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Abstract

Measurement of visual quality is of fundamental importance to numerous image and video processing applications.
The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of
images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as
fidelity or similarity with a ‘reference’ or ‘perfect’ image in some perceptual space. Such ‘Full-Reference’ QA
methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual
features of the human visual system (HVS), or by signal fidelity measures. In this paper we approach the image
QA problem as an information fidelity problem. Specifically, we propose to quantify the loissagle information
to the distortion process, and explore the relationship between image information and visual quality. QA systems
are invariably involved with judging the visual quality of ‘natural’ images and videos that are meant for ‘human
consumption.’ Researchers have developed sophisticated models to capture the statistics of such natural signals. Using
these models, we previously presented an information fidelity criterion for image quality assessment that related image
quality with the amount of information shared between a reference and a distorted image [1]. In this paper, we propose
an image information measure that quantifies the information that is present in the reference image, and also quantify
how much of this reference information can be extracted from the distorted image. Combining these two quantities,
we propose aisual information fidelitymeasure for image quality assessment. We validate the performance of our
algorithm with an extensive subjective study involving 779 images, and show that our method outperforms recent
state-of-the-art image quality assessment algorithms by a sizeable margin in our simulations. The code and the data
from the subjective study are available at [2].

Index Terms

Image Quality Assessment, Natural Scene Statistics, Image Information, Information Fidelity.

I. INTRODUCTION

The field of digital image and video processing deals, in large part, with signals that are meant to convey
reproductions of visual information for human consumption, and many image and video processing systems, such

as those for acquisition, compression, restoration, enhancement and reproduction etc., operate solely on these visual
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reproductions. These systems typically involve tradeoffs between resources and the visual quality of the output. In
order to make these tradeoffs we need a way of measuring the quality of images or videos that come from a system
running under a given configuration. The obvious way of measuring quality is to solicit the opinion of human
observers. However, such subjective evaluations are not only cumbersome and expensive, but they also cannot be
incorporated into automatic systems that adjust themselves in real-time based on the feedback of output quality.
The goal of quality assessment research is, therefore, to design algorithrokjdotive evaluation of quality in

a way that is consistent with subjective human evaluation. Such QA methods would prove invaluable for testing,
optimizing, bench-marking, and monitoring applications.

Traditionally, researchers have focussed on measuring signal fidelity as a means of assessing visual quality. Signal
fidelity is measured with respect to a reference signal that is assumed to have ‘perfect’ quality. During the design
or evaluation of a system, the reference signal is typically processed to yield a distorted (or test) image, which can
then be compared against the reference using so-caileaference(FR) QA methods. Typically this comparison
involves measuring the ‘distance’ between the two signals in a perceptually meaningful way. This paper presents a
FR QA method for images.

A simple and widely used fidelity measure is the Peak Signal to Noise Ratio (PSNR), or the corresponding
distortion metric, the Mean Squared Error (MSE). The MSE is Ehenorm of the arithmetic difference between
the reference and the test signals. It is an attractive measure for the (loss of) image quality due to its simplicity and
mathematical convenience. However, the correlation between MSE/PSNR and human judgement of quality is not
tight enough for most applications, and the goal of QA research over the past three decades has been to improve
upon the PSNR.

For FR QA methods, modeling of the human visual system has been regarded as the most suitable paradigm for
achieving better quality predictions. The underlying premise is that the sensitivities of the visual system are different
for different aspects of the visual signal that it perceives, such as brightness, contrast, frequency content, and the
interaction between different signal components, and it makes sense to compute the strength of the error between
the test and the reference signals once the different sensitivities of the HVS have been accurately accounted for.
Other researchers have explored signal fidelity criteria that are not based on assumptions about HVS models, but
are motivated instead by the need to capture the lossroturein the signal, structure that the HVS hypothetically
extracts for cognitive understanding.

In [1], we presented a novel information theoretic criterion for image fidelity measurement that was based
on natural scene statistics (NSS). Images and videos of the three dimensional visual environment come from a
common class: the class of natural scenes. Natural scenes form a tiny subspace in the space of all possible signals,
and researchers have developed sophisticated models to characterize these statistics. Most real-world distortion
processes disturb these statistics and make the image or video signalsiral In [1], we proposed using NSS
models in conjunction with a distortion (channel) model to quantify the information shared between the test and
the reference images, and showed that this shared information is an aspect of fidelity that relates well with visual

quality. In contrast to the HVS error-sensitivity and the structural approachestalistical approach, used in
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an information-theoretic setting, yielded an FR QA method that did not rely on any HVS or viewing geometry
parameter, nor any constant requiring optimization, and yet was competitive with state of the art QA methods.

In this paper we extend the concept of information fidelity measurement for image quality assessment by proposing
an image information measure. This measure quantifies the information that could ideally be extracted by the brain
from the reference image. We then quantify the loss of this information to the distortion using NSS, HVS and
an image distortion (channel) model in an information-theoretic framework. We demonstrate that visual quality
of images is strongly related to relative image information present in the distorted image, and that this approach
outperforms state-of-the-art quality assessment algorithms by a sizeable margin in our simulations. Another salient
feature of our algorithm is that it is characterized by only one HVS parameter that is easy to train and optimize
for improved performance.

