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ABSTRACT 
With the explosive growth of video applications over the Internet, many approaches have been proposed to stream video 
effectively over packet switched, best-effort networks.  A number of these use techniques from source and channel coding, or 
implement transport protocols, or modify system architectures in order to deal with delay, loss, and time-varying nature of 
the Internet.  In this paper, we propose a framework for streaming video from multiple senders simultaneously to a single 
receiver.  The main motivation in doing so is to exploit path diversity in order to achieve higher throughput, and to increase 
tolerance to packet loss and delay due to network congestion.  In this framework, we propose a receiver-driven transport 
protocol to coordinate simultaneous transmissions of video from multiple senders. Our protocol employs two algorithms: rate 
allocation and packet partition.  The rate allocation algorithm determines sending rate for each sender to minimize the packet 
loss, while the packet partition algorithm minimizes the probability of packets arriving late. Using NS and actual Internet 
experiments, we demonstrate the effectiveness of our proposed distributed transport protocol in terms of the overall packet 
loss rate, and  compare its performance against a naïve distributed protocol. 

1 Introduction 

Video streaming over best-effort, packet-switched networks is challenging due to a number of factors such as high bit rates,  
delay, and loss sensitivity.  As such, transport protocols such as TCP are not suitable for streaming applications.  To this end, 
many solutions have been proposed from different perspectives.  From source coding perspective, layered and error-resilient 
video codecs have been proposed.  A layered video codec deals with heterogeneity and time-varying nature of the Internet by 
adapting its bit rate to the available bandwidth [1].  An error-resilient codec attempts to cope with packet losses using error 
concealment techniques to improve visual quality at the expense of loss in coding efficiency [1, 2, 3].  From channel coding 
perspective, Forward Error Correction (FEC) techniques have been proposed to reduce delay due to retransmission at the 
expense of increased bit rate [1, 4, 5].  From protocol perspective, there are approaches based on multicast [5] and TCP-
friendly protocols [1] for streaming multimedia data over the Internet.  Multicast reduces the network bandwidth by not 
sending duplicate packets on the same physical link [13], but it is only appropriate for situations with one sender and many 
receivers.  Meanwhile, TCP-friendly protocols use rate-based control to fairly compete with other TCP traffic for bandwidth, 
and at the same time, stabilize the throughput, thus reducing the jitter for multimedia streaming [6].   From network 
perspective, content delivery network (CDN) companies such as Akamai, iBeam, and Digital Island use edge architecture as 
shown in Figure 1 to achieve better load balancing, lower latency, and higher throughput.  Edge architecture reduces latency 
by moving content to the edge of the network in order to reduce round-trip time and to avoid congestion in the Internet.  
Companies such as FastForward Networks and Akamai strategically place a large number of the servers around the Internet 
so that each client can choose the server that results in shortest round-trip time and least amount of congestion. 
A number of these schemes assume a single fixed route between the receiver and the sender throughout the session.  If the 
network is congested along that route, video streaming suffers from high loss rate and jitter.   Even if there is no congestion, 
as the round-trip time between the sender and the receiver increases, the TCP throughput may reduce to unacceptably low 
levels for streaming applications.  Furthermore, authors in [11, 12] have revealed the ill-behaved systematic properties in 
Internet routing, which can lead to sub-optimal routing paths.  Based on these, it is conceivable to make content available at 
multiple sources so that the receiver can choose the “best” sender based on bandwidth, loss, and delay.  In a way, this is what 
Akamai does by moving the server closer to the client.  However, if no sender can support the required bit rate needed by the 
application, it is conceivable to have multiple senders simultaneously stream video to a single receiver to effectively provide 
the required throughput.  Having multiple senders is also a diversification scheme in that it combats unpredictability of 
congestion in the Internet. If the route between a particular sender and the receiver experiences congestion during streaming, 
the receiver can redistribute streaming rates among other senders, thus resulting in smooth video delivery. 
In this paper, we propose a framework for streaming video from multiple mirror sites simultaneously to a single receiver in 
order to achieve higher throughput, and to increase tolerance to loss and delay due to network congestion.  Our solution 
combines approaches from different perspectives including system architecture and transport protocols.  From systems 
perspective, we expand the edge architecture to allow simultaneous video streaming from multiple mirror sites as shown in 
Figure 2.  This is in contrast with the edge architecture where only one server is responsible for streaming video to its nearest 
clients.  From protocol perspective, we use a TCP friendly protocol to coordinate simultaneous transmission of video from 
multiple mirror sites to a single receiver effectively.  Although, this work focuses primarily on video streaming, our protocol 
and architecture can accommodate other multimedia components such as audio as well.    
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Figure 1: Edge Architecture 
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Figure 2: Distributed Video Streaming 

