
A Verified Information-Flow Architecture

Arthur Azevedo de Amorim1 Nathan Collins2 André DeHon1 Delphine Demange1

Cătălin Hriţcu1,3 David Pichardie3,4 Benjamin C. Pierce1 Randy Pollack4 Andrew Tolmach2

1University of Pennsylvania 2Portland State University 3INRIA 4Harvard University

Abstract
SAFE is a clean-slate design for a highly secure computer sys-
tem, with pervasive mechanisms for tracking and limiting infor-
mation flows. At the lowest level, the SAFE hardware supports
fine-grained programmable tags, with efficient and flexible prop-
agation and combination of tags as instructions are executed. The
operating system virtualizes these generic facilities to present an
information-flow abstract machine that allows user programs to la-
bel sensitive data with rich confidentiality policies. We present a
formal, machine-checked model of the key hardware and software
mechanisms used to control information flow in SAFE and an end-
to-end proof of noninterference for this model.

Categories and Subject Descriptors D.4.6 [Security and Protec-
tion]: Information flow controls; D.2.4 [Software Engineering]:
Software/Program Verification

Keywords security; clean-slate design; tagged architecture;
information-flow control; formal verification; refinement

1. Introduction
The SAFE design is motivated by the conviction that the insecurity
of present-day computer systems is due in large part to legacy
design decisions left over from an era of scarce hardware resources.
The time is ripe for a complete rethink of the entire system stack
with security as the central focus. In particular, designers should be
willing to spend more of the abundant processing power available
on today’s chips to improve security.

A key feature of SAFE is that every piece of data, down to the
word level, is annotated with a tag representing policies that govern
its use. While the tagging mechanism is very general, one partic-
ularly interesting use of tags is for representing information-flow
control (IFC) policies. For example, an individual record might be
tagged “This information should only be seen by principals Alice
or Bob,” a function pointer might be tagged “This code is trusted to
work with Carol’s secrets,” or a string might be tagged “This came
from the network and has not been sanitized yet.” Such tags repre-
senting IFC policies can involve arbitrary sets of principals, and
principals themselves can be dynamically allocated to represent an
unbounded number of entities within and outside the system.

At the programming-language level, rich IFC policies have been
extensively explored, with many proposed designs for static [19,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2544-8/14/01.
http://dx.doi.org/10.1145/2535838.2535839

40, etc.] and dynamic [3, 20, 39, 44, etc.] enforcement mecha-
nisms and a huge literature on their formal properties [19, 40, etc.].
Similarly, operating systems with information-flow tracking have
been a staple of the OS literature for over a decade [28, etc.]. But
progress at the hardware level has been more limited, with most
proposals concentrating on hardware acceleration for taint-tracking
schemes [12, 15, 45, 47, etc.]. SAFE extends the state of the art
in two significant ways. First, the SAFE machine offers hardware
support for sound and efficient purely-dynamic tracking of both ex-
plicit and implicit flows (i.e., information leaks through both data
and control flow) for arbitrary machine code programs—not just
programs accepted by static analysis, or produced by translation
or transformation. Moreover, rather than using just a few “taint
bits,” SAFE associates a word-sized tag to every word of data in
the machine—both memory and registers. In particular, SAFE tags
can be pointers to arbitrary data structures in memory. The inter-
pretation of these tags is left entirely to software: the hardware just
propagates tags from operands to results as each instruction is exe-
cuted, following software-defined rules. Second, the SAFE design
has been informed from the start by an intensive effort to formal-
ize critical properties of its key mechanisms and produce machine-
checked proofs, in parallel with the design and implementation of
its hardware and system software. Though some prior work (sur-
veyed in §12) shares some of these aims, to the best of our knowl-
edge no project has attempted this combination of innovations.

Abstractly, the tag propagation rules in SAFE can be viewed as
a partial function from argument tuples of the form (opcode, pc tag,
argument1 tag, argument2 tag, . . . ) to result tuples of the form (new
pc tag, result tag), meaning “if the next instruction to be executed
is opcode, the current tag of the program counter (PC) is pc tag,
and the arguments expected by this opcode are tagged argument1
tag, etc., then executing the instruction is allowed and, in the new
state of the machine, the PC should be tagged new pc tag and any
new data created by the instruction should be tagged result tag.”
(The individual argument-result pairs in this function’s graph are
called rule instances, to distinguish them from the symbolic rules
used at the software level.) In general, the graph of this function
in extenso will be huge; so, concretely, the hardware maintains a
cache of recently-used rule instances. On each instruction dispatch
(in parallel with the logic implementing the usual behavior of
the instruction—e.g., addition), the hardware forms an argument
tuple as described above and looks it up in the rule cache. If the
lookup is successful, the result tuple includes a new tag for the
PC and a tag for the result of the instruction (if any); these are
combined with the ordinary results of instruction execution to yield
the next machine state. Otherwise, if the lookup is unsuccessful, the
hardware invokes a cache fault handler—a trusted piece of system
software with the job of checking whether the faulting combination
of tags corresponds to a policy violation or whether it should be
allowed. In the latter case, an appropriate rule instance specifying
tags for the instruction’s results is added to the cache, and the
faulting instruction is restarted. Thus, the hardware is generic and
the interpretation of policies (e.g., IFC, memory safety or control

http://dx.doi.org/10.1145/2535838.2535839


flow integrity) is programmed in software, with the results cached
in hardware for common-case efficiency.

The first contribution of this paper is to explain and formalize, in
Coq, the key ideas in this design via a simplified model of the SAFE
machine, embodying its tagging mechanisms in a distilled form and
focusing on enforcing IFC using these general mechanisms. In §2,
we outline the features of the full SAFE system and enumerate the
most significant simplifications in our model. To streamline the ex-
position, most of the paper describes a further-simplified version
of the system, deferring to §11 the discussion of the more sophis-
ticated memory model and IFC label representation that we have
actually formalized in Coq. We begin by defining a very simple
abstract IFC machine with a built-in, purely dynamic IFC enforce-
ment mechanism and an abstract lattice of IFC labels (§3). We then
show, in three steps, how this abstract machine can be implemented
using the low-level mechanisms we propose. The first step intro-
duces a symbolic IFC rule machine that reorganizes the semantics
of the abstract machine, splitting out the IFC enforcement mech-
anism into a separate judgment parameterized by a symbolic IFC
rule table (§4). The second step defines a generic concrete machine
(§5) that provides low-level support for efficiently implementing
many different high-level policies (IFC and others) with a combi-
nation of a hardware rule cache and a software fault handler. The
final step instantiates the concrete machine with a concrete fault
handler enforcing IFC. We do this using an IFC fault handler gen-
erator (§6), which compiles the symbolic IFC rule table into a se-
quence of machine instructions implementing the IFC enforcement
judgment.

