A Graphical User Interface Testing Methodology

EllisHorowitz and Zafar Singhera

Department of Computer Science
University of Southern California
Los Angeles, Califor nia 90089-0781

USC-CS-93-550

Abstract

Software testing in general and graphical user interface testing in particular is
one of the major challenges in the software community today. Graphical user
interface (GUI) testing is inherently more difficult than traditional, command
lineinterfacetesting. A huge number of objectsinaGUI, different look and feel
of objects, a large number of parameters associated with each object,
progressive disclosure, complex input from multiple sources and graphical
output are some of the factors which make GUI testing different from traditional
software testing. Existing techniques for creation and organization of test suites
need to be adapted/enhanced for GUIs, and new techniques are desired to make
the creation and management of test suites more efficient and effective.

This document provides a methodol ogy to create test suites for a graphical user
interface. The methodology organizes the testing activity into various levels.
The tests created at a particular level can be reused at higher levels. The
methodology extends the notion of modularity and reusability to the testing
phase also. The organization of the created test suites resembles closely to the
structure of the graphical user interface under test.

Graphical user interfaces (GUIs) have changed the use and perception of computers. They
provide an easier way of using various functions of the application by organizing themina
hierarchy of optionsand presenting only the optionswhich make sensein the current working
domain. It helps users in concentrating more on the problem instead of putting effortsin
remembering all the options provided by the software application being used to solve the
problem, or searching for the right option from a huge list of options provided by the
application, whether those optionsarevalidfor the current working domain or not. Graphical
user interfaces divide the standard user actions and working paradigms into various
categories which are presented graphically in away that reflect their functionality. These
features make graphical user interfaces more easy to use but putting al these featuresin an
application makes its development, testing and maintenance much more difficult. Fifty to
eighty percent of the code in average applications with a graphical user interfaceisrelated
to the GUI features of the application. The nature of GUI applications, their asynchronous
mode of operation, nontraditional input/output and hierarchical structurefor user interaction
make their testing significantly different from traditional software testing.

This paper presents a methodology for testing of graphical user interfaces. Section 1.0
provides some recommendations which help in organizing an effective and efficient activity
for testing a GUI application. Section 3.0 describes the mgjor steps of the methodology.
Section 3.0 introduces a sample X application, called Xman, which will be used to
demonstrate the effectiveness of the suggested strategy. Section 4.0 demonstratesthetesting
methodology when formal specification of the application is not available. Section 4.0
demonstrates the testing methodology when the formal specification of the application is
available. Thissection also describestheway statistics are collected during atesting activity
and how those can be used to improve the quality of the testing. Section 6.0 mentions the
situations when a modification to the application under test might require tuning or

recapturing of some of the test scripts. Section 7.0 provides the concluding remarks.

1.0 Some Recommendationsfor GUI Testing

This section provides some recommendations for planning atesting activity for a graphical
user interface.

e Every element of the graphical user should be considered as an object, which can be
addressed by a particular name. The objects should have a well defined set of parame-
ters and its response to the outside events should also be well defined.

e The testing activity should be planned carefully around a formal model of the applica-
tion under test. Thismodel should be powerful enough to provide automatic test gener-
ation and coverage analysis.

e Testing of agraphical user interfaces should be performed in alayered fashion. Thelist
of objects which will be tested at a particular level, are either built dynamically while
testing at lower levels or from the specification of the application under test. Each level
tests al the objects in its associated list. The list of objects for the lowest level are the
basic widget, supported by the underlying toolkit. While the highest level considers the
entire application as a single object. The decision about the number of testing levels
and the qualifying criteria for a particular testing level must be made before creating
any tests.

¢ The tests should be organized as a hierarchy of scripts, i.e. files containing commands
to simulate user actions and verify results. This hierarchy should closely correspond to
the object hierarchy of the application under test. Each directory in the hierarchy holds
scripts which are related to a particular object and its descendents. The individual
scripts should be as small as possible and should test one particular feature of an object.
However if the features are related and simple, they can be grouped together in the

same script.

e Each script should begin with a clear and precise description of the intended purpose of
the script and the state of the application required for its proper execution. A script
should be divided into three sections. The first section of the script builds the environ-
ment required to test the particular feature of the application, the script is intended for.
The second section of the script tests the intended feature of the application being
tested by the script. The third section restores the state of the AUT and the operating

environment, to a point which existed before entering the script.

e A script should be created in such away that some or all the sections of the script can
be executed by calling the script from another script. It will provide reusability feature

3

in testing also.