 
1.1 Related Work 
There have been other works dealing with simultaneous downloading of data from multiple mirror sites.  If the data is not 
delay sensitive, it is possible to use multiple TCP connections to different sites, with each TCP connection downloading a 
different part of the data.  For example, the authors in [7] use Tornado codes to download data simultaneously from multiple 
mirror sites.  More recently, Digital Fountain has used an advanced class of linear-time codes to enable the receivers to 
receive any N linear-time coded packets from different senders, so as to recover N original data packets.  Another example is 
multiple description coding of video, in which a video source is partitioned into multiple descriptions [8], each one being sent 
along a different route in the network.  This approach assumes that the visual quality of the video degrades gracefully as the 
number of received descriptions decreases due to network congestion on different routes.   

1.2 Assumptions 
To successfully stream video from multiple senders, we assume that the available aggregate bandwidth from all the senders 
to the receiver exceeds the required video bit rate.  As an example, consider a network configuration shown in Figure 2.  The 
available bandwidth from router A to receiver R, sender S1 to router A, and sender S2 to router A is assumed to be 2Mbps, 
0.8Mbps, and 0.4Mbps, respectively. Router A can be an edge router of a particular network domain of a university or a 
company, and is assumed to be the only router receiver R is connected to.   In this scenario, it is not possible to stream a 
1Mbps video from sender S1 to receiver R since the available bandwidth for streaming video from S1 to R is only 0.8Mbps.  
However, it is possible to stream a 1Mbps video simultaneously from both senders S1 and S2 to receiver R since the 
aggregate bandwidth from both senders S1 and S2 to receiver R is 1.2 Mbps which exceeds the required bit rate of 1Mbps.   
On the other hand, if the available bandwidth from router A to receiver R is only 0.9Mbps, then the link between A and R 
becomes a bottleneck, and video streaming at 1Mbps becomes infeasible both for multiple sender and single sender 
scenarios.   
We also assume that the routes from a client to the senders do not share the same congestion link.  If there is congestion on a 
shared link between two senders, then changing the sending rate of one sender may adversely affect the traffic conditions of 
the other one.  In this work, we assume that changing the sending rate of one sender does not affect the route conditions of 
others.  As will be discussed in Section 2, this assumption prevents potential oscillations and instabilities in the sending rates 
computed by our rate allocation algorithm.   
Based on the above assumptions, in streaming situations when the bottleneck is in the last hop, e.g. due to the physical 
bandwidth limitation of dial-up modem, our proposed distributed streaming approach is of little use.  Indeed if a client is 
connected to the Internet through a low bandwidth connection,  it is preferable to download the entire video in a non-real time 
fashion before playing it back.  Our premise is that, asymptotically, as broadband connection to the Internet such as DSL or 
cable modem becomes prevalent, the limiting factor in streaming is packet loss and delay due to congestion along the 
streaming path, rather than the physical bandwidth limitations of the last hop.  
Finally, there has been work on detecting the shared congestion points of different routes [9] based on the correlation of 
packet loss and delay between routes.  These correlations can be used ahead of time to improve the performance of our 
approach.   

1.3 Scope 
Our contribution can be divided into three parts.  First, we propose a protocol that allows simultaneous streaming of video 
from multiple mirror sites to a single client in a TCP-friendly manner, yet with smooth sending rates so as to reduce jitter.  
Next, we propose an algorithm that runs on the receiver to specify the sending rate for each sender in order to minimize the 
total loss rate.  Finally, we suggest a distributed algorithm that runs on each sender to partition packets so as to minimize the 
probability of packets arriving late. 
The rest of our paper is organized as follows.  In Section 2, we describe our transport protocol, rate allocation, and packet 
partition algorithms.  We show that under certain assumptions, our rate and packet allocation algorithms are optimal in terms 
of packet loss and delay.  Next, we describe the simulation setup and discuss results in Section 3.  Finally, we  conclude and 
provide possible extensions in Section 4.   



