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Abstract

In this paper we present a method for estimating the abso-
lute pose of a rigid object based on intensity and depth view-
based eigenspaces, built across multiple views of example
objects of the same class. Given an initial frame of an ob-
ject with unknown pose, we reconstruct a prior model for all
views represented in the eigenspaces. For each new frame,
we compute the pose-changes between every view of the
reconstructed prior model and the new frame. The result-
ing pose-changes are then combined and used in a Kalman
filter update. This approach for pose estimation is user-
independent and the prior model can be initialized automat-
ically from any view point of the view-based eigenspaces.
To track more robustly over time, we present an extension
of this pose estimation technique where we integrate our
prior model approach with an adaptive differential tracker.
We demonstrate the accuracy of our approach on face pose
tracking using stereo cameras.

1. Introduction
Estimating the pose of a rigid object accurately and robustly
for a wide range of motion is a classic problem in computer
vision and has many useful applications. We are particu-
larly interested in head pose tracking and its application in
view-invariant face recognition, head gesture understand-
ing, and conversational turn-taking cues.

In this paper we propose a method for estimating the ab-
solute pose of an object from a known class, using intensity
and depth view-based eigenspaces. Our approach consists
of two steps: first we compute a prior model of the object
given one initial frame and then this prior model is used
to compute the absolute pose of each new frame. Here we
focus our attention on human faces, although the methods
are general enough to extend to many different classes of
rigid objects. We built our depth and intensity view-based
eigenspaces using Principal Component Analysis (PCA) for
28 different viewpoints surrounding the face of 14 people.

When presented with an intensity or depth image of a
subject in an unknown pose, the system first finds the view
with minimal reconstruction error, and then uses the cor-

responding PCA coefficients to reconstruct the image at
all views. This is equivalent to finding the point on the
multi-view depth and intensity manifold that most closely
approximates the observed image at some view. The recon-
structed 3D multi-view model is then used as a prior model
for absolute-pose estimation. Rigid pose tracking is easiest
when a 3-D shape and appearance model of the object is
available.

Given the reconstructed prior model and a new frame
showing the same subject, we estimate the new pose with a
two step process. We first compute the relative pose be-
tween the new frame and each view in the prior model
using an iterative view registration algorithm [13]. This
computation uses intensity information as well as depth
(if available), and amounts to estimating pose-change mea-
surements between the new frame and every view in the
prior model. As a final step, the pose measurements are in-
tegrated using a Kalman filter to produce a final estimate for
the absolute pose [14]. This tracking framework efficiently
computes the 6-DOF pose of the subject’s head, and could
be provided with 2D or stereo images as input, depending
on the view registration algorithm used to do the relative
pose computations.

As an extension of our approach, we integrated the re-
constructed prior model in our existing Adaptive View-
Based Appearance Model (AVAM) tracking framework
[14]. This method creates a user-specific view-based model
online during tracking. It can estimate the pose of an object
accurately and with bounded drift, relative to the first frame.
By integrating the prior model in the AVAM framework, we
get a robust tracker able to initialize automatically and track
object outside the pose space defined in our prior model.

Section 2 reviews previous work and how it relates to
this paper, and Section 3 describes how we construct the
view-based eigenspaces. We then in Section 4 present the
algorithm to create a prior model of the person of interest
given the initial image of an image sequence. Section 5
presents our technique for 6-DOF pose estimation using the
view registration and Kalman filter framework. Section 5.1
describes the integrated framework with AVAM. Finally, in
Section 6, we show results for a head tracking task with
depth and intensity input from a commercial stereo camera,



and compare the accuracy of our pose estimation technique
with that of another technique[18].

2. Previous Work

Pose estimation is possible from a single 2-D view–e.g,
using color and coarse template matching [2, 16], pattern
classifiers [15], or using graph matching techniques [11]–
but techniques which can exploit a 3-D model are generally
more accurate. 3-D representations model the appearance
of objects more closely, and thus can lock on to a subject
more tightly. Textured geometric 3D models [10, 1] have
been used for tracking; because the prior 3D shape models
for these systems do not adapt to the user, they tend to have
limited tracking range.

