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Abstract— Human-robot interaction (HRI) is an important
area of robotics research; it is related to human-computer
interaction (HCI), but contains a key difference: HRI allows
embodied systems to utilize physical context and mobility. Most
current HRI systems, however, do not yet utilize mobility for
interactive purposes. In this paper, we describe the design
and evaluation of a robot system aimed at embodied HRI
communication. In it, the robot selects a target for interaction
based on the perceived desire of human subjects to interact
with it. We use an interaction policy inspired by Joint Intention
Theory to shape the interaction between the users and the robot.
One of the intended purposes of the system is for use in crowded
classrooms for selecting students most desirous of interaction
and help.

Index Terms—Human-Robot Interaction, Joint Intention
Theory

I. INTRODUCTION

Embodiment and mobility are key properties of human-
robot interaction (HRI) that distinguish it from human-
computer interaction (HCI). These properties must be ex-
plored and studied in a directed fashion in order to fully
realize the potential of HRI and its relative strengths over
non-embodied alternatives (e.g., PDAS) in specific applica-
tion domains. Our work focuses on the assistive domain,
where the robot must satisfy the combined and at times
conflicting goals of, on the one hand, engaging the user
and, on the other, achieving the needed progress in train-
ing/exercise/rehabilitation.

We believe that physical embodiment provides HRI with a
unique avenue for success in assistive domains. Our focus is
on socially assistive robotics, a sub-area of assistive robotics
in which robots assist humans in a variety of settings (in-
cluding hospitals, schools, rehabilitation centers, and homes)
through social interaction, instead of through physical contact
[9]. Our work focuses on using the physical embodiment of
the robot through HRI in order to develop effective non-
contact assistance.

In this paper we describe a selective interaction policy for
target selection in a mobile HRI system. Our approach is
based on the conversational policy of Joint Intention Theory
[6]. Rather than strictly using linguistic communication as
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the basis for a policy, our system uses speech recognition,
body language in the form of gestures, and observation and
interpretation of the use of space and body language of the
users being communicated with.

The motivation for developing the described system comes
from the challenge of creating assistive interactive robots
capable of naturally approaching only the users who wish
to be approached and interacted with. Furthermore, this
capability will allow individuals in supervisory roles (e.g.,
teachers, health care staff) to accurately and naturally guide
robots toward desired targets for interaction.

Il. RELATED WORK

We briefly summarize work in Joint Intention Theory,
HRI, and human activity tracking that relates directly to our
described research.

Joint Intention Theory (JIT) describes the nature of com-
munication between two agents as sequences of communica-
tive acts within a conversation policy [6]. Smith et al. [15]
describe an agent conversation policy based on JIT; the policy
was based on the Cohen-Levesque analysis of joint intentions.
The authors determined formal ways for two agents to form a
team with a mutual goal. The idea of team formation through
the use of joint intentions is the foundation of the research
presented in this paper.

Breazeal et al. used the Leonardo robot platform to study
JIT [2] with the goal of teaching the robot a sequential button-
pushing task. Unlike the work of Smith et al., Leonardo is an
embodied system, but not a mobile one. It employed visual
detection of point gestures as well as the state of the button
panel. It also used a speech recognition system with a limited
grammar for accurate recognition.

Kanda et al. [11] used radio frequency ID (RFID) tags to
track children in an elementary school using a mobile robot.
The robot tracked multiple children at one time, but only
actively interacted with them when approached.

The CMU Nursebot project used a mobile robot to help
guide elderly residents at a nursing home to their daily obli-
gations [13]. The project coupled human-robot dialog with
navigation also used on MINERVA [18] and RHINO [4]. The



robot used a hierarchical POMDP for dialog management in
the face of uncertainty in speech recognition [14].

Human activity tracking and understanding is a well-
studied problem in machine vision [16], typically not used
for on-line real-time applications such as HRI. Laser range
finders have also been used for user tracking, with both
stationary and mobile robot platforms. Fod et al. [10] used a
Kalman Filter to track people from the combination of several
overlapping laser scans. In a complementary approach, Yan &
Matari¢ [19] used a particle filter approach to track people
and to model multi-robot and human movement in similar
indoor environments. Both methods were intended for on-
line activity modeling.