2 Protocol Overview 
2.1 Transport Protocol   
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Figure 3: A scenario of distributed video streaming 

Our transport protocol is a receiver-driven one in which, the receiver coordinates transmissions from multiple senders based 
on the information received from the senders.   Each sender estimates and sends its round trip time to the receiver.   The 
receiver uses the estimated round trip times and its estimates of sender’s loss rates to calculate the optimal sending rate for 
each sender. When the receiver decides to change any of the sender’s sending rates, it sends an identical control packet to 
each sender.  The control packet contains the synchronization sequence number and the optimal sending rates as calculated 
by the receiver for all senders.  Using the specified sending rates and synchronization sequence number, each sender runs a 
distributed packet partition algorithm to determine the next packet to be sent.  Figure 3 shows the block diagram of an 
example of a system deploying our approach. 

2.2 Bandwidth Estimation 
In our protocol, the receiver estimates available bandwidth for each sender based on the TCP-friendly rate control algorithm 
(TFRC) proposed in [6].  TFRC protocol is designed to be fair with TCP traffic, and results in less fluctuation in sending rate 
than TCP does.  It calculates the available bandwidth according to the following equation: 
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where B denotes the current available TCP-friendly bandwidth between each sender and the receiver, Trto is TCP time out, R 
is the estimated round-trip time in seconds, p is the estimated loss rate, and s is the TCP segment size in bytes.   The 
estimated round trip time is computed using the moving average of round-trip times over a fixed time interval.  Similarly, the 
estimated loss rate is the ratio of number of lost packets over the total number of packets sent during a fixed time interval.  
The estimated bandwidth B forms an upper bound for the TCP-friendly sending rate. 

2.3 Rate Allocation Algorithm 
In our protocol, the receiver computes the optimal sending rate for each sender based on its loss rate and estimated available 
bandwidth.  The problem of allocating optimal sending rate to each sender can be stated as follows.  Let N  be the total 
number of senders, and ),( tiL and ),( tiS be the estimated loss and sending rates, respectively for sender i over an interval 

),( ∆+tt .  Our goal is to find ),( tiS , },...1{ Ni = ,  that minimize the total packets loss during interval ),( ∆+tt given by 

  ∑
=

=
N

i
tiStiLtF

1
),(),()(  

                                                          subject to      









=

≤≤

∑
=

N

i
req tStiS

tiBtiS

1

)(),(

),(),(0

                                                                                   

where  )(tSreq  is the required bit rate for the encoded video during the interval ),( ∆+tt , and ),( tiB is the TCP-friendly 
estimated bandwidth for sender i during the interval ),( ∆+tt .  This optimization problem can be solved using the following 
algorithm.  At time t, we sort the senders according to their estimated loss rates from lowest to highest.  We start with the 
lowest loss rate sender and assign its sending rate to be its TCP-friendly estimated bandwidth as described in equation (1).  
We then continue to assign to each sender its available bandwidth, beginning with the ones with lower loss rates and moving 
to the ones with higher loss rates, until the sum of their available bandwidths   exceeds the bit rate of the encoded video.  As 
an example, Figure 4 shows the rate allocation for four senders with the loss rates increasing from left to right.  The height of 
each cylinder shows the available TCP-friendly bandwidth for that sender.  As seen, since sender four has the highest loss 



rate and since sum of available bandwidth from sender one, two,  and three is sufficiently large,   sender four can afford to 
operate at “below capacity.” 
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Figure 4: Sending rate allocation for four senders 