¢ |nstead of manually capturing or replaying the test scripts, atool should be used which
can capture and/or replay the test scripts automatically and verify the behavior of the
application under test. The tool should be capable of addressing an object in the GUI by
its symbolic name, instead of its location, dimensions or any other contextual informa-

tion.

e The data for result verification should be captured in terms of object attributes when
possible and only those attributes should be captured which are critical to verify the
function of the application, being tested by the current script. When image comparison
is unavoidable, the images should be captured with reference to the smallest enclosing
object and area of the captured images should not be more than absolutely required.
The number of verifications should also be kept to an absolute minimum especially

when image comparisons are involved.

e The script commands to simulate user actions during replay and the data for verifica
tion of the AUT behavior should be kept separately. This separation is required because
the verification data might change depending on the environment while the script com-
mands should be independent of the environment and should be valid across multiple
platforms. If script commands and verification data are stored separately then it will be
easier to port atest suite across multiple platforms. In fact a good tool should automati-
cally perform the porting from one hardware platform to the other.

2.0 A Methodology for GUI Testing

This section provides a methodology for testing of a Graphical User Interface. The
methodology is particularly useful when one has atool similar to X Tester. It follows the
recommendations provided in the previous section. The methodology provides two
scenarios, i.e. Testing without formal specification of the application under test and Testing
with aformal model of the application. Both the scenarios are presented in the following
subsections.

2.1 Testing without a Formal M odel

Specification of agraphical user interfacefor testing purposesisadifficult task and requires
asignificant amount of effort. Sometimesit isnot feasibleto invest resourcesin creating the
formal specification of the application, hencetesting hasto be performed without it. The best
thing which can be done in such a situation isto incremently build atest hierarchy for the
application, by capturing user sessions in an organized way. Automatic test generation or
coverage analysisisnot possiblewithout aformal specification of the application under test.
The major steps of the methodol ogy to test an application without a specification, are given
below:

1. Initialization: Make basic decisions about the testing activity. Some of the most
important decisions, which must be taken at this point, are:

e The number of testing levels and criteria to build list of objects for a particular

level.

elnitialize alist of objects for each level which holds the names and some infor-
mation about the objects of the user interface. The information includes the way
the object can be mapped on the screen, the mechanism to unmap it from the

screen, and if it has been tested or not.

e The location of the test suite and its organization.

¢ The application resources which will be used during this testing activity.
2. Buildingthelnitial Object List:

¢ Go through the documentation of the application under test and find all the top
level windows, which might appear as starting windows of the application. These
windows and their related information is added to the list of objects for the first
testing level and marked as tested.

3. Building Test Suite: Take the first object from the top of the object list, which has not
been tested, and create test scripts for it. The procedure for creating test scripts for a
particular object is given in Figure 1. The sub-objects of the object under test are
added to the list of objects by scanning the object from left to right and top to bot-
tom. Keep on taking objects from the top of the object list and testing them until all

5

Display the object on the screen and verify its appearance;

If the object has sub-objects
Add its immediate sub-objects at the top of the list;

If the object qualifies for a higher testing level
Add it to the list of objects for the higher level;

Send expected events to the object and verify its response;

If a new object appears in response to the event
if the new object is not listed as a tested object
Add it to the end of the list;

Pop down the object from the screen;

Mark the object in the list as tested;

FIGURE 1. Strategy for testing without specifications

the objectsin the list are marked as tested. When the list associated with a particular
level has no untested object, start testing objects from the list, associated with the
next higher level. This process continues until al the levels are tested.

. Creating Script Drivers: Write higher level scripts for al the top level windows or
any other complex objects, each of the testing levels and for the entire test suite.
These scripts will replay all the scripts related to the object and its descendents. The
highest level script driver should replay each and every script in the suite.

. Testing the Test Suite: Make sure that all the scripts and script drivers work properly
and cover al the features of the application, which needs to be tested. Although one
cannot do much automatically to determine the quality of atest suite, in the absence
of aformal model of the application under test. However after the creation of the test
suite, run the highest level script driver to verify that all the scripts in the suite are
capable of proper replay and try to match the features covered by the test suite with
those included in test requirements or application documentation.