Section Il presents some background work in the field of FR QA algorithms as well as an introduction to natural
scene statistics models. Section Ill presents our development of the image information measure and the proposed
visual information fidelity criterion. Implementation and subjective validation details are provided in Sections IV

and V, while the results are discussed in Section VI. We conclude the paper in Section VII.

Il. BACKGROUND

Full reference quality assessment techniques proposed in the literature can be divided into two major groups:
those based on the HVS and those based on arbitrary signal fidelity criteria. (A detailed review of the research on
FR QA methods can be found in [3], [4], [5], [6]).

A. HVS Error Based QA methods

HVS based QA methods come in different flavors based on tradeoffs between accuracy in modeling the HVS
and computational feasibility. A detailed discussion of these methods can be found in [4], [5], [6]. A humber of
HVS based methods have been proposed in the literature. Some representative methods include [7], [8], [9], [10],
[11], [22], [23], [14].

B. Arbitrary Signal Fidelity Criteria

Researchers have also attempted to use arbitrary signal fidelity criteria in a hope that they would correlate well
with perceptual quality. In [15] and [16], a number of these were evaluated for the purpose of quality assessment.
In [17] a structural similarity metric(SSIM) was proposed to capture the loss of image structure. SSIM was derived
by considering hypothetically what constitutes a loss in signal structure. It was hypothesized that distortions in an
image that come from variations in lighting, such as contrast or brightness changes, are non-structural distortions,
and that these should be treated differently from structural ones, and that one could capture image quality with
three aspects of information loss that are complementary to each other: correlation distortion, contrast distortion,

and luminance distortion.
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Fig. 1. Mutual information betwee@ and £ quantifies the information that the brain could ideally extract from the reference image, whereas
the mutual information betweet and F quantifies the corresponding information that could be extracted from the test image.

C. Limitations

A number of limitations of HVS based methods are discussed in [17]. In summary, these have to do with the
extrapolation of the vision models that have been proposed in the visual psychology literature to image processing
problems. In [17], it was claimed that structural QA methods avoid some of the limitations of HVS based methods
since they are not based on threshold psychophysics or the HVS models derived thereof. However they have some
limitations of their own. Specifically, although the structural paradigm for QA is an ambitious paradigm, there is
no widely accepted way of defining structure and structural distortion in a perceptually meaningful manner. Most
structural methods are constructedhypothesizinghe functional forms of structural and non-structural distortions
and the interaction between them.

In [1], we proposed a new approach to the quality assessment problem where we quantified the information
that was shared between the test and the reference images, and demonstrated that this quantification relates well
with visual quality. In this paper we further explore the connections between image information and visual quality.
Specifically, we will model the reference image as being the output of a stochastic ‘natural’ source that passes
through the HVS channel and is processed later by the brain. We quantify the information content of the reference
image as being the mutual information between the input and output of the HVS channel. This is the information
that the brain could ideally extract from the output of the HVS. We then quantify the same measure in the presence
of an image distortion channel that distorts the output of the natural source before it passes through the HVS
channel, thereby measuring the information that the brain could ideally extract from the test image. This is shown
pictorially in Figure 1. We then combine the two information measures to form a visual information fidelity measure

that relates visual quality teelative image information [18].

D. Natural Scene Statistics

Images and videos of the visual environment captured using high quality capture devices operating in the visual
spectrum are broadly classified as natural scenes. This differentiates them from text, computer generated graphics
scenes, cartoons and animations, paintings and drawings, random noise, or images and videos captured from non-
visual stimuli such as Radar and Sonar, X-Rays, ultra-sounds etc. Natural scenes form an extremely tiny subset
of the set of all possible images. Many researchers have attempted to understand the structure of this subspace of
natural images by studying their statistics (a review on natural scene models could be found in [19]). Researchers

believe that the visual stimulus emanating from the natural environment drove the evolution of the HVS, and that
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modeling natural scenes and the HVS are essentially dual problems [20]. While many aspects of the HVS have been
studied and incorporated into quality assessment algorithms, a usefully comprehensive (and feasible) understanding
is still lacking. NSS modeling may serve to fill this gap.

Natural scene statistics have been explicitly incorporated into a number of image processing algorithms: in
compression algorithms [21], [22], [23], [24], denoising algorithms [25], [26], [27], image modeling[28], image
segmentation [29], and texture analysis and synthesis [30]. While the characteristics of the distortion processes
have been incorporated into some quality assessment algorithms (such as those designed for the blocking artifact),
the assumptions about the statistics of the images that they afflict are usually quite simplistic. Specifically, most
QA algorithms assume that the input images are smooth and low-pass in nature. In [31], an NSS model was used
to design a no-reference image quality assessment method for images distorted with the JPEG2000 compression
artifacts. In this paper we use NSS models for FR QA, and model natural images in the wavelet domain using
Gaussian Scale Mixtures (GSM) [27]. Scale-space-orientation analysis (loosely referred to as wavelet analysis in
this paper) of images has been found to be useful for natural image modeling. It is well known that the coefficients
of a subband in a wavelet decomposition are neither independent nor identically distributed, though they may be
approximately second-order uncorrelated [32]. A coefficient is likely to have a large variance if its neighborhood
has a large variance. The marginal densities are sharply peaked around zero with heavy tails, which are typically
modeled as Laplacian density functions, while the localized statistics are highly space-varying. Researchers have
characterized this behavior of natural images in the wavelet domain by using GSMs [27], a more detailed introduction

to which will be given in the next section.

