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ABSTRACT

Groupwise non-rigid image registration is a powerful tool to automatically estab-
lish correspondences across sets of images. Such correspondences are widely used for
constructing statistical models of shape and appearance. As existing techniques usu-
ally treat registration as an optimisation problem, a good initialisation is required.
Although the standard initialisation—affine transformation—generally works well,
it is often inadequate when registering images of complex structures. In this the-
sis we present a sophisticated system that uses the sparse matches of one or more
parts+geometry models as the initialisation. We show that both the model/s and
its/their matches can be automatically obtained, and that the matches are able to
effectively initialise a groupwise non-rigid registration algorithm, leading to accu-
rate dense correspondences. We also show that the dense mesh models constructed
during the groupwise registration process can be used to accurately annotate new
images. We demonstrate the efficacy of the proposed system on three datasets of
increasing difficulty, and report on a detailed quantitative evaluation of its perfor-
mance.
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CHAPTER

ONE

INTRODUCTION

1.1 Motivation

Statistical models of shape and appearance are an important approach in the field

of computer vision. They are a kind of generic method that uses a parameterised

model to represent the shape and texture variations of an object of interest. They are

widely used in many tasks, such as object recognition, object tracking and medical

image analysis. The family of such models is large. Notable examples are the Active

Shape Model (ASM) [18, 19], the Active Appearance Model (AAM) [15, 16], the 3D

Morphable Model [8, 49, 92] and the Active Blob [80].

Amongst the most successful are the ASM and AAM, because they have become

de facto standards in practical applications of statistical models of shape and ap-

pearance. The literature on the ASM and AAM is extensive. Most of the work aims

to improve

• modelling—the ability of a model to deal with changes of viewpoint, illumina-

tion and occlusion;

• fitting—the efficiency and accuracy of matching a model to a set of images;

• generalisation—the ability of a model to represent unseen instances of the

object, particularly those significantly different from the training set;

In contrast, less attention has been paid to the problem of automatic model con-

struction. However, this is by no means a trivial problem.

To build ASMs and AAMs, we need a set of landmarks accurately placed across

a group of training images. Here, a landmark refers to

25



1. INTRODUCTION

a point of correspondence on each object that matches between and within

populations [33].

If the training set is small, it is possible to do manual annotation. However, if there

are hundreds or thousands of training images (e.g . building models for different

subjects, each containing many images), manual labelling will become extremely

time-consuming and thus is not practical. What’s worse, manually labelling 3D

images is almost impossible due to the difficulties of visualisation. Furthermore,

manual labelling will inevitably introduce bias to landmarks and thus to the resulting

correspondence. According to [27], an inappropriate choice of correspondence may

lead a model to (1) have poor generalisation; (2) generate implausible instances of

the object; (3) use too many parameters to represent the variations of the object.

Consequently, it is highly desirable to seek an approach which can automatically

establish the optimal correspondences across large scale or 3D images.

Groupwise non-rigid image registration [20, 42, 43, 50, 83] is thus developed for

this purpose. Such techniques generally treat registration as an optimisation prob-

lem which is solved with local minimisation strategies. Hence, they are likely to fail

without good initialisation. For example, a common approach with groupwise regis-

tration is to use a simple affine transformation for initialisation, and then to perform

non-rigid registration to an evolving mean to obtain more exact results. Although

this may work for images of simple structures, such as faces [20], it can fail hope-

lessly when registering images of complex structures. An example is the radiographs

of the human hand shown in Figure 1.1a, where there are considerable shape vari-

ations and multiple similar sub-structures (e.g . the joints), resulting in many local

minima in the groupwise stage. The affine initialisation is thus insufficient. Figure

1.1b shows the average of a set of hand radiographs after affine alignment. This has

failed to register the fingers adequately, leading to a poor mean. Further non-rigid

registration onto this mean tends to diverge and make the result even worse.

A more sophisticated approach to initialisation is to deliberately find a sparse

set of distinctive and corresponding points (Figure 1.2a), which define a roughly

correct deformation field, where groupwise registration can be initialised using in-

terpolation techniques. To automatically obtain those points, we use one or more

feature detectors. There are a number of choices available, such as Shape Context

[6] or SIFT [64]. However, there are two major problems when applying the feature
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(a) Hand Examples (b) Affine mean

Figure 1.1: Examples of hand radiographs and the mean of a set after affine alignment
(right).

(a) (b)

Figure 1.2: (a) An example of a set of distinctive and corresponding points; (b) The
mean image by aligning the image set with the points.

detectors directly.

Since almost all the existing feature detectors can result in a large number of

points, one problem is how to distinguish the useful points from the others. Once

we can obtain a set of distinctive points on one image, we may be able to find

their corresponding counterparts on the other images by point matching. This leads

to another problem—how to correctly localise those corresponding points, because

no detector can guarantee consistent and accurate localisation. In other words, a

point on one image may be matched anywhere on another image, no matter if it

is distinctive or not. A major reason is the inherent ambiguity in point matching.

This may come from the cluttered background, or more commonly the object itself.

For example, due to the self-similarity, searching for a point at a joint of a hand may

result in many strong responses (Figure 1.3). All may be similar enough to the true

joint to pass a threshold when using a suitable classifier. Hence, the correct match

may not be identified. A set of inconsistently and incorrectly matched points will,
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(a) A joint point (b) Matches on one image

Figure 1.3: Best 10 matches of a joint point on one image using SIFT method. The
brightest is the best match and the darker ones are strong competitors. Due to the
distraction of similar joints, the method fails to pick out the correct match.

(a) (b) (c)

Figure 1.4: (a) A set of geometrically constrained parts; (b) The resulting parts and
geometry model; (c) Examples of the best matches of the model.

like the affine transformation, lead to unsatisfactory initialisation.

A solution to the above problems is to introduce extra information to the point

selection and matching. A natural choice is the spatial relationship between the

points. The parts+geometry models (also called pictorial structures or part-based

models) [11, 35, 37, 41], which represent an object using a set of geometrically

constrained parts (Figure 1.4a-b), are well suited to our purpose.

To distinguish useful points, we can construct a parts+geometry model using

a small set of points, search the image set with the model and examine how often

the model gives good matches. A model built from a set of useful points is more

likely to give good and consistent localisation than a model from a set of poor ones.

Hence, the most useful points can be obtained by constructing a large number of

parts+geometry models using different sets of points, comparing the quality of mod-

els and selecting the best. With the knowledge of pairwise geometric relationships

between points, the parts+geometry model is able to disambiguate the multiple re-
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Image I1

Image I2

Point A

Point B
Responses of point A

Figure 1.5: An illustration of the effect of geometric constraint between a pair of
points. Suppose A and B are two neighbour points on some object of interest. By using
some feature detector we can obtain a set of responses for point A on image I2. Now
suppose we are sure about the position of point B on image I2. Due to the geometric
constraint, point A may only appear within a region near to B (indicated by an orange
ellipse), leading the responses outside the region to be ignored. This is why geometric
relationships can be used to disambiguate multiple responses.

sponses of each point. This is because only the plausible responses of a point can

appear within a small region defined by the other point and those outside will be

heavily penalised (Figure 1.5). It is the above advantages of the parts+geometry

model that motivate us to use it to seek the sparse set of corresponding points and

thus good initialisation for groupwise registration.

1.2 Objective

We aim to provide groupwise non-rigid registration with a satisfactory initialisation

by using parts+geometry models. The desired method should be fully automatic so

as to maintain the unsupervised attribute of groupwise registration. In other words,

the sparse set of points which can lead to good initialisation should be obtained

without human intervention. Our specific aims are to explore

• the best approach to representing and matching parts;

• an effective way to propose a subset of useful parts from a large set;

• how to automatically construct parts+geometry models;

• how to use parts+geometry models to obtain a sparse set of points which can

satisfactorily initialise groupwise non-rigid registration;
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• how to initialise groupwise non-rigid registration using a set of points;

• how to evaluate the efficacy of the proposed system.

1.3 Overview of the Methodology

To obtain the desired set of points we perform the following three steps:

(1) constructing a large pool of candidate parts using one image from the given

image set;

(2) searching for the match candidates for each part across the image set;

(3) selecting a subset of useful parts which can be used to best initialise groupwise

registration.

The positions of the selected parts and their best matches on the other images form

the points we are after.

Each part is defined by a pose (position, scale and orientation) and a signature

(summarising the local image information). In this work we investigate two different

choices for part modelling: intensity patches and SIFT descriptors.

To select the best subset of parts we use parts+geometry models. However, there

are two challenges. As the number of the possible combinations of the parts is huge,

one challenge is how to explore the numerous resulting parts+geometry models. The

other challenge is how to define the term “best”, that is, how to evaluate the quality

of a model in localising a set of corresponding points.

In this work we use two different approaches to selecting the best parts. One is

an optimisation based method, in which we use a variant of the Genetic Algorithm

(GA) to select the optimal subset [103]. The other is a voting based method, where

we use a voting strategy to propose a set of good parts and a greedy search to select

the desired subset [104]. In both methods we use a minimum description length

(MDL) criterion1 to compute the quality of the parts+geometry models.

Both of the above methods use a single parts+geometry model for initialisation.

Specifically, the selected parts are used to build a parts+geometry model, which is

used to localise the best match for each part on each image. The resulting sparse

points are then used to initialise a groupwise registration algorithm. However, this

1 The MDL principle is essentially a model selection strategy. Suppose we have a set of model
candidates, all of which represent a same dataset. The MDL criterion always chooses the simplest
one as the best model, which is a formalisation of Occam’s Razor.
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single-model initialisation strategy might not be reliable, because the model may

fail on some of the images, thus introducing inconsistency to the set of points. We

therefore develop another strategy, a multi-model initialisation strategy, which uses

many different parts+geometry models to do initialisation.

To evaluate the performance of the proposed system, we can simply compare its

results with manually labelled landmarks. An alternative way is to use the registered

data to annotate new images. This can be done by using the found correspondences

to construct statistical models of shape and appearance, which are then matched to

new data. If the correspondences are accurately established, the model should give

good annotation results.

1.4 Contributions

In this thesis we describe a complete system that uses the sparse matches from one

or more parts+geometry model(s) to initialise groupwise non-rigid registration. We

show that both the model(s) and the matches can be automatically obtained. We

also show that the matches are able to give satisfactory initialisation, leading to

accurate dense correspondences. Specifically, our contributions include:

• a novel technique for unsupervised learning of parts+geometry models;

• two different ways to automatically choose the best parts+geometry model;

– a variant of GA;

– a voting scheme+a greedy search;

• two different strategies for initialisation;

– single-model initialisation;

– multi-model initialisation;

• application of the proposed system to large scale datasets, producing state-of-

the-art registration results;

1.5 Experimental Setup

We demonstrate the efficacy of the proposed system on three different datasets of

increasing difficulty:

31



1. INTRODUCTION

Figure 1.6: Examples of the fly wings and associated landmarks.

Figure 1.7: Examples of the spines and associated landmarks.

(1) 200 digital micrographs of female fly wings. Each image has a size of 1280×1022

pixels and is marked with 15 points by human expert. This dataset generally

does not show too much shape variation;

(2) 200 radiographs of the hands of children (aged between 10-13), taken as part

of study into bone ageing. The image size varies across the set, with a height

ranging from 1000 to 1700 pixels. Each image has 37 manually labelled land-

marks. The resolution of this set of images is 0.2mm per pixel;

(3) 200 radiographs of the lumbar spine. The image height varies from 1500 to

1700 pixels. Each image has 337 manual landmarks placed around the outline

of the vertebrae. This set of images has a resolution of 0.1694mm per pixel.

This dataset is very challenging as the shape of spines can change dramatically

and includes a wide range of orientations.
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Examples of these three datasets and their manual landmarks are given in Figures

1.6, 1.2 and 1.7. In all experiments the manual annotations are only used to evaluate

the performance of the automatic system.

The whole system was developed using C++ except for the SIFT matching where

Matlab was used. No parallel computing was implemented. We reported the running

time of the system based on a laptop with an Intel T9300 CPU (2.50GHz), where

only one core was used.

1.6 Outline of the Thesis

In the following chapter we present a variety of methods related to (semi-)automatic

construction of statistical models of shape and appearance. We explain the advan-

tages of groupwise non-rigid registration compared to the other methods. We also

describe various parts+geometry models and their applications in medical image

analysis. Finally, we discuss the difference or the advantages of our work compared

to other relevant work.

We introduce a complete system for initialisation in Chapter 3, where we take

the optimisation based method as the example to describe the details of the system,

including the construction, selection and use of parts+geometry models. We test

our system on all three datasets, showing its superiority to the affine initialisation

[20] and a supervised approach to constructing parts+geometry models [1].

In Chapter 4 we explain the voting based method. We make a detailed compar-

ison with the optimisation based method, showing that the voting based method

can give similar or better results. We also investigate some important parameters,

indicating the possibility of using the voting based method to speed up the system.

The multi-model initialisation strategy is covered in Chapter 5, where we detail

the motivations behind such strategy. We systematically study the influence of dif-

ferent reference images on the single-model and multi-model initialisation schemes,

showing that the latter can give consistently good results regardless of the choice of

reference images.

In Chapter 6 we describe the methods of using the dense correspondences result-

ing from groupwise registration to build statistical models and annotate new images.

We show that accurate annotations can be achieved by a simple elastic mesh model

initialised with the dense correspondences.
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We conclude this thesis in Chapter 7, where we discuss the limitations of the

proposed system and point out future research directions.
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CHAPTER

TWO

LITERATURE REVIEW

One of the motivations of this work is to use groupwise non-rigid registration to solve

the problem of automatic construction of statistical models of shape and appearance.

But, groupwise non-rigid registration is by no means the only solution. There are

a number of other choices available. In this chapter we outline each method and

highlight the strength of groupwise non-rigid registration.

Below we first use an example, the AAM [15, 16], to briefly introduce the statisti-

cal model of shape and appearance. We then focus on various ways of automatically

constructing or learning statistical models in Sections 2.2-2.4. We cover the liter-

ature on parts+geometry models in Section 2.5. We review other relevant work in

Section 2.6. We conclude this chapter in Section 2.7

2.1 Active Appearance Models

An AAM comprises a shape model and a texture model. Here, texture refers to

the pattern of intensities or colors across an image patch [16].

To represent an object instance the AAM manipulates the two models to generate

the shape s and the texture t of the instance. This can be done by either using the

two models separately [68] or using them together as a combined model [16].

Usually the shape model and the texture model are defined as follows [15]:

s = s̄+ Psbs, (2.1)

t = t̄+ Ptbt. (2.2)
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s̄ and t̄ are the mean shape and the mean texture of a set of training object instances.

Ps and Pt represent the major shape and texture variations across the set. bs and

bt are the shape and texture coefficients. The shape model (2.1) is also called the

Point Distribution Model (PDM) [19].

As we can see from the above equations, the essence of constructing an AAM

is to learn a set of model parameters: s̄, t̄, Ps and Pt. Consequently, it does not

matter in which way these parameters are learned. This analysis is also applicable

to other kinds of statistical models of shape and appearance, ASMs for instance.

Usually we use a set of manually labelled images, each containing an object

instance, to learn the parameters of a statistical model. However, there is also con-

siderable work attempting to minimise this human intervention. In general, there

are three different kinds of approaches to (semi-)automatically learning model pa-

rameters: (1) direct parameter learning; (2) annotation propagation; (3) groupwise

non-rigid registration. As the name suggests, the first kind of methods learns pa-

rameters directly from the training images. There is no need to explicitly establish

correspondences across the training set beforehand. In contrast, the other two meth-

ods mimic the manual training process, where correspondences are first established

and then used to learn the parameters. Below we review each kind of methods in

more detail.

2.2 Direct Parameter Learning

In early work [4] the learning of model parameters is regarded as an image coding

problem. The optimal parameters are achieved when the model encodes the entire

image set the most efficiently. The learning strategy is to iteratively update one

model parameter in turn, by assuming that all other parameters are known.

Kokkinos and Yuille [54] used an expectation-maximisation (EM) algorithm [30]

to learn t̄ and Ps by regarding bs as latent variables. In the expectation step bs is

estimated by an AAM fitting algorithm [68] with the current estimates of t̄ and Ps,

while the maximisation step is to update t̄ and Ps using the previously computed bs.