Intuitively, the algorithm assigns more packets to senders with lower loss rates and fewer packets to the senders with higher 
loss rates. At the same time, each sender i also satisfies the constraints ),(),( tiBtiS ≤   in order to share bandwidth fairly with 
other TCP traffic.  The algorithm minimizes F(t),  the number of lost packets during the interval ),( ∆+tt , given 
instantaneous feedback, and assuming that the estimated loss rate and TCP-friendly available bandwidth are accurate.  The 
proof for this is included in the Appendix. 
In practice, the network delay  introduces errors into the estimated  loss rate and bandwidth, making the algorithm 
approximately optimal.  This algorithm also assumes that changing the sending rate of one sender does not affect the loss 
rates of other senders. This is a reasonable assumption if senders are located strategically across the network.  On the other 
hand, if the assumption is not true, then sender’s estimated loss rates may fluctuate after each rate assignment, leading to 
oscillating sending rates.  Also, the estimated bandwidth ),( tiB using equation (1) can vary rapidly, even though the average 
bandwidth of other traffic remains constant.  This is due to bandwidth overshooting and undershooting of TCP connections, 
which result in large fluctuations of  the estimated bandwidth of TFRC connections.  If ),( tiB changes rapidly, ),( tiS needs to 
be recomputed more frequently, and more control packets have to be sent from the receiver to all the senders, resulting in 
inefficiencies. Therefore, we use a systolic window to constrain the minimum interval during which, the sending rates must 
remain constant.  The idea of systolic window is as follows.  We periodically sample the estimated bandwidth ),( tiB at a 
fixed interval φ.  If ),( tiB is greater than wtiS +),( ,  where w  is a small percentage of ),( tiS , then we add one to the variable 
count.  At each sampling time, if the estimated bandwidth is smaller than wtiS −),( , then we subtract one from the variable 
count.  Otherwise, the variable count remains the same.  The parameter count can be interpreted as the number of times that 
the sampled bandwidth is outside the window.  If at some point the variable count is greater than γ, a fixed threshold, or 
smaller than -γ, then the rate allocation algorithm is run to update the sending rates.  The parameters w, φ, γ, and count 
determine the minimum interval during which ),( tiS must remain constant, and the responsiveness of ),( tiS  to network 
conditions. If a protocol responds too slowly to decreasing network available bandwidth, it occupies more than its fair share 
of the bandwidth, and vice versa.   Our simulations in Section 3 show that on average, our algorithm based on systolic 
window shares  bandwidth fairly with other TCP traffic. 

2.4 Packet Partition Algorithm (PPA) 
After receiving the control packet from the receiver, each sender immediately decides the next packet in the video stream to 
be sent, using the packet partition algorithm.  All the senders simultaneously run this algorithm to ensure that no sender sends 
the same video packet, and also to minimize the probability of  packets arriving late at the receiver due to network jitter. The 
algorithm can be described as follows.   
Each sender receives control packet from the receiver through a reliable protocol whenever the receiver determines there 
should be a change in any of the sending rates.  The format of the control packet is shown Figure 5.  For simplicity, we do not 
show the IP header and sequence number. 

 
 

Figure 5: Format of the control packet 
S1-S5 are two-byte fields to specify the sending rate in packets/second for each sender.  Packet size is constant for all 
senders.  D1-D5 are one-byte fields to denote the estimated delay from each sender to the receiver.  This delay is expressed in 
multiples of 2 milliseconds interval.  The Sync field is the starting sequence number that all senders use in the packet 
partition algorithm to determine the next packet to send, immediately upon receiving the control packet.  The entire copy of 
the video is assumed to reside at all the senders.    
To describe the partition algorithm in detail, we use the notation in Table 1: 

D1 D2 D3 D4 D5 S1 S2 S3 S4 S5 Sync 



 

'k  Sequence number  sync in the control packet which all senders use to initialize the packet partition 
l i h

'kT  Time at which control packet with sequence 'k is sent at the receiver 

N  Number of senders 

P  Packet size 

)(' kTk  Playback time for kth packet with respect to 'kT  

)( jσ  Sending interval between packets for sender j 

kjn ,  Number of packets already sent by sender j since packet 'k , and up to packet k  

)( jD  Estimated delay from the sender j to the receiver 

)( jS  Sending rate for sender j 

Table 1: Notations 
If the reference time, 'kT , is conceptually chosen to be the departure time of the control packet from the receiver, the 
estimated arrival time of the kth packet sent by  sender j is )(2)(, jDjn kj +σ .  This is because it takes )( jD  for the control 

packet to arrive at the sender j, )(, jn kj σ  for the kth packet to be sent by sender j, and )( jD  for it to arrive at the receiver.  