[11. VISUAL INFORMATION FIDELITY FOR IMAGE QUALITY ASSESSMENT

Natural images of perfect quality can be modeled as the output of a stochastic source. In the absence of any
distortions, this signal passes through the HVS channel of a human observer before entering the brain, which extracts
cognitive information from it. For distorted images, we assume that the reference signal has passed through another
‘distortion channel’ before entering the HVS. This is shown pictorially in Figure 1. The visual information fidelity
(VIF) measure that we propose in this paper is derived from a quantification of two mutual information quantities:
the mutual information between the input and the output of the HVS channel when no distortion channel is present
(we call this thereference image informatigrand the mutual information between the input of the distortion channel
and the output of the HVS channel for the test image. We discuss the components of the proposed method in this

section.

A. The Source Model

As mentioned in Section 1I-D, the NSS model that we use is the GSM model in the wavelet domain. It is convenient
to deal with one subband of the wavelet decomposition at this point and later generalize this for multiple subbands.
A GSM is a random field (RF) that can be expressed as a product of two independent RFs [27]. That is, a GSM
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C= {C"i : i € I}, wherel denotes the set of spatial indices for the RF, can be expressed as:
C=8-U={S;-U;:iel} 1)

whereS = {9, : i € 1} is an RF of positive scalars a#ti= {TU, : i € I} is a Gaussian vector RF with mean zero
and covarianc€;. C; and U ; are M dimensional vectors, and we assume that for theRE; is independent
of ﬁj, Vi # j,. In this paper we model each subband of a scale-space-orientation wavelet decomposition (such as
the steerable pyramid [33]) of an image as a GSM RF. We partition the subband coefficients into non-overlapping
blocks of M coefficients each, and model blo¢las the vectorﬁi.

One could easily make the following observations regarding the above ntbaéehormally distributed giveis
(with mean zero and covarianc& Cy;), that givens;, C‘)i are independent of; for all j # ¢, and that givensS,
C"i are conditionally independent @j, Vi # j [27]. The GSM model has been shown to capture key statistical
features of natural images. In particular, researchers have shown that linear dependencies in natural images can be
captured by the GSM framework using a wavelet decomposition and the covariance @afrtke heavy-tailed
marginal distributions of the wavelet coefficients can be modeled by using an appropriate distributiynafud
that the non-linear dependencies between the wavelet coefficients of natural images can be captured by modeling
the fieldS as being highly self-correlated [27], [34].

B. The Distortion Model

The purpose of a distortion model is to describe how the statistics of an image are disturbed by a generic distortion
operator. The distortion model that we have chosen provides important functionality while being mathematically

tractable and computationally simple. It is a signal attenuation and additive noise model in the wavelet domain:
D=GC+V={g9C;+V,:iel} )

whereC denotes the RF from a subband in the reference sighak {l—i» : ¢ € I} denotes the RF from the
corresponding subband from the test (distorted) sighak {g; : ¢ € I} is a deterministic scalar gain field, and
VY = {VZ : i € I} is a stationary additive zero-mean Gaussian noise RF with vari@qce= o21. The RFV is
white, and is independent &f andi/. We constrain the fiel@ to be slowly-varying.

This model captures important, and complementary, distortion types: blur, additive noise, and global or local
contrast changes. The underlying premise in the choice of this model is that in terms @fetfoeiptual annoyance
distortion types that are prevalent in real world systems could roughly be approxitoatdly as a combination
of blur and additive noise. The attenuation factgrsvould capture the loss of signal energy in a subband due to
blur distortion, and the proceds would capture the additive noise components separately. Figures 2 and 3 show
some real-world distortions and the synthesized images from the corresponding distortion channel. The synthesized
images were generated from the reference image and the estimated distortion channel for two types of channels:
a signal attenuation with additive noise channel and an additive noise only channel. A good distortion model is

one where the distorted image and the synthesized image look egeatigptually annoyingand the goal of the
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distortion model is not to model image artifacts, but the perceptual annoyance of the artifacts. Thus, even though
the distortion model may not be able to capture distortions such as ringing or blocking exactly, it may still be
able to capture their perceptual annoyance. Notice that the signal attenuation and additive noise model can capture
the effects of real-world distortions adequately in terms of the perceptual annoyance, whereas the additive-only
distortion model performs quite poorly. For distortion types that are significantly different from blur and white
noise, such as JPEG compression at very low bit rates (Figure 2(e)), the model fails to reproduce the perceptual
annoyance adequately (Figure 2(f)), but it still performs much better than the additive-only noise model shown in
Figure 4(f).

Moreover, changes in image contrast, such as those resulting from variations in ambient lighting or contrast
enhancement operations, are not modeled as noise, since they too could be incorporated into the attenuation field
G. For practical distortion types that could be described locally as a combination of blur and gorgsuld be

less than unity, while they could be larger than unity for some ‘distortion types’ such as contrast enhancements.