Deformable 3D models fix this problem by adapting the
shape of the model to the subject [9, 12, 4, 6]. These ap-
proaches maintain the 3D structure of the subject in a state
vector which is updated as images are observed. These up-
dates require that correspondences between features in the
model and features in the image be known. Reliably com-
puting these correspondences is difficult, and the complex-
ity of the update grows quadratically with the number of
3D features, making the updates expensive [9]. Brand de-
veloped a 3-D morphable model which is able to track fea-
tures while simultaneously estimating the underlying shape
model [3]. In general, existing approaches to 3-D model
estimation for tracking presume a single-viewpoint model
of image appearance, which will not be valid for non-
lambertian objects.

A view-based approach to 3-D modeling and tracking
has several advantages over mesh or volumetric shape mod-
els. The relative pose of constituent range observations can
be adjusted dynamically during model formation. It can
easily represent varying levels of detail on an object, and it
directly captures non-lambertian appearance on the surface
of an object [14].

Below, we describe a pose estimation algorithm using
view-based eigenspaces with depth and intensity compo-
nents. View-based models for object recognition using
eigenspaces were described in [17], which constructed a
separate PCA model for sets of images at given views. [5]
developed a multi-view active appearance model that de-
scribed shape and texture variation across views; object ap-
pearance was matched using the closest view and pose in-
ferred with a linear projection of model coefficients.

Recently the reconstruction distance to a set of
eigenspaces at different views was used to interpolate head
pose; the relationship between a set of approximate correla-
tion scores and object pose can be learned from training ex-
amples [18]. Our approach differs from this work in that we
learn a joint eigenspace across views, intensity, and depth
images, and that we use the model only to reconstruct a

multi-view model close to the observed object. We do not
use the correlation scores or reconstruction error from each
view to infer pose; instead we compute the pose-changes
between every view of the reconstructed prior model and
the new frame. The resulting pose-changes are then com-
bined and used in a Kalman filter update.

The Adaptive View-based Appearence Model described
in [14] is a relative-pose tracker which combines differen-
tial tracking with keyframe-based tracking. Adaptive view-
based models can be acquired online during the tracking.
The uncertainty in the pose of a keyframe shrinks overtime
as the keyframe is revisited. Hence, the uncertainty in the
pose estimate of new frame registered against a keyframe is
bounded. The resulting tracker has bounded drift and can
be used to track heads undergoing large motion for a long
time. By creating the adaptive appearance model online,
the tracker gives accurate relative pose but doesn’t have any
mechanism to estimate absolute pose [14].

3. 3D View-based Eigenspaces
We wish to learn a multi-view depth and intensity model
which is user-independent and can be used to initialize pose
tracking . We also want a view-based model that can recon-
struct a multi-view manifold of the object given only one
view. Ideally, we could recreate the depth manifold given
only an intensity image as input.

To achieve these goals, we define our view-based
eigenspaces modelP as:

P = {Ī ,VI , Z̄,VZ}

whereĪ andZ̄ are the mean intensity and depth for all the
views; VI andVZ are the intensity and depth eigenspaces
of our model. To navigate in our model, we define windows
Pi in the eigenvector matrices for each viewi of our model:

Pi = {Īi, VIi
, Z̄i, VZi

, εi}

where Īi and Z̄i are the mean intensity and depth images
for this view,εi is the pose of that view andVIi

andVZi
are

windows in the eigenspace matrices. Note thatVIi andVZi

are not eigenspaces since we defined our eigenspacesVI

andVZ over all the views. In our case, poses of rigid body
are represented asε = [ T x T y T z Ωx Ωy Ωz ],
a 6 dimensional vector consisting of the translation and the
instantaneous rotation.

3.1. Eigenspaces Acquisition
We want to generate a user-independent view-based model
that can render every view of the object given a correct
match with one of the views. The view-based eigenspaces
P can be learned from multiple adaptive view-based appear-
ance models{M1,M2, ...,Mn}. Following the definition



stated in [14], an adaptive view-based appearance model is
defined as

M = {{Ii, Zi, εi},Λ}

where{Ii, Zi} are the intensity and depth images at each
view i, εi is the pose of each key frame modelled with a
Gaussian distribution, andΛ is the covariance matrix over
all random variablesεi.