To initialise the EM algorithm t̄ is computed by averaging all the training images

in a reference frame, and Ps is obtained by clustering the ridges and edges in the

frame onto sharp contours. A similar work can also be found in [53].

De la Torre Frade and Nguyen [29] repeated the following two steps to learn the
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model parameters of a kernel based AAM: (1) matching the AAM to the images to

estimate the geometric transformation; (2) aligning the images using the estimated

transformation to update the model parameters. The initial AAM can be obtained

by averaging all the images.

Ferrari et al . [40] developed an approach to building a PDM from a group of

cluttered images. A set of local shape contours is extracted from each image. A set

of model shape contours is then determined by choosing the local contours that have

the highest occurrences across the image set. An initial s̄ is created by composing

the local contours that are most similar to the model contours. s̄ is then refined

by matching it back to each image and averaging the found matches in a common

reference frame. Repeating the above process leads to a polished s̄ as well as a set

of matches, which can be further used to learn Ps.

2.3 Annotation Propagation

The basic idea of this approach is to annotate an image set by first labelling a few

images and then propagating the landmarks to the other images. Below we present

various approaches to propagation in terms of the labelling workload.

Tong et al . [88] used a small set of manually labelled images to annotate the

whole image set. The idea is to propagate the landmarks to the unlabelled images

using a set of globally consistent pairwise transformations. Each transformation is

defined between a common reference and an image in the set. The transformations

for the labelled images are computed off-line, while those for the unlabelled are esti-

mated by an iterative procedure. Each iteration involves using the current estimates

of transformations to propagate the annotations, and using the propagation to cal-

culate new transformations. The procedure converges when the sum of dissimilarity

between each pair of images in the set is minimum. Later, Liu et al . [61] extended

the above work by propagating a set of contours defined by the manual landmarks.

Langs et al . [56] annotated a group of images by only labelling one image. A

number of interest points are extracted on a reference image using the Canny edge

detector. A subset of points is initially selected using the Shape Context descriptor

[6], and their matches on the other images are also localised by the same descriptor.

The positions of the points on each image are then modified by a PDM built in a

leave-one-out manner, and further refined using an MDL principle. Repeating this
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procedure leads to a set of correspondences, which can be used to propagate the

landmarks on one image to the other images. A coarse-to-fine strategy may be used

to further improve the accuracy of the correspondences.

Donner et al . [32] also used a single annotation but labelled the whole image set

in a different way. A set of parts on a reference image is carefully selected with the

help of interest point detectors. A densely connected parts+geometry model is then

built and used to search the other images for the best match on each. By ranking

the set of best matches, the model is rebuilt with the top ranked match. The new

model is used to search the images that are not used in the model construction, and

then rebuilt as above. Once all the images have been considered, a final model is

obtained and used to label the whole image set. A similar work can be found in [1].

Walker et al . [93, 95] attempted to automatically annotate an image sequence.

The approach is to first localise a set of distinctive points on one frame and then

detect them throughout the sequence. Each pixel within a user defined boundary is

represented by a set of partial Gaussian derivatives, which form a feature vector. All

of the feature vectors at each pixel result in a feature space, where the distinctive

points can be localised at areas of lowest probability density. By assuming that

the object does not undergo significant scaling changes across the sequence, the

equivalent points on the rest of frames are obtained by a local search.

Later, the above work was extended to find correspondences across a group of

spatio-temporally unrelated images [94]. The same technique is used to seek the

salient points between each pair of images. A set of pairwise transformations is then

estimated using the found points. To establish correspondences a rectangular mesh

is placed on each image. For each mesh, the positions of its nodes are iteratively

updated by computing a weighted mean of all other meshes, each aligned to the

current mesh using the previously estimated pairwise transformations.

2.4 Groupwise Non-rigid Registration

The motivation behind groupwise registration is to construct an unbiased atlas (or

mean) for a group of images/curves of the same object. The atlas can be used to

study the structural variability of the object across the set. To compare the atlas

with each image/curve we also need to estimate a set of deformation fields during

groupwise registration, which can be used to warp each image to the atlas frame
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for easy comparison. As the deformation field is usually defined by a set of control

points, groupwise registration is equivalent to establishing correspondences across

the image/curve set.

Below we focus on the literature on groupwise non-rigid image registration upon

which this work is built. The basic idea of such method is to first estimate an initial

atlas by registering each image to a common reference and then to refine the atlas

based on some criterion. Common choices of the reference image include: (1) an

arbitrarily selected image; (2) an evolving group mean; (3) an implicit image. We

review various approaches according to the choice of the reference in Sections 2.4.1-

2.4.3. We also cover some relevant work on groupwise registration of curves/surfaces

in Section 2.4.4.

2.4.1 Registering to an Arbitrary Image

Guimond et al . [46, 47] described a method of computing an average model for a

group of images. A demons algorithm [86] is used to warp every image to a fixed

reference image. Averaging the aligned images leads to a group mean, which can be

used to compute the desired model with the help of a mean deformation.

Rueckert et al . [76, 77] performed B-spline registration [78] between a chosen

reference and each free image. The resulting dense correspondences are used to build

a variant of PDM to study the anatomical structure variations across a population.

Cootes et al . [17] used groupwise registration to seek dense correspondences

across an image set. An affine transformation together with a set of simple warps are

used to ensure diffeomorphic deformation between each pair of images. By randomly

choosing an image as the reference, pairwise non-rigid registration is performed to

find the initial correspondences. A groupwise stage is then used to iteratively refine

those correspondences by optimising a minimum message length [75] based objective

function, leading to the final results.

Different from above, Marsland et al . [66] performed groupwise registration using

a flexible reference. A set of control points together with clamped-plate splines

(CPSs) [89] are used to represent the deformation fields between each image. The

positions of the control points are iteratively updated by minimising an objective

function, which measures the sum of dissimilarity between each pair of images. At

each minimisation stage, the algorithm repeats the following two steps: (1) warping
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each free image to the current reference to update the set of deformation fields;

(2) selecting the image as the new reference which is the most similar to the others

under the current estimates of deformation.

2.4.2 Registering to an Evolving Mean

Early work by Vetter et al . [91] computes pixelwise correspondences across a group of

images. An arbitrary image is selected as the reference image, and correspondences

between the reference and other images are initially estimated using an optical flow

technique. An initial group mean is then computed using those correspondences. A

linear model of shape and appearance is constructed using the current estimates of

the correspondences, and fitted to each image in the set. Correspondences between

each image and its model match are computed using optical flow and composed

with those matches, leading to the new estimates of the correspondences across the

set. The mean is recomputed and taken as the new reference. The final results are

obtained when a stable mean is achieved.

Bhatia et al . [7] constructed an atlas using B-spline registration [78] while min-

imising a cost function based on normalised mutual information [85]. The optimi-

sation is achieved by using a gradient projection method under the constraint that

the overall displacements of the control points across the set are zero.

Twining et al . [90] regarded groupwise registration as a model selection problem,

to which the MDL principle is well suited. An iterative algorithm is used to find

the optimal correspondences. Each iteration involves (1) computing a group model,

which consists of a mean image, a set of spatial warps and a set of residual images;

(2) updating the deformation fields (represented by CPSs [89]) across the image set

such that the description length computed from the current model is minimum.

Cootes et al . developed a similar method in [20, 21]. The differences are (1) piece-

wise affine transformation is used to define the deformation fields; (2) a simple sta-

tistical model of shape and appearance is built and used to calculate the description

length.

Sidorov et al . [83] extended the approach in [21] by working in a low dimensional

space. The idea is to use a small set of control points to iteratively estimate the

increments of the deformation fields. The number of points is fixed during the whole

process, but the points themselves are randomly generated at each iteration.
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Joshi et al . [50, 63] addressed the problem of building an unbiased atlas for an

image set which undergoes large diffeomorphic deformation, where the arithmetic

mean of the set is no longer an appropriate estimate of the desired atlas. An objec-

tive function is used to compute the intensity and deformation differences between

the current atlas and each free image. An iterative procedure—either a fluid flow

algorithm [50] or a variational algorithm [63]—is used to minimise the cost function

to get the final atlas. To initialise the procedure the arithmetic mean is used. How-

ever recently, Wu et al . [101] argued that a sharp mean should be used instead as

the arithmetic mean is usually too blurred to guide the subsequent registration.

2.4.3 Registering to an Implicit Image

Learned-Miller [58] proposed to jointly align a set of images without explicitly using

a reference image. This is achieved by minimising the sum of entropies of pixel

stacks, each of which is a collection of intensity values sampled at an equivalent

location across the image set. The underlying assumption is that if all images are

well aligned to each other, low entropy can be expected amongst a majority of pixel

stacks. The deformation fields between each image are iteratively estimated until

convergence. Later, Huang et al . [48] extended this framework to register real world

images (i.e. faces) instead of those well-controlled (e.g . handwritten digits in [58]).

As it is no longer suitable to calculate entropy based on intensity values for real world

images, a set of clustered SIFT descriptors [64] is used instead. Another extension

could be found in [5], where the deformation fields are represented by B-splines [78]

rather than the affine transformation as used in [58].

2.4.4 Groupwise Registration of Curves/Surfaces

Davies et al . [24–28] developed an information-theoretic approach to computing the

optimal correspondences across a set of manual contours. The initial correspon-

dences are established by parameterising each contour to a topological primitive, for

instance, a circle for 2D [24–27] or a sphere for 3D [28]. A statistical shape model

(i.e. a PDM) is then constructed using the correspondences, and its ability to repre-

sent the whole set of contours is computed as a description length [75]. The optimal

set of correspondences is obtained by iteratively parameterising each contour until

a minimum description length is achieved.
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Frangi et al . [42, 43] described a method of computing 3D dense correspondences.

An arbitrary shape is selected as the initial atlas, and all shapes are warped to the

current atlas using a global quasi-affine transformation [84] as well as a local B-

spline registration [78]. The current atlas is then updated by averaging the set of

aligned shapes. Repeating this process leads to the final atlas, where a dense set of

points can be generated by a marching cubes algorithm [62]. The correspondences

are established by propagating the points onto each individual shape.

Wang et al . [96] considered using Jensen-Shannon (JS) divergence to register

multiple sets of points. The idea is to minimise the difference (or divergence) between

the probability density function of each point set (atlas-aligned) and that of the

atlas. As the JS divergence is not well defined in continuous space, the difference is

measured based on the cumulative distribution function of each point set, which is

approximated by the Parzen window technique. The objective function is optimised

by a gradient based strategy.

2.5 Parts+Geometry Models

The parts+geometry model is popular in the object recognition community, and is

increasingly applied to medical imaging. Its power lies in the use of a flexible config-

uration of the object and a probabilistic inference network. The model is generative

and can be learned in either a supervised or an unsupervised fashion. As the litera-

ture is vast, we confine ourselves to those most relevant. A general overview of the

field can be found in [73]. Below we first describe a variety of parts+geometry mod-

els for object recognition, and then briefly introduce their applications in medical

image analysis.

2.5.1 Object Recognition

In early work [11–13] a set of manually selected parts together with a shape con-

straint is used to localise/recognise objects of the same class (e.g . faces from different

persons). The shape constraint is a joint probability density function of the spatial

relationships between the parts. To localise/recognise an object, a set of hypotheses

is first created to describe its possible positions. Each hypothesis comprises a set of

candidate locations for each part, which are generated using some point detector.
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The best hypothesis used for localisation/recognition can be selected by using the

shape constraint to compute the likelihood of each hypothesis and ranking them all.

Weber et al . [97–99] extended the above work by automating the construction of

the parts+geometry model. Useful parts are extracted by an interest point operator

and selected using a standard k-means clustering algorithm. An initial model is then

determined by an exhaustive search in a greedy style, where all possible models of

a fixed number of parts (i.e. 3) are evaluated on a validation dataset and ranked by

performance. In this process an EM algorithm is used to learn the model parameters.

To improve the representative power of the initial model more parts may be added

by repeating the above process.

Fergus et al . [37] further developed the work of Weber et al . by considering large

scaling changes as well as the appearance variation (which Weber et al . omitted).

The Kadir and Brady detector [51] is used to localise salient parts over scale. Each of

the identified parts is then cropped from the image and bound to a small patch (e.g .

11×11 pixels). The appearance variation can be obtained by applying the Principal

Component Analysis to a collection of those patches from the whole training set.

Later, Fergus et al . made further extensions to their work in [38] and [39]. A

combination of feature detectors (e.g . curves, Kadir and Brady detector) rather than

a single detector is used to localise the salient parts [38]. A simple star model instead

of the fully connected constellation model is used to reduce the model complexity

[39].

In [35] Felzenszwalb and Huttenlocher revisited the pictorial structures algorithm

[41]. Their main contributions are (1) developing an efficient inference algorithm

for the pictorial structures of an acyclic graph (i.e. a tree), and (2) reformulating

the objective function of pictorial structures from a statistical point of view (i.e.

maximum a posteriori probability).

As tree-structured models have limited representative ability, Crandall et al .

[22] introduced to the above framework another kind of graphical structures—k-

fans, which can be more powerful and yet computationally tractable. A k-fan model

has k reference parts, which are fully connected. Every other part is only connected

to the reference parts. By varying k one can manage the representative ability of

the model.

To automatically learn the k-fan models Crandall and Huttenlocher proposed

an EM based approach in [23]. A set of candidate parts is randomly generated and
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then pruned according to their ability to distinguish positive and negative training

examples. A number of model hypotheses are then created by first randomly gener-

ating a set of reference parts and then adding non-reference parts which are highly

likely to be connected to the reference parts. The best model hypothesis is used to

initialise an EM algorithm to learn the model parameters.

Zhu et al . developed various hierarchical parts+geometry models [105–109]. In

[109] the parts+geometry model is constructed by recursively composing simple

structures (i.e. edges) to larger and meaningful parts (i.e. eye contours). Each clique

of simple structures (corresponding to a large part) at each level is independently

represented by a model of the same form with the full parts+geometry model.

They attempted to introduce probabilistic grammars (e.g . AND, OR), which are

widely used in natural language processing [65], to the parts+geometry model in

[105, 106]. A full model consists of a sole OR node, a set of AND nodes and a set

of triplets. The OR node represents a set of parts of the object. An AND node may

describe either the background or a part which consists of several hierarchically

compositional triplets. A triplet is a triangle of each vertex describing a simple

structure, which is extracted by the Kadir and Brady detector [51] and represented

by the SIFT descriptor [64]. To construct the full model, an iterative procedure is

used to learn the model structure and an EM algorithm is used to learn the model

parameters.

Zhu et al . gave another example of hierarchical models in [107, 108]. An abun-

dance of low level image information (e.g . intensity, gradient, Gabor filters) and

shape information (i.e. triplets [105, 106]) are used to compose high level parts (i.e.

patches) and shape contours (i.e. collections of triplets), which are then composed

in a similar way to form the full model. The model can be defined as a generative

model [108] or a hybrid discriminative-generative model [107], and can be learned

either in an unsupervised fashion [108] or a weakly supervised fashion (i.e. from one

single image) [107].

None of the above methods deals with the problem of consistent localisation.

They only focus on whether a particular part is present on the object or the back-

ground. They do not care whether the part occurs at corresponding positions of the

object. In this work we explicitly address this problem. We show that the parts

which are likely to be consistently located can be proposed by a voting scheme.
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2.5.2 Medical Image Analysis

Toews and Arbel [87] proposed to use a variant of 1-fan model to study the structural

variability across a group of brain images. A common structure is selected as the

reference part and all other parts are modelled independently, with respect to the

reference part. SIFT [64] is used to extract interesting parts across the image set. A

variant of mean shift algorithm [14] is used to select a small set of distinctive parts,

which are treated as the non-reference parts and used to learn the model parameters.

Schmidt et al . [79] used a fully connected parts+geometry model to localise and

label the vertebrae of lumbar spine in 3D magnetic resonance images. The parts are

manually selected and their match candidates are localised by classifiers [59]. An

A∗ search algorithm [69] together with dynamic programming (DP) is used to infer

the model.

Donner et al . [31] described a similar approach to localising the anatomical struc-

tures in 2D images (e.g . hand X-rays). The parts are represented by the descriptors

computed from local regions based on gradient vector flow [102], and their match

candidates are localised around symmetry points. Given a set of parts, a Delaunay

triangulation is used to define the graphical structure, where the relative distance

and orientation of each pair of parts are modelled. The match of the model to an

image is approximated by the algorithm given in [100].