Lang et al. [12] implemented a system combining data
from a laser range-finder, face recognition, and a microphone
array for tracking multiple people using a mobile robot. The
robot maintained its focus of attention on one speaker at a
time until the speaker yielded to another.

In the work described here, we use proximity data, by
combining laser tracking and simple activity modeling, to
assess the desire of human subjects to interact with the robot.

I1l. APPROACH

Fig. 1. The mobile robot used in the experiments

A. Overview

The system we designed consists of a policy (developed
off-line) for determining candidates for interaction, a set of
sensors to determine beliefs about the people that the robot
is attempting to interact with, and a set of behaviors for
exhibiting the robot’s desires and intentions to the selected
targets for interaction. Thus, the robot’s beliefs serve as inputs
into the selective interaction policy and the behaviors act as
the outputs of that policy.

B. Sdlective Interaction Policy

Joint intention theory provides a rich framework for HRI
policies and the foundation for our Selective Interaction
Policy. We begin by stating the formal definitions involved
in the policy, first developed by Smith et al. [15]. In JIT,
teams are formed when an agent = has a Persistent Weak
Achievement Goal (PWAG) with another agent y to achieve
p. By definition, if a PWAG(z,y,p,q) is held, then the
following conditions are met:

o p does not hold
« p is currently achievable
« the relativizing condition ¢ still holds

In JIT, ¢ is a relativizing condition for PWAG(z, y, p, q)
when x and y can only agree on a goal p if ¢ is true.
For our policy, the goal, p, is the interaction between a
human user and the robot. The condition ¢ is that the human
desires to interact with the robot. To form a team, that is
to commit to interaction between the robot and the human,
there must exist a PWAG(x, y, p, ¢) where z is the robot and
y is a person, as well as a PWAG(y, z, p, ¢). The constructed
conversation policy must be able to satisfy those conditions
in order to establish a proper commitment by both the robot
and a human.

An INFORM, written as INF(z, y, e, ¢), indicates a mutual
belief between the listening agent y and the informing agent
x that proposition ¢ is true. The action e is an event
demonstrating that belief.

SOFFER(z, y, a), a standing offer, is the means of forming
a team, as follows:

o x makes a conditional offer to y to do a, revealing that
2 will have a PWAG toward y to do «;

« y can either INFORM =« about his/her intentions toward
x or stay silent. Silence implies a refusal to do the
proposed task;

o if y confirms to x (using an INFORM) that y will do a,
then a team is formed from mutual PWAGs.

For the purposes of our experiment, z is the robot and y
is a human. The robot makes a standing offer to a human
it observes and wishes to interact with (p). If the person
then acknowledges that s/he desires to interact with the robot
(¢), then a team (consisting of the human and the robot)
is formed. If the human stays silent or declines, then the
robot assumes that s/he does not desire to interact. As a final
alternative, the person can refer the robot to another person
on the scene.

For this experiment, p refers to the robot approaching
the chosen human target in order to initiate an interaction.
However, p could be anything that the robot designer assigns
as the goal. If multiple team activities can be accomplished
by the human-robot team, the robot and human can negotiate
among a variety of possible p’s.



C. Sensing

The sensors on the robot are used to determine whether
the human (y) is trying to inform the robot (z) about her/his
goals. This information falls into one of five categories:

o INFORM-YES: The person wants to interact with the
robot. The condition ¢ is true for y.

o INFORM-NO: The human does not want to interact with
the robot. The condition ¢ is false for y.

o REFER-LEFT: The person to the left of y wants to
interact with the robot. The condition ¢ is false for v,
but true for the human z to the left of y.

o REFER-RIGHT: The person to the right of y wants to
interact with the robot. The condition ¢ is false for y,
but true for the human z to the right of y.

o SILENCE: No reaction from y. This is an important
condition, since, due to perceptual uncertainty, objects
in the environment and other robots could potentially be
confused for people. No reaction over time makes the
robot move on to a more responsive target.