C. The Human Visual System Model

The HVS model that we use is also described in the wavelet domain. Since HVS models are the dual of
NSS models [20], many aspects of the HVS are already modeled in the NSS description, such as a scale-space-
orientation channel decomposition, response exponent, and masking effect modeling [1]. The components that are
missing include, among others, the optical point spread function (PSF), luminance masking, the contrast sensitivity
function (CSF) and internal neural noise sources. Incidentally, it is the modeling of these components that is heavily
dependent on viewing configuration, display calibration, and ambient lighting conditions.

In this paper we approach the HVS as a ‘distortion channel’ that imposes limits on how much information
could flow through it. Although one could model different components of the HVS using psychophysical data, the
purpose of HVS model in the information fidelity setup is to quantify the uncertainty that the HVS adds to the
signal that flows through it. As a matter of analytical and computational simplicity, and more importantly to ease the
dependency of the overall algorithm on viewing configuration information, we lump all sources of HVS uncertainty
into one additive noise component that serves dsstrtion baselindn comparison to which the distortion added
by the distortion channel could be evaluated. We call this lumped HVS distartsoral noise and model it as a
stationary, zero mean, additive white Gaussian noise model in the wavelet domain. Thus, we model the HVS noise
in the wavelet domain as stationary RRé = {N; : i € I} and A’ = {ﬁi . i € I}, whereN; and 171 are

zero-mean uncorrelated multivariate Gaussian with the same dimensionality: as

& C+ N (reference image) (3)

F D+ N’ (test image) 4)

where& and F denote the visual signal at the output of the HVS model from the reference and the test images in

one subband respectively, from which the brain extracts cognitive information (Figure 1). Th& RRI N’ are
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Fig. 2. Distorted images and their synthesized versions for the attenuation/additive noise distortion model. The images have been synthesized
using two-band image decompositions. A good distortion model should be able to synthesize images whose perceptual annoyance is similar to
the actual distortion. Note that the attenuation with additive noise model adequately captures the perceptual annoyance of real-world distortions.
For distortions that deviate significantly from blur+noise, such has JPEG at low bit rates, the model’s performance worsens, but is still better
than the additive-only noise model of Figure 4.
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Fig. 3. Distorted images and their synthesized versions for the attenuation/additive noise distortion model.

assumed to be independentiof S, and). We model the covariance df and A/’ as:

whereo? is an HVS model parameter (variance of the visual noise).

D. The Visual Information Fidelity Criterion

With the source, distortion, and HVS models as described above, the visual information fidelity criterion that we
propose can be derived. LEY)N = (31,6’)2, .. .,U)N) denoteN elements fronC. Let SV, BN, EN and ?N
be correspondingly defined. In this section we will assume that the model parageteysand o2 are known.

The mutual information (C')N; FW) quantifies the amount of information that can be extracted from the output
of the HVS by the brain when the test image is being viewed. However, we are interested in the quality of a
particular reference-test image pair, and not the average quality of the ensemble of images as they pass through
the distortion channél It is therefore reasonable tanethe natural scene model to a specific reference image by

treatingI(C ;D |SN = sV) instead of [(C ;D ), wheres" denotes a realization o§" for a particular

1For some design applications where the distortion channel is being designed to maximize visual quality, it would make more sense to

optimize the design for the ensemble of images instead.
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reference image. The realizatief' could be thought of as ‘model parameters’ for the associated reference image.
The conditioning onS is intuitively in line with divisive normalization models for the visual neurons [1], and lends
the VIF to analytical tractability as well.

. N N . .
For the reference image, we can analyz(@ E SN = sN) where sV denotes aealization of SV. In

this paper we will denoté(ﬁN; F)N@N )asI ﬁ ﬁ . With the stated assumptions ¢nand the
distortion model (2), we get:
N N .
(@ EYY) = Y 1@ E T E Y 6)
j=11i=1
N
= Z ﬁi§ﬁi|5i) ™
i=1
N
= Y (h(Ci+ Nils;) — M(Nis:) ®)
=1
1 ‘SgCU + O’T%I‘
= 3 Zlogz <|UQI| (C))
i=1 n

where we get (6) from chain rule [35], and (7) from the conditional independenc€eanfd /' given S, and |.|

denotes the determinant. Similarly we can show that for the test image

I ﬁN'?NLgN)
N

= Y (h(g:iCi+Vi+Nilsi) = h(Vi+ Nils:) (10)
=1

1y |9252Cu + (02 + o)1

- 2;1%( (02 + 02| ) (11)

Since Cy is symmetric, it can be factored &y = QAQT, whereQ is an orthonormal matrix, and is a

diagonal matrix of eigenvaluek,. One can use this matrix factorization to show:

—N FN N 1 N M S?)\k
ICHE Y = 5> ) logy (1+-5 (12)
i=1 k=1 n
N M
N mN 1 252\
ITYHTFY) = 530 log, (1+092+U’;) (13)
=1 k=1 v n