Recently, Potesil [74] presented a method of using the parts+geometry model to

locate different organs across a set of 3D whole-body computed tomography images.

Seghers et al . [81] used a densely connected parts+geometry model for image

segmentation. They compared two different approaches, iterative DP and mean

field annealing, to approximating model inference, and showed that the former is

better. Babalola and Cootes [3] tackled a similar problem by using AAMs initialised

with parts+geometry models.

2.6 Other Work

Langs et al . [55] described a method of constructing sparse shape models from un-

labelled images, by finding multiple interest points and using an MDL approach

to determine optimal correspondences, finding the model which minimises the de-

scription length of the feature points. Another related approach was developed by

45



2. LITERATURE REVIEW

Karlsson and Åström [52], who built patch models to minimise an MDL function,

estimating the cost of explaining the whole of each image using the patches (by

including a cost for the regions not covered by patches).

Both of the above approaches represent shape with a PDM. Such representation

is useful for local optimisation, but cannot efficiently deal with multiple candidates.

By instead learning a parts+geometry model, where the geometry is modelled with

a sparse graph, we can take advantage of DP algorithms which can efficiently find

the global optima where multiple candidates are present. Like Karlsson and Åström,

our cost function is based on explaining the whole of an image region, but in our case

this is done by constructing a model of the whole image using non-rigid deformation

based on the centres of the parts (see Section 3.1.3 for details). In addition our goal

is somewhat different—we seek a sparse set of points which can be used to initialise

a local optimisation based groupwise non-rigid registration scheme.

A number of authors [2, 60, 72] also noticed the limitation of global affine trans-

formation to register complex objects. They proposed to perform local registration

(e.g . affine registration [2]) independently on a set of parts of the object. The result-

ing local deformation fields are used to compose a good, global deformation field.

Usually the parts are manually selected based on some prior (e.g . anatomical struc-

tures [2]), but automatic methods also exist [60, 72]. Although it is possible for

such methods to identify a set of corresponding parts between a pair of images, it

is a challenge to localise such parts across a group of images without considering

geometric information.

Work on articulated registration [67, 71] deals with certain objects, but requires

carefully designed models, specialised to each application. In contrast, our system

is generic and can work with a wide range of objects.

2.7 Summary

We have reviewed various approaches to (semi-)automatic construction of statistical

models of shape and appearance. The idea of direct parameter learning is appealing,

but can only lead to a set of implicitly defined correspondences. It is not clear in what

sense these correspondences are optimal. Methods of annotation propagation cannot

avoid human intervention. Although automatic methods [93, 94] exist, they can

only deal with images of modest scaling and orientation changes. Also, the resulting
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correspondences are not optimal. Groupwise non-rigid registration, however, avoids

the above problems. It can automatically compute a set of explicit correspondences

in some sense optimal (e.g . MDL [20], minimum entropy [58]). The correspondences

not only can be used to construct statistical models but also can be applied to various

tasks, such as image segmentation and data fusion. This is why this work is built

upon groupwise non-rigid registration.
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CHAPTER

THREE

A COMPLETE SYSTEM FOR GROUPWISE

REGISTRATION?

This chapter describes a complete system for groupwise registration which forms the

basis for the following chapters. By “complete” we mean that the only input of the

system is a set of unlabelled images and the output is a dense set of corresponding

points. All other jobs, such as finding sparse points and using them to initialise

groupwise registration, will be done automatically by the system given appropriate

parameters.

We first introduce the definition, construction and evaluation of a parts+geometry

model. We then describe how to represent and model a part of an object in Section

3.2, where we will present two different kinds of part models: a patch based model

and a SIFT based model. To select the best parts+geometry model, or equivalently,

the optimal subset of parts, we introduce an optimisation based approach which

uses a variant of GA in Section 3.3. We then explain how to use the resulting sparse

set of points to initialise groupwise registration in Section 3.4. We examine the

performance of the proposed system in Section 3.5. We conclude this chapter with

a discussion on the potential problems of the system in Section 3.6.

? Parts of this chapter appeared as “Automatic Learning Sparse Correspondences for Initialis-
ing Groupwise Registration” in proceedings of MICCAI 2010 [103] and will appear in IEEE
Transactions on Medical Imaging.
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3.1 Parts+Geometry Models

3.1.1 Model Definition

A parts+geometry model G represents an object of interest using a set of parts

together with a collection of pairwise geometric relationships between each part,

which are defined by a set of arcs ω (Figure 3.1a-b).

Before applying G to an image, we require that the match candidates for each

part have been localised on that image. This can be done by using each part to

search the given image independently and retaining the best K match candidates

(see Section 3.2 for detail). The position of a match candidate is determined by

its centre position x = (x, y)T. A match of G is thus essentially a combination of

match candidates, each of which corresponds to one part (Figure 3.1c).

Let fi(xi) be the part cost, which measures the degree of dissimilarity between

part i and its match candidate at the position xi. Let fij(xi,xj) be the geometry

cost, which calculates the degree of deformation mismatch between the arc formed

by a pair of parts i and j and the arc formed by their match candidates at xi and xj.

To find the best match of G to the given image, we minimise the following objective

function

C =
m∑
i=1

fi(xi) + α
∑

(i,j)∈ω

fij(xi,xj), (3.1)

where m is the number of parts and α affects the relative importance of the part

and geometry cost. The best match of G defines a set of best matches for its parts.

(a) (b) (c)

Figure 3.1: (a) A set of automatically generated parts; (b) The resulting
parts+geometry model. We only show the model at its mean position, that is, the
distance between part i and part j is dij (see below). The shape variations of the model
are not given; (c) Examples of the best matches of the model.
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Currently the value of α is determined by preliminary experiments on a small subset

of the data. We set α = 0.1 for the fly wings and hands and α = 1.0 for the spines

in all experiments throughout this thesis.

Usually the part cost fi(xi) is calculated as the fit value of matching a part. Its

computation depends on how the part is modelled. In Section 3.2 we describe two

different kinds of part models. One computes fi(xi) as the intensity difference and

the other computes it as the descriptor difference.

We compute the geometry cost fij(xi,xj) as follows:

fij(xi,xj) = ((xj − xi)− dij)TS−1ij ((xj − xi)− dij), (3.2)

where dij is the mean separation of two parts, and Sij is an estimate of the covariance

matrix. Both will be automatically estimated (see Section 3.1.2). The above function

is equivalent to assuming that the relative position of the parts follows a Gaussian

distribution N (dij,Sij). It only applies when the orientation and scale of the object

are roughly equivalent in each image. If the object is likely to undergo significant

scaling or orientation changes across the images, a more sophisticated function can

be used.

Solving Equation (3.1) is a combinatoric problem. Arbitrary graphical structures

will lead the problem to be NP-hard [10]. It thus becomes impractical to consider

all possible matches of G if m and K are large. An approximate solution is usu-

ally adopted. However, for simpler structures there are fast, guaranteed optimal

solutions. Below we describe how to build parts+geometry models of a tree-like

structure for efficiency.

3.1.2 Model Construction

Suppose we have a set of parts and would like to use them to build a parts+geometry

model. Before we can construct the model, we have to know its graphical structure

and how to connect different parts to create arcs.

As complex graphical structures will incur significant computational difficulty,

we only consider simple structures. For our purpose, there are two options, which

are shown in Figure 3.2. If the graph is a tree (Figure 3.2a), then each part can

be thought of as being connected to one parent, and any number of children. A

variant of DP can be used to quickly find the optima in time of order O(mK2). A
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(a) Tree (b) Tree of triangles

Figure 3.2: Example of two different graph connectivities.

more complex variant is similar to that used by [36], in which a network is created

where each node can be thought of as having at most two parents (Figure 3.2b).

The optimal solution for this can be obtained with a variant of DP, in O(mK3)

time1. If K is modest, this is still fast. The additional links in the graph can lead

to a more detailed representation. It is this advantage that motivates us to use the

second graphical structure to build the parts+geometry models.

Now we describe how to create arcs for the given set of parts. Suppose we have

used each part to localise its match candidates on a reference image (i.e. the one

where the parts are generated). For each part, there will be a match candidate with

minimum fit value. All such match candidates define an initial geometry, where

a set of connecting arcs, ω, can be initialised based on the distances between the

centres of the match candidates. Specifically, we use a variant of Prim’s algorithm

for the minimum spanning tree, where each part is connected to two “parents”, rather

than one. This involves creating the first arc from the two parts which are closest

together. We then repeat the following steps until all parts are linked:

• compute the sum of the distances of each unlinked part to the closest two parts

in the current linked set;

• select the part which has the minimum such distance, and link it to the two

closest parts in the linked set.

The geometric relationships for each arc (i, j) ∈ ω (Equation (3.2)) are initialised

with Gaussians, with a mean dij given by the separation in the reference image and

standard deviation set to 25% of the length of the arc, that is, Sij = 1
16
|dij|2I,

where I is the identity matrix. We then apply this initial parts+geometry model to

each image to obtain the best match by minimising Equation (3.1). We group all

of those matches and rank them by their fit value C. We use the best 50% of the
1 We use the mmn library in the VXL software (http://vxl.sourceforge.net).
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matches to re-estimate the geometric distributions of the arcs, leading to a robust

parts+geometry model.

3.1.3 Model Evaluation

All the best matches of G define a sparse set of points and thus a correspondence

across the image set. To choose the best one from the correspondences generated by

different G, we have to evaluate the quality of the correspondences, or equivalently,

the quality of the models.

We use an MDL principle to evaluate the quality of a model. To be more specific,

we perform the following steps:

• Run G on every image to obtain the best match;

• Generate a set of points from each best match and augment it with a set of

fixed border points (Figure 3.3b);

• Construct a statistical appearance model from the points and images;

• Compute the average cost of explaining each image using the appearance

model.

We generate the set of points based on the centre of the best match of each part.

The augmented points impose an artificial correspondence between the borders on

each image, but allow piece-wise affine interpolation across the whole of the internal

region.

Although detailed shape and intensity models could be used for the appear-

ance model [57], in the following we use a simple mean reference image Ī. This is

(a) (b) (c)

Figure 3.3: Control points and triangulation used for sparse correspondences of the
hand: (a) a parts+geometry model; (b) augmented border points (red) and those gen-
erated from the best matches (yellow); (c) the resulting mean reference image.
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computed as follows:

• Use Procrustes Analysis [19] to align the sets of points and compute the mean;

• Create a triangulation of the mean and use it to warp each image into a

reference frame (Figure 3.3c);

• Compute the mean intensity in the reference frame.

To compute the cost of explaining the whole image set with this model, we warp

Ī into the frame of each target image, and compute the sum of absolute differences

over the region of interest

U =

NI∑
k=1

∑
x∈R

|Ik(x)− Ī(W−1(x))|, (3.3)

where NI is the number of images, Ik(x) is the target image intensity at x, R is the

region of interest in the target frame and W (y) is the transformation from Ī to Ik.

We call U as the quality or utility of the parts+geometry model G.

According to Shannon codeword length [82], the description length of a value

x̂ drawn from some probability density function p(·) is given by − log(p(x̂)). By

assuming that (1) each pixel is independently and identically distributed; (2) the

difference between a pair of corresponding pixels in Ik and Ī follows an exponential

distribution, exp{−|Ik(x)− Ī(W−1(x))|/σ}1, we can thus compute the description

length of evaluating Ik with Ī using all the pixels in R as

L = − log

(∏
x∈R

exp{−|Ik(x)− Ī(W−1(x))|/σ}

)
∝
∑
x∈R

|Ik(x)− Ī(W−1(x))| (3.4)

Hence, U is an approximation to the description length of evaluating the whole

image set with Ī.

Note that it is important to measure U in the target frame, and not in the

mean reference frame. The latter will be different for different models, so a cost

measured there cannot easily be used to compare models. Measuring in the target

frame ensures that the same set of pixels is explained every time a different model

is evaluated.

1 This is found to be more robust than assuming a Gaussian distribution, which leads to a sum
of squares measure.
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3.2 Part Models

Now we address the construction of parts. Below we present two approaches to

modelling the parts, leading to two different part models. One is a patch based

model and the other is a SIFT based model.

3.2.1 Patch based Model

We define each part as a statistical model of the intensities over a fixed shaped

region (typically a rectangle or an ellipse). We describe the centre position x, scale

s and orientation θ of such a region by a pose parameter p = (x, s, θ).

When applying a part i to an image I, a set of match candidates will be localised,

each of which is defined within a local region on I with some pose parameter p. Each

match candidate has a vector of intensities g(I,p), which is sampled from its local

region and normalised to have a zero mean and unit variance. The quality of fit

when matching part i to a match candidate is computed as follows:

fi(g(I,p)) = βi

n∑
j=1

|gj − ḡij|/σij, (3.5)

where ḡi is the vector of intensities of part i, estimated from a training set, σi is an

estimate of the mean absolute difference from ḡi across that set, and the subscript j

denotes the j-th element of g(I,p), ḡi and σi, namely gj, ḡij and σij. βi is a normal-

isation factor chosen so that the standard deviation of the fits across the training set

is unity. We find this form (which assumes the data has an exponential distribution)

gives more robust results than normalised correlation, which is essentially a sum of

squares measure.

To estimate the parameters ḡi, σi and βi for part i, we first arbitrarily choose

one image from the given image set as the reference image I0. We then sample a

local region on I0 to give an initial estimate of ḡi. By setting σi and βi to some

initial values (e.g . 1 and 1), we can search the best match candidate1 for part i

on each image which minimises Equation (3.5) (see below). To obtain a training

set to re-estimate the above parameters, we collect the best match candidate from

each image, rank the collected candidates by the quality of fit, and retain the best

1 Note that the difference between the best match candidate and the best match of a part. The
former is determined by the part itself while the latter is selected by a parts+geometry model
from a set of match candidates.
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50% of these1. We use the match candidates in the training set to recompute ḡi

by averaging their intensity vectors, and σi by averaging the absolute difference

between ḡi and each vector. By fixing βi to its initial value, we fit part i to the

training set using the new ḡi and σi to recompute the fit values. The new βi is set

to the reciprocal of the standard deviation of those fit values.

Now we explain how to localise a set of match candidates for a part. We perform

an exhaustive search at a range of positions, orientations and scales to find the

match candidates which minimise Equation (3.5). For large parts this will be very

computationally expensive, so we perform a multi-resolution search. We construct

parts at a range of resolutions, with those at coarser resolution containing fewer

pixels to cover the same image region2. We perform an exhaustive search for local

optima at the coarsest scale to get a set of match candidates, and then refine each

candidate at the finer resolutions. The search is done within a local region. Its centre

is defined by the position of the part, and its width and height are identical and

proportional to the image size, for instance, 0.4 arg min(w, h), where w and h are the

width and height of the image. Typically, the range of scale is 1.1i, i = {−1, 0, 1},

and the range of orientation is [-0.3, 0.3] with step of 0.1. During the search, we

systematically vary the orientations and scales of a part to locate the candidates.

Where two or more candidates overlap by more than fo (typically 50%), we retain

only the best. This approach allows us to quickly search large regions, usually

resulting in a few tens of hypotheses.

To automatically construct a set of candidate parts, we use I0 to generate a group

of patches for a range of sizes, arranged in an overlapping grid pattern (Figure 3.4a).

For each patch we use the above process to construct a part, and use it to search

the images to find the match candidates used by the parts+geometry models.

As the number of candidate parts is usually huge, many poor ones will inevitably

exist. We thus give a simple technique which can be used to select a subset of

parts which may have good localisability. This can avoid distracting the algorithm

described in Section 3.3.

Given part i, we use it to search each image to find its best match candidate.

Let pi,k be the pose of the best match candidate of part i on image Ik. We then

define a patch whose size is much larger than that of part i. The intensity of the
1 This may remove the poorly localised candidates and thus avoid their degrading the quality of

part models.
2 We use the mfpf library in the VXL software.
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(a) (b) (c)

Figure 3.4: Illustration of patch based part models: (a) an overlapping grid; (b)
typical part models; (c) best 10 match candidates of a part model (indicated by �) on
two images. Intensity indicates rank (brightest=best match candidate).

patch is calculated by sampling each candidate at pose pi,k and then averaging the

samples. Let ui be the intensity vector of a region which is centred at the patch

and has the same size with part i. We measure the localisability of part i by

qi = min
a≤|δx|≤b

|ui(δx)− ui|, (3.6)

where ui(δx) is the intensity vector of the region when displacing it by δx from the

patch centre. We set a = 1 and b = 4 in all experiments throughout this thesis.