Each of the following sensors can classify the observed
behavior of y into one of the above categories, thereby
producing the belief of x based on the perceived state of
Y.

1) Laser-based person tracking: We used laser-based leg
finding as a robust means of detecting people. The leg tracker
looks for appropriately-sized leg-shaped occlusions in the
laser scan. When legs are identified, they are grouped into
pairs that are classified as a fiducial. The fiducial is then
translated from robot-centric coordinates to world coordinates
for ease of tracking while the robot and the target are both
moving.

Detected leg fiducials are tracked continually. Any newly
found fiducials are added to the tracker and correlated with
existing ones. We have validated tracking of up to four
people. A reasonable moving speed (< 1.5 meters/second)
is used as a heuristic to eliminate false positives.

Based on the fiducial tracking, if a person is seen to
be moving closer to the robot, that action is interpreted as
INFORM-YES. This classification is based on the assumption
that a person moves closer to the robot to indicate that s/he
wants to interact with it.

Analogously, if a person is observed to be moving away
from the robot, that action is interpreted as an INFORM-
NO, based on the assumption that moving away is a sign
of avoiding interacting with the robot. Finally, if the person
remains relatively still (heuristically set at moving < 50
cms/second), that lack of action is interpreted as SILENCE.

The laser range finder provides no means for the robot
to sense gestures or other user indications of interacting with
another person, i.e., one to the left or right of the user. While
the laser is not useful for the PERSON-LEFT and PERSON-
RIGHT conditions, it was the only sensor available that could
attend to more than one target at once, given its 180-degree

Fig. 2. People (boxes) identified from a laser scan (blue line)

field of view. This capability is critical for interaction target
selection, the goal of our HRI system.

2) Speech Recognition: In our experiment, speech recog-
nition was less reliable than laser-based sensing. We used
Carnegie Mellon University’s Sphinx system for speech
recognition with a Shure 503-BG microphone for audio
recording. The microphone was designed for speech recog-
nition in noisy environments; it has a frequency response
that favors human speech and is directional so that, if aimed
correctly, it effectively picks up the targeted person’s speech
and little else. The accuracy of speech recognition in our
work was offset by the limited ability to listen to multiple
users: the microphone worked on one person at a time.

The robot was programmed to aim the microphone in the
direction of the targeted user (the closest one, or, if s/he
refused the interaction, then the next closes, and so on).
When a speech utterance was detected, it was decoded (by
Sphinx) into a sentence, and parsed for keywords (from a
limited vocabulary shown in Table I) that indicate the user’s
intentions. When no utterance was detected, the SILENCE
condition was selected, which is interpreted to mean refusal
to interact with the robot. This choice is effective in the
context of our experiment, but is not general, since silence
could have other meanings in different domains.

3) Gesture Recognition: To simplify gesture recognition,
we used a brightly colored square that could be easily
detected and tracked by the robot’s Sony PTZ camera. Bright
pink color was effective as it was not easily confused with
other colors normally present in indoor environments, such
as various skin tones and typical wall paint colors. If the
system were deployed in a classroom, the teacher could use
such an object as a “control wand” for interactive control of
the robot.

We used the ActivMedia CTS color-blob finder tuned to
bright pink to find the control wand in the image. The



Words

LEFT

TURN LEFT
RIGHT

TURN RIGHT
COME HERE
MOVE FORWARD

| LIKE YOU

YES

GO AWAY

MOVE BACKWARD
TURN AROUND
BUZZ OFF

NO

<< SILENCE >>

Meaning
REFER-LEFT

REFER-RIGHT

INFORM-YES

INFORM-NO

TABLE |
VOCABULARY AND INFERRED MEANINGS

blobs were found, tracked, and their direction determined and
classified in four general categories: UP, DOWN, LEFT, and
RIGHT. SILENCE was selected if no blobs were detected,
or if the blob was not moving enough (empirically set at 0.2
m/s) to be considered a gesture.