For each modelMj , we concatenate the intensity and
depth images of all views in two vectorsIj andZj :

Ij =
[

Ij
1 Ij

2 · · · Ij
m

]
Zj =

[
Zj

1 Zj
2 · · · Zj

m

]
where Ij

i and Zj
i are segmented intensity and depth im-

ages from the appearance modelMj at poseεi, andm is
the number of views. All the segmented images have the
same size and are stored in one-dimensional vectors. We
can compute the average vectors:

Ī = 1
n

∑n
j=1 Ij Z̄ = 1

n

∑n
j=1 Zj (1)

and then stack all the normalized intensity and depth vectors
into two matrices:

I =
[ (

I1 − Ī
) (

I2 − Ī
)

· · ·
]T

Z =
[ (

Z1 − Z̄
) (

Z2 − Ī
)

· · ·
]T

Since we want to be able to reconstruct the intensity and
depth images from only one intensity image, we must use
the same set of weights for the intensity and the depth eigen-
vectors. To achieve that, we apply SVD decomposition on
I = UIDIVT

I and compute the corresponding depth eigen-
vectors by applying the same weights:

VT
Z = D−1

I U−1
I Z

This approach allows us to create a prior model with both
intensity and depth even when no stereo information is
available. Although the resulting depth basis vectors ofVZ
are not optimal, there is a strong correlation between the in-
tensity and depth images that provides justification for this
approach.

Figure 1 shows the mean face of our view-based
eigenspaces built using adaptive view-based models of 14
people. Each adaptive model contains 28 views of one per-
son: 7 views along the X axis by 4 views along the Y axis.
All adjacent views are separated by 10◦. By looking closely
at the depth images, we can see that the chin is closer when
looking at 20◦ up. When looking on the side, we can see a
small bump representing the nose. Such subtle details can
be important during tracking.

Figure 2 shows the first three intensity eigenvectors dis-
played for the 7 horizontal views. We can see in the second
eigenvector the variations for the nose and the eye shadow.
The third eigenvector presents some lip variation.
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Figure 1:Top: 28 views of the average intensity manifold. Bot-
tom: 28 views of the average depth manifold (white means closer).

Figure 2: The first three intensity eigenvectors (rows) partially
displayed for the 7 horizontal views (colomns).

4. Prior Model Reconstruction

The purpose of prior model reconstruction is to generate a
set of views for use in the pose estimation module. Given a
single example frame near one of the views in our modelP,
we want to reconstruct all the other available views of our
model. In our case, given one image, we can recreate the 27
other views including the depth images.

The new unsegmented frame{It, Zt} is preprocessed to
find a region of interest for the object. This can be done
using motion detection, background subtraction, flesh color
detection or a simple face detector [19].

For each viewi of our model and for each subregion
{I ′t, Z ′t} of the same size as the views inP inside the re-
gion of interest, we find the vector~wi that minimizes

Ei = |I ′t − Īi − ~wi · VIi
|2, (2)



The minimization is straightforward using linear least
squares.

From the eigenvector weights~wi, we first reconstruct the
intensity and depth images

IRi
= Īi + ~wi · VIi

(3)

ZRi
= Z̄i + ~wi · VZi

(4)

The reprojection step is done for every viewi. After
the reconstruction of all intensity and depth imagesIRi

and
ZRi

, we search for the best projection minimizing the cor-
relation function:

(I ′t − Ī ′t) · (IRi
− ĪRi

)
|I ′t − Ī ′t||IRi − ĪRi |

+ λ
(Z ′t − Z̄ ′t) · (ZRi

− Z̄Ri
)

|Z ′t − Z̄ ′t||ZRi − Z̄Ri |

whereλ is constant to compensate for the difference be-
tween intensity measurements(brightness levels) and the
depth measurements(mm). If the depth image is not avail-
able thenλ is set to 0.

From the correlation function, we get a correlation score
ci for each view and each subregion{I ′t, Z ′t}. The lowest
correlationc∗i over all views and all subregions corresponds
to the best match. Using the weights~w∗ of the best match,
we again reconstruct the intensity and depth images of the
object in all the views using eq. (3) and (4). The output
of the matching algorithm is the set of reconstructed frames
{I∗i , Z∗i }, the poseε∗i of the best view-based eigenspace and
the associated correlation scorec∗i . We can define a prior
view-based appearance model

MP = {{IPi , ZPi , εPi},ΛP }

where the images and poses are copied directly from re-
constructed frames and associated poses, and the covariance
matrixΛP is initialized as the identity matrix times a small
constant.