2.2 Testing with a Formal Model

The strategy to build test scripts without a formal specification, discussed in the previous
subsection, putsalot of responsibility on the person creating those scripts. The strategy also
requirethat theapplication under test should berunning reliably beforethe capturing of script
is even started. The scripts created without formal specification are also vulnerable to any
modification in the application, which affectsitswindow hierarchy. It also requiresthat after
making any changes to the application under test, the affected scripts should be located
manually and recaptured or tuned to offset the modification in the application. It isalso not
possibleto create test scripts automatically or to get a coverage measure after running a set
of test suites. To overcomethesedrawback and get accessto advanced featureslikeautomatic
test generation and coverage analysis, one has to invest some effort to formally specify the
application under test. This sections provides a methodol ogy to test an application when its
formal specification isprovided or resources are availableto build such a specification. The
following are the major steps of the testing methodology when aformal specification of the
application under test is available.

1. Building the Model: Build the User Interface Graph of the application under test.
When resources permit, the very first step in testing an application should be to
build a formal model of the application under test. X Tester provides such a formal
model, called User Interface Graph. The User Interface Graph provides information
about the object hierarchy in the application. It also provides information about the
nature of a particular object and the effects of an event in an object to the other
objects in the user interface. The User Interface Graph can be built manually by cre-
ating a User Interface Description Language (UIDL) file, or it can be created semi-
automatically by steering through the application under test and filling in the miss-
ing information about objects. See [2] for more information on UIDL syntax and
User Interface Graph.

2. Initialization: Make basic decisions about the testing activity. Some of the most
important decisions, which must be taken at this point, are:

¢ The number of testing levels and qualifying criteriafor each testing level.

e Thelocation of the Test suite and its organization.

¢ The application resources which will be used during this testing activity.

3. Build Object Lists: Build a list of objects for each testing level. After building the
formal model, it is possible to build object lists for all testing levels. The procedure
for building those lists is to start from the root of the User Interface Graph and per-
form a post-order walk of the object hierarchy. For each visited node, add it to the
object lists associated with levels, for which it qualifies.

4. Building Test Suite: Build atest suite. The strategy for capturing scripts without any
formal specification, discussed in the previous section, can aso be used for captur-
ing scripts when the application has been specified formally. However capturing
scripts with formal specifications provides us some additional advantages over the
scripts which have been captured without any specification. These advantages
include an overall picture of the application under test and hence a more efficient
test suite, a test suite which is less affected by the changes in the application, auto-
matic test generation, and coverage analysis.

5. Creating Script Drivers: Write higher level scripts for al the top level windows or
any other complex objects, each of the testing levels and for the entire test suite.
These scripts will replay all the scripts related to the object and its descendents. The
highest level script driver should replay each and every script in the suite. These
scripts can also be created automatically.

6. Coverage Analysis: Once a test suite has been created, it should be replayed in its
entirety to determine the coverage provided by the test suite. This coverage should
be performed at each level, i.e. the coverage criteriafor level 1 will bethat it should
verify that al the objects in the application has been created, mapped, unmapped
and destroyed, at least once and every event expected by an object has been exer-
cised onit, at least once. The coverage criteriafor higher levels will be to make sure
that all the interactions and side effects among objects which make a composite
object at the corresponding level, has been verified.

3.0 An Introduction to Xman

Thissection introduces asample application, called Xxman, which isused to demonstrate the
effectiveness of the methodology, presented in the previous section. Xman is asmall
application which is distributed with the standard X release. It provides a graphical user
interfacetotheUNIX man utility. It hasbeen developed using theAt hena widget set and
some of its windows are shown in Figure 1. The following paragraphs briefly describe the
functionality of Xman.

When started, Xxman displaysits main window, called Xman, by default. The main window
containsthree buttons, Help, Manual Page andQuit. ClickingontheManual Page
button displays awindow, called Manual Page. A Help window is displayed when the
Help buttonisclicked. The Quit button is used to exit from Xman.

TheManual Page window isorganizedintovarioussections. A bar at thetop of thewindow
contains two menu buttons, Opt ions and Sections, intheleft half and aMessage area
intheright. Therest of theareabelow the bar, called Text area, isused to display the names
of available manual pagesin the currently selected section, and the contents of the currently
selected manual page. Both the names and contents portions of the Text areaareresizable
and have vertical scrollbarson theleft. The Opt i ons menu containsthefollowing entries:

Display Directory todisplay namesof manual pagesin entire Text area

Display Manual Page to display contents of the currently selected manual pagein
theentire Text area

Help todisplay aHelp window
Search to display adialog box to enter the name of a manual page to search for

Show Both Screens to verticaly divide the areainto two halves, with the upper
half showing the directory contents of currently selected man page section and the
lower half showing the contents of the currently selected manual page. This option tog-
glesto Show One Screen and also disables menu entriesDisplay Directory

and Display Manual Page.