If qi is small then part i is likely to represent a flat region and thus is not good at

localisation. If qi is large, then part i may be well localised, suggesting a good part.

We rank all the candidate parts by q and retain the best. We use PS to denote the

set of retained parts. Figure 3.4b shows some examples of the selected parts.

3.2.2 SIFT based Model

We can also represent each part using a SIFT descriptor1 [64]. Similar to the patch

based model, we also use a reference image I0 to generate the candidate parts. We

use two interest point detectors to propose the possible positions of the parts. One

is an edge detector and the other is a variant of a local symmetry point detector [31],

which returns local minima of a smoothed edge strength image. For each response

point we generate parts at ns different scales, where s = s0(
√

2)i, i = 1, 2, . . . , ns

and s0 defines the scale of the smallest region of interest to use. We also apply the

same point detectors to the remaining images to extract interest points, computing

1 http://www.vlfeat.org
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Image I1 Image I2

P Q

Forward

Backward

Figure 3.5: An illustration of the forward-backward matching algorithm.

their SIFT descriptors.

We use a variant of forward-backward matching (FBM) algorithm to select, a

reduced set PS, from the whole set of candidate parts {pi,0} (see Algorithm 1). The

FBM was originally designed to find distinctive points between a pair of images

[44]. Given a point P on image I1 and its best match Q on image I2, the key idea

is that if P is a distinctive point then the best match of Q on image I1 should

be P (Figure 3.5). Here we extend the original FBM for a group of images. The

underlying assumption is that a distinctive part is likely to appear in most of images

and therefore has more chance to pass the forward-backward test. The fit of a SIFT

based part model is the Euclidean distance between the SIFT descriptors of the

model and the target point. For each part in PS, we normalise its fits to all the

interest points on one image, rank the points by the fits and select the best K as

the match candidates.

Algorithm 1: A variant of forward-backward matching algorithm
Input : {pi,0}, I0
Output : PS
Initialise: PS ← ∅, Nm ← 0

for all candidate parts do
for all training images do
pi,k ← getBestPointMatch(pi,0, Ik)
p′i,0 ← getBestPointMatch(pi,k, I0)
if p′i,0 = pi,0 then

Nm ← Nm + 1

if Nm/NI > 50% then
PS ← PS ∪ {pi,0}

Nm ← 0
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3.3 Selecting Useful Parts

As our goal is to find the best combination of the parts, we can regard it as an

optimisation problem. We adopt an evolution based optimisation regime. Each

subset of parts from PS leads to a parts+geometry model, whose utility can be

measured by Equation (3.3). We create an initial population by randomly sampling

subsets from PS. For each set we generate a parts+geometry model G using the

methods in Section 3.1.2 and then evaluate it to obtain a quality measure U . We

then rank the members of the population (each a candidate set of parts) by U .

We discard the worst 50%, and generate new candidates from pairs of candidates

randomly selected from the best 50%. To generate a new subset we simply randomly

sample from the union of parts from the two candidate parent sets. Repeating the

Algorithm 2: The optimisation based algorithm
Input : PS
Output : the best parts+geometry model Gopt

Initialise: m, Ngen, Npop, G ← ∅
// Randomly generate Npop models of m parts from PS
G ← RandomSample(PS, m, Npop)
{Ut} ← ComputeUtility(G)
G ← sort(G, {Ut})
for igen ← 1 to Ngen generations do

// Retain the best 50% models
G ← RetainBest(G, Npop/2)

// Generate another 50%
for ipop ← 1 to Npop/2 do

// Randomly select two models from G
{Gt1 , Gt2} ← generateCandPairs(G)
// Create a union of parts using the two models
Pipop ← CreatePartsUnion(Gt1, Gt2)
// Generate new model and add it to G
G ← cat(G, RandomSample(Pipop, m, 1))

{Ut} ← ComputeUtility(G)
G ← sort(G, {Ut})

Gopt ← RetainBest(G, 1)

Subroutine ComputeUtility
for all Gt ∈ G do

for all training images do
Mt,k ← getBestGraphMatch(Gt, Ik)

Ut ← computeMDL({Mt,k}) // Using Equation (3.3)
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3. A COMPLETE SYSTEM FOR GROUPWISE REGISTRATION

above process leads to the best G. We summarise this process in Algorithm 2.

3.4 Initialising Groupwise Registration

The final parts+geometry model is used to search the whole set of images for the best

matches for each part. These sparse points are then used to initialise a groupwise

non-rigid registration algorithm [20]. A hexagonal grid of control points is placed

on one image (Figure 3.6a), and propagated to all the other images using a Thin-

Plate Spline (TPS) [9, 34] interpolation based on the sparse points (Figure 3.6b).

A mean reference image (Figure 3.6c) is constructed by warping each image into an

average shape using the points, and computing the mean. The non-rigid registration

(a) (b)

Optimise control points and iterate

(c) (d)

TPS
Warp to
mean

Groupwise
registration

(e)

Figure 3.6: Illustration of the process of groupwise non-rigid registration initialised by
a single parts+geometry model: (a) a reference image; (b) an example of propagated
points; (c) initial mean; (d) final mean; (e) evolution of the mean reference image during
groupwise registration. The dark blue points represent the sparse points while the white
ones are the dense control points.
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method is then used to move the control points on each image so as to optimise the

match with the reference image. The reference image is recomputed from the refined

control points and the process is repeated. A multi-resolution framework is used,

in which the early stages work on coarse images, and later stages refine the result

on higher resolution images. The result is a dense correspondence across the whole

image set. For details the reader is referred to [20]. Figure 3.6d gives an example of

the final mean after groupwise registration. Figure 3.6e illustrates the evolution of

the mean reference image during groupwise registration. Closeups are provided for

the area inside the yellow circle.

3.5 Experiments

We demonstrate the efficacy of the automatic system on the three datasets intro-

duced in Chapter 1. We randomly selected 100 images from each dataset and used

them for the test. Below we first show that affine initialisation is insufficient for

groupwise non-rigid registration. We then report a detailed quantitative evaluation

of the performance of the system in Section 3.5.2. We focus on the effects of two

important parameters: the number of parts m and the choice of part modelling. In

Section 3.5.3 we compare the system with a supervised method to further demon-

strate its performance.

3.5.1 Insufficiency of Affine Initialisation

We used the fly wings and the hands to demonstrate the problem of affine initiali-

sation. We computed the best affine transformation to register each image with a

reference frame using a semi-exhaustive search followed by local optimisation of the

transformation parameters. We used the resulting affine transformation to initialise

the groupwise registration algorithm described above and ran it on both sets. In

each case we applied 30 iterations, where one iteration involves registering every

image with the current estimate of the mean, and then updating the mean. We

repeated this process with another groupwise registration initialised by a 5-part

parts+geometry model obtained using the optimisation based algorithm.

To evaluate the accuracy of the result we compare with a manual annotation.

We used the resulting dense correspondence to warp each set of manual landmarks
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(a) Micrographs of fly wings (b) Radiographs of human hand

Figure 3.7: Point location errors of the dense correspondence resulting from two dif-
ferent initialisation methods. For the 5-part parts+geometry models, the standard errors
in both cases are below 0.15 and therefore are almost invisible in the above figure. Note
that how a good initialisation can significantly reduce both point location error and
standard error of groupwise registration.

into a reference frame, computing their mean. We then projected this mean back to

each individual image and calculated the mean absolute difference of the positions

between each mean point and the original manual landmark. We repeated this

process with the sparse set of points found by the parts+geometry model, leading to

the point location error at iteration 0, which is essentially the error before groupwise

registration.

The mean point location error against the iteration is plotted in Figure 3.7.

It is not surprising that affine initialisation can work well on the fly wing set as

they do not have too much morphological variation. However, the algorithm falls

into a local minimum, and further registration cannot improve the result. For the

hand set, the ability of affine initialisation is rather limited and further registration

can even diverge. In contrast, the 5-part parts+geometry model can significantly

improve the registration accuracy though it has a limited representative ability.

This demonstrates that the initialisation is crucial to the performance of groupwise

registration, and that a sophisticated initialisation is desirable even for those images

where a simple one may appear to work.

Figure 3.7 also shows that groupwise registration can further improve the quality

of the correspondence given by the parts+geometry model. For the fly wings, the

point location error was 5.7±1.0 pixels at iteration 0 and reduced to 1.6±0.08 pixels
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when groupwise registration converged. The percentage of improvement is around

72%. For the hand set, the initial error was 3.9±0.4mm and the error at convergence

was 2.5±0.2mm, approximately 36% improvement.

As seen in Figure 3.7, groupwise registration of 7 iterations is enough to give

reasonable results for the fly wings and hands. In addition, its running time is also

relatively fast, at around 8 minutes. Below we thus used this 7-stage groupwise

registration for all the experiments on the both sets. For the more challenging spine

set, we ran one more iteration for luck. Note that these settings were also used in

the other experiments throughout this thesis.

3.5.2 Performance of the System

An important parameter is m—the number of parts of a parts+geometry model.

The choice of the method of modelling parts can also affect the performance of the

system. In the following we first study the effects of these two parameters on the

fly wings and hands, and then show the equivalent result on the spine set.

By systematically initialising patches in an overlapping grid on a reference image

at a range of sizes, we automatically constructed over 1000 parts for the fly wings and

over 1900 for the hands. We then used each part to search the whole set of images.

The whole searching process took about 4.3 hours for the fly wings and 8.5 hours for

the hands. We ranked all the parts by their localisability using Equation (3.6) and

selected the best 250 for the fly wings and the best 500 for the hands.

We also extracted interest points on all images using the point detectors described

in 3.2.2. We then computed the SIFT descriptors for each point at different scales.

Where points had multiple descriptors at one scale (due to multiple orientations),

we used only one of them. For each point at each scale, we constructed a SIFT

based part model. We used Algorithm 1 to select the best parts, which are shown

in Figure 3.8. In the experiment we set s0 = 8 and ns = 3 for both sets. The

whole process took about 10minutes and 30minutes for the fly wings and the hands

respectively.

We generated parts+geometry models using both kinds of part models, to allow

us to compare their merits. We set K = 50 in all experiments throughout this thesis.

We used the optimisation based method to select the best parts+geometry models,

for a range of different numbers of parts m. The resulting sparse points were used
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3. A COMPLETE SYSTEM FOR GROUPWISE REGISTRATION

(a) Fly wings (b) Hands

Figure 3.8: Examples of the SIFT based part models selected by the FBM algorithm.

(a) P+G Model (b) Initial Mean (c) Final Mean

Figure 3.9: Examples of the best parts+geometry models (constructed from patch
based parts) and resulting registration with different numbers of parts. Top: 10 and 20
parts for the fly wings. Bottom: 10 and 40 parts for the hand set.

to initialise groupwise registration. Examples of the resulting models for the patch

based parts are shown in Figure 3.9a. The initial mean and final mean during the

groupwise registration are shown in Figure 3.9b-c. Equivalent results for the SIFT

based parts are shown in Figure 3.10a-c.
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(a) P+G Model (b) Initial Mean (c) Final Mean

Figure 3.10: Examples of the best parts+geometry models (constructed from SIFT
based parts) and resulting registration with different numbers of parts. Top: 10 and 20
parts for the fly wings. Bottom: 10 and 40 parts for the hand set.

The same protocol (point-to-point location error) was used to compute the regis-

tration error for both sets. Results for different numbers of parts are given in Table

3.1 and Table 3.2. We find that the patch based part models generally lead to better

results than their SIFT based counterparts, though locating the former is much more

computationally expensive. Additionally, there is not a clear relationship between

the number of parts and performance—once sufficient parts are available to cover

the main components of the object, adding further elements is unlikely to improve

performance and may lead to a decline.

We also give the typical running time (hours) of the optimisation based approach

in Table 3.1 and Table 3.2. The timing was based on the patch based part models. As

we used the same parameters to select both kinds of part models for each dataset,

the running time of the optimisation based method was similar for both models.

65



3. A COMPLETE SYSTEM FOR GROUPWISE REGISTRATION

Table 3.1: Point location errors (pixels) of the dense correspondence for the fly wings.

Patch based SIFT based
m Mean±s.e. Median 90% Mean±s.e. Median 90% Time
5 2.2±0.09 1.8 3.4 3.5±0.7 1.9 5.0 0.4
10 1.8±0.09 1.5 2.7 2.3±0.1 2.0 3.8 1.2
15 1.6±0.1 1.4 2.2 2.0±0.1 1.7 3.1 2.0
20 1.8±0.09 1.5 2.8 1.9±0.1 1.4 3.3 3.1
25 1.9±0.08 1.7 3.1 2.4±0.3 1.7 3.7 3.7

Table 3.2: Point location errors (mm) of the dense correspondence for the hand set.

Patch based SIFT based
m Mean±s.e. Median 90% Mean±s.e. Median 90% Time
10 1.4±0.08 1.2 2.6 1.7±0.2 1.1 2.7 3.3
20 1.2±0.08 0.9 2.0 1.4±0.1 1.0 2.1 5.2
30 1.2±0.09 0.9 1.9 1.4±0.1 1.0 1.9 8.0
40 1.0±0.05 0.8 1.5 1.7±0.1 1.1 3.4 10.3
50 1.0±0.06 0.8 1.6 1.5±0.1 1.2 2.7 13.0

Note that little time difference may exist because some of the parts may have fewer

match candidates than what was considered in the experiment.

For the spine set, we only constructed patch based part models. Searching with

all parts (over 900) took 5.2 hours. We retained the best 100 parts and repeated

the above experiment. We evaluated the accuracy by computing the mean distance

between each point and the nearest point on the equivalent curve on the manual

annotation—this allows for “sliding” along curves in the manual annotation. This

is found to be a more useful measure of the performance than direct point-to-point

distance1. An example of the resulting parts+geometry models for the spine set is

shown in Figure 3.11a. The initial mean and the final mean during the groupwise

registration are shown in Figure 3.11b-c.

Table 3.3 shows the statistics of the resulting point-to-curve errors for different

numbers of parts. The figures are confounded by considerable number of failures

on difficult images, as well as the inherent ambiguity in model position—on some

images the model can be shifted up by one vertebra. Despite this, good results were

obtained. Table 3.3 also lists the typical running time (hours) of the optimisation

based method on this dataset.

1 Most of landmarks placed on the hands and fly wings are at positions that can be well localised
(e.g . at corners), so a point-to-point measure is appropriate. The majority of the points on the
spines are annotated along edges, and thus there is some ambiguity about exactly where on the
curve of the edge they should be placed. A point-to-curve measure is thus more appropriate for
them.
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(a) P+G Model (b) Initial Mean (c) Final Mean

Figure 3.11: Examples of the best parts+geometry models and resulting registration
with different numbers of parts. We only show the cases when m = 5, 20.

Table 3.3: Point-to-curve location errors (mm) of the dense correspondence for the
spine set.

m Mean±s.e. Median 90% Time
5 6.7±0.9 2.4 25.0 0.2
10 3.2±0.5 1.9 4.1 0.5
15 4.1±0.5 2.6 5.1 0.6
20 4.1±0.5 2.6 5.2 0.7

To visualise the performance of the system, we give examples of the projection

of the mean annotation onto individual images in Figures 3.12 and 3.13. In general,

our system can deal well with the challenging hand set, though mistakes may be

made on some images. For the spine set, we get a good overall fit in many images,

though there are commonly problems at the very top and bottom of the model (see

the blurred regions in Figure 3.11). Our system makes a brave attempt at difficult

examples on this challenging dataset (see the bottom row of Figure 3.13). On the

fly wing set since our system works well, with no visual failures.

3.5.3 Comparison with Supervised Method

We compared our automatic system with a supervised method [1]. For each dataset,

we manually chose a set of parts on the same reference image and constructed
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Good results

Failure modes

Figure 3.12: Projection of average points onto different hand radiographs (using 40
parts model). Failures are indicated by black ellipses.