I(C’)N; ﬁN\sN) andI(C‘)N; ?N\SN) represent the information that could ideally be extracted by the brain from
a particular subband in the reference and the test images respectively. W@gll E)N‘SN) the reference image
information. Intuitively, visual quality should relate to the amount of image information that the brain could extract
from the test imageelative to the amount of information that the brain could extract from the reference image. For
example, if the information that could be extracted from the test imagd)ibits per pixel, and if the information
that could be extracted from the corresponding reference imafé sts per pixel, then the brain can recover most
of the information content of the reference image from the test image. By contrast, if the corresponding reference
image information were, say,0 bits per pixel, then we have 108t0 bits of information to the distortion channel,

and the visual quality of the test image should be inferior.
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We discovered that a simptatio of the two information measures relates very well with visual quality. It is easy
to motivate this choice of relationship between image information and visual quality. When a human observer sees
a distorted image, he has an idea of the amount of information that he expects to receive in the image (modeled
through the knowrs field), and it is natural to expect the proportion of the expected information actually received
from the distorted image to relate well with visual quality.

Also we have only dealt with one subband so far. One could easily incorporate multiple subbands by assuming
that each subband is completely independent of others in terms of the RFs as well as the distortion model parameters.

Thus, the VIF that we propose in this paper is given by:

N,j N,j i
. I(C T F T s
VIF — Z]Esubbandb ( | ) (14)

N,j N,j .
ZjEsubbands I(ﬁ ) F |SN7J)

where we sum over the subbands of interest, ahad’ representN elements of the RFE; that describes the
coefficients from subbang, and so on.

The VIF given in (14) is computed for a collection 6f x M wavelet coefficients from each subband that could
either represent an entire subband of an image, or a spatially localized region of subband coefficients. In the former
case, the VIF is one number that quantifies the information fidelity for the entire image, whereas in the latter case,
a sliding-window approach could be used to computguality mapthat could visually illustrate how the visual

quality of the test image varies over space.

E. Properties of VIF

The VIF has a number of interesting features. Firstly, note that VIF is bounded below by zero (such as when
I(ﬁN;ﬁleN) = 0 and I(ﬁN;EN\sN) # 0), which indicates that all information about the reference image
has been lost in the distortion channel. Secondly, in case the image is not distorted at all, and VIF is calculated
between the reference image and its copy, VIFexsctly unity. This is becausg; = 1 Vi, ando? = 0, and
thereforeI(ﬁN;7N|sN) = I(ﬁN;fN\sN). Thus for all practical distortion types, VIF will lie in the interval
[0,1]. Thirdly, and this is where we feel that VIF has a distinction over traditional quality assessment methods, a
linear contrast enhancement of the reference image that does not add noise to it will result in a ViRargaue
than unity, thereby signifying that the enhanced image hasperior visual quality than the reference image! It
is common observation that contrast enhancement of images increases their perceptual quality unless quantization,
clipping, or display non-linearities add additional distortion. Theoretically, contrast enhancement results in a higher
signal-to-noise ratio at the output of the HVS neurons, thereby allowing the brain to have a greater ability to
discriminate objects present in the visual signal. The VIF is able to capture this improvement in visual quality.
While it is common experience that even linear point-wise contrast enhancement improves quality to a certain
extent only, and that the quality starts deteriorating beyond a certain enhancement factor, we believe that in the
real world, the perceived quality increases with contrast enhancement over many orders of magnitude. lllumination

increase in the environment (which leads to an increases in the contrast of the light signals entering the eye as
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well, contrast being the signal that is encoded by the retina and sent to the brain) increases our perception of the
quality of the perceived image over many orders of magnitude until the HVS neurons are driven to saturation. The
effect of limited point-wise contrast improvement on a computer is therefore more an artifact of limited machine

precision and display nonlinearities.

To the best of our knowledge, no other quality assessment algorithm has the ability to predict if the visual image
quality has been enhanced by a contrast enhancement operation. We envision extending the notion of quantifying
improvement in visual quality of images by image enhancement operations using a similar information-theoretic

paradigm.

It is interesting to see a few test cases that illustrate these properties of VIF visually. The implementation details
of VIF are given in the next section; here we only wish to illustrate the above discussion pictorially. Figure 6 shows
a reference image that has been distorted with three different types of distortion, all of which have been adjusted to
have about the same MSE with the reference image. The distortion types illustrated are contrast stretch, Gaussian
blur and JPEG compression. In comparison with the reference image, the contrast enhanced image has a better
visual quality despite the fact that the ‘distortion’ (in terms of a perceivable difference with the reference image)
is clearly visible. A VIF value larger than unity captures the improvement in visual quality. In contrast, both the
blurred image and the JPEG compressed image have clearly visible distortions and poorer visual quality, which is

captured by a low VIF measure for both.

Figure 7 illustrates the behavior of VIF with spatial quality maps. Figure 7(a) shows a reference image and
Figure 7(b) the corresponding JPEG2000 compressed image. Note that the distortions are clearly visible. Figure
7(c) shows the reference image information map in the same location. The information map shows the spread of
statistical information in the reference image. In flat image regions, the information content of the image is low,
whereas in textured regions and regions containing strong edges, the image information is high. The quality map

in Figure 7(d) shows the proportion of the image information that has been lost to JPEG2000 compression.