The position of the blob in the image was tracked over time
and an average vector of the past 10 frames of movement was
calculated, to reduce tracking noise. If the direction of the
average vector was within 45° of the haorizontal, the gesture
was selected as LEFT or RIGHT. If the direction of the
average vector was within 45° of the vertical, the gesture
was either UP or DOWN.

RIGHT and LEFT motions were mapped to REFER-
RIGHT and REFER-LEFT, while DOWN and UP motions
were mapped to INFORM-YES and INFORM-NO, respec-
tively.

D. Expressive Behaviors

A simple HRI system may only employ the above percep-
tual capabilities in order to interact with the user and select
targets. However, for the more sophisticated policy described
above, which involves human-robot team formation, the robot
must indicate to potential targets that it is interested in
interacting with them. While this may not seem necessary
in one-on-one HRI, it is imperative in crowded situations
such as classrooms. Thus, we employed artificially generated
speech and active vision to provide the user with a notion of
the robot’s intentions.

1) Active Vision: It is crucial for the targeted person to
know that the robot is speaking to him/her rather than any
other person present in the vicinity. To that end, we employed
a primitive active vision system; we used the bearing of the
targeted person as obtained from the laser tracker to direct
the camera and the microphone mounted on on top of it.

We also used the range provided by the laser to properly
set the tilt and zoom of the camera so that gesture recognition

Fig. 3. Robot engaging user by aiming camera and microphone at target

could be performed effectively even at longer distances,
between 2.5m and 3.5m.

The ability to appropriately adjust the camera’s pan, tilt,
and zoom toward the user is highly effective in indicating to
the person being targeted that the robot is selectively paying
attention to him/her [1]. More practically, it also allowed the
system to train the camera and microphone on the person for
continued tracking.

2) Speech Synthesis: Speech synthesis is important be-
cause it is effective in encouraging the human user to speak
to the robot and interact with it. For this to be so, the robot’s
speech must be understandable. We found that traditional
artificial speech solutions, such as Festival [5], can be hard for
users to understand. In contrast, a pre-recorded human voice
has been effective in assistive and interactive robot domains
[8]. Some suggest, however, that in order to provide accurate
expectations of a robot’s capabilities, the robot should sound
more mechanical than human [7].

Thus, we used the AT&T text-to-speech system [3] for
speech expression, which translates text to a list of phonemes
and creates a .wav file by piecing together recorded phonemes
in the correct order. The result was an understandable while
still mechanical-sounding voice.

3) Rabot Movement: Using the robot’s capability of move-
ment, “body language”, and use of shared space are key yet
under-explored components of HRI that separate it from HCI.
In our system, the robot communicated its intentions through
movement as well as speech. The robot turned toward a
targeted person to show interest, it moved toward the person
to show commitment to an interaction, it approached the



human when mutual interest in interaction was agreed upon
and thus a human-robot team formed.

IV. SYSTEM PERFORMANCE

We first describe the performance of each sensor modality
involved in HRI individually, then evaluate the system as a
whole.

A. Laser Leg Tracking

We evaluated the leg finding and tracking algorithm based
on its ability to recognize and track people present in the
environment. It performed highly reliably when the people in
the scene were more than 1m apart. It was able to correctly
identify people, and track their positions 95% of the tracking
time. When people became too close to each other, it was
too difficult to distinguish between them. As a result, in the
majority of our trials, we kept the participants at least 1 meter
apart.

Fig. 4. Tracking of people (boxes) and their histories (trail).

B. Speech Recognition

We tested the speech recognition system by repeating
several phrases at varying distances. This sensory modality
had the worst performance in our system. It performed well
when the microphone was placed near the speaker’s mouth
(within the range of 0.5-1.5 meters), but since the task also
involved interacting with users that were not very close to
the robot, those situations resulted in speech recognition
system failures, i.e., the inability to recognize the words from
the vocabulary (shown in Table I). Quantitatively, we found
that the recognition rate was approximately 82% at close
ranges (as per above); it dropped to approximately 62.5%
at distances over 3 meters.

