,, k% as in §3.3.3. The grading defined on B% extends to a grading on @*"
with dege; )y = ds(1+ (N, ))) and degns \ = ds(1 — (N, ).

Given a quiver I' with no loops corresponding to C', we put A" =aA. k", a 2-category with
graded spaces of 2-arrows.

Remark 4.7. One shows easily by passing to the Grothendieck groups, the graded category
A% -gr gives rise to the relations (1) of §4.1. Khovanov and Lauda have constructed a related
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2-category and shown that the canonical morphism from the integral form of U,(g) to the K
is an isomorphism in type A4, [Laul, KhoLau3].

It can be shown that the isomorphisms p; \ give rise to commutation isomorphisms between
E™ and F* (cf [Rou2, Lemma 4.12] for a version with explicit isomorphisms).

Lemma 4.8 ([Rou2, [Lemma 4.12]). Let m,n >0, A€ X andi € I. Let r = m —n+ (\, o).
There are isomorphisms
min(m,n)
FEL S @ EpE e ke it (0 gfr <0
1=0
min(m,n) . .
@ FinilEzmill)\ ®k ]ﬂ“"*l)!("*l)!(l) :> EZnF;nl)\ ’&fT' Z O
1=0
Remark 4.9. We have chosen to switch the roles of £ and F, compared to [Rou2|, as we will
deal here with highest weight representations, while in [Rou2] we dealt with lowest weight rep-
resentations. The two definitions are equivalent, as there is a strict equivalence of 2-categories

I:@PP 5Q 1y 1_y, B, Fy, Fy By, Ty —Tys, Tg > T
Given a 2-category €, we have denoted by €°PP the 2-category with the same set of objects as
€ and with Homgerr (¢, ) = Homg(c, ¢')°PP.

4.3. 2-representation theory. We are now reaching our main object of study. We review
[Rou2, §5] (based in part on [ChRou]) and provide some complements.

4.3.1. Integrable 2-representations. A representation of @ on k-linear categories is defined to be
a strict 2-functor from 9 to the strict 2-category of k-linear categories. This is the same thing
as the data of

e a k-linear category V) for A € X

e a k-linear functor F; : V\ = Vy_,, for A € X and ¢ € I admitting a right adjoint E;

e z; € End(F;) and 7;; € Hom(F;Fj, F; F;)
such that

e the quiver Hecke algebra relations for z; and 7;

e the maps p; » and o;; (i # j) are isomorphisms.
A representation of @ such that E; and F; are locally nilpotent for all ¢ will be called an
integrable 2-representation of @ (or of g).

In the definition on an integrable 2-representations, the condition that the maps o;; are
isomorphisms for ¢ # j is a consequence of the other conditions [Rou2, Theorem 5.25].

Remark 4.10. One can equivalently start with the functors F;’s, and natural transformations
x; and 7;; between products of E’s.

The definition provides E; as a right adjoint of F;, but the next result shows that E; will
actually also be a left adjoint (cf [Roul, §4.1.4] for the explicit units and counits).

Theorem 4.11 ([Rou2, Theorem 5.16]). Let V be an integrable 2-representation of A. Then
E; is a left adjoint of F;, for all 1.
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It is often unreasonable to check directly that the maps p; » and o;; are isomorphisms in
examples. It turns out that, under finiteness assumptions, it is enough to check that the
sly-relations hold on the Grothendieck group (the crucial part is [ChRou, Theorem 5.27]).

Theorem 4.12 ([Rou2, Theorem 5.27]). Let K be a field that is a K-algebra and let V =
D,cx Va be a K-linear abelian category such that all objects have finite composition series and
simple objects have endomorphism ring K. Assume given

o a K-linear exact functor F; : VN — Vi_q, for X € X and i € I with an exact right
adjoint E;
e z; € End(F;) and 7;; € Hom(F, F}, F; F;)
such that
E; and F; are locally nilpotent
E; is left adjoint to F;
the quiver Hecke algebra relations for x; and T;;
the endomorphisms [E;] and [F;] define an integrable representation of sly on C® Ky(V),
and [E][F;] — [E][E:] acts by (A, o) on Ko(Vy), for all i and A.
Then, the data above defines an integrable 2-representation of g on V.

Let us give a variant, based on “abstract” sly-relations between functors.

Corollary 4.13. Let k' be a commutative k-algebra. Let {Vy}rex be a family of kK'-linear
categories whose Hom'’s are finitely generated k'-modules.
Assume given
o Fo:V\ — Vh_qo, with a right adjoint Es for s € 1
o v, € End(Fy) and 75 € Hom(F,Fy, FiFy) for every s,t € 1.
We assume that
o F is a left adjoint of F
e F, and F are locally nilpotent
e given \ € X, there are isomorphisms of functors

(Est>|V>\ = (FSES)\VA 57 Id%am Z'f <>‘7 O‘:) >0

Y

(BB, = (B, @ 1d,7) if (1 a?) <0

e the quiver Hecke algebra relations hold.
Then, the data above defines an integrable action of A(g) on V = &P, Vi.

Proof. Let K be an algebraically closed field that is a k’-algebra. Let W = V-mody be the
category of k-linear functors VPP — K-mod. The functors Fy and E, induce adjoint exact
functors on W satisfying the conditions of Theorem 4.12. Consequently, the maps p, \ and o
(for s # t), taken in V), are isomorphisms after applying — ®; K. Since this holds for all K, a
variant of Lemma 2.23 shows that those maps are isomorphisms. U

4.3.2. Some 2-representations of sly. We assume here |I| = 1, X = Z and o« = 2. We have
k=7Z. Fix a field K.

The most obvious example of a 2-representation is £(0) defined by £(0)y = 0 for A # 0 and
L£(0)g = K-mod. All the extra data vanishes.
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Consider now £(1), a categorification of the simple 2-dimensional representation of sly. We
put - - -
L(1)y=0for \A#+1, £(1); = K-mod and £(1)_; = K-mod.
We define E and F to be the identity functors between £(1); and £(1)_; and we set z = 7 = 0.
A categorification of the simple 3-dimensional representation is given by

L(2)y =0 for A\ —2,0,2, £(2)_5 = L(2); = K-mod and £(2)y = (K[y]/y*)-mod.

The functors £ and F are induction and restriction functors. We define z as multiplication by
—yon F'=1Ind: L(2); — £(2)y and as multiplication by y on F' = Res : L(2)y — £(2)_2. We
define 7 € Endg (K[y]/y*) by 7(1) = 0 and 7(y) = 1.

PS». We have H;,, = OHf®ZPS{Z+1 """ "} as Z-modules and H;, ="H;®2Z[X;.1,...,X,|StF-n}
as algebras. By Proposition 2.21, we have a Morita equivalence between the PS-algebras H; ,

and Py XSUFL-nE - gince O, s a symmetric algebra over PZ-G" (Proposition 2.30) and

is symmetric over P (Corollary 2.26), we deduce from Lemma 2.24 that
H;,, is a symmetric algebra over PS».
We have a chain of algebras
Ho, = PP" C Hy,, C -+ C Hyp ="H,
and H; 1, is a free left (and right) H;,-module of rank (i + 1)(n — i).

Let Hi,n = H;n, @pe. I, where the morphism of rings PS» — K is given by sending ho-
mogeneous polynomials of positive degree to 0. This is a finite-dimensional K-algebra Morita-
" ® pon K. That center is Zso-graded, with degree
0 part of dimension 1, hence it is local. It follows that H,, has a unique simple module, of
dimension i!.