Table 3.4: Point-to-point location errors (pixels) of the dense correspondence for the
fly wings.

Method m Mean±s.e. Median 90%
Affine – 3.5±1.7 1.8 2.5
Manual 9 2.1±0.2 1.2 4.0

Automatic 15 1.6±0.1 1.4 2.2

Table 3.5: Point-to-point location errors (mm) of the dense correspondence for the
hand set.

Method m Mean±s.e. Median 90%
Affine – 18.5±2.0 9.9 41.8
Manual 20 1.0±0.05 0.8 1.3

Automatic 40 1.0±0.05 0.8 1.5

a parts+geometry model using those parts (Figure 3.14). Following [1], we used

the model to search all images to localise the sparse correspondence, which was

used to initialise the same groupwise registration algorithm. Figure 3.15 gives the

examples of the sparse matches as well as the resulting mean images. The final

registration results are given in Tables 3.4–3.6. For comparison purpose, we also

include the results from the affine initialisation and the very best results from the
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Generally good matches

Heroic Failures

Hopeless Failures

Figure 3.13: Projection of average points onto different spine radiographs (using 10
parts model). Some of the failures are indicated by black ellipses.

Table 3.6: Point-to-curve location errors (mm) of the dense correspondence for the
spine set.

Method m Mean±s.e. Median 90%
Affine – 37.6±2.9 28.8 74.8
Manual 13 10.9±0.6 8.3 20.9

Automatic 10 3.2±0.5 1.9 4.1

proposed system. We find that our system can give similar or better results than a

manual choice, demonstrating that our system does help to select useful parts for

initialisation. Although the manual selection of parts only needs a few minutes, it

is clearly worth spending much more time for better registration accuracy. Results

from the spine set suggest that a set of manually selected parts may seem sensible,
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(a) Fly wing (b) Hand (c) Spine

Figure 3.14: Manually constructed parts+geometry models for three datasets.

(a) Good Match (b) Failure (c) Final Mean

Figure 3.15: Examples of the sparse matches found by the manually constructed
parts+geometry models as well as the mean images resulting from groupwise registration.

but may not actually give good initialisation, perhaps because some parts are not

reliably found in each image. In this case the automatically chosen parts significantly
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outperform a “natural” set chosen by a human (Figure 3.14c)

3.6 Conclusions and Discussion

We have described an automatic system that is able to initialise groupwise regis-

tration. This is achieved by using the sparse matches of a parts+geometry model.

As we do not use any domain knowledge of the object of interest, the technique

potentially can be used for a wide range of datasets.

Experimental results show that our algorithm can achieve good results most of

the time on three different datasets, two of them being particularly challenging. We

show that our method is superior to the classic affine initialisation in every case. Not

only can it further improve the registration result given by the affine initialisation,

but also it can give satisfactory results wherever the latter fails utterly. We also show

that our automatic system is comparable or better than a supervised approach.

However, the system still suffers from the following problems1:

Low efficiency This includes both searching with part models and selecting the

best subset of parts. The computational burden of the former mainly arises from

the large number of candidate parts, because searching with one part is reasonably

fast. Clearly, if we could reduce the number of candidate parts from thousands to

hundreds or even tens, without loss of useful parts, we can significantly reduce the

running time of the system. Of course, a further speedup of the system may be

achieved by using more efficient part modelling and matching techniques.

The complexity of the optimisation based method is approximately given by

O(NgenNpopNImK
3). Although the computational efficiency of the system can be

improved by reducing m and K, we may risk the loss of accuracy. Also, we cannot

easiliy manipulate Ngen and Npop to speed up the system, because we have to set

them reasonably large to ensure the local minima are reached. Hence, if we would

like to have a faster system, we have to find some other way to select the useful

parts. In chapter 4 we describe a voting scheme which can better initialise groupwise

registration as well as use fewer parts+geometry models or even fewer images.

1 We henceforth discuss the system based on the patch based parts, which have been shown to
be more powerful than those SIFT based.
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Difficult choice of m Exploring a good value for m requires repeating experi-

ments. Also, m may vary with respect to the object of interest. Hence, it is desirable

to develop a strategy that is able to automatically determine the optimal value of

m. The voting scheme can be used to solve this problem.

Poor definition of localisability We use a simple technique to remove the parts

with poor localisability, which does not always work well. Parts like and ,

which are difficult to accurately locate, can be easily included. In chapter 4 we

introduce a more effective definition of localisability from a statistical point of view.

Limitation of a single model The performance of the system only depends on

the quality of the final model. However, there are many factors that may degrade

that model: (1) the localisability of the parts, i.e. resulting in too many poor matches

and missing the correct match; (2) the cost function (3.1), i.e. Gaussian distribution

not sufficient to capture the large shape variations of the object; (3) the GA, i.e.

leading to suboptimal model due to either many local minima or the poor fitness

function—the MDL principle. As a result, it is very unlikely for a single model to

deal well with the whole set of images. Quite often, a single model can only tackle

a subset of images well and fails on the difficult ones. However, we may overcome

this problem by using multiple parts+geometry models, which will be described in

Chapter 5.
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CHAPTER

FOUR

A VOTING STRATEGY FOR PART SELECTION?

In Chapter 3 we showed how to select a subset of candidate parts, which are likely to

accurately locate points. This was done by examining the shape of the fit responses

of the part models. However, this pre-selection may fail to include useful parts,

and does not guarantee that the chosen parts can give consistent and unambiguous

matches. In this chapter we present the use of a voting strategy to explicitly explore

the localisability of the whole set of candidate parts.

To use the system introduced in Chapter 3, we have to specify the number of parts

to be used. This is a common problem of the methods of automatic construction

of parts+geometry models [23, 37, 99]. As this parameter, m, can significantly

affect the accuracy of the resulting correspondence, it is desirable to automatically

determine its proper value. In this chapter, we describe a greedy search algorithm

to automatically choose m.

4.1 Method

4.1.1 Voting

The key idea of the voting scheme is that if a match candidate for a part is selected

by many different parts+geometry models, it is likely to be the best match for the

part (Figure 4.1). Furthermore, if there are significantly more votes for the best

match compared to alternatives, then it suggests that the part is a good one. On

? Parts of this chapter appeared as “Automatic Part Selection for Groupwise Registration” in the
proceeding of IPMI 2011 [104] and will appear in IEEE Transactions on Medical Imaging.
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Figure 4.1: (a) Consider four different parts A, B, C and D in an image. (b) We can
use part A to construct three different parts+geometry of random configuration. (c)
We use these models to search another image and each of them will localise a match
candidate ak for part A. (d) If all three models choose the same match candidate,
say a3, then it is likely to be the best match of A and there will be a peak of votes
at a3. If such a peak is observed on most of the images, it suggests that part A is
good at localisation. (e) If the models do not agree with each other, the votes may be
approximately uniformly distributed amongst the match candidates. It is thus hard to
tell which one is the best match. If this occurs quite often, we may conclude that part
A cannot be reliably located.

the other hand, if there are several candidate positions with similar numbers of

votes, it suggests that the part is ambiguous. A part which consistently selects

“good” matches on many images is likely to have good localisability; otherwise, it

may not be suitable for localisation. This suggests that we can propose good parts

by analysing the votes of their best matches. We formalise this as follows.

Given a set of parts, we construct at least r different parts+geometry models

for each part. Each such model contains a random number, m, of parts. We use

each model to identify the best match on each image for each part, and record votes

for each match candidate. Let V j
i,k be the number of votes for candidate j of part

i on image k—the number of times that the candidate j is selected as the best

match of part i. Let Ti,k =
∑

j V
j
i,k be the total votes cast by all parts+geometry

models for the position of part i on image k. Then Lji,k = V j
i,k/Ti,k is an estimate

of the probability that candidate j is the correct match. If Lĵi,k is near 1, where

ĵ = arg maxj L
j
i,k, then it suggests that many different models voted for a same

74



4.2. EXPERIMENTS

location, and thus part i has good localisability on Ik. If it is near zero, it suggests

that the models voted for a range of different candidates, with no one standing out—

part i cannot be reliably located on Ik. The localisability of part i can therefore be

measured using Qi = 1
NI

∑
k L

ĵ
i,k, the average probability of the best match over the

set of images. We can then rank the parts by Qi—those with the highest values are

likely to be the most reliable.

4.1.2 Greedy Search

We use a greedy search algorithm to select an initial sparse subset, by first choosing

the highest ranked part, then selecting the next parts which are sufficiently well

separated from the current set and whose probability pass a threshold tQ. We define

two parts to be overlapping if their mean separation is less than a threshold, usually

set to the average radii of the two parts. To ensure only reliable parts are included

in the initial set, the threshold tQ is set high, and thus some relevant areas of the

object may be missed. We therefore extend the set by adding a part if it improves

the utility of the resulting model (see Section 3.1.3). The result of this process is

a set of parts and associated sparse matches on every image. The number of parts

is automatically chosen by the algorithm. We summarise the above procedure in

Algorithm 3.

4.2 Experiments

We compare the voting based method with the optimisation based method described

in Section 3.3. We used the same sets of images and candidate parts as used in

Section 3.5.2. Note that here we consider the whole set of candidate parts, not

just those pre-selected. We also used the same protocol to calculate the registration

accuracy.

4.2.1 Performance of the Approach

We generated a large number of parts+geometry models with random m, repeating

until each part has been considered in at least r = 100 different models. We com-

puted the average probability measure, Q, for each part, and retained those with

Q > tR as well as in a roughly defined boundary (Figure 4.2a). We chose an initial
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Algorithm 3: The voting based algorithm
Input : {pi,0}
Output : Gopt

Initialise: r, G ← ∅, PS ← ∅, Popt ← ∅, V j
i,k ← 0

// Repeat using each part to build at least r different
// models, where m is randomly chosen from a range
G ← RandomSample({pi,0}, r)
// Cast the votes
for all Gt ∈ G do

for all training images do
Mt,k ← getBestGraphMatch(Gt, Ik)
// Update the votes for candidates of each part
V j
i,k ← CountVotes(Gt, Mt,k)+V j

i,k

// Analyse the distribution of votes for each part
for all candidate parts do

for all training images do
Ti,k ←

∑
j V

j
i,k

ĵ ← arg maxj V
j
i,k/Ti,k

Qi ← 1
NI

∑
k L

ĵ
i,k

{pi,0} ← sort({pi,0}, {Qi})
// Retain the parts with high Q
PS ← RetainBest({pi,0})
// Select an initial subset of reliable parts
for all pi,0 ∈ PS do

if Qi > tQ &&!isOverlapped(pi,0, Popt) then
Popt ← Popt ∪ {pi,0}

// Extend the subset based on Equation (3.3)
G← BuildGraphModel(Popt)
Unew ← ComputeUtility(G)

while 1 do
Uold ← Unew

Unew ←∞
for all pi,0 ∈ PS do

if !isOverlapped(pi,0, Popt) then
G← BuildGraphModel(Popt ∪ {pi,0})
U ← ComputeUtility(G)
if U < Unew then
pmin ← pi,0
Unew ← U

if Unew < Uold then
Popt ← Popt ∪ {pmin}

else
break

Gopt ← BuildGraphModel(Popt)
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a) Q > tR b) Initial parts c) Final parts d) Final model

Figure 4.2: Results of the voting based method on the three datasets. From top to
bottom, fly wing, hand and spine.

subset of non-overlapping parts with Q > tQ (Figure 4.2b), and extended the set

with further parts which may better encode the entire training set in terms of an

MDL principle (Figure 4.2c). In the experiment we set tR = 0.9 and tQ = 0.95 for

the hands and fly wings, tR = 0.5 and tQ = 0.55 for the spines (lower thresholds were

required for this challenging dataset as few parts gave consistently high values of

Q). To evaluate the merit of the added parts, we constructed two parts+geometry

models: one was built from the initial set and the other was from the extended

set (Figure 4.2d). We used the two models to search each dataset respectively and

initialised groupwise registration with the resulting sparse correspondences.

Tables 4.1–4.3 show the correspondence accuracy for the three datasets after

dense registration. The best results from the optimisation based method are also

included for comparison. In each table the last two rows show the registration results

from the initial and final parts+geometry models.

We find that the voting based method can give similar or better results than
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4. A VOTING STRATEGY FOR PART SELECTION

Table 4.1: Point-to-point location errors (pixels) of the dense correspondence for the
fly wings.

Method m Mean±s.e. Median 90%
Optimisation 15 1.6±0.1 1.4 2.2

Voting 19 1.2±0.03 1.1 1.6
25 1.2±0.03 1.2 1.5

Table 4.2: Point-to-point location errors (mm) of the dense correspondence for the
hand set.

Method m Mean±s.e. Median 90%
Optimisation 40 1.0±0.05 0.8 1.5

Voting 37 1.1±0.06 0.9 1.5
44 0.9±0.03 0.8 1.2

Table 4.3: Point-to-curve location errors (mm) of the dense correspondence for the
spine set.

Method m Mean±s.e. Median 90%
Optimisation 10 3.2±0.5 1.9 4.1

Voting 15 3.4±0.4 2.2 4.6
16 3.0±0.4 2.1 3.8

the optimisation based one. We also find that a reasonable choice of tQ is good

enough to select useful parts. The resulting parts+geometry model can capture

the morphological features of the object well. Adding more parts using the MDL

criterion does not impair the localisability of the model and can help remove outliers,

which may lead to a further improvement on registration accuracy.

4.2.2 Influence of Important Parameters

To investigate the effect of the two parameters in the voting based method—the

lower bound of the number of models per part, r, and the number of images used

to construct the models NI , we repeated the above experiment with the same sets

of images on two datasets—the fly wings and the hands. We first used all images

in the training set and ran the algorithm for a range of different r. We then fixed

r = 100 and ran the algorithm on sized subsets of the training set. The resulting

parts+geometry models were used to find correspondence on the rest of images.

Figure 4.3 shows the impact of the two parameters on the accuracy of the re-

sulting dense correspondence. For the hand set, even with r as low as 10 the voting

based method can still give good results. The running time of the voting stage is
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Figure 4.3: The influence of the two parameters on the accuracy of groupwise regis-
tration initialised by the voting based algorithm.

linear in r. Compared with the best result obtained using the optimisation based

algorithm (m = 40), the voting scheme only took 2.7 hours to run for r = 10 while

the optimisation one took 10.3 hours. As there is a linear relationship between the

algorithm and the number of the training images, using fewer images can also speed

up the algorithm. A similar pattern can also be observed on the fly wing dataset,

where the voting scheme took 1.0 hours to run for r = 10.

4.3 Conclusions and Discussion

We have described a method that can effectively initialise groupwise non-rigid regis-

tration on datasets of simple or complex structures. This is achieved by the following

three steps: (1) selecting a subset of parts with good localisability using a voting
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4. A VOTING STRATEGY FOR PART SELECTION

strategy; (2) using a greedy search to add more parts to the set; (3) construct-

ing a parts+geometry model with the chosen parts to do initialisation. Compared

with the optimisation based method, this voting based algorithm can give similar

or better initialisation, and can run much faster without loss of accuracy.

To choose the optimal subset of parts we use two thresholds. Although this

simple technique appears to work well for all datasets reported, a more sophisticated

approach is still desirable to avoid repeating trials for proper values (e.g . the spines).

As will be shown in the next chapter, this technique is also sensitive to the choice

of reference images on some datasets. Besides, the voting based method is still a

single-model initialisation scheme. As a result, it suffers from the same problem

as the optimisation based method, that is, it is unlikely to obtain a one-size-fits-

all model. This can be clearly seen from the results on the spine set, where both

methods have similar registration errors, suggesting that the model found by the

voting based method still fails quite often on this difficult dataset. In the following

chapter we will describe how to use multiple parts+geometry models to boost the

performance of the system.
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CHAPTER

FIVE

MULTI-MODEL INITIALISATION

We have described two different approaches to initialising groupwise registration.

Although methodology varies, they all attempt to seek a single parts+geometry

model for good initialisation. However, this single-model initialisation strategy is

problematic. There are two reasons.

One is that we use an MDL criterion in both methods to help select the optimal

model. There is no guarantee that the model favoured by such criterion will give

the best initialisation and thus registration of the whole set. Quite often, other

highly ranked models may give a better choice. Figure 5.1 shows the accuracy of

groupwise registration initialised by each of the top 10 models selected using the

MDL criterion. Clearly, the best model (model 1) does not result in the best overall

registration.