Since )(' kTk is also the playback time of the kth packet with respect to 'kT , the expression )](2)([)(),( ,'' jDjnkTkjA kjkk +−= σ  
can be interpreted as the estimated time difference between arrival and playback time of the kth packet, if sender j is its 
originator.  If ),(' kjAk  is positive, kth packet is on time, otherwise, kth packet is late.  Hence, maximizing ),(' kjAk is 
equivalent to minimizing the probability that the kth packet is late.   

The basic idea in our packet partition algorithm is that among all senders j = 1, … N, the one that maximizes ),(' kjAk  is 
assigned to send kth packet.  Specifically, each sender computes ),(' kjAk for each packet k for itself and all other senders, and 
only sends kth packet if it discovers that Ak’(j,k) is at a maximum for itself.  If  ),(' kjAk is not at a maximum for sender i, it 
will increase k by one, and repeats the procedure until it finds the packet k* for which ),(' kjAk is at a maximum among all 
other senders.   

Each sender effectively keeps track of all the values of ),(' kjAk  for all  N senders and updates ),(' kjAk every time a packet is 
sent.  The values of ),(' kjAk evolve in the same way at all senders even though they are computed at different locations.  The 
reasons for this are that (a) all the senders receive the same control packet from the receiver, (b) only use the information in 
the control packet to update ),(' kjAk and (c) all use the same equation to do so.  Therefore there is no need for information 
exchange among the senders in order to determine who needs to send the next packet.  Nor is there a need for synchronized 
clock at various senders, as all the needed information is in the control packet. 

We now argue that all the needed information to compute ),(' kjAk is in the control packet.  To begin with, the estimated 
delays )( jD are explicitly in the fields D1-D5 of the control packet.  Secondly, )(/)( jSPj =σ  is easily computed from fields 
S1-S5 in the control packet.  As for )(' kTk , since it does not in any way affect the value of j that maximizes ),(' kjAk , for 
convenience, it can arbitrarily be set to any value, say zero, by all users for all packets k.  As for kjn , , we have 0, =kjn ,  for 

computing )',(' kjAk where 'k  is the synchronization sequence number as specified in the sync field of the control packet.  
Therefore for packet k’, all senders can determine the sender j* with the largest )',(' kjAk  chosen to send packet 'k .  Each 
time sender j is chosen to send a packet, kjn , is incremented by one at all sender locations.  Since all senders are initialized to 

start computing ),(' kjAk for packet 'k onwards, and they all receive identical information as supplied in the control packet to 
update ),(' kjAk , the values of ),(' kjAk at all the senders evolve the same way, and as such the decision as to which sender 
maximizes ),(' kjAk for 'kk >  is identical at all senders, and hence no duplicate packets are sent. 

To illustrate the algorithm, we show a simple example in which, there are two senders, each sending packets at equal rate.  As 
shown in Figure 6, the Sync sequence number is 10. The top line with vertical bars denotes the playback time for the packets.  
The middle and the bottom lines indicate the time to send packets for senders 1 and 2, respectively.   In this scenario, packet 
10 will be sent by sender 1 since the estimated difference between playback and its receive time for packet 10 is greater than 
that of sender 2.  Next, packet 11 will be sent by sender 2 for the same reason.   



The synchronization among senders would not break down if a control packet is late. In our implementation of a reliable 
protocol for the control packets, a batch of 5 identical control packets are sent with 5 milliseconds spacing between them 
whenever the receiver determines there should be a change in sending rates.  If none of the control packets is acknowledged 
within two round-trip time from a particular sender, a new batch of control packets are sent to that sender until at least one of 
the control packets is acknowledged.   Assume that the control packets  are lost independently and the loss probability is p , 

then probability that a particular sender does not receive the control packets after n2 round-trip time is np5 .   Even if p is as 

large as 0.1,  the probability that a control packet is late more than 2 round-trip time is 610− .  This loss probability is very 
small, considering that control packets are rarely sent.  Even when the control packet is late for one particular sender, that 
sender simply sends packets behind other senders by 2 round trip time, which can be easily absorbed by using  a receiver 
buffer.   
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Figure 6:  Illustration of packet partition algorithm 

2.5 Choice of Synchronization Sequence Number  
An important consideration in the packet partition algorithm (PPA) is the proper choice of synchronization sequence number, 

'k , at the receiver for each control packet.  At any point in time, the receiver knows the sequence number for the last packet 
sent by each sender. Thus, an obvious strategy is to choose 'k  more or less to be around the sequence numbers that the 
senders are actually sending when they receive the control packets. However, it is possible that, due to a variety of practical 
factors, senders lag each other by significant amount, making the "optimal" choice of 'k nontrivial. 