We put L(n)y = P_[(n,,\)/zn—mod for A € {n,n—2,...,2 —n,—n} and L(n)y = 0 otherwise.

We denote by E the restriction functor and F' the induction functor: they are both exact
functors. Since the algebras H;, are symmetric over K, we deduce that E is both right and
left adjoint to F. It is immediate to check that [E] and [F] induce an action of sly(C) on
C® Ko(L(n)) = C+1,

We denote by z the endomorphism of the (H;y1,, H;,)-bimodule H;1, given by right mul-
tiplication by X;.1: this provides a corresponding endomorphism of the functor F. Similarly,
we define an endomorphism 7 of F? corresponding to the right multiplication by T; on the
(Hiyom, H;,)-bimodule H;, o,

Theorem 4.12 provides the following result. These are the “minimal categorifications” of

[ChRou, §5.3].
Proposition 4.14. The data above defines an action of @ on L(n).

equivalent to its center

Let us now consider a deformed additive version £(n). They are necessary to have Jordan-
Holder type decompositions in the additive setting. We put L£(n)x = H(n—»)/2,n-Proj, and we
define E, F, X and T as above. Proposition 4.14 shows that the morphisms of bimodules
corresponding to the maps p) become isomorphisms after applying ® pen KK, for any field K. A
graded version of Lemma 2.23 enables us to deduce that the maps p, are isomorphisms. We
obtain consequently the following proposition.
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Proposition 4.15. The data above defines an action of @ on L(n).

The categories £(n) and L(n) are enriched in graded vector spaces, and the actions are
compatible with the gradings.

4.3.3. Simple 2-representations L(N). Let A € X. Given V a 2-representation, we put
VI = {M € V\|E;(M) = 0 Vi}.

Note that V™ = 0 if A¢X .
A consequence of the relations in Lemma 4.8 is the following description of highest weight
objects.

Lemma 4.16. Let A\ € X" andi € 1. Let d = (\, /) + 1. Then

e F;1, is a direct summand of EidHFidl,\
o F1, is a direct summand of FZ-dHEil)\.

As a consequence, given V a 2-representation and M € Vy, we have M € V¥ if and only if
FMOMNMY =0 foralli € 1.

(2

Assume A € X . There is a 2-representation £(\) with an object vy € L£(\), that has the
following property: given V a 2-representation, there is an equivalence

Homg(L(N), V) 5 VIV & s &(v)).

So, L(A) represents the 2-functor V + V% and it thus unique up to an equivalence unique up
to a unique isomorphism.

Let us provide a construction of £(\). We define a 2-representation M(A) by setting
M(N), = Homg(A, ). The composition in @ provides a natural action of @ on M(A). Define
now N(A), a sub-2-representation, by setting N'()), as the full additive subcategory of M(\),
generated by objects of the form RFE;, where R is a 1l-arrow in 4 from A + «; to p and i € [.

We put now L(A) = M(X)/N(A) (quotient as additive categories) and we denote by vy the
image of 1. We put Zy = Endz ) (vy).

Remark 4.17. A important fact is that this construction provides a higher version of L™**(\)
(= L(A) in the symmetrizable case), not of A(A): this is a consequence of Lemma 4.16.

4.3.4. Isotypic 2-representations. An isotypic representation is a multiple of a simple represen-
tation, or equivalently, the tensor product of a simple representation by a multiplicity vector
space. The 2-categorical version of that requires to take a tensor product by a multiplicity
category.

Let A be a commutative ring and C be an A-linear category. Let B a commutative A-algebra.
We denote by C® 4 B the B-linear category with same objects as C and with Homeg , 5(M, N) =
Home (M, N)® 4 B. Let now C' be another A-linear category. We denote by C® 4C’ the A-linear
category with objects finite families ((My, M7), ..., (M,,, M/ )) where M; € C and M] € C'. We
put
Hom(((My, M), ..., (My, M), ((N1,Ny),...,(Ny,N}))) = @Homc(Mi, N;)® 4Home (M, NJ’)

m

1,3
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Let V be a k-linear 2-representation of @ and let A € X*. There is a canonical fully faithful
functor compatible with the @-action

Ry: LN @z, VY =V, M® N — M(N).

If V is idempotent-closed and every object of V is a direct summand of an object of AV,
then R, induces an equivalence (L(\) ®z, VI¥)" 5 V.

The only full sub-2-representations of isotypic 2-representations are the obvious ones.

Proposition 4.18. Let A € X+, let M be a Zy-linear category, and let W be an idempotent-
complete full k-linear sub-2-representation of (E()x) Rz, ./\/l)z. Let N be the subcategory of M
image of Wy under the canonical equivalence (ﬁ()\) Rz, /\/l); 5 M

Then W = (L(\) @z, ./\/)l

Proof. Let ¥V = (L(\) ®z, /\/l)z. Every object M of V is a direct summand of a direct
sum of objects of the form F; ---F; (N), where N € V,. Since E;, --- E; is right adjoint
to F;. --- Fy,, we deduce that F;_--- F;, is a direct summand of F;_--- F;, FE;, --- E; F; -+ F;, (in
4). As a consequence, any M € V is a direct summand of a direct sum of objects of the form
Fir ce ElEil s EZT(M)7 where Ei1 s EzT(M) S V)\.

This shows that every object of W is a direct summand of an object of @(W),), hence the
canonical functor (L£(\) ®z, Wy)" — W is an equivalence. O

4.3.5. Structure. We explain here a counterpart of Jordan-Holder series. This provides a pow-
erful tool to reduce statements to the case of £(A)’s and this is one the key ideas of [ChRou].

Let V be a 2-representation. Given § € X/(ED; Za), let Ve = @y Va- Then V = P, Vs is
a decomposition as a direct sum of 2-representations. This gives a direct sum decomposition
of the 2-category of 2-representations.

Theorem 4.19 ([Rou2, Theorem 5.8]). Let V be a k-linear category acted on by A. Assume
that given A € X and M € Vy, there is r > 0 such that E;, --- E; (M) =0 for all iy, ..., i, € I.

Then V is integrable and there are Zy-linear categories My, for A\ € X+ and r € Z,, there
s a filtration by full k-linear sub-2-representations closed under taking direct summands

0=v{0} cV{1}C---CV
with |J, V{r} =V, and there are isomorphisms of 2-representations
(Vir+ 13/v{)" = D (L) @z, My,
rex+

Note that the assumption of the theorem is automatically satisfied if g is a finite-dimensional
Lie algebra.

Proposition 4.20. Assume C is a finite Cartan matriz, i.e., g is a finite-dimensional Lie
algebra. Let V be an integrable 2-representation of A. Then given A € X and M € V), there is
r >0 such that E;, --- E; (M) =0 for all iy,...,i, € I.

Proof. We switch the roles of E’s and F’s in the proof. There are positive integers n;, such
that F"(M) = 0. It follows that the canonical B-functor B — V, L+ L(M), factors through
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the additive quotient B of B by its full additive subcategory generated by the BF;" for i € I.
We will be done by showing that there is 7 > 0 such that B, = 0

Note that the corresponding property holds in C ® Ky(B), which is a quotient of the vector
space U(n™)/(>2, U(n™) f") by Theorem 3.14: this is an L(u) for some p € X, hence it is
finite-dimensional (cf §4.1.4). We deduce that Ky(B,) = 0 for some 7. The Hom-spaces in B,
are modules of finite rank modules over Z(B,), which is a noetherian ring [Rou2, Proposition

3.10], and the same holds for B,. So, the vanishing of K, forces B, = 0. O
Extensions between £(\)’s can occur only in one direction.