Our second contribution is a machine-checked proof that this
simplified SAFE system is correct and secure, in the sense that
user code running on the concrete machine equipped with the IFC
fault handler behaves the same way as on the abstract machine and
enjoys the standard noninterference property that “high inputs do
not influence low outputs.” The interplay of the concrete machine
and fault handler is complex, so some proof abstraction is essen-
tial. In our proof architecture, a first abstraction layer is based on
refinement. This allows us to reason in terms of a high-level view
of memory, ignoring the concrete implementation of IFC labels,
while setting up the intricate indistinguishability relation used in
the noninterference proof. A second layer of abstraction is required
for reasoning about the correctness of the fault handler. Here, we
rely on a verified custom Hoare logic that abstracts from low-level
machine instructions into a reusable set of verified structured code
generators.

In §7 we prove that the IFC fault handler generator correctly
compiles a symbolic IFC rule table and a concrete representation
of an abstract label lattice into an appropriate sequence of machine
instructions. We then introduce a standard notion of refinement
(§8) and show that the concrete machine running the generated IFC
fault handler refines the abstract IFC machine and vice-versa, us-
ing the symbolic IFC rule machine as an intermediate refinement
point in each direction of the proof (§9). In our deterministic set-
ting, showing refinement in both directions guarantees that the con-
crete machine does not diverge or get stuck when handling a fault.
We next introduce a standard termination-insensitive noninterfer-
ence (TINI) property (§10) and show that it holds for the abstract
machine. Since deterministic TINI is preserved by refinement, we
conclude that the concrete machine running the generated IFC fault
handler also satisfies TINI. Finally, we explain how to accommo-
date two important features that are handled by our Coq develop-
ment but elided from the foregoing sections: dynamic memory al-
location and tags representing sets of principals (§11). We close
with a survey of related work (§12) and a discussion of future di-
rections (§13). We omit proofs and some parts of longer definitions;

a long version and a Coq script formalizing the entire development
are available at http://www.crash-safe.org.

2. Overview of SAFE
To establish context, we begin with a brief overview of the full
SAFE system, concentrating on its OS- and hardware-level fea-
tures. More detailed descriptions can be found elsewhere [14, 16,
17, 21, 22, 29, 34].

SAFE’s system software performs process scheduling, stream-
based interprocess communication, storage allocation and garbage
collection, and management of the low-level tagging hardware (the
focus of this paper). The goal is to organize these services as a col-
lection of mutually suspicious compartments following the princi-
ple of least privilege (a zero-kernel OS [43]), so that an attacker
would need to compromise multiple compartments to gain com-
plete control of the machine. It is programmed in a combination of
assembly and Tempest, a new low-level programming language.

The SAFE hardware integrates a number of mechanisms for
eliminating common vulnerabilities and supporting higher-level se-
curity primitives. To begin with, SAFE is (dynamically) typed at
the hardware level: each data word is indelibly marked as a num-
ber, an instruction, a pointer, etc. Next, the hardware is memory
safe: every pointer consists of a triple of base, bounds, and offset
(compactly encoded into 64 bits [17, 29]), and every pointer oper-
ation includes a hardware bounds check [29]. Finally, the hardware
associates each word in the registers and memory, as well as the
PC, with a large (59-bit) tag. The hardware rule cache, enabling
software-specified propagation of tags from operands to result on
each machine step, is implemented using a combination of multiple
hash functions to approximate a fully-associative cache [16].

An unusual feature of the SAFE design is that formal modeling
and verification of its core mechanisms have played a central role
in the design process since the beginning. The long-term goal—
formally specifying and verifying the entire set of critical runtime
services—is still some ways in the future, but key properties of
simplified models have been verified both at the level of Breeze [21]
(a mostly functional, security-oriented, dynamic language used for
user-level programming on SAFE) and, in the present work, at
the hardware and abstract machine level. Experiments are also
underway to use random testing of properties like noninterference
as a means to speed the design process [22].

Our goal in this paper is to develop a clear, precise, and math-
ematically tractable model of one of the main innovations in the
SAFE design: its scheme for efficiently supporting high-level data
use policies using a combination of hardware and low-level sys-
tem software. To make the model easy to work with, we simplify
away many important facets of the real SAFE system. In particular,
(i) we focus only on IFC and noninterference, although the tag-
ging facilities of the SAFE machine are generic and can be applied
to other policies (we return to this point in §13); (ii) we ignore
the Breeze and Tempest programming languages and concentrate
on the hardware and runtime services; (iii) we use a stack instead
of registers, and we distill the instruction set to just a handful of
opcodes; (iv) we drop SAFE’s fine-grained privilege separation in
favor of a more conventional user-mode / kernel-mode dichotomy;
(v) we shrink the rule cache to a single entry (avoiding issues of
replacement and eviction) and maintain it in kernel memory, ac-
cessed by ordinary loads and stores, rather than in specialized cache
hardware; (vi) we omit a large number of IFC-related concepts
(dynamic principals, downgrading, public labels, integrity, clear-
ance, etc.); (vii) we handle exceptional conditions, including poten-
tial security violations, by simply halting the whole machine; and
(viii) most importantly, we ignore concurrency, process scheduling,
and interprocess communication, assuming instead that the whole
machine has a single, deterministic thread of control. The absence

http://www.crash-safe.org


instr ::= Basic instruction set
| Add addition
| Output output top of stack
| Pushn push integer constant
| Load indirect load from data memory
| Store indirect store to data memory
| Jump unconditional indirect jump
| Bnzn conditional relative jump
| Call indirect call
| Ret return

Figure 1. Instruction set

of concurrency is a particularly significant simplification, given that
we are talking about an operating system that offers IFC as a ser-
vice. However, we conjecture that it may be possible to add con-
currency to our formalization, while maintaining a high degree of
determinism, by adapting the approach used in the proof of nonin-
terference for the seL4 microkernel [35, 36]. We return to this point
in §13.