As an example, consider Figure 7, where two senders are assumed to send packets at equal rate, with sender one having a 
shorter round trip time (RTT) to the receiver than that of sender two. The already sent packets by either sender are denoted by 
the crosses, while the packets to be sent by circles. Suppose the receiver sends out control packets which arrive at sender 
1onebefore sender two. Thus, by the time the control packet arrives, sender one's most recently sent packet is 6, and that of 
sender two is 10. If 'k is chosen to be 11, then sender 1 will have to skip  packets 8 and 10, resulting in loss. On the other 
hand, if 'k  is chosen to be 8, then senders one and two, will run the PPA beginning from packet 8 in order to determine who 
sends what. In practice, if 'k is significantly smaller than the packet sequence number a particular sender is processing at the 
time it receives the control packet, it is possible that some packets are sent twice, i.e. are duplicated at the receiver.  
Based on the above discussion, choosing tool large of a value for 'k   may result in packet loss, and choosing too small of a 
value might result in duplication. To avoid excessive packet loss, and hence lower visual quality, our chosen strategy is for 
the receiver to set )}("{min' jkk j= , where k''(j) is the estimated sequence number for the latest packet sender j has just sent, 
before receiving the control packet. Since the receiver knows about the last packet received from each sender, and the RTT 
between itself and each sender, it can arrive  at a fairly accurate estimate for k''(j). In particular, a reasonable estimate for 
k''(j) is )(*2)(* jDSjk + , where k*(j) is the sequence number for the last packet receiver has received from sender j, and S is 
the total sending rate in packets per second. This estimate of k''(j) is reasonable since )(*2 jDS is the approximate number of 
packets sent by all senders during round trip time of sender j, i.e. during )(2 jD interval. 
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Figure 7:  Illustration of choosing 'k  

In addition to the variation in the delays from senders to receivers, other factors can contribute to significant lag amongst the 
senders. Examples of these include system resource issues at the video servers at the senders, and inaccuracies in estimates. 



Clearly, one strategy is to have a large enough receiver buffer to absorb the lag among the senders; however, if the lag is not 
corrected for long periods of time, say hours, the required buffer size could grow in an unbounded fashion. One way to avoid 
excessively large required receiver buffer size, is to send control packets with appropriate 'k  so as to "synchronize" the 
senders. For example, if )}("{median' jkk j= then senders with ')(" kjk <  will have to send packets at a faster rate temporarily 

so as to "catch up" with the other senders, in order to avoid packet loss. Alternatively by choosing )}("{min' jkk j= , we are 
effectively slowing down all the senders so as the one, most far behind can catch up.  

3 Simulations and Results 

We now demonstrate the effectiveness of our approach by showing that simplistic distributed video streaming without using 
our protocol results in lower video quality than would be achieved otherwise.   

3.1 NS Simulations 
The first scenario involves a single receiver simultaneously receiving video from two senders using our protocol.  Via the 
same network configuration, in the second scenario, receiver also receives video from two senders but without using our 
protocol to adapt to the channel conditions.  The network configuration is shown in Figure 8.  The delays from senders one 
and two to the receiver are 40 and 50 milliseconds, respectively, the link capacities from senders one and two to the router R 
are 60Mbps and 30Mbps, respectively, and the local link from router R to the receiver is 240Mbps.  Senders one and  two 
simultaneously stream a video to the receiver.   The video is a MPEG-1 video sequence taken from MPEG-7 test suite which 
is then decoded and recoded using H.263 encoder with error-resilient option at 880kbps.  At the receiver, we use a simple 
error-resilient technique to combat packet losses.  Basically, the error-resilient technique replaces the lost group of block 
(GOB) of the current frame with GOB of the previous frame, and copies the motion vectors of the lost GOB from the GOB 
above it.  The parameters for our experiment are shown in Table 2. 
To provide a compromise between responsiveness to network conditions and oscillations of sending rates, we find that the 
parameters shown in Table 1 provide a reasonable trade-off for many experiments using the same network topology but with 
different link rates and number of TCP sources.  Using these parameters, it takes about 20s to 30s for  our protocol to respond 
to network conditions.   
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Figure 8: Simulation configuration 