F. Similarities of VIF with HVS Based Methods

It was shown previously that the information fidelity criterion (IFC) presented in [1] is functionally equivalent
to HVS based methods under certain conditions. For VIF, the numerator in (14) is basically IFC (apart from the
visual noise source) and hence is functionally similar to HVS based methods as discussed in detail in [1]. We
feel that the normalization by reference image information in (14) can be thought of as beimgeat dependent
adjustmenbf HVS based methods. Specifically, after the HVS based methods compute the perceptual error strength,
the annoyance factor of a particular perceptual error strength may be different for different images, and thus may
give a different impression of quality. We feel that the normalization by reference image information adjusts for

this variation in image content.
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IV. IMPLEMENTATION ISSUES

In order to implement VIF criterion in (14) a number of assumptions are needed about the source, distortion,

and HVS models. We outline them in this section.

A. Assumptions about the source model

Note that mutual information (and hence VIF) can only be calculated between RF's and natétheations
that is, a particular reference and the test image under consideration. We will assume ergodicity of the RF's and
that reasonable estimates for the statistics of the RF’s can be obtained from their realizations. We then quantify the
mutual information between the RF’s having the same statistics as those obtained from particular realizations.
The source model parameters that need to be estimated from the data consist of theR@idhe vector GSM

model, the maximum-likelihood estimate &f can be found as follows [36]:

M
Estimation of the covariance matr®;; is also straightforward from the reference image wavelet coefficients [36]:
¢ - Ly et (15)
v N i=1 o

In (15) and (16),% Z?’:l s? is assumed to be unity without loss of generality [36].

K3

B. Assumptions about the distortion model

In order for the assumptions on the distortion operator to hold, we estimate the parameters of the distortion
channellocally. Hence we will use & x B window centered at coefficientto estimatey; ando? ati. The value
of the fieldG over the block centered at coefficieiptwhich we denote ag;, and the variance of the RF, which

we denote ag?2

v,

are fairly easy to estimate (by linear regression) since both the input (the reference signal) as

well as the output (the test signal) of the system (2) are available:

g = Cov(C,D)Cov(C,C)™! (17)
2, = Cov(D,D) - 5:Cov(C,D) (18)

where the covariances are approximated by sample estimates using sample points from the corresponding blocks

centered at coefficientin the reference and the test signals.

C. Assumptions about the HVS model

The HVS model is parameterized by only one parameter: the variance of visualajoiseis easy to hand-
optimize the value of the parametef by running the algorithm over a range of values and observing its
performance. While the performance is affected by the choieg’ pthe algorithm’s overall performance continues
to be highly competitive with other methods for a wide range of values.

Further specifics of the estimation methods used in our testing are given in Section VI.
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V. SUBJECTIVE EXPERIMENTS FORVALIDATION

In order to calibrate and test the algorithm, an extensive psychometric study was conducted. In these experiments,
a number of human subjects were asked to assign each image with a score indicating their assessment of the quality
of that image, defined as the extent to which the artifacts were visible and annoying. Twenty-nine high-resolution
24-hits/pixel RGB color images (typically68 x 512) were distorted using five distortion types: JPEG2000, JPEG,
white noise in the RGB components, Gaussian blur, and transmission errors in the JPEG2000 bit stream using a
fast-fading Rayleigh (FF) channel model. A database was derived frord9tlhmages such that each image had
test versions with each distortion type, and for each distortion type the perceptual quality roughly covered the
entire quality range. Observers were asked to provide their perception of quality on a continuous linear scale that
was divided into five equal regions marked with adjectives “Bad”, “Poor”, “Fair”, “Good” and “Excellent”. About
20-25 human observers rated each image. Each distortion type was evaluated by different subjects in different
experiments using the same equipment and viewing conditions. In this way a total of 982 images, out of which 203
were the reference images, were evaluated by human subjects in seven experiments. The raw scores were converted
to difference scores (between the test and the reference) [37] and then converted to Z-scores [38], scaled back to
1—100 range, and finally a Difference Mean Opinion Score (DMOS) for each distorted image. The average RMSE

for the DMOS was 5.92 with an average 95% confidence interval of width 5.48. The database is available at [2].

VI. RESULTS

In this section we present results on validation of VIF on the database presented in Section V, and present
comparisons with other quality assessment algorithms. Specifically, we compare the performance of VIF against
PSNR, SSIM [17], and the well known Sarnoff model (Sarnoff JND-Metrix 8.0 [39]). We present results for two
versions of VIF: VIF using the finest resolution at all orientations, and using the horizontal and vertical orientations

only. Table | summarizes the results for the quality assessment methods, which are discussed in Section VI-C.

A. Simulation Details

Some additional simulation details are as follows. Although full color images were distorted in the subjective
evaluation, the QA algorithms (except Sarnoff's) operated upon the luminance component only. GSM vectors were
constructed from non-overlappirgyx 3 neighborhoods, and the distortion model was estimated with8ax 18
sliding window. Only the subbands at the finest level were used in the summation of (14). MSSIM (Mean SSIM)
was calculated on the luminance component after decimating (filtering and downsampling) it by a fac{seef
[17]).