Lemma 4.21. Let V be a k-linear 2-representation of @ and W a full k-linear sub-2-representation
closed under taking direct summands. Let A € Xt and let M be a Zy-linear category.

Assume there is a morphism ® :V — L(X) @z, M of 2-representations of A with ®(W) = 0
and inducing an isomorphism VW = L()\) ®z, M.

If Wiia = 0 for all « € @,.;Z>oq;, then there is a morphism of 2-representations ¥ :
L(A) @z, M — V that is a right inverse to ®. As a consequence, V ~ W @ L(\) ®z, M as
2-representations of 4.

Proof. By assumption, Vyio, = 0 for all i. It follows that the restriction of ® to V) is an
equivalence @ : VIV = M. The functor &' induces a fully faithful functor ¥ : £L(\)®z, M —
Y that is a right inverse to . O

As a consequence, we can order terms and obtain a Jordan-Holder filtration under stronger
finiteness assumptions from Theorem 4.19.

Theorem 4.22. LetV be an integrable k-linear 2-representation of . Assume there is a finite
set K C X such that {\ € X|W\#0} C U,cr(pt + > ies Zcoi).
Then there are

® A, Ay, ... € XT such that A\, — Ny € Y, Z>o0; implies a < b

o 7, -linear categories M,

e and a filtration by full k-linear sub-2-representations closed under taking direct sum-
mands

0=v{0} cv{1}c---CVv
such that \J, V{r} =V and (V{r + 1}/V{r})i = (L) @z, /\/lr)i as 2-representations of 4.
4.4. Cyclotomic quiver Hecke algebras.

4.4.1. Construction of B(X). Let A € XT. Let n; = (\, ), let Ay = Z[{zi, }ier1<r<n;] and let
ky =k ®z Ay. We define the additive category quotient

BO) = (B A/(3 e @ 2 )ier

r=0

where we put 2z, =1 for 7 € I.
We define now the cyclotomic quiver Hecke algebras

H,(\) =Endsoy( € F, -+ F).

(G in)€I™
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We have

Ho(\) = (Ha(Q) @7 A0 /(3 477 @ 21, )ier

and in particular Hyo(\) = k.

One can also consider the reduced cyclotomic quiver Hecke algebras H,(\) = H,()\) ®a, Z,
where z;, acts by 0 on Z for r # 0.

Note that these constructions depend only on {n;};c;, not on \.

4.4.2. Fock spaces. We explain how to construct a 2-representation of affine Lie algebras of
type A, following [ChRou], and we explain the relation with B(Ag). We consider the setting of
§4.1.6.

Similarly to the construction of X, we construct an endomorphism 7" of F? = @nzo Indg
by left multiplication by (n + 1,n + 2) on the (F,&,,12, F,&,,)-bimodule F,&,, 5.

We have a morphism of algebras

n+2

n

H, — End(F"), X; — FP i XF=' s, FrioiTRt

Let I' be the quiver with vertex set I = F, and with arrows ¢ — ¢ + 1. Theorem 3.12 shows
how to deduce a morphism of algebras H,(I') = End(D, ;. Fo, - -+ F,)-
Theorem 4.23. The constructions above endow V with a 2-representation of A(sl,). We have
an equivalence of 2-representations

(F, ® 2z, E(AO))i ~ @ F,&,-proj

n>0

Proof. We need to show that the maps p; » and are isomorphisms. The corresponding relations
hold at the level of the Grothendieck groups. It follows from Theorem 4.12 that the required
maps are isomorphisms. The equivalence follows from the fact that V is a highest weight
2-representation, with highest weight A,. O

Since the left side of the equivalence is graded, this provides us with gradings of group algebras
of symmetric groups over F,. This can be made explicit. Indeed, Theorem 3.12 induces an
isomorphism of algebras F, @z H,(T') = F,&,, and the right hand side has homogeneous
generators.

The constructions above extend to arbitrary p > 2, with the group algebra of the symmetric
group replaced by its Hecke algebra, as explained in §4.1.6.

The isomorphism and the gradings above have been constructed and studied independently by
Brundan and Kleshchev [BrKl1, BrKI2]. They have built a new approach to the representation
theory of symmetric groups and their Hecke algebras using these gradings.

Such gradings had been shown to exist earlier (using derived equivalences and good blocks)
for blocks with abelian defect [Roul, Remark 3.11]. Leonard Scott had raised the question
in the mid-nineties to construct gradings for group algebras of symmetric groups and more
generally Hecke algebras of finite Coxeter groups.
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4.4.3. Simple 2-representations. We explain here how cyclotomic quiver Hecke algebras provide
a vast generalization of the constructions of §4.1.6 and §4.4.2, as conjectured by Khovanov-
Lauda and ourselves.

The left action of B on itself induces an action of B on B(\)" = @, H,,(\)-proj.

Theorem 4.24 (Kang-Kashiwara, Webster). Given s € I, the functor Fy : B(A\)' — B(\)" has
a right adjoint. This provides an action of @ on B(A\)', with highest weight (B(\)")y = ky-proj.
There is an isomorphism of g-modules C ®z Ko(B(A\)") = L(\).

Kang-Kashiwara’s result [KanKas, Theorem 4.6] is given in the case of symmetrizable Cartan
matrices and in a graded setting, but it extends with no change to our setting. Webster’s result
[Wel] is also in a graded setting.

Note that the algebras H,,(\) are finitely generated projective ky-modules [KanKas, Remark
4.20(ii)].

There is a canonical morphism of k-algebras Z, — k) and an equivalence of additive 4-
categories (cf §4.3.4)

U (L) @z, k‘,\)i = B(\)

Theorem 4.25. The canonical ‘map gives an isomorphism Zx = ky. In particular, there is an
equivalence of categories L(A)" = B(A\)! compatible with the action of @.

Proof. The proof is similar to that of [Rou2, Proposition 5.15]. Let i € I. We have F}"(v,) # 0,
while F*!(vy) = 0. It follows that the canonical map Fi(ni)Ei(n")(v,\) — vy is an isomorphism
[Rou2, Lemma 4.12]. The action of Z[zy,, ..., 2, on EM) gives then an action on vy.
We let z;, act on vy as (—1)"e,(214,...,Tp, ;) for 1 < r < n,. This provides a morphism of
k-algebras ky — End(vy) = Z,.

We have a canonical functor B ®; ky — L(A) given by M — M (vy). It induces a functor
® : B(\) — L()\) compatible with the B-action: there are canonical isomorphisms ®F; = F,®

can,

compatible with the z;’s and 7;;’s. Note that the functor L(A\) — L()\) ®z, ki AN B(A) is a
left inverse to W.