3. Abstract IFC Machine
We begin the technical development by defining a very simple stack-
and-pointer machine with “hard-wired” dynamic IFC. This ma-
chine concisely embodies the IFC mechanism we want to provide
to higher-level software and serves as a specification for the sym-
bolic IFC rule machine (§4) and for the concrete machine (§5) run-
ning our IFC fault handler (§6). The three machines share a tiny
instruction set (Fig. 1) designed to be a convenient target for com-
piling the symbolic IFC rule table (the Coq development formalizes
several other instructions). All three machines use a fixed instruc-
tion memory ι, a partial function from addresses to instructions.

The machine manipulates integers (ranged over by n , m , and
p); unlike the real SAFE machine, we make no distinction between
raw integers and pointers (we re-introduce this distinction in §11).
Each integer is protected by an individual IFC label (ranged over by
L). We assume an arbitrary set of labels L equipped with a partial
order (≤), a least upper bound operation (∨), and a bottom element
(⊥). For instance we might take L to be the set of levels {⊥,>}
with⊥ ≤ > and⊥∨> = >. We call a pair of an integer n and its
protecting label L an atom, written n@L and ranged over by a .

An abstract machine state 〈µ [σ] pc〉 consists of a data memory
µ, a stack σ, and a program counter pc. (We sometimes drop the
outer brackets.) The data memory µ is a partial function from
integer addresses to atoms. We write µ(p) ← a for the memory
that coincides with µ everywhere except at p, where its value is
a. The stack σ is essentially a list of atoms, but we distinguish
stacks beginning with return addresses (written pc;σ) from ones
beginning with regular atoms (written a, σ). The program counter
(PC) pc is an atom whose label is used to track implicit flows, as
explained below.

The step relation of the abstract machine, written ι `
µ1 [σ1] pc1

α−→ µ2 [σ2] pc2, is a partial function taking a machine
state to a machine state plus an output action α, which can be ei-
ther an atom or the silent action τ . We generally omit ι from transi-
tions because it is fixed. Throughout the paper we study other, sim-
ilar relations, and consistently refer to non-silent actions as events
(ranged over by e).

The stepping rules in Fig. 2 adapt a standard purely dynamic
IFC enforcement mechanism [3, 39] to a low-level machine, fol-
lowing recent work by Hriţcu et al. [22]. The rule for Add joins (∨)
the labels of the two operands to produce the label of the result,
which ensures that the result is at least as classified as each of the
operands. The rule for Push labels the integer constant added to the
stack as public (⊥). The rule for Jump uses join to raise the label

ι(n) = Add

µ [n1@L1,n2@L2, σ] n@Lpc
τ−→

µ [(n1+n2)@(L1∨L2), σ] (n+1)@Lpc

ι(n) = Output

µ [m@L1, σ] n@Lpc
m@(L1∨Lpc)−−−−−−−−→ µ [σ] (n+1)@Lpc

ι(n) = Pushm

µ [σ] n@Lpc
τ−→ µ [m@⊥, σ] (n+1)@Lpc

ι(n) = Load µ(p) = m@L2

µ [p@L1, σ] n@Lpc
τ−→ µ [m@(L1∨L2), σ] (n+1)@Lpc

ι(n) = Store µ(p) = k@L3 L1∨Lpc ≤ L3

µ(p)← (m@L1∨L2∨Lpc) = µ′

µ [p@L1,m@L2, σ] n@Lpc
τ−→ µ′ [σ] (n+1)@Lpc

ι(n) = Jump

µ [n ′@L1, σ] n@Lpc
τ−→ µ [σ] n ′@(L1∨Lpc)

ι(n) = Bnz k n ′ = n+((m = 0)?1 : k)

µ [m@L1, σ] n@Lpc
τ−→ µ [σ] n ′@(L1∨Lpc)

ι(n) = Call

µ [n ′@L1, a, σ] n@Lpc
τ−→ µ [a, (n+1)@Lpc;σ] n ′@(L1∨Lpc)

ι(n) = Ret

µ [n ′@L1;σ] n@Lpc
τ−→ µ [σ] n ′@L1

Figure 2. Semantics of IFC abstract machine

of the PC by the label of the target address of the jump. Similarly,
Bnz raises the label of the PC by the label of the tested integer. In
both cases the value of the PC after the instruction depends on data
that could be secret, and we use the label of the PC to track the
label of data that has influenced control flow. In order to prevent
implicit flows (leaks exploiting the control flow of the program),
the Store rule joins the PC label with the original label of the writ-
ten integer and with the label of the pointer through which the write
happens. Additionally, since the labels of memory locations are al-
lowed to vary during execution, we prevent leaking information via
labels using a “no-sensitive-upgrade” check [3, 48] (the ≤ precon-
dition in the rule for Store). This check prevents memory locations
labeled public from being overwritten when either the PC or the
pointer through which the store happens have been influenced by
secrets. The Output rule labels the emitted integer with the join
of its original label and the current PC label.1 Finally, because of
the structured control flow imposed by the stack discipline, the rule
for Ret can soundly restore the PC label to whatever it was at the
time of the Call. (Readers less familiar with the intricacies of dy-
namic IFC may find some of these side conditions a bit mysterious.
A longer explanation can be found in [22], but the details are not
critical for present purposes.)

All data in the machine’s initial state are labelled (as in all ma-
chine states), and the simple machine manages labels to ensure non-
interference as defined and proved in §10. There are no instructions
that explicitly raise the label (classification) of an atom. Such an
instruction, joinP, is added to the machine in §11.