Remove This Manpage removestheManual Page window from the screen

Main Window Manual Page Window

l '

l }

Help Window Search Dialog Box

FIGURE 2. Main Windows of Xman

Open New Manpage cCreates another Manual Page window
Show Version displaysthe current version of Xman inthe Message area
Quit exitsfrom the Xman application.

The Sections menu contains one option for each manual page section available on the
system. The standard optionsare User Commands, System Calls, Subroutines,
Devices, File Format, Games, Miscellaneous, and System

Administration.

The Help window displaysalimited version of theManual Page window. Thewindow
has exactly the same structure asthe Manual Page window but the Sect ions menu
button and thefirst five optionsinthe Opt i ons menu aredisabled. It displays man pagefor
Xman itself. No more than one He 1 p window can exist at atime while an arbitrary number
of Manual Page windows can be created.

Thetesting of Xman has been organized in three layers. Thefirst layer verifies the behavior
of individual GUI objects. The second layer verifies the inter-object effects among objects
belongingtothesametoplevel window. Thethirdlayer verifiestheinter-object effectsamong
objects belonging to different top level windows. The following sections provide details of
this testing activity.

4.0 Testing without Formal Specifications

This section provides a demonstration for the testing of Xman, when no formal model is
available for it. The following subsections demonstrate each step of the methodol ogy,
described in Section 2.1.

4.1 Initialization

Number of Testing Levels: As Xman isafairly small and simple application, so the testing
activity isorganized inthreelevels. Thevery first level teststheindividual objectsin Xman.
Thesecond level verifiestheinteractionsand side effects of objectswhich belongtothesame
top level window. Thethird level verifies the interactions and side effects of objects which
belong to different top level windows.

11

L ocation of the Test Suite: L et usassumethat theroot directory for thetest suite being captured
isxmanTest. Thisdirectory containsresourcefile(s) used during testing and theresult files
are created in the directory, by default. It also hasthree subdirectories, Level -1, Level -
2 and Level -3, onefor each testing level.

Object List: Let usinitialize a list of objects, called ObjList. Thislist will contain

information about the objects and isinitialized to be empty.

Application Resources. ~/XmanTest /Xman.Defaults isthe file which contains the
default application resources of Xman for this testing activity and these resources always

remains the same.

4.2 Building theInitial Object List

By default, Xman starts with atop box, called Main Window in Figure 2. However a
command line option, -notopbox, is available which can be used to bypass the Main
Window and display the Manual Page window directly. AsMain Window and Manual Page
window are the only windows which can appear when Xman is started, so theinitial object

list contains only these two objects.

4.3 Building the Test Suite

Thissection providesdetailson building al thethreetesting level sfor Xman. To makethings
simpler, weonly discussthe creation of test suitesrelatedtotheMa in Window of Xman.We
shall alsoignoreany keyboard accel eratorsto which Xmanresponds. Thetest suitesfor other
windows can be created in asimilar way. Figure 3 provides the hierarchy of scriptsrelated
to the Main Window for al the three testing levels.

4.3.1 First Level
Let us assumethat theinitial object list isbuilt so that XmanMain Window ison thetop

of the list. We select it as the object under test and create a new directory, called ~/
XmanTest/Level-1/Xman to build test scriptsrelated to itsfirst level testing. The
scriptsrelated to XMan Mainwindow objectitself display thewindow onthescreen, exercise
all the window manager operations on it, and then finally popdown the window.
DspXmanWin.scr script popups up the Xman window and verifies that is looks

12

-~ XmanTest /
]
Level-1
— Allsor]
|
Xinar
A]
| DspXmanWin.scr || XmanMain.scr || RemoveXmanWin.scr |
| |
| HepButton.scr || QuitButton.scr || ManPageButton.scr |
—— Level-2 /
]
' v
i
AT]
| MainwWindow.scr || XmanOrder.scr |
" Level-3 /
A]
' v
i
AT]
|
| Help.scr || ManualPagescr || Quitscr |

FIGURE 3. Test Suite Hierarchy of Xman

right.RemoveXmanWin . scr popsdowntheXman window. Thescript XmanMain. scr
usesDspXmanWin. scrinitsentering sectionto display the Xman window. It verifiesthe
window manager operationsinitscoresectionandthenusesRemoveHelpWin . scr script
in itsleaving section to pop down the Xman Window. As soon as the Xman window pops
up on the screen, we see that it containsfour objects, i.e. Manual Browser label, Help