 

 
 
 
 
 

Table 2: Simulation parameters 
At time t = 0s, 100 TCP sources that share the same route with  sender one, and 200 TCP sources that share the same route 
with sender two, start transmitting data.  At t = 2s, the receiver starts sending control packets to coordinate the video 
transmission from senders one and two.   Initially, the receiver does not know the fair bandwidth for each sender, so 880kbps 
is divided equally between the two senders.  Figure 9 shows the estimated loss rate for each sender. At t ≈ 25s, both senders 
begin to send data at the rates according to the equation (1) based on their loss rates and round-trip times as shown  in Figure 
10.  During this time, the average bandwidth of the sender one is 76.7 Kbytes/s, which is close to the fair bandwidth of 77864 
bytes/s per connection obtained by dividing 60Mbps among 101 connections. At t = 200s, 25 of 100 TCP sources that share 
the same route with  sender one stop sending data; our protocol responds by increasing sender one’s rate by approximately a 
quarter of its current rate, and  reducing the sender two’s rate such that the total bandwidth is 880kbps.  At t = 400s,  10 new 

w (width of the systolic window) 0.1*S(i)  

φ (sampling interval for the systolic window) 100ms 

γ ( count threshold) 40 
PWIN (time window for estimating loss) 128 RTT 
Packet size 500 bytes 



TCP sources that share the same route with the sender one start and stop at random times, varying the available bandwidth for 
sender one.  As shown in Figure 10, our algorithm adjusts the sending rates for both senders appropriately.   Figure 11 shows 
the total throughput and the throughput of each sender.  As seen, the variations in Figure 11 reflect closely those in Figure 10. 
In scenario one, both senders use our adaptive protocol to adjust their sending rates accordingly so as to be TCP friendly, and 
at the same time, to reduce the overall loss rate.  In scenario two, the sender two is not TCP-friendly since it sends more than 
the average bandwidth of other TCP sources while sender one under-utilizes its available bandwidth.  Figure 12 shows the 
throughput for each sender in scenario two, and Figure 13 shows the loss rate ratio of scenario two over that of scenario one.  
As seen, the loss rate of scenario two can be 2.5 times larger than that of scenario two. 
Next, we compare the mean squared error (MSE) of pixel values between the sent frame and the received frame. Since there 
are quite a large number of frames, we further  average the MSE for every video frame over a period of 5s.  Higher MSE 
represents lower fidelity of the video due to lost packets.  As shown in Figure 14, most of the time the MSE for scenario one 
is lower than that of scenario two. The average MSE for the entire simulation for scenarios one and two are 13.70dB and 
16.16dB, respectively. The difference in MSE between the two scenarios is most significant  from t = 200s to t = 400s. 
During this period, there are fewer active TCP sources, and therefore, sender one has more available bandwidth, triggering 
our protocol to allocate more packets to sender one.  Since sender one has lower loss rate, the overall loss rate decreases, 
resulting in smaller MSE. Beyond MSE arguments, it is worthwhile to mention that while our protocol allows the distributed 
senders to compete for bandwidth fairly with existing TCP connections, in scenario two, TCP connections sharing bandwidth 
with distributed senders suffer unfairly. 
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Figure 9: Loss rates of two senders in adaptive scenario one 
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Figure 10: Sending rates of two senders in adaptive scenario 
one 
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Figure 11: Throughputs of two senders in adaptive scenario 
one 
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Figure 12: Throughputs of two senders in non-adaptive  
scenario two 
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Figure 13: Loss rate of scenario two over that of scenario 
one 
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Figure  14: MSE for adaptive and non-adaptive 



3.2 Internet Experiments 
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Figure 15: Loss rate vs. time, streaming from Sweden and 
Indiana to Berkeley. 
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Figure 16: Throughput vs. time for simultaneous streaming 
from Sweden and Indiana to Berkeley. 