Let us show that ¢ can be endowed with a compatibility for the @-action. We need to show
that the composition

Ei(can 1) E;

Y SLAAENG o) 0¥ ¥ ) E®FE, 2% B.o

is an isomorphism for all ¢ € I (cf [ChRou, §5.1.2]). Let us show that the composition above is
an isomorphism when applied to L € B()\). Consider M,~,« as in Lemma 4.26 below. Since
®U () is an isomorphism, we deduce that the composition

O(E;7)

200 (B E M) 2P, (B L)

o(M)
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is an isomorphism. To clarify the exposition, we identify ® F; with F;®. There is a commutative
diagram
Eiq)(z-:io)

O(E;L) —°~ E;F,®(E;L) Ei®(L) ~——

/ O(E;7) T“P(Ei“/) TE%I’(V)
| ® Eiq)(é‘i.)

| ®(EiF;M) "> E;F,®(E;F;M) “— E;®(F;M)

\
\\ (i) T“I’(UM

O(M) —"" = BFO(M)

~

_ J

~

This completes the proof that ® is compatible with the action of @. Since ®(ky) = vy, we
obtain a morphism of Z,-algebras k), — Z, that is a left inverse to the canonical morphism
Zy — k). Consequently, these morphisms are isomorphisms. O

Lemma 4.26. Given i and L € B(\), there are M € B(\) and v : F;M — L such that the
composition

a: d(M) " BEGM) = BEd(EM) 22 paL)
1S an isomorphism.
Proof. 1t is enough to prove the lemma for L = F;_--- F;, (k)) for any y,...,i. € I. We prove
this by induction on r. Assume the lemma holds for . Consider iq,...,7, € I. Let M, a and

v be provided by the lemma.
Consider now j =i,41 € I. Let M' = F;M. Let

v = (FF;M 25 FEM -2 FiL).
There is a commutative diagram
E;

7 E;®(Fy7)

O(F;M) —""— E;F®(F;M) —"~ E,®(F;F;M) E®(F;L)

/‘}mc on; @ (M) o1 ®(M) \\
i® E;Tije
~(  FEF®M) - EF,F,EF®M)—"> E,F;F,E;F,®(M)

\4’(7) *®(7)

ni®

FJEl(I)(L> EZFI.FJEICI)(L) E;Fje;e id
/
0j;® EiTij.
e (L) ~
E;F;®(L) E;F;F,E;®(L) E;F;F,®(M)
*®(v)
- /

If j # i, then oy, is an isomorphism, hence (M’,+') satisfies the requirements. We assume
now i =j. Let n =N+, + -+, ).
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Assume n > 0. Let M" = M' & L®" and " = v + ZZ;&(;E?.) . F;M" — F;L. Then,
(M",~") satisfies the required properties.

Assume finally n < 0. Consider g = le;(?'y o(x!M): ;M — L®™". The map ®(g) is equal
to the composition

FiE;®(v) > xhe

e

(RE®(L)*" - a(L)*"

Fin;e

Fo(M) 2" BB, Fo(M)

~

F,E;®(L)

which is a split surjection. As a consequence, g = Wd(g) is a split surjection. Let M” be its
kernel and 7" = 7|, The composition

(M"Y — d(EM) L% pEReM) 2 RES(L) 25 BFO(L)

is an isomorphism and we deduce that (M”,~") satisfies the requirements. O

Note that Lauda and Vazirani had shown earlier that () gives rise to the crystal graph of
L()), in the symmetrizable case [LauVal.

4.4.4. Cyclotomic Hecke algebras for sly. Let n € Zso. We have H,(Q) = °H,. One can
deduce from Theorem 4.25 that the 2-representations £(n) of §4.3.2 and §4.3.3 are equivalent.
One can also show this directly without using B(n), by using the same method as in the proof

of Theorem 4.25. Let us prove the more concrete fact that B(n) coincides with the category
L(n) of §4.3.2.

Lemma 4.27. Given i < n, then there is an isomorphism of rings
¢: Hi(n) = Hip, Ty Thy X Xjooand 2 (=)' e(zy, ..., 2)
for1<j<i—-1,1<j <iandl1<Il<n. Ifi>n, then Hi(n) =0.

Proof. Assume ¢ < n. In order to prove that the map ¢ of the lemma is well defined, it is
enough to consider the case : = n. We have

ot —ei(zy, ..., xn) + -+ (=) ey (21, ..., 2,) =0,
hence the map is well defined. It is clear that the map is surjective.

Let A; = Zlz1,...,2,) ®z °H; and V; = Z[zy,...,2,] ®z B, a faithful A;-module. Let
M; be the A;-submodule of V; generated by X' + Xf_lzl + o+ Xi2p-1+ 2z, and let L; =
Doaj<n—y Lz, zlayt - agt. Let Vo= Li+ M;. Let us show by induction on i that V; = V.
This is true for n = 1. Assume V; = V;. Note that V/ , is stable under the action of A; and
the action of T;. It follows that 0;(X]~"™") € V/,;, hence X['' € V/,;. This shows that V/,,
is stable under multiplication by X1, hence under the action of A;;;. Since V;;; is generated
by 1 € V/,, under the action of A;;, we deduce that V/, ; = Vi;;.

We deduce that H;(n) has a faithful module of rank < !)! over Z[z,...,z,). As a con-
sequence, the image of P, ® Z]z, ..., 2, in Hy(n) has rank < !)! over Z[z1,. .., 2], hence
H;(n) has rank < ¢ ), over Z[z,. .. ,zn]. That is the rank of Hz,n over PS»: it follows that ¢
is an 1somorphlsm O

5. GEOMETRY

5.1. Hall algebras. We refer to [Sch| for a general text on Hall algebras.
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5.1.1. Definition. Let A be an abelian category such that given M, N € A, then Hom 4(M, N)
and ExtY (M, N) are finite sets. One can take for example the category of finite dimensional
representations of a quiver over a finite field.

Given M, N € A, let Fy; y be the number of submodules N” of L such that N’ ~ N and
L/N'" ~ M.

Let P]\LL ~ denote the number of exact sequences 0 - N — L — M — 0. Then,

PL
L o M,N
2) Fain = | Aut(M)| - | Aut(N)|

Let H'; be the free abelian group with basis the isomorphism classes of objects of A

H,= & z[1).

LeA/~

We define a product in H'; by

(M) [N] = Y FyxlL).
LeA/~

The class [0] is a unit for the product. The algebra H'; is the Hall algebra of A.

One shows that the product is associative and more generally, that an iterated product counts
filtrations.

Given Ny,...,N,,L € A, let F¥; _ be the number of filtrations

-----

Proposition 5.1. We have [Ny] % --- % [N,] = Z Fy  w L.

.....

Remark 5.2. When A is semi-simple, then H’; is commutative. The “next” case is the
following. Let A be the category of finite abelian p-groups. The algebra H’; has a basis
parametrized by partitions and H'y = Z[uy, us, . ..] is a polynomial ring in the countably many
variables u; = [(Z/p)‘] (Steinitz-Hall).

5.1.2. Hall algebra for an A quiver. Let us now describe the Hall algebra for A the category of
finite dimensional representations of the quiver I' = 1 — 2 over a finite field k£ with ¢ elements.

The indecomposable representations of I' are S(1), S(2) and M (cf Example 3.2). Let f; =
[S(V)], f2 = [S(2)] and fio = [M]. We find fi*fo = fia+[S(1)@S(2)] and fox fi = [S(1)@S(2)].
The algebra H’; is not commutative. We have [f1, fa] = fia.