1 We assume the observer of the events generated by Output is constrained
by the rules of information flow—i.e., cannot freely “look inside” bare
events. In the real SAFE machine, atoms being sent to the outside world
need to be protected cryptographically; we are abstracting this away.



opcode allow erpc er
add TRUE LABpc LAB1 t LAB2
output TRUE LABpc LAB1 t LABpc
push TRUE LABpc BOT
load TRUE LABpc LAB1 t LAB2
store LAB1tLABpc v LAB3 LABpc LAB1 t LAB2 t LABpc
jump TRUE LAB1 t LABpc
bnz TRUE LAB1 t LABpc
call TRUE LAB1 t LABpc LABpc
ret TRUE LAB1

Figure 3. Rule tableRabs corresponding to abstract IFC machine

4. Symbolic IFC Rule Machine
In the abstract machine described above, IFC is tightly integrated
into the step relation in the form of side conditions on each in-
struction. In contrast, the concrete machine (i.e., the “hardware”)
described in §5 is generic, designed to support a wide range of
software-defined policies (IFC and other). The machine introduced
in this section serves as a bridge between these two models. It is
closer to the abstract machine—indeed, its machine states and the
behavior of the step relation are identical. The important difference
lies in the definition of the step relation, where all the IFC-related
aspects are factored out into a separate judgment. While factoring
out IFC enforcement into a separate reference monitor is common-
place [2, 39, 41], our approach goes further. We define a small DSL
for describing symbolic IFC rules and obtain actual monitors by
interpreting this DSL (in this section) and by compiling it into ma-
chine instructions using verified structured code generators (in §6
and §7).

More formally, each stepping rule of the new machine includes
a uniform call to an IFC enforcement relation, which itself is pa-
rameterized by a symbolic IFC rule table R. Given the labels of
the values relevant to an instruction, the IFC enforcement relation
(i) checks whether the execution of that instruction is allowed in
the current configuration, and (ii) if so, yields the labels to put on
the resulting PC and on any resulting value. This judgment has the
form `R (Lpc, `1, `2, `3) ;opcode Lrpc, Lr , where R is the rule
table and opcode is the kind of instruction currently executing.

For example, the stepping rule for Add

ι(n) = Add `R (Lpc,L1,L2, ) ;add Lrpc, Lr

µ [n1@L1,n2@L2, σ] n@Lpc
τ−→

µ [(n1+n2)@Lr, σ] (n+1)@Lrpc

passes three inputs to the IFC enforcement judgment: Lpc, the
label of the current PC, and L1 and L2, the labels of the two
operands at the top of the stack. (The fourth element of the input
tuple is written as because it is not needed for Add.) The IFC
enforcement judgment produces two labels: Lrpc is used to label
the next program counter (n+ 1) and Lr is used to label the result
value. All the other stepping rules follow a similar scheme. (The
one for Store uses all four input labels.)

A symbolic IFC rule tableR describes a particular IFC enforce-
ment mechanism. For instance, the rule tableRabs corresponding to
the IFC mechanism of the abstract machine is shown in Fig. 3. In
general, a table R associates a symbolic IFC rule to each instruc-
tion opcode (formally,R is a total function). Each of these rules is
formed of three symbolic expressions: (i) a boolean expression in-
dicating whether the execution of the instruction is allowed or not
(i.e., whether it violates the IFC enforcement mechanism); (ii) a
label-valued expression forLrpc, the label of the next PC; and (iii) a
label-valued expression for Lr , the label of the result value, if there
is one.

These symbolic expressions are written in a simple domain-
specific language (DSL) of operations over an IFC lattice. The

grammar of this DSL includes label variables LABpc , . . . , LAB3,
which correspond to the input labelsLpc, . . . ,L3; the constant BOT;
and the lattice operators t (join) and v (flows).

The IFC enforcement judgment looks up the corresponding
symbolic IFC rule in the table and directly evaluates the symbolic
expressions in terms of the corresponding lattice operations. The
definition of this interpreter is completely straightforward; we omit
it for brevity. In contrast, in §6 we compile this rule table into the
IFC fault handler for the concrete machine.

5. Concrete Machine
The concrete machine provides low-level support for efficiently im-
plementing many different high-level policies (IFC and others) with
a combination of a hardware rule cache and a software cache fault
handler. In this section we focus on the concrete machine’s hard-
ware, which is completely generic, while in §6 we describe a spe-
cific fault handler corresponding to the IFC rules of the symbolic
rule machine.

The concrete machine has the same general structure as the
more abstract ones, but differs in several important respects. One
is that it annotates data values with integer tags T, rather than with
labels L from an abstract lattice; thus, the concrete atoms a in the
data memories and the stack have the form n@T. Similarly, a con-
crete action α is either a concrete atom or the silent action τ . Using
plain integers as tags allows us to delegate their interpretation en-
tirely to software. In this paper we focus solely on using tags to
implement IFC labels, although they could also be used for enforc-
ing other policies, such as type and memory safety or control-flow
integrity. For instance, to implement the two-point abstract lattice
with ⊥ ≤ >, we could use 0 to represent ⊥ and 1 to represent
>, making the operations ∨ and ≤ easy to implement (see §6).
For richer abstract lattices, a more complex concrete representa-
tion might be needed; for example, a label containing an arbitrary
set of principals might be represented concretely by a pointer to
an array data structure (see §11). In places where a tag is needed
but its value is irrelevant, the concrete machine uses a specific but
arbitrary default tag value (e.g., -1), which we write TD.

A second important difference is that the concrete machine has
two modes: user mode (u), for executing the ordinary user program,
and kernel mode (k), for handling rule cache faults. To support these
two modes, the concrete machine’s state contains a privilege bit
π, a separate kernel instruction memory φ, and a separate kernel
data memory κ, in addition to the user instruction memory ι, the
user data memory µ, the stack σ, and the PC. When the machine is
operating in user mode (π = u), instructions are looked up using
the PC as an index into ι, and loads and stores use µ; when in kernel
mode (π = k), the PC is treated as an index into φ, and loads and
stores use κ. As before, since ι and φ are fixed, we normally leave
them implicit.

The concrete machine has the same instruction set as the previ-
ous ones, allowing user programs to be run on all three machines
unchanged. But the tag-related semantics of instructions depends
on the privilege mode, and in user mode the semantics further de-
pends on the state of the rule cache. In the real SAFE machine, the
rule cache may contain thousands of entries and is implemented
as a separate near-associative memory [16] accessed by special in-
structions. Here, for simplicity, we use a cache with just one en-
try, located at the start of kernel memory, and use Load and Store
instructions to manipulate it; indeed, until §11, it constitutes the
entirety of κ.