Figure 3 shows reconstructions for 2 different peo-
ple. Each reconstruction was done using view-based
eigenspaces that exclude the person reconstructed. The top
half shows a reconstruction where the example image is ori-
ented near the view 0◦ around X axis and 0◦ around the Y
axis. The reconstructed views displayed in the figure are the
horizontal view. The second reconstruction uses an exam-
ple image at 20◦ around X axis and 20◦ around the Y axis.
The reconstructed views are at -10◦ around the Y axis.

5. 6-DOF Absolute Pose Estimation
In this section we present our technique to estimate the
absolute pose of a rigid object using 3D view-based
eigenspaces as a prior model. Figure 4 presents an overview
of our pose estimation algorithm. Our approach is separated
in two steps: first we compute a prior model of the subject

Figure 3:Model reconstruction from a frontal view (top half) and
a rotated view (bottom half). Both reconstructions (bottom rows)
are compared with ground truth (top rows).

given one initial frame and then this prior model is used
with each new frame to compute the absolute pose.

During the initialization stage, each new frame{It, Zt}
is projected into the view-based eigenspace model as de-
scribed in section 4. If the best correlation scorec∗i is larger
than a thresholdk, the prior model is created.

When depth information is available in the new frame,
we can register the frames using a hybrid error function
which combines robustness of the ICP (Iterative Closest
Point) algorithm and the precision of the normal flow con-
straint (NFC) [13]. When only 2D images are available
an iterative approach like [6] may be used to give an ap-
propriate set of pose-change measurement. We model a
pose-change measurementδt

s as having come fromδt
s =

εt − εs + ω whereεs is the pose estimate associated with
the views of our prior model andω is Gaussian.

To estimate the poseεt of the new frame based on the
pose-change measurements, we use the Kalman filter for-
mulation described in [14] where the state vectorX is pop-
ulated with the pose variables{εt, εP1 , εP2 , . . .} and the
observation vectorY is populated with the pose-change
measurements{δt

P1
, δt

P2
, . . .}. The covariance between the

components ofX is denoted byΛX .
The Kalman filter update computes a prior for

p(Xt|Y1..t−1) by propagatingp(Xt−1|Y1..t−1) one step for-
ward using a dynamic model. Each pose-change measure-
mentyt

s ∈ Y between the current frame and a base frame of
X is modelled as having come from:

yt
s = CX + ω,
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Figure 4: Overview of the prior model and its usage. Section 3
describes how the view-based eigenspaces are created, Section 4
describes the model creation step that is done once at the beginning
of each sequence, and section 5 describes view registration.

C =
[

I 0 · · · −I · · · 0
]
,

whereω is Gaussian. Each pose-change measurementyt
s

is used to update all poses using the Kalman Filter state
update:

[ΛXt
]−1 =

[
ΛXt−1

]−1 + C>Λ−1
yt

s
C (5)

Xt = ΛXt

([
ΛXt−1

]−1Xt−1 + C>Λ−1
yt

s
yt

s

)
(6)

We define our observations variablesδt
s as a pose-change

measurement between the new frame and a base frame inX .

5.1. Integration with AVAM
In this section we present an extension of the 6-DOF ab-
solute pose estimator where we integrate the reconstructed
prior model inside an Adaptive View-based Appearance
Model (AVAM) tracking framwork. In the AVAM frame-
work, user-specific keyframes are added in the model dur-
ing the tracking. One of the main advantages of the AVAM
framework is that pose estimation of the new frame{It, Zt}
and pose adjustments of the view-based modelM are per-
formed simultaneously. The original AVAM described in
[14] is a relative-pose tracker which combines differen-
tial tracking with keyframe-based tracking. By integrat-
ing the prior model with the AVAM framework, we obtain
an absolute-pose tracker with accurate pose estimates and
bounded-drift.

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

R
o

ta
ti

o
n

 a
ro

u
n

d
 X

 a
x

is
 (

d
e

g
re

e
)

Inertia Cube2

Our prior model

OSU

-40

-30

-20

-10

0

10

20

30

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

R
o

ta
ti

o
n

 a
ro

u
n

d
 Y

 a
x

is
 (

d
e

g
re

e
)

Inertia Cube2

Our prior model

OSU

-20

-15

-10

-5

0

5

10

15

20

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

R
o

ta
ti

o
n

 a
ro

u
n

d
 Z

 a
x

is
 (

d
e

g
re

e
)

Inertia Cube2

Our prior model

Figure 5: Comparison of the pose estimation results of the best
reconstruction (4 eigenvectors) with the InertiaCube2 and with our
reimplementation of the OSU pose estimator. The ground truth
estimates from the Inertial Cube2 are shown with 3◦ error bars.