We have f1 % fio = q[M & S(1)] and fio% f1 = [M & S(1)]. So, f1* fi2 = qf12 * f1. If we view
¢ as an indeterminate and specialize it to 1, then the Lie subalgebra of H'; generated by f1, fa
and fis is isomorphic to the Lie algebra of strictly upper triangular 3 x 3-matrices:

010 000 0 01
fi= 1000}, o0 0 1], fia— 10 0 O
0 00 0 00 0 00
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5.1.3. Quantum groups as Ringel-Hall algebras. Let I' be a quiver with vertex set I and assume
I' has no loops. Let A be the category of finite dimensional representations of I" over a finite
field k with ¢ elements.

The Euler form is defined by

(M, N) = dim Hom(M, N) — dim Ext* (M, N)

for M, N € A.
We define the Ringel-Hall algebra H 4 as the C-vector space C ®z H'y with the product

[M] - [N] = g2 [M] « [N].

The graph underlying I' encodes a symmetric Cartan matrix, hence give rise to the nilpotent
part n~ of a Kac-Moody algebra.

We can now state Ringel’s Theorem.

Theorem 5.3 (Ringel). There is an injective morphism of C-algebras Uy(n™) — Hy, fi —
[S(0)]. If T corresponds to a Dynkin diagram, then this morphism is an isomorphism.

In the next section we will explain, following Lusztig, how to construct directly the non-
quantum enveloping algebra U(n™).

5.2. Functions on moduli stacks of representations of quivers. We refer to [ChrGi| for
a general introduction to geometric representation theory.

5.2.1. Moduli stack of representations of quivers. Let I' be a quiver with vertex set I. Let
Rep = Rep(I") be the moduli stack of representations of I' over C. This is a geometrical object
whose points are isomorphism classes of finite dimensional representations of I" over C. The
moduli stack also encodes the information of the group Aut(M), given M a representation of I'.
We have Rep =[] dezl, Rep,, where Rep, corresponds to representations V' with dimV; = d;

for i € I. We refer to §5.3.4 for a more precise description.

This stack can be described explicitly as a quotient. Let d € ZIZO. The data of a representation
of I' with underlying vector spaces {C%}; is the same as the data of an element of My =
D..ie; Homg(C%, C%), where a runs over the arrows of I'. This vector space has an action by
conjugation of the group G4 = [[, GLg4, (C):

g- (fa)a = (gjfzzgi_l)a for g = (gz)z

Two representations are isomorphic is they correspond to elements of M, in the same G-
orbit. Given f € My, we have Stabg,(f) = Aut(M), where M is the representation of I'
defined by f.

We have Rep,; = M;/Gy.

5.2.2. Convolution of functions. Let X be a set and F(X) the vector space of functions X — C.
Consider a map ¢ : X — Y between sets.
We define ¢* : F (V) = F(X) by ¢*(f)(x) = f(o(2)).
Assume ¢! (y) is finite for ally € Y. Define ¢, : F(X) — F(Y) by ¢.(f)(y) = > veo1(y) ()
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Now, given a diagram
Z
N
q
X X X

with the fibers of r finite, we define a convolution of functions
F(X) x F(X) = F(X), (f,9) = fog=r.(p"(f) d(9))-

5.2.3. Convolution of constructible functions. We want now to extend the constructions of
§5.2.2 to the case of varieties, or rather stacks. The main problem is to give a sense to ¢, when
¢ doesn’t have finite fibers.

Let X be a stack over C. We define F.(X), the space of constructible functions, as the
subspace of F(X) generated by the functions 1y, where V' runs over locally closed subspaces
of X. Here, 1y(z) =1if 2z € V and 1y (z) = 0 otherwise.

Given X a stack, we denote by x(X) = > ,50(—1)"dim H*(X) the Euler characteristic of
X. There is a unique extension of y to disjoint unions of locally closed subsets of stacks that
satisfies x(X) = x(V) + x(X = V).

Given ¢ : X — Y a morphism of stacks, we define ¢, as follows. Let f = )" mgly,, where
the V,, are locally closed subsets of X and m, € C. We put

6 () =D max(VaNeé™'(y)).

5.2.4. Realization of U(n~). Denote by X the stack over Rep x Rep of pairs (V C V’). We
have three morphisms p,q,r : X — Rep

PN
q
Rep Rep Rep
p(VcCcV)=V, qVcV)=V/Vandr(VcCcV)=V.
Define a convolution
Fe(Rep) x Fe(Rep) = Fe(Rep), (f,9) = fog=r.p"(f) 4" (9))

Let a; = lgep,: we have a;(S(i)) = 1 and a;(M) = 0 if M is a representation of I' not
isomorphic to S(7).

Theorem 5.4 (Lusztig). There is an injective morphism of C-algebras U(n~) — F.(Rep), fi —
a;. If T' corresponds to a Dynkin diagram, this is an isomorphism.

5.3. Flag varieties. We recall classical facts on affine Hecke algebra actions and flag varieties
in type A (cf e.g. [ChrGi]) and then flags of representations of quivers [Lul].
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5.3.1. Notations. We fix a prime number [ and put A = Q;. By scheme, we mean a separated
scheme of finite type over C. Given X a scheme or a stack, we denote by D(X) the bounded
derived category of [-adic constructible sheaves on X (cf [LaOll, LaO12]). All quotients will be
taken in the category of stacks.

Given X a smooth stack and ¢ : Z — X a smooth closed substack, both of pure dimension, we
have a Gysin morphism i,Az — Ax[2(dim X — dim Z)]. Let D be the duality functor. Via the
canonical identifications D(Az) = Az[2dim Z], D(Ax) = Ax[2dim X] and D o i, — i, 0 D,
the Gysin morphism is the dual of the canonical map Ax — i,Az. Note finally that the
automorphism of Ext*(Ax, Ax) induced by taking « to D(«) is the identity.

Let C be a graded additive category and M, N two objects of C. We put Hom( (M, N) =
@D, Hom(M, Ni).

Given a graded ring A, we define the graded dimension of a free finitely generated graded
A-module by grdim(A[i]) = ¢~/? and grdim(M) = grdim(M;) + grdim(M,) if M ~ M, & M,.

5.3.2. Nil affine Hecke algebra and P'-bundles. Let X be a stack, E a rank 2 vector bundle on
X and 7: Y = P(F) — X the projectivized bundle.

Let @« = ¢1(Ox(—1)) and f = ;(7*E/O(—1)). Let x = m.(a) and y = 7,.(5), viewed in
Hom (7, Ay, m Ay [2]).

Let T' € Hom(m Ay, m.Ay[—2]) be the composition

T:mAy 5 Ax[—2] <5 1Ay [—2]

where ¢ : m, Ay =5 H2(m, Ay )[—2] 5 Ax[—2] is the trace map.

Proposition 5.5. We have T? = 0 yT —Tx = 1 vy = yz and T(z +y) = (x + y)T. This
defines a morphism of algebras

OH2 — End.(ﬂ'*Ay), Xl — T, XQ =Y, T1 — T
Proof. We have a+ = ¢1(7*E) and aff = co(7*E). The composition

T A x %) Ay D Ty [—2] % T Ax[—2]
comes from natural transformations of functors, hence it commutes with End®(Ay). It follows
that 7' commutes with ¢;(E) =z + y and c(F) = zy.
Since T? factors through a map Ax[—2] — Ax[—4], we have T? = 0.
The composition
Ax &5 Ay =5 mAy[2] 5 Ax

is the identity. Indeed, after taking the fiber at a point P € X, the composition is
A OO =1 (p) A) S A

and ¢1(O(1)) is the class of a point.
So, we have an isomorphism

(can,x o can) : Ax & Ax[—2] = m.Ay.