13

button, Quit buttonandManual Page button.Manual Browser label doesisastatic
piece of text and does not respond to any user actions, so we do not need ascript for it. The
other three objectsaactive objectsand respond to user events so we create one script for each
of them.The entering section of each one of these scripscall DspXmanWin. scr todisplay
the Xman Main Window on the screen. The ending section of each of these scripts call
RemoveXmanWin. scr to remove the Xman Main Window from the screen. The core
section of HelpButton. scr script verifiesthe behavior of He1p buttonin XmanMain
Window whenitisclicked on by amousebutton. The core sectionsof QuitButton. scr
and ManPageButton. scr scripts verify the same thing for Quit and Manual Page
buttonsin Xman Main Window.

4.3.2 Second Level

The object list of second level contains all the top level windows of Xman. As we are
considering theMain Window only inthisdiscussion so we assumethat it is at the top of
thelist and isselected for testing. Thereisnot much interaction going onintheobjectswhich
belongtothe XmanMain Window. Theonly interaction isthe disappearance of theMain
Window, inresponseto aclick ontheQuit button. So there will be only one script related
totheMain Window which will verify that aclick on the Quit button actually destroys
theMain Window of Xman. ThisscriptiscalledMainWindow. scr andislocatedin ~/
XmanTest/Level-2/. This script also used DspXmanWin.scr and
RemoveXman . scr Script to display and remove theMain Window from the screen.
Another potential script, let uscall it XmanOrder. scr, related totheMain Window
verifiesthattheorderinwhichHelporManual Page buttonsarepressedisnot significant.
No matter the He1p button is pressed before or after theManual Page button, it will
display the He1p window properly. The sameistruefor theManual Page button also.

4.3.3 Third Leve

The object list of the third level includes the Root object only and tests any interactions
among thetop level windowsof Xman. SuchinteractionswhichinvolvetheMain Window
of Xman include display of theHe1p window and theManual Page window inresponse
tomouseclicksontheHelp andtheManual Page buttonsrespectively. Similarly it also

includesdisappearanceof all thewindowsrelated to Xmaninresponsetoaclick ontheQuit

14

button. The three scripts provided at thislevel, i.e. Help. scr, ManualPage.scr and
Quit. scr, verify thebehavior, related to the corresponding button, mentioned above. This
level also might include scriptswhich verify application behavior, likemultipleclicksonthe
He 1p button do not create more than one He1p windows while each click ontheManual

Page button create anew Manual Page window.

4.4 Creating Script Drivers

Onceall the scriptsfor Xman has been captured, we need driver scripts so that all the script
in the entire suite, all the scriptsin a particular testing level or all the scriptsrelated to a
particular object can be executed automatically in the desired sequence. For example, we
create a script driver, at each testing level, which executes all the scripts created for testing
Xman Main Window and its descendents, at that particular level. These scripts are ~/
XmanTest/Level-1/Xman/All .scr,~/XmanTest/Level-2/Xman/
All.scr,and ~/XmanTest/Level-3/Xman/All. scr, respectively. The script ~/
XmanTest/Level-1/A11.scrdriveal thescriptscreated for thefirst testing level and
similarly the other two driverswill execute scriptsrelated to the other two levels. The script
~/XmanTest /All.scr will driveal the scriptsin all the three levels of the test suite.

4.5 Testing the Test Suite

After thecreation of thetest suite, itisnecessary toreplay al the scriptsinthe suiteand verify
if they work properly and also to make sure that they cover al the features which needs to
betested. Although without aformal specification, it isnot possible perform any reasonable
automatic coverage analysis but at least the replayed events and the objects which appear
during the replay can be matched against application documentation to determine if any
object or event has not been covered by the generated test suite.

5.0 Testing with Formal Specifications

This section demonstrates the testing of Xman when we have enough resources to build a
formal model for Xman. Thefollowing subsectionsillustrates each step of the methodol ogy,
described in Section 2.2.