Since the AVAM framework also uses a Kalman filter to
update the poses, we can extend the Kalman filter state vec-
tor to include the key frame pose variables and the previous
frame pose variable:

X =
[

εt εt−1 εM1 εM2 . . . εP1 εP2 . . .
]>

By integrating the prior model in the AVAM framework,
we get a robust tracker able to initialize automatically and
estimate absolute pose of the object.

6. Experiments
We designed our experiments to demonstrate the accuracy
of our approach on estimating the relative and absolute pose
of a user’s head in 3D. All the experiments were done using
a Videre Design stereo camera [7].

We constructed the view-based eigenspaces using 14
view-based appearance models acquired with the original
tracker described in [14]. Each participant was aligned fac-
ing the camera, and then asked to rotate his head along the
X and Y axes. We configured the tracker to tesselate the
rotation space at 10 degree intervals. In this fashion, a set
of 28 intensity and depth image pairs was created for each
participant. We then manually cropped the faces to 32x32
pixels, while keeping alignment across participants. Figure
1 shows the average face in all 28 orientations, and Figure
2 shows 3 of the 13 eigenvectors that we use to create prior
models.



To analyze our algorithm quantitatively, we compared
the pose estimates of our system with those of an InterSense
InertiaCube2 sensor [8]. The InertiaCube2 is an inertial 3-
DOF orientation tracking system, which we mounted on the
inside of a construction hat that was worn by a test subject
during tracking. The sensor works by measuring the direc-
tion of gravity and the Earth’s magnetic field, and is driftless
along the X and Z axes. However, the Y axis (pointing up)
can suffer from errors due to drifting. InterSense reports a
dynamic accuracy of 3◦RMS.

6.1. 6-DOF Absolute Pose Detection
To analyze the accuracy of our view-based eigenspace
model for pose estimation, we recorded 2 sequences with
ground truth poses using an InertiaCube2 sensor. Sequence
1 contains 245 frames and sequence 2 contains 155 frames.
Because the purpose of the experiment was to evaluate the
accuracy of the pose estimation algorithms, poses in both
sequences are constrained to the rotation space of the prior
model. The pose estimation algorithm described in section
5.1 is applied independently for each frame.

For comparison, we also reimplemented a 2-dimensional
version of the OSU system [18]. Our implementation of
the OSU estimator used 7 different eigenspaces in the hori-
zontal direction, at poses between -30 and 30 degrees with
equal spacing, and 4 different eigenspaces in the vertical di-
rection, between -20 and 10 degrees. This is the same range
spanned by the eigenspaces we used in the other part of the
paper. However, using this method pose estimation is done
independently for the two degrees of freedom.

In the OSU pose estimation framework, the first step is
to find the face in the image. This is accomplished by com-
puting correlation scores with the mean face for each of the
orientations in the model for every possible location in a
large region of interest around the face. We then normalize
the detected face to have zero mean and unit variance, and
project it onto each eigenspace. The eigenspace that can
represent the largest fraction of the energy of the input face
determines a first coarse estimate of the pose. Finally, an
incremental estimate of the pose is computed. The incre-
mental estimates for the horizontal and vertical directions
are given by

∆θh =
rh,23 − 0.989

0.073
(7)

∆θv =
rv,23 − 0.945

0.066
, (8)

whererh,23 andrv,23 are the ratios of the energy captured
by the second and third best candidates for the coarse pose
estimation in the horizontal and vertical directions, respec-
tively. The numerical constants were computed using linear
least squares from a training sequence tagged with ground
truth. The incremental estimate is always taken to be in
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Figure 6: Variation of the RMS error of pose estimation on se-
quence 1 as we change the number of eigenvectors used to create
the prior model.

Our prior model X Y Z
Sequence 1 1.62◦ 2.55◦ 1.67◦

Sequence 2 1.04◦ 3.91◦ 1.44◦

OSU X Y Z
Sequence 1 2.30◦ 4.46◦

Sequence 2 1.74◦ 3.01◦

Table 1: RMS error in degrees for pose estimation comparing
our prior model pose estimation (top) and the OSU pose estima-
tion(bottom). The OSU pose estimator doesn’t return any estimate
for the rotation around the Z axis.

the direction of the second best coarse pose estimate, and is
capped at 5.0 degrees.