Note that the composition

can

AX — W*Ay i> W*Ay[Q] i) AX
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is also the identity.

The composition
can ]

AX — 7T*Ay —) W*Ay[
vanishes since it factors through a map Ay — Ax[—2|. It follows that

can

AX — F*Ay —) 7T*Ay

is equal to the canonical map.
We have a commutative diagram

AX H‘ 7T*Ay H‘ 7T*Ay ] L> W*Ay[Q] .

N

So, the composition Ax — m.Ay[2] vanishes since it factors through a map Ax[4] — Ax[2].

It follows that the composition
AX ﬂ 7T*Ay i> W*Ay[ ] M> W*Ay[z]

is equal to the composition
can

AX — 7T*Ay —) W*Ay[ ]
So, yT' —Tx = 1. O

5.3.3. Nil affine Hecke algebras and flag varieties. We recall now the construction of an action
of °H,, on H*(Gr,/GL,) (cf [Ku]), where Gr, is the variety of complete flags in C".

Let ¢ : Gr,,/ GL,, — pt/ GL,, be the canonical map.

Consider the first Chern class of the line bundle defined by V;/V;_; over a complete flag
O0=VcWcC---CV,=C") and let X  be the corresponding element X, : ), A — 1. A[2].

Let Gr,,(d) the the variety of flags (0 =V, C V; C --- C V,,_; = C") such that dim V,./V,_; =
1 for r # d and dim V;/V;_; = 2. The canonical map

Gr, — Gr,(d)
o=VocVc---CcV,=C"Y—(0=VocViC---CVg1CVypyC---CV,=C")
is the projectivization of the 2-dimensional vector bundle V;/V,_; over Gr,(d). It induces a
map pg : Gr,/ GL, — Gr,(d)/ GL,.
Let T' € Hom(pa A, pax A[—2]) be the composition

can

T : pah 5 A[—2] &5 pg A[—2]
where t : pa A =2 H2(pauA)[—2] = A[—2] is the trace map. We denote by Ty : ¢, A — 1, A[—2]

the induced map.

Let X be a stack. The data of a rank n vector bundle £ on X is equivalent to the data of a
morphism of stacks X — pt/ GL,. Let Y be the stack of full flags in a rank n vector bundle £
on X and ¢ : Y — X be the associated map: this is the pullback of ¢ via [.

The following Theorem follows from Proposition 5.5, together with a verification of the braid
relations between Ty’s.
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Theorem 5.6. The construction above provides by base change a morphism °H,, — End®(¢.A).

Let j : X’ — X be a closed immersion. Assume X and X’ are smooth of pure dimension.
Then, the canonical morphism ¢,A — ¢, A and the morphism induced by the Gysin map
¢ A — ¢, A[2(dim X — dim X’)] commute with the action of °H,,.

5.3.4. Sheaves on moduli stacks of quivers. We follow Lusztig [Lul, §9]. Instead of working with
equivariant derived categories of varieties, we work with derived categories of the corresponding
quotient stacks. Given X a variety acted on by G, our perverse sheaves on X/G correspond to
shifts by dim G of the G-equivariant perverse sheaves on X considered by Lusztig. The duality
is similarly shifted.

Given X a scheme, we have an abelian category Ox[I']-Mod of representations of I over X,
i.e., sheaves of (ZI' ®z Ox)-modules. Its objects can be viewed as pairs V = (V, p) where V is
an Ox-module and p : ZI' — End(V) is a morphism of rings.

Given J a subset of I, we put V; =3"._; p(i)V.

We denote by Rep = Rep(I") the algebraic stack of representations of I'. It is defined by
assigning to a scheme X the subcategory of Ox[I'-Mod defined as follows:

e objects are pairs (V, p) such that V is a vector bundle (of finite rank) over X
e maps are isomorphisms.

Given a morphism of schemes f : X — Y, we have a functor f*: Rep(I')(Y) — Rep(I')(X)
given by base change.

We define the rank vector of V' = (V,p) as tkV = . ,(rkV;)i € N[I]. We have a decom-
position into connected components

Rep = H Rep,
a€eN(I]

where Rep,, is the substack of representations with rank vector a. We denote by j, the em-
bedding of the component Rep,,. We have dim Rep, = —(«, ). Note that Rep, is a point. We
denote by W, the tautological vector bundle {V'} on Rep,,.

Given i € I, we put L; = jiA[—1], a perverse sheaf on Rep.
Given M € D(Rep,) and N € D(Rep,,), we put M o N = n(p*M ® ¢*N)[—(u', j1)]. This

endows D(Rep) with a structure of monoidal category (it is the reverse of the tensor structure
defined by Lusztig).

5.3.5. Flags of representations. Given v = (v!,... ") € N[I|", we consider the stack Rep, of
flags (0 =V? C V! C--- C V") of representations of I' such that tk V"/V"~! = v". We have a
proper morphism

™, : Rep, = Reps- ., 0=V CVIC-.-C V") V"

and we put p, = jy»- .~ o7, : Rep, — Rep.

............

of flags (0 =V Cc V! C --- C V") such that for any r such that &, = ss, then V"/V""! ~
P, (V"/V1); as a representation of T
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5.3.6. Flags and quotients. Let I' be the discrete quiver with vertex set I and let Rep = Rep(T).
The restriction map defines a morphism Rep, — Rep,,. This is a vector bundle of rank

ZdijZVf(y;+---+y;).

i#£] T

Let @« = >, ;i € N[I]. We denote by P/{a)a the variety [],, ,; Homc(C%, C%), where
h runs over the set of arrows of I'. There is an action of G, = [], GL,, on f{\eE)a given by
g f = (9 fng; Dnisi, where g = (gi)ier and f = (fu)n. A point of P/{Ef)a defines a representation
of I' of dimension vector «a: this provides an isomorphism f{\eia /G4 = Rep,,. In particular, we
obtain BG, = Rep,.

Given dy,...,d, > 0, we denote by Gry, . 4 the variety of flags (0 = Vp C V3 C --- C
V, = CX4) such that dimVi/Vi_; = d;. Let v = (v},...,v") € N[I]". Let @ = Y, v" and
ni = y._ vi. We denote by f/{\&)y the subvariety of [[; Gr,i_ ,» X f{\eE)a given by families

(0="Vip C--- CVip =C");, (fn)n) such that f(Vi,) C V;, for all h:i¢— j and all r. The
diagonal action of G = G,, restricts to an action on f{\egy. Sending a point to the associated
filtered representation of I" defines an isomorphism P/{\eI)V /G = Rep,. Let P; be the parabolic
subgroup of GL,, stabilizing the standard flag F; = (Vo =0 C V;; = C“a0C-C Vin =
C"@---@CY) and let P = [, Pi. We have a canonical isomorphism G/P = T[], Gry1 . un

inducing an isomorphism G \G/P = Rep,,.

Let v/ = (V},...,v") € N[I]". We assume a = >_ /7. This defines as above a parabolic
subgroup P’ of G. We denote by W, Wp and Wp the Weyl groups of G, P and P’. We have

an isomorphism

(ﬁgl/),j X e ﬁ&y) /G = Rep,, Xgrep Rep,, -

The isomorphisms above induce an isomorphism
P'"\G/P = Rep, Xz Rep,.