15

5.1 Buildingthe M odel

When the resources permit, the very step for testing is building a formal model for the
application under test. Figure 4 displays a User Interface Graph built for Xman. TheRoot
node of the graph represents the root window of the screen. The children of theRoot node
represent thesix top level windowsof Xman. Thenodesat |ower levelsinthegraph represent
the descendents of the top level windows. Let us take the main window of Xman as an
example. Itisrepresented asMainWin nodein the User Interface Graph. The child of the
MainWin nodeisthe Form nodewhich actsasacontainer widget for the buttons and the
label in the main window. The ManPage, Quit and Help nodes represent the Manual
Page,Quit andHelp command buttonsinthe main window, respectively. Thelabel
noderepresentsthe Manual Browser label inthemainwindow. Thedark black arcfrom
the ManPage node to theManual Page node represents the fact that clicking a mouse
button over the ManPage button in the main window affects the top level window, called
Manual Page. ThearcfromtheQuit nodetothe Root node representsthat aclick on
theQui t button affectsall thetop level windows of Xman. Thetype of event represented by
an arc isreflected by the drawing pattern of the arc. The two arcs mentioned above have the
same pattern and represent button clicks. An arc with a different pattern isthe arc from the
Text nodetothe search node. Thispattern representstext entry and thearc representsthat
entering text in the Text node affects the search dialog box.

5.2 Initialization

All the decision and actions taken at the initialization step, i.e. the number of testing levels
and their organization, the location of the test suite and the application default resources, is
kept the same as for testing without aformal specification, described in Section 4.1.

5.3 Building Object Lists:

After building the User Interface Graph for Xman, it is possible to build object lists for all
levels of testing. This can be done either manually or automatically by scanning each and
every nodeintheUser Interface Graph and verifyingif it qualifiesto be tested on aparticular
testing level. All the objectsin Xman qualify for the first testing level and hence are placed
onthelist associated withit. Thequalifying criteriafor the second level isthat the object must

16

[v][e][2][=eIves |

| gsdoL ||wiogdoy | | reqjiotos || afesss | |[suonoss |[suondo |

O\

Anug el
IO SNON

PIYDAUS fed

pusbo

[Feqj010S || abesss Al |[suonoss |[suondo |

wJoH

[Bge |[»el |[sodo.dy |[poued |[abeduen | _M__EM_

[suonoes [suondo || yoress |

wJoH

regnuie|[€][z][T][rae1][deH][3nd |[sbeduen |

[wio4| [ebesss |

TE]

abed fenue [deH [aneso1xiT | [Agpuess |[umuren |

FIGURE 4. Combined Graph for Xman

17

be atop level window, i.e. its corresponding node must be a child of the root of the User
Interface Graph. Some of the objects which qualify for the second testing level are Xman
Main Window, Manual Page window, Help window, Search dialog box, etc. Thethird level
treats the entire Xman application as a single object, and its corresponding node, Root, is
the only object which qualifies for the third level of testing.

5.4 Building Test Suite

Thestrategy for capturing scriptswithout any formal specification, discussed in Section 4.3,
can also be used for capturing scripts when the application has been specified formally.
However capturing scriptswith formal specificationsal so providesusthe capability to write
thetest scriptsmanually or generatetest scriptsautomatically by using theformal model and
the test requirements. All of these three techniques for building atest suite are explained in

the following section.

5.4.1 Capturing Scripts

A tool can beusedfor capturing user sessionsfor building atest suite, in exactly thesameway
asfor capturing without aformal model, as mentioned in Section 4.3. However the presence
of aformal model makes the generated scripts more robust and easy to follow and debug.A
formal model also provides the flexibility that the captured scripts can be executed in any
order without any conflictsinwindow names. It becomeseasi er tomodify thetest suitein case
of amodification to the application under test. In fact in most cases the modification can be
reflected in the specification fileand the test suite remainsvalid without making any changes.

5.4.2 Writing Scripts Manually

The formal specification of the application under test also allows the user to write scripts
manually, even for thefirst level of testing. Thisfeatureis particularly hel pful when the test
scripts need to be created in parallel with the application development in order to reduce the
total development time. Theway it can be organizedistoformally specify the graphical user
interface of the application once the design iscompl ete. The devel opers and testers agree on
thisformal specification and any future changesare properly communicated between thetwo
groups. Having theformal specification of thegraphical user interfaceat hand, thetesterscan
develop the scripts manually in parallel with the application development. Once the object

18

hierarchy and thebehavior of theobjectsisknown, themanual writing of test scriptsisaseasy
aswriting a UNIX shell script.