Figure 5 shows the pose variations recorded from the
ground truth sensor compared with the OSU pose estima-
tor and our prior model pose estimator. Figure 6 shows the
magnitude of the RMS error for the 3 rotations when vary-
ing the number of eigenvectors used for the reconstruction
of the prior model. We found that, in our case, 4 eigen-
vectors was a good trade-off between model expressiveness
and model over-fitting.

Table 1 presents a comparison of the RMS error for the
pose estimation using our prior model and the OSU pose
estimator. The InertiaCube2 is not drift-free around the Y
axis. The average RMS error of the prior model pose esti-
mator for all 3 axis is 3.88◦ which is close to the accuracy
of the InertiaCube sensor (3◦). The OSU pose estimator
doesn’t model rotations around the Z axis hence gives no
estimates. If we fix the OSU Z-axis output to 0, the RMS
error around the Z axis is approximately 3.9◦ for both se-
quences. Note that our prior model pose estimator is able to
handle rotation around the Z axis even though the training
data for our prior model did not include frames with rotation
around the Z axis.



6.2. Integrated AVAM & Prior Model
One of the main advantages of the user-independent view-
based eigenspace model when inserted in our Kalman fil-
ter update is that we can estimate absolute poses. This is
a considerable advantage compared to tracking techniques
are initialized manually with ad-hoc techniques.

To demonstrate the performance of the pose estimator,
we recorded a sequence of approximately 2 mins at 7Hz for
a total of 800 frames. The user moved freely from left to
right, front to back, rotated his head left and right, top to
bottom, and also tilted his head. The purpose of this se-
quence is to show how our integrated technique can give an
accurate estimate of the absolute pose in an unconstrained
environment. In the video sequence, which can be found
at http://www.ai.mit.edu/projects/watson/, we represent the
estimate of the absolute pose by a cube around the head
of the user. The thickness of the cube is inversely propor-
tional to the variance of the absolute pose estimate. The
red squares below the cube represent the number of base
frames used to compute the estimate. This video shows the
results of our approach which integrates differential track-
ing, adaptive view-based appearance model and view-based
eigenspace prior model.

Table 2 presents the tracking results for different config-
urations of the tracker. The first row represents results using
only the differential tracker. Differential tracking drifts af-
ter a certain amount of time, leading to high RMS error.
The second row represents the pose estimation algorithm
described in Section 5. Since the movements in this se-
quence were not constrained to the rotation space of our
prior model, the performance of this approach is poor. The
third row shows the performance of the original differen-
tial tracker and adaptive model. This tracking technique has
shown to yield good results when estimating relative pose
but without a good prior model this technique does poorly in
terms of absolute pose estimation. The fourth row presents
the results of the differential tracker with the prior model
pose estimator. This gives better results then the prior model
alone since the differential tracker can give a good pose es-
timate even outside the rotation space of the prior model.
Also, the differential tracker acts as a dynamic model in the
Kalman filter which helps to smooth the estimates of the
prior model pose estimator. Finally, the last row presents
the results of the integrated pose estimation and tracking.
In that configuration, the prior model estimates the absolute
pose during the initialization period which helps the accu-
racy of the online adaptive appearance model.

7. Summary and Conclusions
We described a new technique for pose estimation based on
view-based models. View-based models capture a rich rep-
resentation of object shape and surface appearance across a

Technique X Y Z Total
Diff 10.80◦ 21.96◦ 14.74◦ 28.56◦

Prior 5.12◦ 10.26◦ 3.47◦ 11.98◦

Diff+Adapt 6.48◦ 8.15◦ 2.23◦ 10.65◦

Diff+Prior 2.64◦ 5.39◦ 2.43◦ 6.48◦

Diff+Adapt+Prior 2.46◦ 5.00◦ 2.46◦ 6.09◦

Table 2:RMS error for each tracking technique.

wide range of pose change. We learned a multi-view, depth
and intensity eigenspace model which provides a set of prior
keyframes for pose estimation and tracking customized to a
new user. A Kalman filter framework combines pose es-
timates using both prior and adaptive keyframes according
to estimates of uncertainty for each. The use of our pose
estimation technique greatly reduces the absolute error in
view-based tracking, which was previously limited by the
coarse pose estimate of generic face detectors used for ini-
tialization. We demonstrate the accuracy of our integrated
approach on face pose tracking using stereo cameras.
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