The rule cache holds a single rule instance, represented graph-
ically like this: opcode Tpc T1 T2 T3 Trpc Tr . Location 0
holds an integer representing an opcode. Location 1 holds the PC
tag. Locations 2 to 4 hold the tags of any other arguments needed
by this particular opcode. Location 5 holds the tag that should go



on the PC after this instruction executes, and location 6 holds the
tag for the instruction’s result value, if needed. For example, sup-
pose the cache contains add 0 1 1 -1 0 1 . (Note that we are
showing just the “payload” part of these seven atoms; by conven-
tion, the tag part is always TD, and we do not display it.) If 0 is the
tag representing the label ⊥, 1 represents >, and -1 is the default
tag TD, this can be interpreted abstractly as follows: “If the next
instruction is Add, the PC is labeled ⊥, and the two relevant argu-
ments are both labeled >, then the instruction should be allowed,
the label on the new PC should be ⊥, and the label on the result of
the operation is >.”

There are two sets of stepping rules for the concrete machine
in user mode; which set applies depends on whether the current
machine state matches the current contents of the rule cache. In the
“cache hit” case the instruction executes normally, with the cache’s
output determining the new PC tag and result tag (if any). In the
“cache miss” case, the relevant parts of the current state (opcode,
PC tag, argument tags) are stored into the input part of the single
cache line and the machine simulates a Call to the fault handler.

To see how this works in more detail, consider the two user-
mode stepping rules for the Add instruction.

ι(n) = Add κ = add Tpc T1 T2 TD Trpc Tr

u κ µ [n1@T1,n2@T2, σ] n@Tpc
τ−→

u κ µ [(n1+n2)@Tr, σ] n+1@Trpc

ι(n) = Add κi 6= add Tpc T1 T2 TD = κj

u [κi, κo] µ [n1@T1,n2@T2, σ] n@Tpc
τ−→

k [κj , κD] µ [(n@Tpc, u);n1@T1,n2@T2, σ] 0@TD

In the first rule (cache hit), the side condition demands that the input
part of the current cache contents have form add Tpc T1 T2 TD ,
where Tpc is the tag on the current PC, T1 and T2 are the tags on
the top two atoms on the stack, and the fourth element is the default
tag. In this case, the output part of the rule, Trpc Tr , determines
the tag Trpc on the PC and the tag Tr on the new atom pushed onto
the stack in the next machine state.

In the second rule (cache miss), the notation [κi, κo] means “let
κi be the input part of the current rule cache and κo be the output
part.” The side condition says that the current input part κi does
not have the desired form add Tpc T1 T2 TD , so the machine
needs to enter the fault handler. The next machine state is formed
as follows: (i) the input part of the cache is set to the desired form
κj and the output part is set to κD , TD TD ; (ii) a new return
frame is pushed on top of the stack to remember the current PC and
privilege bit (u); (iii) the privilege bit is set to k (which will cause
the next instruction to be read from the kernel instruction memory);
and (iv) the PC is set to 0, the location in the kernel instruction
memory where the fault handler routine begins.

What happens next is up to the fault handler code. Its job is
to examine the contents of the first five kernel memory locations
and either (i) write appropriate tags for the result and new PC into
the sixth and seventh kernel memory locations and then perform a
Ret to go back to user mode and restart the faulting instruction, or
(ii) stop the machine by jumping to an invalid PC (-1) to signal that
the attempted combination of opcode and argument tags is illegal.
This mechanism is general and can be used to implement many
different high-level policies (IFC and others).

In kernel mode, the treatment of tags is almost completely
degenerate: to avoid infinite regress, the concrete machine does not
consult the rule cache while in kernel mode. For most instructions,
tags read from the current machine state are ignored (indicated
by ) and tags written to the new state are set to TD. This can be

seen for instance in the kernel-mode step rule for addition

φ(n) = Add

k κ µ [n1@ ,n2@ , σ] n@
τ−→

k κ µ [(n1+n2)@TD, σ] n+1@TD

The only significant exception to this pattern is Ret, which takes
both the privilege bit and the new PC (including its tag!) from the
return frame at the top of the stack. This is critical, since a Ret
instruction is used to return from kernel to user mode when the
fault handler has finished executing.

φ(n) = Ret

k κ µ [(n ′@T1, π);σ] n@
τ−→ π κ µ [σ] n ′@T1

A final point is that Output is not permitted in kernel mode,
which guarantees that kernel actions are always the silent action τ .

6. Fault Handler for IFC
Now we assemble the pieces. A concrete IFC machine implement-
ing the symbolic rule machine defined in §4 can be obtained by
installing appropriate fault handler code in the kernel instruction
memory of the concrete machine presented in §5. In essence, this
handler must emulate how the symbolic rule machine looks up
and evaluates the DSL expressions in a given IFC rule table. We
choose to generate the handler code by compiling the lookup and
DSL evaluation relations directly into machine code. (An alterna-
tive would be to represent the rule table as abstract syntax in the
kernel memory and write an interpreter in machine code for the
DSL, but the compilation approach seems to lead to simpler code
and proofs.)

The handler compilation scheme is given (in part) in Fig. 4.
Each gen∗ function generates a list of concrete machine instruc-
tions; the sequence generated by the top-level genFaultHandler is
intended to be installed starting at location 0 in the concrete ma-
chine’s kernel instruction memory. The implicit addr∗ parameters
are symbolic names for the locations of the opcode and various
tags in the concrete machine’s rule cache, as described in §5. The
entire generator is parameterized by an arbitrary rule table R. We
make heavy use of the (obvious) encoding of booleans where false
is represented by 0 and true by any non-zero value. We omit the
straightforward definitions of some of the leaf generators.

The top-level handler works in three phases. The first phase,
genComputeResults, does most of the work: it consists of a large
nested if-then-else chain, built using genIndexedCases, that com-
pares the opcode of the faulting instruction against each possible
opcode and, on a match, executes the code generated for the corre-
sponding symbolic IFC rule. The code generated for each symbolic
IFC rule (by genApplyRule) pushes its results onto the stack: a flag
indicating whether the instruction is allowed and, if so, the result-
PC and result-value tags. This first phase never writes to memory
or transfers control outside the handler; this makes it fairly easy to
prove correct.

The second phase, genStoreResults, reads the computed results
off the stack and updates the rule cache appropriately. If the result
indicates that the instruction is allowed, the result PC and value tags
are written to the cache, and true is pushed on the stack; otherwise,
nothing is written to the cache, and false is pushed on the stack.