Its closed points are in bijection with Wp\W/Wp and each such point w defines a locally closed
closed substack X,,. This corresponds to the decomposition

H (GI‘V},...,VZL X Grugl,...,ugnl) = H Ou
w

]

into orbits under the action of G, i.e., O, /G = X,.

The restriction map V' — {V;}ic; induces a map  : Rep, Xgrep Rep,, — Rep, X Rep Rep,,.
The restriction of x over each X, is a vector bundle. Note that H}(Rep, Xgrep Rep,/) is a free
graded H*(BG)-module of graded rank equal to the graded rank of H :(f{\ef)l, X Rop. P/{&)w) as a
A-module. The pullback of k is the projection map

k: Rep, Xz= Rep, — H <Gr,,_1wyn x Gr, 5 V{n/) .
i

Repa 1 7T

Assume now v" € [ for all r. We have Wp = Wp, = 1. Define v;, v/ : {1,...,n;} = {1,...,n}
to be the increasing maps such that v = /%) = j for all r.
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We identify W with [], S,,. Let w = (w;); € W. The fiber of & over ((F;,w;(F}))); € O(w)
has dimension

D de - #{a, bly(b) < 7s(a) and ~;(w; (b)) < Ay(w; ()}

s#t
We deduce that
grdimH*(P/{\e?) X Rep = P(W,q) Z q W)+ sy dit-#{ bl (b)<vs(a) and ~; (w; " (b)) <74 (wi ' (a))})
(& v €Pq v/

weWw

where P(W,q) =T[, 1], qT is the Poincaré polynomial of .
5.4. Quiver Hecke algebras and geometry.

5.4.1. Monoidal category of semi-simple perverse sheaves. We denote by P the smallest full
additive monoidal subcategory of D(Rep) closed under translations and containing the objects
L; forie 1.

The following theorem gives a presentation of P by generators and relations. It has been

proven independently by Varagnolo and Vasserot [VarVas].

Theorem 5.7. There is an equivalence of graded monoidal categories R : (Qi®zB(T'))%-gr = P.

The category B(I") is defined by generators and relations and in §5.4.3 we define the images
of the generating objects and arrows. The verification of the relations and the proof that the
induced functor is an equivalence start in §5.4.4.

Theorem 5.7 shows that quiver Hecke algebras H, (') are Ext-algebras of certain sums of
shifted simple perverse sheaves on quiver varieties, as all objects of P are of that form.

5.4.2. Canonical basis. There is an isomorphism of Z[¢*!/?]-algebras [Lul, §14]

(3) UZ[qil/2}(n_) = KO(P)v fs — [Ls]

Let B be the set of isomorphism classes of simple perverse sheaves on Rep that are contained
in P. Every object of P is isomorphic to a direct sum of shifts of objects of B. The canonical
basis C' of Ug,t1/2(n”) corresponds, via the isomorphism (3), to {[L]} res-

Recall that there is a duality A [Rou2, §4.2.1] on B(T'), i.e., a graded equivalence of monoidal
categories B(I")°PP = B(T") with A? = Id given by
Fin] — F—n], z,— x5 and 74 — 74s.
Let C’ be the set of classes in K| of indecomposable objects M of (Q; ®z B(I'))tgr such that
A(M) ~ M.

Corollary 5.8. We have an isomorphism Ugjgs1/2(n~) = Ko((Q; ®z B(D))*-gr). It induces a
bijection C = C".
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5.4.3. Hecke generators. We set R(Fy) = L. Let us now define the value of R on the generating
arrows of B(I").

e Let s € I. We denote by x, € Hom(Ly, L,[2]) the image of ¢;(W;) € H*(Rep,, A).

e The forgetful morphism (s s) : Rep, 5y — Repy, is the P!-fibration associated to the rank
2 bundle Wh,. We denote by 7, € Hom(L, o Ly, Ly o L[—2]) the image of the composition

trace can

7T(S78)*A —_— A[—Q] — 7T(S75)*A[—2].

o Let s #t € I. Consider the morphism
fst : Rep(yyy — Rep, x Rep,, (V. C V') = (V,V'/V).

Let My, = fy.O: this is the vector bundle Ext!(V’, V) over Rep, x Rep, = {(V,V’)}. We have
My ~ (Ws X Wt—l)éBdts_

The vector bundle f% Mg has a section given by assigning to (V' C V') the class of the
extension 0 — V' — V' — V'/V — 0. The zero substack of that section is Zy = Rep(,4,, a
closed substack of codimension dys in Rep, 4.

We denote by 74 € Hom(Lg o Ly, Ly o Li[mg]) the image of the composition

ss?

Gysin can

p(t,s)*(AZst ? ARep(t,S) [stt]) O P(s,t)+ (ARep(syt) — AZSt)-

5.4.4. Polynomial actions. Let us first study Hom-spaces in the category P under the action
of polynomial rings.

Let v € I"and v/ € I". Giveni € I, let n; = #{r|v, = i} and n}, = #{r|v. = i}. By [ChrGi,
§8.6], there is an isomorphism of (A[z,,,...,2,,], Az, ... ,:L',,;/])—bimodules

Ext*(L,, 0---0L,,,Lyo---0L, ) = H7*(Rep, Xrep Rep,/)
where ¢ = dim Rep,, +dim Rep,,. If Ext*(L,, o---0L,,, Ly o---0 Ly, ) #0, then the stack

Rep,, Xgep Rep,, is non-empty, so n; = n} for all <. Assume this holds. It follows from §5.3.5
that Ext*(L,, 0---0L,,, L, o---0L,)is a free graded H*(BG)-module of graded rank
N =v"P(W,q") Z g~ M)+ dor #{abl7e (b)<ys(a) and i (wy H(0) <l (ws(@)})
weW
We have
7 =23 (s = 1)+ 3 du (Bl Bu(d) < (@) + #{a, i) < ALfa)}).
s s#t
On the other hand,

H(w) =Y #{a,bly(b) < vs(a) and 7 (w; " (b)) > 7i(w; " (@)}

It follows that
N = P(W,q) Z q% 2 ter Mt #{a,b|ys (a)<v:(b) and ¢ (ws(a)) >y (we (b))}
wew
and we deduce from Lemma 3.10 that the graded dimensions of the free (®l A[Xiq, s Xip,| O )—
modules Homgq, g, sy (Fyy -+ F,, B -+ Fyy ) and Ext™(L,, 0---0L,,, L, o---0 L, ) coincide.

/
1
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5.4.5. Relations 2. Let s # t € I. The self-intersection formula shows that

A, Syein ARep,., [2dst] < Ag,,[2dy)

is equal to
Cau(fisMus) = (1(W)iz.0) — er((We)jz., )™
On the other hand, the composition

can Gysm

ARep( ) — AZst ARep( ) [2dts]

is equal to
Za] = ca (faMa) = (€(W)1z.) — er(W)z.)) ™
We have shown that
iy © T = (1) (Lo — Lar) o+,

It follows from §5.3.3 that 72, = 0.

5.4.6. Relations 3. Consider now s,t,u € I.

e Assume first s, ¢t and u are dlstlnct. The intersection of the closed substacks Rep((si4),,.u)
and Rep; (s4u).,) Of Repy ., Is transverse, since the intersection of 0 x C?us and C%t x 0 in
Cdst x Cd“S is transverse.