The other reason is that due to the limit of the image set and imperfection of the

algorithm, it is unlikely for a single model to capture every possible variation of the

object. As a result, the learned model may fail on some of the images, particularly

when dealing with objects of complex structures. For an example, see Figure 5.2.

Figure 5.2 also suggests that it is always possible to learn a model which can

deal well with a subset of images. Different models may work with different subsets,

which are likely to be complementary to each other. By combining the best results

from a set of models, we may achieve better initialisation than that from a single

model.

In this chapter we explore using multiple parts+geometry models to initialise

groupwise registration—a multi-model initialisation scheme. We build this scheme
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Figure 5.1: An illustration that the best model in terms of an MDL principle does
not guarantee the best registration result. Models 1 to 10 (the smaller the better) are
those most favoured by the MDL principle. We use each of them to initialise groupwise
registration and calculate the resulting registration error. We repeat this process on the
hand and spine datasets used in Section 3.5.2, and plot the registration error against the
model index. For each model, we use m = 30 for the hands and m = 10 for the spines.

(a) Parts+geometry model A (b) consistent matches (c) Failures

(d) Parts+geometry model B (e) Failures (f) consistent matches

Figure 5.2: Left column: two parts+geometry models. Right four columns: matches
of the models. Top row: model A can find consistent matches on two images but fails
on the other two. Bottom row: model B can give consistent matches on those where
model A fails but fails where model A works well. Failures are indicated by cyan ellipses.

upon the optimisation based method, as it naturally generates a population of

roughly good models.
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5.1. METHOD

5.1 Method

Let the term pattern refer to the sparse set of points found on an image by a

particular model, which thus defines the correspondence for that image to a reference

frame for that model. When using multiple models we obtain multiple patterns on

each image. As shown in Figure 5.2, some patterns are apparently better than the

others. By replacing those poor patterns with good ones, we can modify and improve

the correspondence defined by the single model.

An overview of the multi-model initialisation scheme is given in Figure 5.3. Given

a set of parts+geometry models, we use each of them to search the image set to

obtain a sparse correspondence, where a dense correspondence can be generated

using a TPS interpolation. Poor patterns will lead to poor dense points (indicated

by the red box in Figure 5.3). The quality of the pattern can be evaluated by

warping the target image to a mean image using the dense points, and comparing

the similarity between the warped image and the mean. To choose the best pattern

for an image, we use each of the associated sets of dense points to warp the image to

the mean and compute the similarity. A new correspondence can thus be established

by grouping the sets of dense points related to the best patterns across the images.

We give the details of each step below.

5.1.1 Dense Points

As we cannot easily compare the quality of different patterns for an image, a solution

is to transfer the correspondence information encoded in each pattern to a common

set of points. A simple method is to generate a dense set of points on a reference

image and propagate the points to the other images using a TPS, as illustrated in

Figure 3.6. We use X = (x1, y1, x2, y2, . . . , xn, yn)T to denote the positions of the

dense points.

5.1.2 Quality of the Pattern

An observation from groupwise registration is that if the correspondences across the

image set are well established, we should be able to obtain a crisp mean image.

Furthermore, if a pattern is good, its related image should be similar to the mean

when comparing the two in the same frame, and vice versa. Hence, we can use a
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Figure 5.3: An overview of the multi-model initialisation strategy.

mean image to evaluate the quality of a pattern.

Suppose we have a set of images {Ik|k = 1, . . . , NI} and NG parts+geometry

models. We use {X l
k|l = 1, . . . , NG} to denote the sets of dense points associated
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with image Ik. Let Ī be the mean image and X be the dense points in the mean

(see below). Given an image Ik and one of its dense point sets X l
k, a warp from Ī

to Ik is uniquely defined by X and X l
k. We write this warp as z′ = W (z : X;X l

k),

where z is a point in Ī and z′ is the corresponding point in Ik. To evaluate the

quality of the pattern related to X l
k, we warp Ik onto Ī so as to compare them in a

same frame, and use the following function

Dl
k =

∑
z∈R

∣∣Ik(W (z : X;X l
k))− Ī(z)

∣∣ , (5.1)

where R is a region of interest in the mean frame. This function computes the

absolute intensity difference over the region of interest between the warped image

Ik(W (z : X;X l
k)) and the mean. Note that all the images have been preprocessed

to standardise their intensity ranges.

5.1.3 Mean Image

Given {X l
k|k = 1, . . . , NI}, we can perform the following steps to compute the mean

image Ī l:

(1) Use Procrustes Analysis [19] to align eachX l
k to a reference frame1, computing

a mean shape X l;

(2) Create a triangulation of the mean shape using the Delaunay algorithm;

(3) Warp each image Ik to the reference frame, computing Ik(W (z : X l;X l
k)),2

z ∈ R;

(4) Compute the mean image using Ī l(z) = 1
NI

∑NI

k=1 Ik(W (z : X l;X l
k)), z ∈ R.

5.1.4 A Common Mean

Different sets of points {X l
k|k = 1, . . . , NI} will lead to a different mean image Ī l.

Hence, the quality D computed using different means cannot be compared directly.

This can be solved by using a single, common mean. We take the following steps to

compute this common mean image:

(1) For l← 1 to NG

1 The choice of the reference frame is free. Any image in the set can be used for this purpose.
2 Ik(W (z :X l;X l

k)) is computed by piece-wise linear interpolation between corresponding trian-
gles in X l and X l

k.
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(a) Compute the mean image Ī l using the sets of points {X l
k|k = 1, . . . , NI};

(b) Warp every image to the mean Ī l, computing Dl
k using Equation (5.1);

(c) Rank all images by Dl
k and select the top 50% of the images as the set

S l;

(2) Find a common set of images S =
⋂NG

l=1 S l—selecting the images in all sets

{S l};

(3) For each image in S, average associated sets of dense points, X̂k = 1
NG

∑NG

l=1X
l
k;

(4) Compute a mean image using S and the sets of points {X̂k}. Take this as the

common mean.

5.1.5 Pattern Selection

Once we have the common mean image, we can take the following steps to select

the best pattern for each image:

(1) For l← 1 to NG

For k ← 1 to NI

Warp Ik to the common mean and compute Dl
k;

(2) For k ← 1 to NI

Select the best X l̂
k from {X l

k|l = 1, . . . , NG} such that Dl̂
k is minimum.

By grouping X l̂
k across the image set we can obtain a new correspondence {X l̂

k|k =

1, . . . , NI}. Although we can use it to directly initialise groupwise registration, in

the following experiment we use it to generate a sparse correspondence. This is

more efficient, and allows fairer comparison with the single-model scheme which

only outputs sparse sets of points.

To create the sparse correspondence we (1) generate a sparse set of points on an

image Ik using the best parts+geometry model (in terms of model utility); (2) project

the sparse points to the other images using the piece-wise affine transformation

between different X l̂
k.

86



5.2. EXPERIMENTS

5.2 Experiments

5.2.1 Performance of Multi-model Initialisation

We compare this multi-model initialisation strategy with the single-model one. We

used the same sets of images as used in Section 3.5.2. For each dataset, we randomly

selected 10 images as the reference images, constructed the patch based parts for

each reference, and ran the optimisation based method and the voting based one

respectively using each set of parts. For both methods, all parameters were set the

same as used in Section 3.5.2 and Section 4.2.1, except that we used r = 10 for the

voting here. The initialisation with both methods was done exactly the same as

before.

We used the parts+geometry models output by the optimisation based method

Table 5.1: Point-to-point location errors (pixels) of the dense correspondence for the
fly wings using different reference images.

(a) (b)

Method m Mean±s.e. Med. 90%
Opt. 20 1.4±0.05 1.3 1.9
Voting 21 1.5±0.05 1.4 2.1
Multi 10 1.3±0.03 1.3 1.8

Method m Mean±s.e. Med. 90%
Opt. 15 1.5±0.06 1.3 2.3
Voting 27 1.6±0.1 1.2 2.1
Multi 15 1.4±0.03 1.3 1.8

(c) (d)

Method m Mean±s.e. Med. 90%
Opt. 5 1.5±0.06 1.3 2.1
Voting 26 1.3±0.04 1.2 1.8
Multi 5 1.3±0.03 1.2 1.6

Method m Mean±s.e. Med. 90%
Opt. 25 1.6±0.06 1.4 2.4
Voting 22 1.6±0.08 1.4 2.5
Multi 5 1.4±0.05 1.3 1.9

(e) (f)

Method m Mean±s.e. Med. 90%
Opt. 20 2.1±0.1 1.7 3.8
Voting 24 1.6±0.08 1.3 2.9
Multi 15 1.6±0.06 1.4 2.3

Method m Mean±s.e. Med. 90%
Opt. 5 1.4±0.04 1.3 1.9
Voting 24 1.1±0.02 1.1 1.4
Multi 5 1.2±0.04 1.2 1.6

(g) (h)

Method m Mean±s.e. Med. 90%
Opt. 10 2.0±0.07 1.9 2.7
Voting 18 1.2±0.03 1.1 1.6
Multi 5 1.4±0.04 1.3 2.0

Method m Mean±s.e. Med. 90%
Opt. 5 1.7±0.3 1.4 1.9
Voting 25 1.3±0.05 1.2 1.8
Multi 5 1.3±0.04 1.3 1.7

(i) (j)

Method m Mean±s.e. Med. 90%
Opt. 15 1.4±0.04 1.3 1.9
Voting 27 1.8±0.1 1.4 3.2
Multi 5 1.3±0.03 1.3 1.7

Method m Mean±s.e. Med. 90%
Opt. 10 1.2±0.03 1.2 1.5
Voting 22 1.9±0.1 1.6 3.1
Multi 10 1.2±0.03 1.2 1.5
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Table 5.2: Point-to-point location errors (mm) of the dense correspondence for the
hands using different reference images.

(a) (b)

Method m Mean±s.e. Med. 90%
Opt. 20 1.0±0.04 0.9 1.5
Voting 44 1.0±0.06 0.8 1.5
Multi 20 1.1±0.05 0.9 1.7

Method m Mean±s.e. Med. 90%
Opt. 40 1.1±0.05 1.0 1.6
Voting 45 1.3±0.09 1.0 2.2
Multi 30 1.1±0.04 1.0 1.6

(c) (d)

Method m Mean±s.e. Med. 90%
Opt. 50 1.3±0.1 0.9 1.7
Voting 36 1.1±0.06 1.0 1.4
Multi 40 1.2±0.07 1.0 1.9

Method m Mean±s.e. Med. 90%
Opt. 30 1.0±0.05 0.9 1.5
Voting 40 1.0±0.04 0.9 1.4
Multi 50 0.9±0.04 0.9 1.3

(e) (f)

Method m Mean±s.e. Med. 90%
Opt. 20 1.0±0.09 0.8 1.2
Voting 43 1.4±0.08 1.1 2.9
Multi 40 0.9±0.03 0.8 1.4

Method m Mean±s.e. Med. 90%
Opt. 20 1.1±0.04 0.9 1.6
Voting 46 1.0±0.05 0.9 1.4
Multi 40 1.0±0.03 0.9 1.4

(g) (h)

Method m Mean±s.e. Med. 90%
Opt. 40 1.1±0.07 0.9 1.6
Voting 37 1.2±0.07 1.0 2.1
Multi 30 1.0±0.04 0.9 1.5

Method m Mean±s.e. Med. 90%
Opt. 50 1.1±0.08 0.9 1.6
Voting 41 1.0±0.07 0.9 1.4
Multi 50 0.9±0.03 0.8 1.3

(i) (j)

Method m Mean±s.e. Med. 90%
Opt. 40 1.1±0.05 0.9 2.0
Voting 44 1.0±0.05 0.9 1.4
Multi 50 1.0±0.04 0.9 1.6

Method m Mean±s.e. Med. 90%
Opt. 30 1.2±0.09 1.0 1.7
Voting 29 1.2±0.1 0.9 1.6
Multi 50 1.1±0.06 0.9 1.7

to do multi-model initialisation. Specifically, we retained the top 10 models for each

number of parts, fed them into the approach described in Section 5.1, and used the

resulting sparse correspondences to initialise groupwise registration.

We used the same protocol to calculate registration errors. We show part of

the results in Tables 5.1–5.3. For full results, see Appendix A. Each sub-table (a-j)

represents an experiment done for a reference image. Only the very best results

for each method are given here. We used Welch’s (two-tailed) t-test (p < 0.05) to

compare the result from each method so as to find out the one which is significantly

better than the others (emphasised in bold font). Only the means and standard

deviations (∝ the standard errors reported) were used for such test. We can see that

the multi-model initialisation strategy performs similarly or better than the single-

model one in most of cases. The power of multiple models can be clearly seen from
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Table 5.3: Point-to-curve location errors (mm) of the dense correspondence for the
spines using different reference images.

(a) (b)

Method m Mean±s.e. Med. 90%
Opt. 15 2.5±0.3 1.9 3.6
Voting 26 6.4±0.5 4.5 13.2
Multi 20 2.1±0.1 1.7 3.1

Method m Mean±s.e. Med. 90%
Opt. 15 2.6±0.3 1.8 3.4
Voting 20 9.8±0.5 8.0 19.0
Multi 5 2.1±0.3 1.6 2.8

(c) (d)

Method m Mean±s.e. Med. 90%
Opt. 10 4.4±0.6 2.7 6.0
Voting 25 11.0±0.5 9.7 18.3
Multi 15 2.7±0.3 1.9 4.0

Method m Mean±s.e. Med. 90%
Opt. 20 4.0±0.5 2.5 7.6
Voting 21 3.6±0.4 2.3 6.5
Multi 5 2.1±0.1 1.8 3.1

(e) (f)

Method m Mean±s.e. Med. 90%
Opt. 10 3.6±0.5 1.9 5.3
Voting 31 6.5±0.4 5.3 10.8
Multi 15 2.1±0.1 1.7 3.2

Method m Mean±s.e. Med. 90%
Opt. 20 3.3±0.5 1.6 4.1
Voting 27 6.7±0.5 4.7 15.9
Multi 20 1.9±0.1 1.6 3.1

(g) (h)

Method m Mean±s.e. Med. 90%
Opt. 15 3.5±0.5 2.1 5.9
Voting 16 4.8±0.4 3.6 9.2
Multi 10 2.0±0.3 1.6 2.6

Method m Mean±s.e. Med. 90%
Opt. 10 4.4±0.5 2.6 8.5
Voting 15 9.3±0.4 8.2 14.2
Multi 10 3.6±0.4 2.5 5.1

(i) (j)

Method m Mean±s.e. Med. 90%
Opt. 10 3.6±0.5 2.2 3.9
Voting 14 13.6±0.6 12.6 20.9
Multi 10 2.6±0.2 2.0 3.9

Method m Mean±s.e. Med. 90%
Opt. 15 2.7±0.4 1.8 4.3
Voting 37 4.4±0.4 3.4 5.7
Multi 10 1.6±0.1 1.5 2.5

the results on the spines, where the improvements are the most significant compared

with those achieved on the other two datasets. Despite of the slight improvements

on the fly wings and hands, the multi-model initialisation scheme still effectively

corrects some poor matches and enhances the consistency of the correspondences

(e.g . reduced standard error or outliers).

To visualise the improvements achieved by the multi-model initialisation strat-

egy on the spines, we show the final mean images in Figure 5.4. These images

are from the experiment summarised in Table 5.3j. We can see that the unlikely

deformation of the bottom vertebra (indicated by yellow circles), which occurs in

both single-model initialisation approaches, has been largely corrected by different

parts+geometry models.

Note that our method can work with parts+geometry models of different num-
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(a) Optimisation (b) Voting (c) Multi-model

Figure 5.4: An example of the final mean images from both the single-model and
multi-model initialisation schemes.

Table 5.4: Dense registration errors resulting from models of different numbers of
parts.

Dataset Mean±s.e. Median 90%
Fly wings (pixels) 1.4±0.05 1.3 2.0

Hands (mm) 1.2±0.07 0.9 2.4
Spines (mm) 1.7±0.08 1.4 2.6

bers of parts. Table 5.4 shows the groupwise registration results using the models

from the last two rows in Tables A.1j–A.3j respectively. We selected the best 5

models for each number of parts. Hence, 10 models in total were used to initialise

groupwise registration for each dataset. The registration errors are similar to those

given in Tables A.1j–A.3j.