The third and final phase of the top-level handler tests the
boolean just pushed onto the stack and either returns to user code
(instruction is allowed) or jumps to address -1 (disallowed).

The code for symbolic rule compilation is built by straightfor-
ward recursive traversal of the rule DSL syntax for label-valued
expressions (genELab) and boolean-valued expressions (genBool).
These functions are (implicitly) parameterized by lattice-specific
generators genBot, genJoin, and genFlows. To implement these



genFaultHandlerR = genComputeResultsR ++

genStoreResults ++

genIf [Ret] [Push (-1); Jump]

genComputeResultsR =
genIndexedCases [] genMatchOp (genApplyRule ◦ RuleR) opcodes

genMatchOp op =
[Push op] ++ genLoadFrom addrOpLabel ++ genEqual

genApplyRule 〈allow , erpc, er〉 = genBool allow ++

genIf (genSome (genELab erpc ++ genELab er)) genNone

genELab BOT = genBot
LABi = genLoadFrom addrTagi
LE1 t LE2 = genELab LE2 ++ genELab LE1 ++ genJoin

genBool TRUE = genTrue
LE1 v LE2 = genELab LE2 ++ genELab LE1 ++ genFlows

genStoreResults =
genIf (genStoreAt addrTagr ++ genStoreAt addrTagrpc ++ genTrue)

genFalse

genIndexedCases genDefault genGuard genBody = g
where g nil = genDefault

g (n :: ns) = genGuard n ++ genIf (genBody n) (g ns)

genIf t f = genSkipIf (length f ′) ++ f ′ ++ t
where f ′ = f ++ genSkip(length t)

genSkip n = genTrue ++ genSkipIf n
genSkipIf n = [Bnz (n+1)]

opcodes = add :: output :: . . . :: ret :: nil

Figure 4. Generation of fault handler from IFC rule table.

generators for a particular lattice, we first need to choose how to
represent abstract labels as integer tags, and then determine a se-
quence of instructions that encodes each operation. We call such
an encoding scheme a concrete lattice. For example, the abstract
labels in the two-point lattice can be encoded like booleans, rep-
resenting ⊥ by 0, > by non-0, and instantiating genBot, genJoin,
and genFlows with code for computing false, disjunction, and im-
plication, respectively. A simple concrete lattice like this can be for-
malized as a tuple CL = (Tag, Lab, genBot, genJoin, genFlows),
where the encoding and decoding functions Lab and Tag satisfy
Lab ◦Tag = id; to streamline the exposition, we assume this form
of concrete lattice for most of the paper. The more realistic encod-
ing in §11 will require a more complex treatment.

To raise the level of abstraction of the handler code, we make
heavy use of structured code generators; this makes it easier both
to understand the code and to prove it correct using a custom
Hoare logic that follows the structure of the generators (see §7). For
example, the genIf function takes two code sequences, representing
the “then” and “else” branches of a conditional, and generates
code to test the top of the stack and dispatch control appropriately.
The higher-order generator genIndexedCases takes a list of integer
indices (e.g., opcodes) and functions for generating guards and
branch bodies from an index, and generates code that will run the
guards in order until one of them computes true, at which point the
corresponding branch body is run.

7. Correctness of the Fault Handler Generator
We now turn our attention to verification, beginning with the fault
handler. We must show that the generated fault handler emulates the
IFC enforcement judgment `R (Lpc, `1, `2, `3) ;opcode Lrpc, Lr
of the symbolic rule machine. The statement and proof of correct-
ness are parametric over the symbolic IFC rule table R and con-

crete lattice, and hence over correctness lemmas for the lattice op-
erations.

Correctness statement LetR be an arbitrary rule table and φR ,
genFaultHandler R be the corresponding generated fault handler.
We specify how φR behaves as a whole—as a relation between
initial state on entry and final state on completion—using the rela-
tion φ ` cs1 →?

k cs2, defined as the reflexive transitive closure of
the concrete step relation, with the constraints that the fault handler
code is φ and all intermediate states (i.e., strictly preceding cs2)
have privilege bit k.

The correctness statement is captured by the following two
lemmas. Intuitively, if the symbolic IFC enforcement judgment
allows some given user instruction, then executing φR (stored
at kernel mode location 0) updates the cache to contain the tag
encoding of the appropriate result labels and returns to user-mode;
otherwise, φR halts the machine (pc = -1).

Lemma 7.1 (Fault handler correctness, allowed case). Suppose
that `R (Lpc, `1, `2, `3) ;opcode Lrpc, Lr and

κi = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then φR ` 〈k [κi, κo] µ [(pc, u);σ] 0@TD〉 →?
k

〈u [κi, κ
′
o] µ [σ] pc〉

with output cache κ′o = (Tag (Lrpc),Tag (Lr)) .

Lemma 7.2 (Fault handler correctness, disallowed case). Suppose
that `R (Lpc, `1, `2, `3) 6;opcode, and

κi = opcode Tag(Lpc) Tag(`1) Tag(`2) Tag(`3) .

Then, for some final stack σ′,

φR ` 〈k [κi, κo] µ [(pc, u);σ] 0@TD〉 →?
k

〈k [κi, κo] µ [σ′] -1@TD〉.

Proof methodology The fault handler is compiled by composing
generators (Fig. 4); accordingly, the proofs of these two lemmas
reduce to correctness proofs for the generators. We employ a cus-
tom Hoare logic for specifying the generators themselves, which
makes the code generation proof simple, reusable, and scalable.
This is where defining a DSL for IFC rules and a structured com-
piler proves to be very useful approach, e.g., compared to symbolic
interpretation of hand-written code.

Our logic comprises two notions of Hoare triple. The generated
code mostly consists of self-contained instruction sequences that
terminate by “falling off the end”—i.e., that never return or jump
outside themselves, although they may contain internal jumps (e.g.,
to implement conditionals). The only exception is the final step of
the handler (third line of genFaultHandler in Fig. 4). We therefore
define a standard Hoare triple {P} c {Q}, suitable for reasoning
about self-contained code, and use it for the bulk of the proof.
To specify the final handler step, we define a non-standard triple
{P} c {Q}Opc for reasoning about escaping code.