5.4.3 Automatic Test Generation

The formal specification of the application under test also provides capabilitiesto generate
test scripts automatically. A tool can be written which will read the specification for an
applicationand createtest scriptsfor aparticular level of testing or theentiretest suite. Similar
tools can be used to generate test scriptsto test all the objects of aparticular type or al the
user actionsof aparticular type. For example, such atool can generatetest scriptsto exercise
clicks on each command button in an entire application. A similar tool can generate a suite
of test scriptsto verify that all windows in the application under test are displayed on the
screen at least once. Another tool might generate scriptsto individually select all the options
of each menu in the application and verify that the application responds in the expected
manner. Another tool might create scripts for selection of multiple menu options and/or
command buttons in different sequences to verify the application response. All the above
mentioned toolswill only create scriptsand validation datahasto captured by replaying these

scripts by using caprep [2] or asimilar tool, to replay these scriptsin Update mode.

Thelogic behind these automatic test generation toolsisthe same as used in Section 5.0 for
manual creation of test suites. Thetool startsat theroot of the User Interface Graph and builds
alist of GUI elements by performing a pre-order walk of the User Interface Graph. During
this walk only the arcs which represent parent/child relationship, are considered. After
building thelist, its entries are taken one by oneto create test scriptsfor them. If the current
GUI element, taken from thelist, isatop level window then a separate directory is created
for it and the scripts for the element and all of its descendents are created in that directory.
If the currently selected element belongsto the category for which ascript is required, then
oneis created by following the arcs which represent user actions on the element. Figure4
presents pseudo code for such an automatic test generator.

5.5 Coverage Analysis

No testing activity is useful unless it provides some coverage measures. These coverage
measures reflect the quality of the testing activity. The User Interface Graph provides usa

19

Build the User Interface Graph of the application under test;

Build an object list by a pre-order traversal of the User
Interface Graph.

for each element on the list
do

If the element is a top level window
Create a new directory and change to the directory.

Display the element on the screen.
fi

if the element accepts any user events
Create a script for the element

for each kind of user event accepted by the element
do

Add commands in script to
Generate the event on the element;
Verify the effect of that event;

Undo the effect of the event;
done
fi
done

FIGURE 5. Pseudo Code for Automatic Test Gener ator

frame work to determine such a measure of coverage. During capture or replay of scripts,
XTester keeps track of the user actions and their effects on individual objects. This
informationisstoredina . st t fileuponthe completion of thetesting activity. Currently the
information captured in . st t about a particular object includes the number of timesit was
created, mapped, unmapped and destroyed. It al so accumul atesthe number of timesamouse
button or keyboard key was pressed or released over the object. Thisinformation helpsthe
user locate any particular objectsin the application which have not been created, destroyed
or received an expected user event. These figures can also be used for improving the
efficiency of thetest suite by removing therepetitivetesting of the same characteristics, when
possible. Figure 5 shows afile created by XTester after replaying a certain test suite for

20

Legend:

CW=Create Window DW=Destroy Window MW=Map Window
UMW=Unmap Window BP=Button Press BR=Button Release
KP=Key Press KR=Key Release

Object Name Cw DW MW UMWBP BR KP KR
Xman i o0 2 1 o0 0 o0 O
Xman*Form 1 o 2 1 o 0 0 ©0
Xman*ManualPage 1 o 2 1 50 50 0 0O
Xman*Quit i1 o 2 1 0 0 0 O
Xman*Help i o0 2 1 10 10 0 O
Xman*Label i o0 2 1 o0 0 o0 O
StandBy 28 23 2 1 0 0 0 o0
StandBy*Message 28 23 2 1 0 0 0 0
LikeToSave i1 o o o o0 0 o0 O
LikeToSave*Form i o0 o 0 o0 0 o0 O
LikeToSave*Message i o0 o 0 o0 0 o0 O
LikeToSave*Yes i o0 o o0 o0 0 o0 O
LikeToSave*No i o o o o0 o0 o0 O
Help i o 7 7 0 0 0 O
Help*Form i o 7 7 0 0 0 O
Help*MenuBar i o 7 7 0 0 0 O
Help*Options i o0 7 7 202 o0 0
Help*Sections i o 7 7 0 0 o0 O
Help*Message i o 7 7 0 0 0 O
Help*TextArea i o0 7 7 0 0 0 o0
Help#*Scrollbar i o0 7 7 10 10 0 O
Help.Form. 3 i o 7 7 0 0 0 O
ManPage 27 23 27 1 0 0 0 O
ManPage*Form 27 23 27 1 0 0 0 O
ManPage*MenuBar 27 23 27 1 o o0 0 0
ManPage*Options 27 23 27 1 92 6 0 0
ManPage*Sections 27 23 27 1 18 2 0 O
ManPage*Message 27 23 27 1 o o0 0 o0
ManPage*TextArea 27 23 27 1 0 0 0 O
ManPage*Scrollbar 27 23 27 1 8 8 0 O
ManPage. Form. 3 27 23 27 1 o o0 0 0
ManPage*DirArea 27 23 27 1 0 0 0 0
ManPage*DirList 27 23 27 1 0 0 0 O
ManPage*List 27 23 27 1 0 0 0 0