5.2.2 Influence of Reference Images

To show the effects of different choice of the reference image, we computed the

median ĉ of the 10 medians ci and the mean absolute difference MAD =
∑10

i=1 |ĉ−

ci|/10 for each method on each dataset. We compared ĉ with the best median cmin

of the 10 cases and MAD with the corresponding standard deviation.

We summarise the results in Table 5.5. Note that these results were computed

from the original data not from those given in Tables 5.1–5.3, where approximations

have been applied. We find that the choice of reference images only has a small

effect on the results of the multi-model initialisation strategy for all three datasets.
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Table 5.5: The influence of choice of reference images on the single-model and multi-
model initialisation strategies.

(a) Fly wings (pixels) (b) Hands (mm)

Method ĉ MAD cmin s.d.
Opt. 1.3 0.1 1.2 0.3
Voting 1.3 0.1 1.1 0.2
Multi 1.3 0.06 1.2 0.3

Method ĉ MAD cmin s.d.
Opt. 0.9 0.04 0.8 0.9
Voting 0.9 0.06 0.8 0.6
Multi 0.9 0.04 0.8 0.3

(c) Spines (mm)

Method ĉ MAD cmin s.d.
Opt. 2.0 0.3 1.6 5.0
Voting 5.0 2.5 2.3 4.0
Multi 1.7 0.2 1.5 1.0

Although a similar pattern can be observed for both single-model initialisation ap-

proaches on the fly wings and hands, the performance of the two methods varies

more on the spines. For example, the performance of the voting based method

varies dramatically from one reference image to another one.

5.3 Conclusions and Discussion

We have described a strategy that can effectively initialise groupwise non-rigid reg-

istration. This is achieved by using a set of parts+geometry models. Experiments

show that this scheme is able to achieve very good results and can significantly out-

perform earlier approaches which only use a single model. By using such scheme,

we have achieved the best result on the spines (shown in Table 5.3j) so far, much

better than any observed by using the single-model initialisation approaches. We

also compared this multi-model initialisation strategy with the single-model one in

terms of the influence of reference images. We find that the multi-model scheme is

the least sensitive to the choice of reference images, suggesting that a robust system

can be expected.

Current work indiscriminately uses the top models output by the optimisation

based method. If some models result in too many poor matches, the performance of

the multi-model scheme will be inevitably degraded. Moreover, if different models

share too many common parts, redundancy will arise. This will dilute the advantage

of using multiple models to do initialisation, since different models may fail on the

same images so that there is no chance to rectify those faults. Hence, it is desirable
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to explore how to effectively choose a good set of parts+geometry models.
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CHAPTER

SIX

LABELLING NEW IMAGES?

Once we have successfully registered a set of images, we can use the resulting dense

correspondences to build a statistical model to annotate new images. There are

three motivations.

Accurate annotations achieved on the new images can be regarded as a further

demonstration of the performance of the proposed system. The underlying assump-

tion is that if the correspondences are well established across an image set A, a

statistical model constructed using those correspondences should give good fitting

results on a new image set B that is similar to A. Furthermore, suppose we would

like to establish correspondences across a large set of images, say hundreds. If we

feed all the images to the system directly, the running time may be long, as shown

in the previous chapters. Hence, a more efficient way is to first apply the system

to a small set of images and then use the model learned from this subset to estab-

lish correspondences on the rest of images. Finally, as annotating new images is

a reasonable application of the system, it will be useful to explore which kind of

statistical models can work with the system best.

In this chapter we describe three different methods of using the registered data

to label the new images: (1) a simple TPS interpolation; (2) a combination of a

PDM and an AAM; (3) an elastic mesh model. All three methods have the same

first step, that is, a parts+geometry model learned on a training set is used to search

the new images for the sparse points. The difference is that the first method does

not use statistical models while the other methods do. Specifically, the former uses a

? Parts of this chapter appeared as “Automatic Part Selection for Groupwise Registration” in the
proceeding of IPMI 2011 [104] and will appear in IEEE Transactions on Medical Imaging.
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TPS interpolation based on the sparse points to obtain the automatic dense points,

while the latter achieve this by using the sparse points to initialise statistical models.

Below we assume that the sparse points have been localised on the new images.

6.1 Methods

6.1.1 TPS Interpolation

The TPS interpolation is possible because we use the same parts+geometry model

to search both the training images and new images. By randomly selecting an image

from the training set as the reference image, we can easily project the dense points

on the reference to the new images using a TPS interpolation, as shown in Figure

3.6a-b. As this may introduce bias to the projected points, we instead project a

mean, which is constructed by warping the set of dense points on each training

image to a reference frame and averaging the sets of aligned points.

6.1.2 PDM+AAM

We use the dense points on the training images to construct an AAM (e.g . the

white points in Figure 3.6a-b). In addition, for each training image we concatenate

together the sparse points and the dense points (e.g . both the blue and white points

in Figure 3.6a-b), and build a PDM from the joint sets of points. This captures the

relationship between the sparse and the dense points.

Given a new image, we use the learned parts+geometry model to localise the

sparse points, which are used to initialise the PDM to predict the positions of the

dense points (assumed unknown and assigned zero weights in the matching). The

AAM is then initialised by the predicted dense points and used to refine the positions

of those points, leading to the final annotation.

6.1.3 Elastic Mesh Model

We now consider using an elastic mesh model to label the new images. The model is

defined in the mean image generated during the registration phase. Since we create

a sequence of mean images of increasing resolution as the registration progresses

(Figure 3.6e), there is a sequence of models.
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To initiate the labelling process we randomly select one image from the training

set as the reference image, and project the dense points on the reference to each new

image using a TPS interpolation. The projected dense points are used to initialise

the mesh model at the lowest resolution, estimating the new positions of the dense

points (see below), which are then used to initialise the model at higher resolution.

The process repeats until all mesh models have been considered.

As before, we use X to denote the dense points in the mean image Ī and Xk

for the dense points on a new image Ik. The piece-wise linear warp from Ī to Ik is

given by z′ = W (z : X;Xk), where z and z′ represent any pair of corresponding

points in Ī and Ik. We define a quality of fit measure as

F (Xk) =
∑
z∈R

∣∣Ik(W (z : X;Xk))− Ī(z)
∣∣ /σr + γFs(Xk) (6.1)

where R is a region of interest in Ī, σr is an estimate of the noise of the residuals,

Fs(Xk) is a shape regularisation term and γ is a weighting constant (set to 0.1 in

all experiments). In the following we use a locally elastic form,

Fs(Xk) =
∑
i

|xki − ĉki|2/σ2
z (6.2)

where xki is the position of the i-th point of Xk, σ2
z is the variance of |xki − ĉki|,

and ĉki is the position predicted for xki given the position of its neighbours. For an

internal point in a regular mesh, this is the centre of gravity of its neighbours, else-

where it is a suitably weighted sum of its neighbours. A gradient descent approach

is used to optimise the positions of the dense points. The derivatives of F (Xk) can

be computed efficiently by displacing each point in turn, as moving one point only

affects the nearby triangles.

6.2 Experiments

For each dataset, we chose 100 images as the training set and used the rest of images

as the test set. The training sets were the same with those used in Section 4.2.1. We

used the parts+geometry models learned in Section 4.2.1 (from the extended sets)

and the resulting registration to annotate the test sets.

The AAMs were built to retain sufficient modes to explain 95% of the shape and
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Mode 1 (±2.5s.d.)

Mode 2 (±2.5s.d.)

Mode 3 (±2.5s.d.)

Mode 4 (±2.5s.d.)

Figure 6.1: First four modes of shape variation of an AAM built from 100 automatically
registered wing micrographs.

Mode 1 (±2.5s.d.) Mode 2 (±2.5s.d.)

Mode 3 (±2.5s.d.) Mode 4 (±2.5s.d.)

Figure 6.2: First four modes of shape variation of an AAM built from 100 automatically
registered hand radiographs.

texture variance. Figures 6.1–6.3 show the first four modes of shape variation of the

models built from all three datasets.

96



6.2. EXPERIMENTS

Mode 1 (±2.5s.d.) Mode 2 (±2.5s.d.)

Mode 3 (±2.5s.d.) Mode 4 (±2.5s.d.)

Figure 6.3: First four modes of shape variation of an AAM built from 100 automatically
registered spine radiographs.

To compare the performance of the three methods, we warped the manual an-

notation of each training image to a reference frame, computing the mean. We then

projected the mean onto each test image using the deformation field defined between

the reference frame and the automatically labelled dense points. This is to avoid the

bias that may be introduced by projecting the manual annotation on an arbitrarily

selected training image. As before, we calculated the point-to-point location error

for the fly wing and hand data, and point-to-curve error for the spines.

Tables 6.1–6.3 show the results on the three datasets. We can see that simply

using TPS warping with the sparse points gives good results, but that these can

be further improved by matching the elastic mesh model. Searching with the AAM

may sometimes degrade results, though it works best for the spines. This is probably

because the global shape model in the AAM is not sufficiently flexible to deal with

local deformations, unlike the less constrained elastic mesh model. The mesh model

is also the slowest method, requiring extensive non-linear optimisation. Note that

the figures are comparable to those shown in Tables 4.1–4.3. This demonstrates that

our system has successfully registered the given datasets.
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Table 6.1: Point-to-point location errors (pixels) of the automatic annotations for the
fly wings.

Methods Mean±s.e. Median 90%
TPS 2.6±0.4 2.0 4.7

PDM+AAM 3.1±0.2 3.2 4.2
Mesh Model 1.5±0.2 1.2 2.7

Table 6.2: Point-to-point location errors (mm) of the automatic annotations for the
hands.

Methods Mean±s.e. Median 90%
TPS 1.7±0.1 1.6 2.8

PDM+AAM 1.8±0.08 1.8 2.5
Mesh Model 1.4±0.1 1.4 2.3

Table 6.3: Point-to-curve location errors (mm) of the automatic annotations for the
spines.

Methods Mean±s.e. Median 90%
TPS 4.1±0.6 2.4 6.2

PDM+AAM 3.5±0.5 2.1 4.5
Mesh Model 3.9±0.6 2.2 6.0

6.3 Conclusions

We have described three different methods of using the correspondence resulting

from the proposed system to label new images. One of them is to use a simple

TPS interpolation, while the other two methods achieve the goal by constructing

statistical models. Results show that robust, accurate annotations can be obtained

by using a simple elastic mesh model when well initialised. The annotation accuracy

on new data is comparable to the registration accuracy achieved on the training set.

Unlike the PDM+AAM, the mesh model uses a looser shape constraint, which lends

it more power to handle large shape variations and thus leads to more accurate

annotations.
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SEVEN

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

We have described a complete system that is able to initialise groupwise non-rigid

image registration effectively. This is achieved by automatically constructing one or

more parts+geometry models and using its/their matches to do initialisation. The

system is quite generic. It can work with any interest point descriptor and can cope

with many complex objects, not restricted to those discussed in this thesis.

Extensive experiments show that our system can achieve very good results on

three different datasets, two of them being particularly challenging. For example, if

we compare the very best results obtained by the multi-model initialisation scheme

with those from groupwise registration initialised with manual annotations (Table

7.1), we find that the accuracy of the dense correspondences established by our

system is close to that of manual annotations.

We show that our system dramatically outperforms the standard affine initial-

isation on all three datasets. We also show that the parts automatically selected

by our system can give similar or much better initialisation than a set of manually

Table 7.1: Comparison between the dense registration errors resulting from our auto-
matic system and the manual annotations.

Multi-model Initialisation Manual Landmarks
Dataset Mean±s.e. Median 90% Mean±s.e. Median 90%

Fly wings (pixels) 1.2±0.03 1.2 1.5 1.1±0.02 1.1 1.3
Hands (mm) 0.9±0.03 0.8 1.3 0.7±0.01 0.7 0.8
Spines (mm) 1.6±0.1 1.5 2.5 1.2±0.03 1.2 1.6
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selected parts.

We have explored two different approaches to modelling the parts. One is a

patch based method and the other is a SIFT based one. We show that the former

is generally better than the latter, though less computationally efficient.

We have examined two different schemes to use the parts+geometry model/s for

initialisation. One is a single-model initialisation scheme and the other is a multi-

model one. We show that the latter outperforms the former in most of cases and

is less sensitive to the choice of the reference image. We also show that one of the

single-model initialisation schemes—the voting based method—can run quite fast

without loss of accuracy.

To further demonstrate the performance of the system we use the resulting dense

correspondences to build statistical models to label new images. We have compared

three different approaches, showing that robust, accurate annotations can be ob-

tained by using an elastic mesh model.

7.2 Future Work

We have mentioned some directions for future work in previous chapters. Now we

would like to summarise them and point out new directions.

Effective Part Pre-selection & Efficient Part Matching A major problem

of the current system is low efficiency. This is largely because of constructing and

searching with huge number of parts, which can take up to approximately 91% of the

total running time1. A straightforward approach to speeding up the system is thus

to reduce the number of candidate parts. This, ideally, should propose a minimal

superset of all useful parts shared by most of images. Moreover, the algorithm must

be simple and fast enough, without greatly increasing the computational cost of the

system. We can also speed up the system by using more efficient part matching

techniques. We have developed an approach in light of the above ideas. We use β-

stable features [45] to propose a small set of useful parts and use Random Ferns [70]

to do fast matching. Preliminary experiments show that this approach can reduce

the time of part searching to tens of minutes. However, more work is still needed

for robust and accurate localisation.

1 This is calculated based on Table 3.3.
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Complex Graphical Structures Currently we use a tree topology for graphical

models to allow efficient global optimisation. Using more sophisticated graphical

structures will increase the representative ability of the models and may improve

the performance of the system, as the added links may reduce the occurrence of

the false graph matches. On the other hand, the complex topology will inevitably

increase the inference difficulty and thus lead to a decline in efficiency. Hence, it is

desirable to explore the influence of graphical structures on the performance of the

system, finding out a trade-off between performance and efficiency.

Automatic Parameter Learning There are a number of parameters in the sys-

tem. Most of them can be given roughly and will not affect the performance of

the system too much. However, there are some key parameters, which currently

have to be determined based on preliminary experiments. An example is α, which

determines the localisability of parts+geometry models and may vary according to

the object of interest. It is thus interesting to find effective ways to automatically

determine such parameters of the system.

Dealing with Occlusions The current system can tolerate partial occlusions,

which are present on some of the datasets. It cannot tackle large occlusions or miss-

ing data. Although this problem can be alleviated by using multiple parts+geometry

models, it is still necessary to further develop the system to make it robust to the

above outliers.

Selecting Good Parts+Geometry Models We show that the performance of

the system can be boosted by using a set of roughly good parts+geometry mod-

els. We also notice that this multi-model initialisation strategy may, occasionally,

perform slightly worse than the single-model one. We believe that this is not the

problem of the multi-model strategy itself but the problem of the models used. If

most of models have poor performance or share too many common parts, it is diffi-

cult for the system to benefit from the use of multiple models. Hence, it is interesting

to explore how to choose a set of good models which have similar performance as

well as minimum redundancy.

Automatic Segmentation of Mean Image After groupwise registration, we

obtain a set of dense correspondences and a mean of the training images. We have
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shown that a statistical model can be constructed using the dense correspondences

and used to annotate new images. However, the new data may contain occlusions

or missing parts, which may mislead the search of the statistical model. A way to

circumvent this problem is to build a set of statistical models, each representing a

local structure of the object. This can be achieved by breaking down the mean image

into several pieces, projecting each piece onto the training images and constructing

a model for each piece. A set of local models may lead to better annotations than

a single, global model.

Extension to 3D Images We only tested the system on 2D images. However,

the key ideas extend naturally to 3D images, though computational efficiency issues

may have to be addressed.
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APPENDIX

A

EXPERIMENTAL RESULTS

Table A.1: Point-to-point location errors (pixels) of the dense correspondence for the
fly wings.

(a) (b)

Method m Mean±s.e. Med. 90%

Opt.

5 1.4±0.04 1.4 1.9
10 1.8±0.1 1.5 2.7
15 1.5±0.1 1.3 2.0
20 1.4±0.05 1.3 1.9
25 1.6±0.05 1.5 2.4

Voting 21 1.5±0.05 1.4 2.1

Mulit.