Self-contained-code Hoare triples The triple {P} c {Q}, where
P and Q are predicates on κ×σ, says that, if the kernel instruction
memory φ contains the code sequence c starting at the current PC,
and if the current memory and stack satisfy P , then the machine
will run (in kernel mode) until the PC points to the instruction im-
mediately following the sequence c, with a resulting memory and
stack satisfying Q . Note that the instruction memory φ is uncon-
strained outside of c, so if c is not self-contained, no triple about
it will be provable; thus, these triples obey the usual composition
laws. Also, because the concrete machine is deterministic, these
triples express total, rather than partial, correctness, which is essen-
tial for proving termination in lemmas 7.1 and 7.2. To aid automa-
tion of proofs about code sequences, we give triples in weakest-
precondition style.



We build proofs by composing atomic specifications of individ-
ual instructions, such as

P(κ, σ) := ∃n1 T1 n2 T2 σ
′. σ = n1@T1,n2@T2, σ

′

∧ Q(κ, ((n1+n2)@TD, σ
′))

{P} [Add] {Q} ,

with specifications for structured code generators, such as

P(κ, σ) := ∃n Tσ′. σ = n@T, σ′ ∧ (n 6= 0 =⇒ P1(κ, σ′))
∧(n = 0 =⇒ P2(κ, σ′))

{P1} c1 {Q} {P2} c2 {Q}
{P} genIf c1 c2 {Q}

.

(We emphasize that all such specifications are verified, not axiom-
atized as the inference rule notation might suggest.)

The concrete implementations of the lattice operations are also
specified using triples in this style.

P(κ, σ) := Q(κ, (Tag (⊥)@TD, σ))

{P} genBot {Q}

P(κ, σ) := ∃LL′ σ′. σ = Tag (L)@TD,Tag (L′)@TD, σ
′

∧ Q(κ,Tag (L∨L′)@TD, σ′)
{P} genJoin {Q}

P(κ, σ) := ∃LL′ σ. σ = Tag (L)@TD,Tag (L′)@TD, σ
′

∧ Q(κ, (if L ≤ L′ then 1 else 0)@TD, σ
′)

{P} genFlows {Q}
For the two-point lattice, it is easy to prove that the implemented

operators satisfy these specifications; §11 describes an analogous
result for a lattice of sets of principals.

Escaping-code Hoare triples To be able to specify the entire code
of the generated fault handler, we also define a second form of
triple, {P} c {Q}Opc , which specifies mostly self-contained, total
code c that either makes exactly one jump outside of c or returns
out of kernel mode. More precisely, if P and Q are predicates on
κ × σ and O is a function from κ × σ to outcomes (the constants
Success and Failure), then {P} c {Q}Opc holds if, whenever the
kernel instruction memory φ contains the sequence c starting at the
current PC, the current cache and stack satisfy P , and

• ifO computes Success then the machine runs (in kernel mode)
until it returns to user code at pc, and Q is satisfied.
• ifO computes Failure then the machine runs (in kernel mode)

until it halts (pc = −1 in kernel mode), and Q is satisfied.

To compose self-contained code with escaping code, we prove two
composition laws for these triples, one for pre-composing with
specified self-contained code and another for post-composing with
arbitrary (unreachable) code:

{P1} c1 {P2} {P2} c2 {P3}Opc
{P1} c1++c2 {P3}Opc

{P} c1 {Q}Opc
{P} c1++c2 {Q}Opc

We use these new triples to specify the Ret and Jump instruc-
tions, which could not be given useful specifications using the self-
contained-code triples, e.g.

P(κ, σ) := ∃σ′. Q(κ, σ′) ∧ σ = (pc, u);σ′

O(κ, σ) := Success

{P} [Ret] {Q}Opc
Everything comes together in verifying the fault handler. We

use contained-code triples to specify everything except for [Ret],
[Jump], and the final genIf, and then use the escaping-code triple
composition laws to connect the non-returning part of the fault
handler to the final genIf.

8. Refinement
We have two remaining verification goals. First, we want to show
that the concrete machine of §5 (running the fault handler of §6
compiled fromRabs) enjoys TINI. Proving this directly for the con-
crete machine would be dauntingly complex, so instead we show
that the concrete machine is an implementation of the abstract ma-
chine, for which noninterference will be much easier to prove (§10).
Second, since a trivial always-diverging machine also has TINI, we
want to show that the concrete machine is a faithful implementation
of the abstract machine that emulates all its behaviors.

We phrase these two results using the notion of machine refine-
ment, which we develop in this section, and which we prove in
§10 to be TINI preserving. In §9, we prove a two-way refinement
(one direction for each goal), between the abstract and concrete
machines, via the symbolic rule machine in both directions.

From here on we sometimes mention different machines (ab-
stract, symbolic rule, or concrete) in the same statement (e.g., when
discussing refinement), and sometimes talk about machines gener-
ically (e.g., when defining TINI for all our machines); for these
purposes, it is useful to define a generic notion of machine.

Definition 8.1. A generic machine (or just machine) is a 5-tuple
M = (S,E, I, · .−→ ·, Init), where S is a set of states (ranged
over by s), E is a set of events (ranged over by e), · .−→ · ⊆
S × (E + {τ}) × S is a step relation, and I is a set of input data
(ranged over by i) that can be used to build initial states of the
machine with the function Init ∈ I → S. We call E + {τ} the set
of actions of M (ranged over by α).

Conceptually, a machine’s program is included in its input data
and gets “loaded” by the function Init , which also initializes the
machine memory, stack, and PC. The notion of generic machine
abstracts all these details, allowing uniform definitions of refine-
ment and TINI that apply to all three of our IFC machines. To avoid
stating it several times below, we stipulate that when we instanti-
ate Definition 8.1 to any of our IFC machines, Init must produce
an initial stack with no return frames.

A generic step s1
e−→ s2 or s1

τ−→ s2 produces event e or is
silent. The reflexive-transitive closure of such steps, omitting silent
steps (written s1

t−→? s2) produces traces—i.e., lists, t, of events.
When the end state of a step starting in state s is not relevant we
write s e−→, and similarly s t−→? for traces.

When relating executions of two different machines through a
refinement, we establish a correspondence between their traces.
This relation is usually derived from an elementary relation on
events, . ⊆ E1 × E2, which is lifted to actions and traces:

α1 [.] α2 , (α1 = τ = α2 ∨ α1 = e1 . e2 = α2)

~x [.] ~y , length(~x) = length(~y) ∧ ∀ i. xi . yi.