We have also implemented our protocol for experiments over the Internet. Currently, our protocol supports up to 5 
simultaneous connections with a reordered buffer of 100 Kbytes.  Reordered buffer is used to reorder the packets coming 
from different connections.  In our Internet experiment, packets of 500 bytes are  sent simultaneously at an aggregate rate of 
400 kbps from Sweden and Indiana to UC Berkeley.   Since there is virtually no congestion from Sweden and Indiana to UC 
Berkeley, packets are artificially dropped  to simulate the congestion effect.   Figure 15 shows the initial simulated loss rates 
of 5% and 10% for senders at Sweden and Indiana, respectively.  Initially, the receiver does not know loss rates of two 
senders, so the total sending rate is divided equally between two senders.  After 30s, senders at Sweden and Indiana start 
sending packets at roughly 260 kbps and 140 kbps, respectively.  Figure 16 shows the throughputs for both senders.  In this 
experiment, the sender at Indiana  has higher loss rate than that of sender at Sweden, and yet, it sends packets at a higher rate.  
The reason for this behavior is that the round trip time between Berkeley and Sweden is about 160 milliseconds, while that of 
Berkeley and Indiana is only 60 milliseconds.  Since our rate algorithm assigns rate which is smaller than or equal the 
sender’s fair bandwidth, the assigned sending rate for sender at Sweden is 140 kbps, and the leftover rate of 260kbps is 
assigned to sender at Indiana.   

Between t ≈ 105s and 250s, the loss rate of  the sender at Indiana drops from 10% to 2%.  Approximately 10s later, our rate 
allocation algorithm reassigns all 400kbps to Indiana sender since it has lower loss rate, and its fair estimated bandwidth is 
more than 400kbps.  During t ≈ 115 to 260s, the overall loss rate is 2% rather than 2%(260/400) + 5%(140/400) ≈ 3.05% 
which would have been the loss rate had the sending rates not been adapted to channel conditions properly. 

4 Conclusions and Future Work 

In this paper, we have proposed a framework for simultaneously streaming video from multiple senders to a single receiver in 
order to achieve higher throughput, and to increase tolerance to loss and delay due to congestion. We exploit a TCP-friendly 
protocol and propose rate allocation and packet partition algorithms to minimize the packet loss and jitter.  We have shown 
that distributed video streaming using our protocol results in lower distortion than distributed video streaming in a simplistic, 
non-adaptive fashion.  Our rate allocation and packet partition algorithms have not made use of the relative importance of 
different bits in the video such as motion vectors and texture bits. We speculate that the MSE will be even smaller if the 
protocol can be extended to allocate video bits based on their importance.  Also, we are incorporating FEC techniques into 
our future distributed video streaming framework. 
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Appendix 

 
In this appendix, we will show the optimality of the rate allocation algorithm in Section 2.3. 
Statement:  Consider N senders with the loss rate during the interval ),( ∆+tt for the ith sender denoted by ),( tiL  and its 
available TCP-friendly bandwidth by ),( tiB .  Suppose we want to choose a subset of the senders to stream a video with total 
bit rate of )(tSreq .  Without loss of generality, assume the senders are ordered in such a way that for ji < , we have 

),(),( tjLtiL < .  Then to minimize the total loss rate  given by  
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Proof:  We prove the above statement by contradiction.  Suppose there exists a rate allocation with 'M  senders in which 
)(tF is at minimum, say )(' tF , for some  ''1 Mi <≤ , but ),'(),'( tiBtiS ≠ .  Due to constraint inequality shown in (A.1), this 

implies that  ),'(),'( tiBtiS < .   It is then possible to show that by allocating some of the bit rate from sender 'M  to 'i , we can 
achieve smaller loss rate than  )(' tF .  Specifically, if )],'(),'(),,'(min[ tiStiBtMS −=Ω  is the reallocated bit rate from sender 

'M  to 'i , then the resulting loss rate will be given by 
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 Since the first term in the above summation is  )(' tF , and since the second term is always a positive quantity, we have 

)(')(* tFtF < .  Clearly, this contradicts the fact that )(' tF  is the minimum. QED. 

 

(A.1)

(A.2)