We did not have human users significantly raise their
voices when interacting with the robot and thus have no
data on the effect of that strategy for dealing with speech
recognition limitations at a distance.

Accuracy (%) 0.5+
0.4
0.3
0.2+

0.14

%% T

) T 18 d 24 T 3 T 36

Distance (m)

Fig. 5. Speech recognition accuracy vs. distance

It should be noted that Lang et al. [12] successfully used
sound-source localization for calling a robot in a crowded
room. This suggests that while accurate speech processing at
a distance may not be effective, sound-source localization is
very promising in this type of HRI context.

C. Gesture Recognition

Gesture recognition alone was as reliable as speech recog-
nition. Because of the camera’s ability to zoom, user distance
was not a significant issue. In a repeated test of gestures, the
system averaged to correctly recognize 32 out of 40 gestures
(80%). At ranges beyond 2.5m, the recognition rate dropped
by 20%.

D. Evaluation of the Selective Interaction Policy

To evaluate the system as a whole, we assessed how
frequently the robot selected the most appropriate action
when faced with varying situations. The most appropriate
action was defined as approaching the person who took an
active interest in interacting with the robot. We evaluated the
system by having a person attempt to “guide” the robot to
the most willing target, if any. The people involved in the
experiment agreed a priori who would be willing to interact
and who would not, and steered the robot to the willing
individual through the use of gestures and speech. In some
cases there was no willing individual.

When the robot was tested with only one person in the
scene, it selected the correct interaction behavior 80% of
the time (8 out of 10 trials). The correct behavior refers to
approaching the appropriate (willing to interact) person and
not approaching an inappropriate (unwilling to interact) one.
The trials were divided into blocks, half of which involved a
user willing to interact, and half of which involved no such
willing user.

When the robot was tested with multiple people in the
environment, the accuracy was reduced to approximately
67% (20 out of 30 trials). Most of the mistakes (60%) were
due to speech recognition errors. Additionally, in four of the



trials (13% of the time, 25% of the errors), the robot’s person
tracker confused two of the people in the scene, resulting in
tracking or approaching the wrong person.

We also assessed how often the robot selected people
vs. false positives (i.e., objects in the environment). Since
objects never gave any indication of a desire to interact (no
movement, gesture, or speech), the robot never approached
them.

V. FUTURE WORK

Pragmatic improvements to the system involve the use of a
more robust tracking algorithm and an alternative to speech
recognition at a distance. For the former, algorithms such
as [10], [19], [17] are suitable candidates. The ability to
track robustly will only grow in importance in real-world
settings, such as classrooms where children are likely to
swarm around the robot rather than approach it gradually
and in an organized fashion. For the latter, since speech
recognition at a distance is an open problem, sound-source
localization [12] is likely to be more effective for the assistive
interactive robotics applications we are interested in.

In [9], socially assistive robotics was discussed as human-
robot interaction with the goal of assisting people. Such goal-
driven human-robot interaction requires a strong model to
support it. Joint Intention Theory can be used to model other
tasks more complex than the one described in this paper.
Since the theory directly addressed interaction between two
agents for the sake of forming a team to achieve a goal [15],
it is very well suited for use in socially assistive robotics.

For example, Breazeal [2] used joint intention theory to
form a policy for interaction between a robot and a teacher
trying to show the robot how to manipulate a device correctly.
The roles of teacher and student could be reversed so that the
robot is teaching a person. An educational robot would be
of great use in a classroom, as well as in skill (re)learning
post-stroke.

VI. CONCLUSION

We have presented an HRI system that uses multiple
sensory modalities to determine if a user is interested in
interacting with the robot. We made use of a selective
interaction policy to approach targets that are believed, by
the robot, to be most appropriate for interaction.

Since the key distinguishing feature of robots from non-
embodied devices is their physical mobility, the use of
mobility and embodiment as explicit tools for interaction
validates key principles of HRI.
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