B. Calibration of the Objective Score

It is generally acceptable for a QA method to stably predict subjective quality within a non-linear mapping, since
the mapping can be compensated for easily. Moreover, since the mapping is likely to depend upon the subjective

validation/application scope and methodology, it is best to leave it to the final application, and not to make it part
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Validation against DMOS
Model | cc [ maE | RWs [ OR | srocc
PSNR 0.826 | 7.272 | 9.087 | 0.114 | 0.820
Sarnoff 0.901 | 5.252 | 6.992 | 0.046 | 0.902
MSSIM 0.912 | 4.980 | 6.616 | 0.035 0.910
VIF 0.949 | 3.878 | 5.083 | 0.013 | 0.949
VIF (hv) 0.950 | 3.820 | 5.025 | 0.013 | 0.950

TABLE |
VALIDATION SCORES FOR DIFFERENT QUALITY ASSESSMENT METHODSITHE METHODS TESTED WEREPSNR, S\RNOFFJND-METRIX 8.0
[39], MSSIM [17], VIF, AND VIF USING HORIZONTAL AND VERTICAL ORIENTATIONS ONLY. THE METHODS WERE TESTED AGAINST
DMOS FROM THE SUBJECTIVE STUDY AFTER A NONLINEAR MAPPING. THE VALIDATION CRITERIA ARE: CORRELATION COEFFICIENT
(CC), MEAN ABSOLUTE ERROR(MAE), ROOT MEAN SQUARED ERRORRMS), OUTLIER RATIO (OR) AND SPEARMAN RANK-ORDER

CORRELATION COEFFICIENT(SROCC).

of the QA algorithm. Thus, in both the VQEG Phase-I and Phase-Il testing and validation, a non-linear mapping
between the objective and the subjective scores was allowed, and all the performance validation metrics were
computedafter compensating for it [37]. This is true for the results in Table |, where a five-parameter non-linearity

(a logistic function with additive linear term constrained to be monotonic) is used for all methods except for VIF,
for which we used the mapping on the logarithm of VIF. The fitting of the logistic curve to some of the methods
tested is shown in Figure 8, while the quality predictions after compensating for the mapping are shown in Figure

9. The mapping function used is given in (19), while the fitting was done using MATLABIaunc

Quality(z) = Blogistic (B2, (z — 83)) + Baz + O5 (19)

. 1 1
logistic(r,z) = 2 " 1T exp(ra) (20)

C. Discussion

1) Overall performanceTable | shows that VIF is competitive with all state-of-the-art FR QA methods presented
in this paper and outperforms them in our simulations by a sizeable margin. Also note that VIF and MSSIM use
only the luminance components of the images to make quality predictions, whereas the JND-Metrix uses all color
information. Extending VIF to incorporate color could further improve performance.

As noted in [1], the performance of VIF improves slightly when only the horizontal and vertical orientations
are used in the summation in (14), although the improvement is less marked than in [1]. Nevertheless, the reduced
computational complexity makes this a much more attractive implementation option.

2) Cross-distortion performancelt is interesting to study the performance of VIF on specific distortion types.
Many image QA methods perform well on single distortion types, but their limitations show up on a broader

validation study involving different distortion types. Nevertheless, it is sometimes interesting from an application
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RMSE performance on specific distortions.
Distortion || PSNR | samoff | mssim | viF
JPEG2000 7.187 | 5.028 4.693 | 4.745
JPEG 8.173 | 5.451 5511 | 5.309
White noise 2.588 3.967 2.709 2.494
Gaussian blur|| 9.774 | 5.104 5.159 | 3.399
FF 7.517 6.713 6.990 3.921

TABLE Il

RMSE PERFORMANCE OF THEQA METHODS ON INDIVIDUAL DISTORTION TYPES

perspective to restrict the quality measures to a single distortion type. Table Il shows the performance of VIF and
other measures on each of the five distortion types. Note that while the JIND-Metrix, MSSIM and VIF perform quite
well on individual distortion types, their performance worsens in cross-distortion validation, with VIF's worsening
the least. Note that VIF performs better than (or at par with) JND-Metrix and MSSIM in cross-distortion validation
(Table 1) as well as individual distortion types.

Figure 10 shows graphically why is it important for a QA measure to perform well across distortions. Figure 10
shows the predicted DMOS calibration curves for each of the five distortion types present in the datédeedy
for a QA method, these curves should lie on top of each other. If this were the case, then the QA measure could
stably predict quality across distortion types. For the PSNR scale for example, we see that the good quality images
(where DMOS is around 20), have PSNR values that lie in the approximate interval from 40 to 50 dBs, which is
roughly 25% of the entire range of values that the PSNR takes. In contrast, we see that for good to medium quality
images (DMOS values between 20 and 40), VIF curves are very close to each other, signifying that the mapping
of VIF to visual quality is more stable, and has a smaller dependence on the underlying distortion type. Note that
the distortion types present in the database are quite diverse, including linear blur, blocking, white noise as well as
blurring/ringing from JPEG2000 compression, and transmission error in JPEG2000 bit stream.