5 1.4±0.04 1.3 2.0
10 1.3±0.03 1.3 1.8
15 1.4±0.04 1.3 2.0
20 1.4±0.04 1.3 1.8
25 1.6±0.06 1.4 2.4

Method m Mean±s.e. Med. 90%

Opt.

5 1.8±0.06 1.6 2.7
10 3.7±0.2 3.4 6.3
15 1.5±0.06 1.3 2.3
20 2.0±0.08 1.8 3.0
25 1.8±0.07 1.6 2.9

Voting 27 1.6±0.1 1.2 2.1

Mulit.

5 1.5±0.05 1.3 2.0
10 1.7±0.05 1.6 2.5
15 1.4±0.03 1.3 1.8
20 1.4±0.05 1.3 1.9
25 1.7±0.06 1.6 2.5

(c) (d)

Method m Mean±s.e. Med. 90%

Opt.

5 1.5±0.06 1.3 2.1
10 2.3±0.1 1.9 4.1
15 2.5±0.1 2.3 3.9
20 2.0±0.07 1.8 3.0
25 1.7±0.05 1.7 2.3

Voting 26 1.3±0.04 1.2 1.8

Mulit.

5 1.3±0.03 1.2 1.6
10 1.4±0.03 1.4 1.8
15 1.6±0.06 1.5 2.5
20 1.8±0.08 1.6 2.9
25 1.7±0.05 1.6 2.4

Method m Mean±s.e. Med. 90%

Opt.

5 2.0±0.1 1.5 3.3
10 2.9±0.1 2.5 5.0
15 2.5±0.1 2.4 4.0
20 2.1±0.08 1.9 3.4
25 1.6±0.06 1.4 2.4

Voting 22 1.6±0.08 1.4 2.5

Mulit.

5 1.4±0.05 1.3 1.9
10 1.6±0.05 1.4 2.3
15 1.8±0.07 1.6 2.9
20 1.7±0.06 1.6 2.7
25 1.6±0.07 1.4 2.4
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(e) (f)

Method m Mean±s.e. Med. 90%

Opt.

5 2.2±0.2 1.7 3.7
10 2.6±0.1 2.0 4.6
15 2.2±0.1 1.9 3.6
20 2.1±0.1 1.7 3.8
25 2.2±0.1 1.9 3.6

Voting 24 1.6±0.08 1.3 2.9

Mulit.

5 1.8±0.09 1.5 2.7
10 1.7±0.06 1.5 2.5
15 1.6±0.06 1.4 2.3
20 1.8±0.07 1.7 2.8
25 1.9±0.08 1.6 3.1

Method m Mean±s.e. Med. 90%

Opt.

5 1.4±0.04 1.3 1.9
10 1.8±0.07 1.6 2.8
15 1.7±0.08 1.5 2.9
20 1.9±0.08 1.7 3.0
25 2.2±0.08 2.0 3.6

Voting 24 1.1±0.02 1.1 1.4

Mulit.

5 1.2±0.04 1.2 1.6
10 1.6±0.05 1.4 2.4
15 1.5±0.05 1.4 2.1
20 1.5±0.07 1.3 2.3
25 1.5±0.05 1.4 2.1

(g) (h)

Method m Mean±s.e. Med. 90%

Opt.

5 2.5±0.1 2.1 3.9
10 2.0±0.07 1.9 2.7
15 2.5±0.1 2.1 3.8
20 2.4±0.1 2.2 3.9
25 2.8±0.1 2.4 4.6

Voting 18 1.2±0.03 1.1 1.6

Mulit.

5 1.4±0.04 1.3 2.0
10 1.9±0.08 1.7 2.9
15 2.0±0.08 1.8 2.9
20 1.9±0.08 1.7 3.1
25 1.8±0.08 1.5 3.0

Method m Mean±s.e. Med. 90%

Opt.

5 1.7±0.3 1.4 1.9
10 2.1±0.1 1.9 3.6
15 3.2±0.1 3.0 4.8
20 2.0±0.08 1.8 3.0
25 2.6±0.1 2.5 3.7

Voting 25 1.3±0.05 1.2 1.8

Mulit.

5 1.3±0.04 1.3 1.7
10 2.1±0.1 1.8 3.4
15 2.3±0.08 2.1 3.4
20 1.7±0.06 1.6 2.5
25 2.0±0.08 1.8 3.0

(i) (j)

Method m Mean±s.e. Med. 90%

Opt.

5 1.7±0.1 1.4 2.4
10 1.5±0.06 1.4 2.2
15 1.4±0.04 1.3 1.9
20 2.3±0.09 2.2 3.4
25 2.2±0.09 2.2 3.6

Voting 27 1.8±0.1 1.4 3.2

Mulit.

5 1.3±0.03 1.3 1.7
10 1.3±0.04 1.3 1.9
15 1.5±0.06 1.4 2.1
20 1.5±0.05 1.4 2.2
25 1.6±0.05 1.4 2.4

Method m Mean±s.e. Med. 90%

Opt.

5 1.5±0.07 1.3 1.9
10 1.2±0.03 1.2 1.5
15 1.4±0.04 1.3 1.8
20 1.9±0.06 1.7 2.7
25 1.7±0.07 1.6 2.4

Voting 22 1.9±0.1 1.6 3.1

Mulit.

5 1.4±0.04 1.3 1.9
10 1.2±0.03 1.2 1.5
15 1.2±0.03 1.2 1.5
20 1.3±0.04 1.2 1.7
25 1.5±0.04 1.3 2.1
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Table A.2: Point-to-point location errors (mm) of the dense correspondence for the
hands.

(a) (b)

Method m Mean±s.e. Med. 90%

Opt.

10 2.0±0.2 1.1 4.8
20 1.0±0.04 0.9 1.5
30 1.4±0.1 1.0 3.1
40 1.2±0.1 0.9 2.3
50 1.2±0.09 0.9 1.7

Voting 44 1.0±0.06 0.8 1.5

Mulit.

10 1.8±0.1 1.2 3.8
20 1.1±0.05 0.9 1.7
30 1.2±0.06 1.0 2.2
40 1.2±0.07 1.0 2.0
50 1.2±0.08 1.0 1.7

Method m Mean±s.e. Med. 90%

Opt.

10 1.5±0.07 1.3 2.3
20 1.2±0.04 1.1 1.9
30 1.2±0.06 1.1 1.7
40 1.1±0.05 1.0 1.6
50 1.5±0.07 1.3 2.1

Voting 45 1.3±0.09 1.0 2.2

Mulit.

10 1.6±0.06 1.4 2.2
20 1.2±0.04 1.2 1.7
30 1.1±0.04 1.0 1.6
40 1.2±0.04 1.1 1.7
50 1.2±0.05 1.0 1.8

(c) (d)

Method m Mean±s.e. Med. 90%

Opt.

10 2.0±0.2 1.4 3.2
20 1.3±0.09 1.1 1.9
30 1.4±0.2 0.9 2.2
40 1.3±0.1 0.9 2.0
50 1.3±0.1 0.9 1.7

Voting 36 1.1±0.06 1.0 1.4

Mulit.

10 1.5±0.08 1.3 2.4
20 1.4±0.05 1.2 1.9
30 1.2±0.08 1.0 2.1
40 1.2±0.07 1.0 1.9
50 1.3±0.08 1.0 1.9

Method m Mean±s.e. Med. 90%

Opt.

10 2.0±0.1 1.7 3.0
20 1.1±0.09 0.9 1.4
30 1.0±0.05 0.9 1.5
40 1.4±0.1 1.1 2.3
50 1.2±0.08 0.9 2.0

Voting 40 1.0±0.04 0.9 1.4

Mulit.

10 1.7±0.08 1.5 2.5
20 1.0±0.04 0.9 1.5
30 1.2±0.06 1.0 2.0
40 1.0±0.04 0.9 1.4
50 0.9±0.04 0.9 1.3

(e) (f)

Method m Mean±s.e. Med. 90%

Opt.

10 1.4±0.08 1.2 2.1
20 1.0±0.09 0.8 1.2
30 1.1±0.05 1.0 1.7
40 1.2±0.07 1.0 2.0
50 1.1±0.09 0.9 2.0

Voting 43 1.4±0.08 1.1 2.9

Mulit.

10 1.4±0.06 1.2 2.0
20 1.0±0.05 0.9 1.4
30 1.0±0.05 0.9 1.5
40 0.9±0.03 0.8 1.4
50 0.9±0.04 0.9 1.3

Method m Mean±s.e. Med. 90%

Opt.

10 1.6±0.1 1.3 2.2
20 1.1±0.04 0.9 1.6
30 1.2±0.05 1.1 1.6
40 1.4±0.09 1.0 2.3
50 1.2±0.04 1.1 1.7

Voting 46 1.0±0.05 0.9 1.4

Mulit.

10 1.7±0.1 1.4 2.5
20 1.1±0.04 0.9 1.6
30 1.0±0.04 0.9 1.5
40 1.0±0.03 0.9 1.4
50 1.1±0.04 1.0 1.5

105



A. EXPERIMENTAL RESULTS

(g) (h)

Method m Mean±s.e. Med. 90%

Opt.

10 1.7±0.1 1.4 3.0
20 1.1±0.07 0.8 1.7
30 1.6±0.1 1.1 2.8
40 1.1±0.07 0.9 1.6
50 1.1±0.06 0.9 1.9

Voting 37 1.2±0.07 1.0 2.1

Mulit.

10 1.9±0.1 1.5 3.3
20 1.2±0.07 0.9 2.0
30 1.0±0.04 0.9 1.5
40 1.0±0.05 0.9 1.5
50 1.1±0.05 0.9 1.9

Method m Mean±s.e. Med. 90%

Opt.

10 1.3±0.1 1.1 1.8
20 1.5±0.07 1.2 2.1
30 1.2±0.09 0.8 2.0
40 1.2±0.08 0.8 2.1
50 1.1±0.08 0.9 1.6

Voting 41 1.0±0.07 0.9 1.4

Mulit.

10 1.4±0.08 1.1 2.3
20 1.1±0.05 1.0 1.7
30 1.0±0.05 0.9 1.4
40 0.9±0.04 0.8 1.3
50 0.9±0.03 0.8 1.3

(i) (j)

Method m Mean±s.e. Med. 90%

Opt.

10 1.7±0.1 1.5 2.9
20 1.5±0.07 1.1 2.8
30 1.2±0.07 1.0 1.8
40 1.1±0.05 0.9 2.0
50 1.1±0.06 0.9 2.3

Voting 44 1.0±0.05 0.9 1.4

Mulit.

10 1.4±0.06 1.2 2.1
20 1.4±0.07 1.2 2.1
30 1.2±0.05 1.1 1.7
40 1.1±0.04 1.0 1.6
50 1.0±0.04 0.9 1.6

Method m Mean±s.e. Med. 90%

Opt.

10 2.1±0.1 1.6 4.7
20 1.2±0.08 1.0 1.8
30 1.2±0.09 1.0 1.7
40 2.4±0.1 2.2 3.9
50 1.3±0.07 0.9 2.1

Voting 29 1.2±0.1 0.9 1.6

Mulit.

10 1.7±0.07 1.5 2.6
20 1.2±0.05 1.1 1.9
30 1.2±0.06 0.9 1.7
40 1.3±0.07 1.0 2.4
50 1.1±0.06 0.9 1.7
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Table A.3: Point-to-curve location errors (mm) of the dense correspondence for the
spines.

(a) (b)

Method m Mean±s.e. Med. 90%

Opt.

5 7.8±0.9 2.8 25.0
10 3.9±0.5 2.2 6.1
15 2.5±0.3 1.9 3.6
20 3.8±0.4 2.6 5.9

Voting 26 6.4±0.5 4.5 13.2

Mulit.

5 2.3±0.3 1.6 3.2
10 2.7±0.4 1.7 4.4
15 2.1±0.3 1.6 3.1
20 2.1±0.1 1.7 3.1

Method m Mean±s.e. Med. 90%

Opt.

5 4.8±0.6 3.0 7.0
10 3.3±0.5 2.1 4.3
15 2.6±0.3 1.8 3.4
20 3.4±0.4 2.0 6.4

Voting 20 9.8±0.5 8.0 19.0

Mulit.

5 2.1±0.3 1.6 2.8
10 2.2±0.3 1.6 2.6
15 2.7±0.3 2.0 3.1
20 2.7±0.3 2.3 3.2

(c) (d)

Method m Mean±s.e. Med. 90%

Opt.

5 5.7±0.7 3.4 8.8
10 4.4±0.6 2.7 6.0
15 6.9±0.6 4.7 20.6
20 6.8±0.6 4.4 20.5

Voting 25 11.0±0.5 9.7 18.3

Mulit.

5 3.7±0.3 2.7 6.6
10 3.4±0.4 2.1 4.5
15 2.7±0.3 1.9 4.0
20 3.6±0.4 2.4 6.0

Method m Mean±s.e. Med. 90%

Opt.

5 7.9±0.7 5.0 21.3
10 5.5±0.7 2.9 17.8
15 4.7±0.5 2.9 7.0
20 4.0±0.5 2.5 7.6

Voting 21 3.6±0.4 2.3 6.5

Mulit.

5 2.1±0.1 1.8 3.1
10 2.4±0.3 1.7 3.8
15 2.4±0.3 1.7 3.3
20 2.4±0.3 1.9 3.1

(e) (f)

Method m Mean±s.e. Med. 90%

Opt.

5 6.3±0.9 2.4 26.1
10 3.6±0.5 1.9 5.3
15 6.0±0.6 3.8 19.6
20 5.0±0.5 3.1 8.5

Voting 31 6.5±0.4 5.3 10.8

Mulit.

5 3.3±0.4 2.0 6.2
10 2.5±0.3 1.7 3.4
15 2.1±0.1 1.7 3.2
20 2.3±0.1 1.9 3.9

Method m Mean±s.e. Med. 90%

Opt.

5 9.1±0.7 5.6 19.9
10 4.0±0.5 2.4 4.8
15 3.3±0.5 1.9 5.1
20 3.3±0.5 1.6 4.1

Voting 27 6.7±0.5 4.7 15.9

Mulit.

5 2.7±0.3 1.8 4.4
10 2.2±0.3 1.7 2.6
15 2.6±0.3 1.9 3.3
20 1.9±0.1 1.6 3.1
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(g) (h)

Method m Mean±s.e. Med. 90%

Opt.

5 4.7±0.6 2.7 9.4
10 3.7±0.5 2.4 4.0
15 3.5±0.5 2.1 5.9
20 4.6±0.4 3.3 6.8

Voting 16 4.8±0.4 3.6 9.2

Mulit.

5 2.2±0.2 1.7 3.0
10 2.0±0.3 1.6 2.6
15 2.2±0.3 1.7 2.8
20 2.1±0.1 1.9 3.1

Method m Mean±s.e. Med. 90%

Opt.

5 7.4±0.8 3.7 21.1
10 4.4±0.5 2.6 8.5
15 4.8±0.5 2.9 10.6
20 7.0±0.6 4.3 19.9

Voting 15 9.3±0.4 8.2 14.2

Mulit.

5 3.7±0.4 2.5 6.0
10 3.6±0.4 2.5 5.1
15 4.8±0.4 3.5 7.1
20 4.7±0.4 3.1 7.3

(i) (j)

Method m Mean±s.e. Med. 90%

Opt.

5 7.4±0.8 3.3 22.6
10 3.6±0.5 2.2 3.9
15 6.5±0.7 3.7 20.2
20 8.1±0.8 4.2 22.5

Voting 14 13.6±0.6 12.6 20.9

Mulit.

5 3.5±0.4 2.1 5.9
10 2.6±0.2 2.0 3.9
15 3.8±0.4 2.4 7.3
20 3.5±0.3 2.6 5.0

Method m Mean±s.e. Med. 90%

Opt.

5 4.9±0.7 2.4 8.4
10 3.3±0.6 1.9 3.5
15 2.7±0.4 1.8 4.3
20 2.7±0.3 1.9 4.4

Voting 37 4.4±0.4 3.4 5.7

Mulit.

5 2.3±0.4 1.6 2.7
10 1.6±0.1 1.5 2.5
15 1.6±0.1 1.4 2.6
20 1.6±0.1 1.4 2.8
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