It follows that the composition (L;7s,) o (TstLy) is equal to the image of the composition

Gysin can
y CRep [ (dsu + dst)]) o p(s t u)*(CRep ) — CZ)
where Z is the substack of Rep;, (resp. of Rep(, ) of triples (L C L' C L") such that
(L")s is a direct summand of L”.

Similarly, the intersection of Z and Rep((4.y,),. )
(TeuLs) © (LyTsy) © (Tt L) is equal to the image of

p(t u,s) (CZ

) in Repy,,, ) is transverse and we deduce that

Gysin

? CRepWYt’S) [Q(dst + dsu + dtu)]) o p(s,t,u)*(CRep(s’t?u)

Can

p(uvtvs)*<CRep(s+t+u)ss CReP(ertJru)ss)

A similar calculation provides the same description of (L,Ts) o (TsyLt) © (LsTy,), s0 we have

(TtuLs) o (Lthu) o (TstLu) == (LuTst) o (TsuLt) o (LsTtu)~

e We consider now the case where s = ¢t # u. As above, we obtain that the composition
(TsuLs) o (LsTgy) is equal to the image of the composition

Gysin

? CRep(u,S,S) [4d8u]) o p(s,s,u)*(CRep(s,S,u)

p(u7s7s)*(CRep(s,s,u)ss CRep(s s U)Sq)
The commutation of the action of the nil affine Hecke algebra in §5.3.3 shows that

(TsuLs) © (LsTsy) © (Tss L) = (LuyTss) © (TsuwLis) © (LsTsu)-

e The case s =t = u follows from the results of §5.3.3.
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5.4.7. Conclusion. The relations (3) and (4) in §3.3.3 are clear when s # t and follow from
§5.3.3 when s = t. The results of §5.4.5 and 5.4.6 complete the verification of the defining
relations for the category B(I'). Thanks to §5.4.4, we obtain a monoidal Q-linear graded
functor R : (Q; ® B(I'))-gr — P. That functor is essentially surjective. It follows from
Proposition 3.9 and from §5.4.4 that R is faithful.

Let v € I" and v/ € I"V. By Nakayama’s Lemma, it follows from §5.4.4 that R induces an
isomorphism

HomB(p)(Fyl te Fyn, Fl’i te Fya) :> ]'__‘)Xt*(LV1 O---0 Lyn, Lyi O---0 L,//).

n

This completes the proof that R is an equivalence.
5.5. 2-Representations.

5.5.1. Framed quivers and construction of representations. Nakajima introduced new quiver
varieties in order to construct irreducible representations L(\) of Kac-Moody algebras. We
present a modification due to Hao Zheng [Zh].

Let I' be the quiver obtained from I' by adding vertices ¢ for ¢ € I and arrows ¢ — i. We
have Rep(I") = HWIGZ’ZU Rep,,,(I).

Assume 7 is a source of I'. Let U; be the substack of Rep of representations V' such that the

canonical map V; — €., , ; Vj 1s injective, where a runs over arrows of I starting at 7. Let N
be the thick subcategory of D(Rep(I')) of complexes of sheaves with 0 restriction to N

If 7 is not a source, consider a quiver I corresponding to a different orientation of I' and
such that i is a source of T'. Define N7 C D(Rep(I}) as above. Now, there is an equivalence
D(Rep(I")) = D(Rep(T')) given by Fourier transform and we define A; to be the image of A.

Finally, let N be the thick subcategory of D(Rep(T')) generated by N; for i € I. This is
independent of the choice of the quivers I',. Let D = D(Rep(T"))/N.

Consider now a root datum (X, Y, (—, =), {ai }ier, {) }ier) with Cartan matrix that afforded
by T

Let A € X*. Let v; = (A, o) and v = (1); € ZL;. We put Rep(\) = Huezéo Rep,gw(f‘) and
we denote by D(A) the image of D(Rep())) in D. )

The convolution functor L; o — stabilizes N and induces an endofunctor E; of D(\).

It has a right adjoint F;. Let P(\) be the smallest full subcategory of D()) containing Cgep,
stable under Fj; for ¢ € I, and stable under direct summands and direct sums.

Theorem 5.9 (Zheng). The functors E; and F; satisfy Serre relations, and abstract versions of
the p; » and o;; isomorphisms. In particular, they induce an action of Uy(g) on C®z Ko(P(N))
and the resulting module is isomorphic to the simple module of highest weight .

A

5.5.2. 2-representations. The action by convolution of B(I') on D(Rep(I')) (cf Theorem 5.7)
induces a graded action on P ().

Theorem 5.10. The graded action of B(I') on P(\) extends to a graded action of A(T"). There
is an equivalence of graded 2-representations of A(T)

(L) @ k" @z Qu)'-ar = P(N).
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Proof. We have End®(Agrep,) ~ H*(BG,). Given M,N € P()), the space Hom*(M, N) is
a finitely generated H*(BG,)-module [Zh, proof of Proposition 3.2.5]. By Theorem 5.9, the
functors E; and F; induce an action of sly on Ko(P (X)) ®ggy+1/2 Clg™/%]/(¢"/* — 1). We deduce
from Corollary 4.13 that we have a 2-representation of A(I") (the grading can be forgotten to
check that the maps p; , are isomorphisms).

Let i € I and 0 <r < v;. We have Rep,,,.,, = H#i B GL,;, xBP,, where P, is the maximal
parabolic subgroup of GL,, with Levi GL, x GL,,_,. The graded action of H*(B GL,,) on
Ei(yi)(ARepu) corresponds to the action of Q;[X1,...,X,,]%. We deduce that the canonical
map Py ®z Q; — H*(BG,) is an isomorphism. This proves the last part of the theorem. [

Remark 5.11. Zheng provides more generally a construction of tensor products of simple
representations, and the first part of Theorem 5.10, and its proof, generalize immediately to
that case: this provides graded 2-representations with Grothendieck group that tensor product
of simple representations.

Putting Theorems 4.25 and 5.10 together, we obtain

Corollary 5.12. There is an equivalence compatible with the graded action of A(I)
(B(A) @ k' @z Qu)-gr = P(A).

As a consequence, the indecomposable projective modules for cyclotomic quiver Hecke alge-
bras over Q; ®z k' correspond to the canonical basis elements of L(\). When I has type A, or
A, this is Ariki’s Theorem (formerly, the Lascoux-Leclerc-Thibon conjecture). Here, we used
the geometry of quiver varieties, which carry the same singularities as flag varieties, in type A.

Remark 5.13. It would be interesting to extend Theorems 5.7 and 5.10 to the case of coeffi-
cients Z or F,,.

Lauda has given an independent proof of the results of §5.5.2 for sly: in this case, the
geometry is that of flag varieties of type A [Lau2]. An earlier geometrical approach has been
given by Cautis, Kamnitzer and Licata for sly, based on coherent sheaves on cotangent bundles
of flag varieties and compactifications of those [CauKalLil], later generalized to arbitrary I
[CauKaLi2].

Webster has given a presentation of our results and constructions in §5.5.2 and has used
this to develop a categorification of the Reshetikhin-Turaev invariants [Wel, We2]. He has also
constructed a counterpart of the categories B(\) for tensor products.
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