At poorer quality ranges, the calibration curves for all four methods diverge, as shown in Figure 10 (one could
note by visual inspection that the curves for VIF diverge far less than those for PSNR). One reason for this could
be the lack of proper judgement scales in human observers for bad quality images, or psychometric scale warping
effects at the lower end of quality.

3) Dependence on the HVS parametdirwas mentioned in Section IV that the value of the internal neural
noise varainceg? was hand-optimized. It is instructional to study the dependence of the performance of VIF on
o2. Ideally, 02 should depend on the dynamic range of the input, and a multiplicative constant should instead be
tuned, as was done in [17], but here we only wish to show that the performance of VIF is relatively robust to small

changes in the value of the parametér. Figure 11 shows how the RMSE in the quality prediction error varies

2The non-linearity used for MSSIM is different from the one used in Figure 8 and Table Il for illustrative purposes.
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with o2. It can be seen that VIF performs better than all the methods compared against in this paper for the entire
range of values of2 shown in Figure 11 (see Table 1), with an approximate minimum occurrirtglat

4) Computational ComplexityThe VIF has one disadvantage when compared against PSNR or MSSIM: it has
a higher computational complexity. Most of this complexity comes from computing the wavelet decomposition,
and the parameters of the distortion model. In [1], one version of the fidelity criterion using downsampling was
presented, which has the potential to substantially reduce the computational complexity of the algorithm. Also, many
estimation methods presented in the paper could be simplified greatly at the cost of slight reduction in performance.
Nevertheless, even without these optimizations, VIF using the horizontal and vertical subbands with unoptimized
MATLAB implementation takes about 13 seconds to rurb® x 768 images on a Pentium 1V, 2.6 GHz laptop. The
bulk of this complexity comes from the highly overcomplete steerable pyramid decomposition. We are developing a
lower complexity version of VIF in the pixel domain. For comparison, MSSIM takes about 2 secorsdg arv68

images.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper we explored the relationship between image information and visual quality, and presented a visual
information fidelity criterion for full-reference image quality assessment. The VIF, which was derived from a
statistical model for natural scenes, a model for image distortions, and a human visual system model in an
information-theoretic setting, outperformed traditional image QA methods in our simulations by a sizeable margin.
The VIF was demonstrated to be better than a state-of-the-art HVS based method, the Sarnoff's IND-Metrix, as
well as a state-of-the-art structural fidelity criterion, the structural similarity (SSIM) index, in our testing. We
demonstrated that VIF performs well in single-distortion as well as in cross-distortion scenarios.

We are continuing efforts into extending VIF for video quality assessment using spatiotemporal natural scene
models as well as by using inter-subband correlations. We are hopeful that this new paradigm will give new

understanding into the relationship between image information and visual perception of quality.
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Fig. 4. Distorted images and their synthesized versions for the additive noise distortion model. Note that the model fails to capture blurring
adequately, and the synthesized images have a much different perceptual quality.
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Fig. 5. Distorted images and their synthesized versions for the additive noise distortion model. Note that the model fails to capture blurring
adequately, and the synthesized images have a much different perceptual quality.
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(a) Reference image

JPEG compressed

Fig. 6. The VIF has an interesting feature: it can capture the effects of linear contrast enhancements on images, and quantify the improvement
in visual quality. A VIF value greater than unity indicates this improvement, while a VIF value less than unity signifies a loss of visual quality.

(a) Reference Goldhill imageV(IF = 1). (b) Contrast stretched Goldhill imag&{F = 1.10). (c) Gaussian blur{IF = 0.07) and (d) JPEG
compressed\(IF = 0.10).
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c) Reference image info. map

Fig. 7. Spatial maps showing how VIF captures spatial information loss. Note that VIF is not the mean of VIF-map.
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Fig. 8. Scatter plots for the four objective quality criteria: PSNR, Sarnoff's IND-metrix, MSSIM, and log(VIF) for VIF using horizontal/vertical
orientations. The distortion types are: JPEG2000 (red), JPEG (green), white noise in RGB space (blue), Gaussian blur (black), and transmission
errors in JPEG2000 stream over fast-fading Rayleigh channel (cyan).
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Fig. 9. Scatter plots for the quality predictions by the four methods after compensating for quality calibration: PSNR, Sarnoff's JND-metrix,
MSSIM, and VIF using horizontal/vertical orientations. The distortion types are: JPEG2000 (red), JPEG (green), white noise in RGB space
(blue), Gaussian blur (black), and transmission errors in JPEG2000 stream over fast-fading Rayleigh channel (cyan).
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Fig. 10. Calibration curves for the four quality assessment methods for individual distortion types. The distortion types are: JPEG2000 (red),
JPEG (green), white noise in RGB space (blue), Gaussian blur (black), and transmission errors in JPEG2000 stream over fast-fading Rayleigh
channel (cyan). Note that VIF can be stably calibrated for predicting quality for a wider range of distortion types. The mapping used for MSSIM

in this figure islogio(1 — MSSIM) for illustrative purposes.

Fig. 11. Dependence of VIF performance on tife parameter. Note that VIF performs better than other methods against which it is compared
in this paper for all range of values of2 shown this figure: VIF (solid), PSNR (dashed), Sarnoff JNDMetrix 8.0 (dash-dot), and MSSIM
(dotted) .
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