FIGURE 6. Statisticsfile created by X Tester

Xman. The legend is displayed at the top of the file, to explain symbols used to represent
various actions. The next line after the legend provides the heading for the table. Each line
in the table provides stati stics about a particular object. For examplethevery first line of the
table provide statistics about the Main Window of Xman, named Xman. Thisparticular line
showsthat the object named Xman was created once, never destroyed, mapped twice on the
screen and unmapped once, by the corresponding test script. It also shows that the
corresponding test suite never exercised abutton press/rel ease or key press/rel ease eventson
the Xman object.

Tools can be devel oped to extract user desired informationfroma . st t files. One such tool
mightread a . uid1l fileto build object hierarchy of the application under test, reada . stt
file for statistics about a particular testing activity and map those statistics on the object
hierarchy so that the user can visually see how many nodes and arcs in the object hierarchy
have not been exercised by this particular test suite. Another tool might provide only the
objectswhichdid not receivean expected user action. Similarly toolscanbewrittentodisplay
information about particular objectsor particular user actions. Figure 7 providesthe general
logic for a coverage analysistool. The tool will build the User Interface Graph of the
application under test by reading in the specification file. After building the User Interface
Graph, the information from the statistics file created by a particular test suite will be read,
analyzed and displayed, according to the given criteria.

Read in the required criteria for analysis;
Build the User Interface Graph of the application under test;
Read in the specified statistics file(s);
for each element in the User Interface Graph
do

If the element qualifies for the given criteria
Display the required information in proper format;
done

FIGURE 7. Pseudo Code for Quality Analyzer

22

6.0 Invalidation of Test Data

XTester capturesinformation astwo entities, script commandsand verification dataand saves
themindifferentfiles, . scr and . img, respectively. This section describesthe scenarioin
which created test script(s) might fail and hasto be re-captured or re-written. Thefollowing

scenarios will invalidate some of the captured scripts.

e The application is modified in such away that wM_NAME property of a top level win-
dow is changed. This modification will only effect the scripts which have been captured
without a specification and are related to the window whose WM _NAME property was
changed. The scripts captured with a formal specification remain unaffected, provide
that the specifications are also modified to reflect the change in the application.

e The application is changed so that the order or number of children of a particular node
is changed. The scripts which were captured without a specification and address objects
in the modified hierarchy, will be affected and has to be recaptured or tuned. However
the scripts captured with aformal specification remain unaffected, provided the specifi-
cation is also modified accordingly.

e XTester provides option to build either full or short object names. If the application is
modified so that the depth of a hierarchy is changed, then all the full names belonging
to that hierarchy will no longer be valid names and has to be modified to reflect the
change. However short names will still remain valid.

e |f object information has been captured in pixmap mode, then trying to replay the
scripts on another workstation, which is not compatible with the workstation on which
pixmaps was captured, will give false dlarms. The scripts work fine across multiple
platforms, however verification data is platform specific in case of pixmaps. An easier
way of creating verification data for a new hardware platform will be to replay all the
scriptsin Update mode which will replace the current verification data with the newly
available one.

23

7.0 Conclusion

In this paper, we have provided some guide lines which are useful in planning a testing
activity for a graphical user interface. We have presented a methodology for testing a
graphical user interface, bothwhen noformal specification of theapplication under testisnot
available and when such a specification is provided or resources are available to build such
a specification. The paper also demonstrates the use of the suggested methodology to test a
sample X application, Xman, with or without aformal specification. It also illustrates how
the model ishelpful in automatic test generation and coverage analysis. In the end, the paper
describes the situations in which the scripts captured by X Tester will become invalid.

24

References:

[1]

[2]

Ellis Horowitz and Zafar Singhera, “ Graphical User Interface Testing”, Proceedings
of the Eleventh Annual Pacific Northwest Software Quality Conference, October,
1993.

Ellis Horowitz and Zafar Singhera, “ X Tester Reference Manual”, 1993.

25