Definition 8.2 (Refinement). LetM1 = (S1, E1, I1, ·
.−→1 ·, Init1)

and M2 = (S2, E2, I2, ·
.−→2 ·, Init2) be two machines. A refine-

ment of M1 into M2 is a pair of relations (.i, .e), where .i ⊆
I1 × I2 and .e ⊆ E1 × E2, such that whenever i1 .i i2 and
Init2(i2)

t2−→?, there exists a trace t1 such that Init1(i1)
t1−→?

and t1 [.e] t2. We also say that M2 refines M1. Graphically:

i1 Init1(i1)

i2 Init2(i2)
.i

t1

t2

[.e]

(Plain lines denote premises, dashed ones conclusions.)

In order to prove refinement, we need a variant that considers
executions starting at arbitrary related states.



Definition 8.3 (Refinement via states). LetM1,M2 be as above. A
state refinement ofM1 intoM2 is a pair of relations (.s, .e), where
.s ⊆ S1 × S2 and .e ⊆ E1 × E2, such that, whenever s1 .s s2
and s2

t2−→?, there exists t1 such that s1
t1−→? and t1 [.e] t2.

If the relation on inputs is compatible with the one on states, we
can use state refinement to prove refinement.

Lemma 8.4. Suppose i1 .i i2 ⇒ Init1(i1) .s Init2(i2), for all i1
and i2. If (.s, .e) is a state refinement then (.i, .e) is a refinement.

9. Refinements Between Concrete and Abstract
In this section, we show that (1) the concrete machine refines the
symbolic rule machine, and (2) vice versa. Using (1) we will be
able to show in §10 that the concrete machine is noninterfering.
From (2) we know that the concrete machine faithfully implements
the abstract one, exactly reflecting its execution traces.

Abstract and symbolic rule machines The symbolic rule machine
(with the rule table Rabs) is a simple reformulation of the abstract
machine. Their step relations are (extensionally) equal, and started
from the same input data they emit the same traces.

Definition 9.1 (Abstract and symbolic rule machines as generic
machines). For both abstract and symbolic rule machines, input
data is a 4-tuple (p, args, n,L) where p is a program, args is a
list of atoms (the initial stack), and n is the size of the memory,
initialized with n copies of 0@L. The initial PC is 0@L.

Lemma 9.2. The symbolic rule machine instantiated with the rule
tableRabs refines the abstract machine through (=,=).

Concrete machine refines symbolic rule machine We prove this
refinement using a fixed but arbitrary rule table, R, an abstract
lattice of labels, and a concrete lattice of tags. The proof uses the
correctness of the fault handler (§7), so we assume that the fault
handler of the concrete machine corresponds to the rule table of the
symbolic rule machine (φ = φR) and that the encoding of abstract
labels as integer tags is correct.

Definition 9.3 (Concrete machine as generic machine). The input
data of the concrete machine is a 4-tuple (p, args, n, T) where p
is a program, args is a list of concrete atoms (the initial stack),
and the initial memory is n copies of 0@T. The initial PC is 0@T.
The machine starts in user mode, the cache is initialized with an
illegal opcode so that the first instruction always faults, and the
fault handler code parameterizing the machine is installed in the
initial privileged instruction memory φ.

The input data and events of the symbolic rule and concrete
machines are of different kinds; they are matched using relations
(.ci and .ce respectively) stipulating that payload values should be
equal and that labels should correspond to tags modulo the function
Tag of the concrete lattice.

args ′ = map (λ(n@L). n@Tag(L)) args

(p, args, n,L) .ci (p, args ′, n,Tag(L)) n@L .ce n@Tag(L)

Theorem 9.4. The concrete IFC machine refines the symbolic rule
machine, through (.ci , .

c
e).

We prove this theorem by a refinement via states (Lemma 9.7);
this, in turn, relies on two technical lemmas (9.5 and 9.6).

The matching relation .cs between the states of the concrete and
symbolic rule machines is defined as

R ` κ σq .σ σc µq .m µc

µq, [σq],n@L .cs u, κ, µc, [σc],n@Tag(L)

where the new notations are defined as follows. The relation .m de-
mands that the memories be equal up to the conversion of labels to

concrete tags. The relation .σ on stacks is similar, but additionally
requires that return frames in the concrete stack have their privi-
lege bit set to u. The basic idea is to match, in .cs, only concrete
states that are in user mode. We also need to track an extra invari-
ant, R ` κ, which means that the cache κ is consistent with the
table R—i.e., κ never lies. More precisely, the output part of κ
represents the result of applying the symbolic rule judgment of R
to the opcode and labels represented in the input part of κ.

R ` [κi, κo] , ∀opcode L1 L2 L3 Lpc,

κi = opcode Tag(Lpc) Tag(L1) Tag(L2) Tag(L3) ⇒
∃Lrpc Lr, `R (Lpc,L1,L2,L3) ;opcode Lrpc, Lr

∧ κo = (Tag (Lrpc),Tag (Lr))

To prove refinement via states, we must account for two situa-
tions. First, suppose the concrete machine can take a user step. In
this case, we match that step with a single symbolic rule machine
step. We write csπ to denote a concrete state cs whose privilege bit
is π.

Lemma 9.5 (Refinement, non-faulting concrete step). Let csu1 be a
concrete state and suppose that csu1

αc−−→ csu2. Let qs1 be a symbolic
rule machine state with qs1 .cs csu1. Then there exist qs2 and αa
such that qs1

αa−−→ qs2, with qs2 .cs csu2, and αa [.ce] αc.

Since the concrete machine is able to make a user step, the input
part of the cache must match the opcode and data of the current
state. But the invariantR ` κ says that the corresponding symbolic
rule judgment holds. Hence the symbolic rule machine can also
make a step from qs2, as required.

The second case is when the concrete machine faults into kernel
mode and returns to user mode after some number of steps.

Lemma 9.6 (Refinement, faulting concrete step). Let csu0 be a con-
crete state, and suppose that the concrete machine does a faulting
step to csk1, stays in kernel mode until cskn, and then exits kernel
mode by stepping to csun+1. Let qs0 be a state of the symbolic rule
machine that matches csu0. Then qs0 .cs csun+1.

To prove this lemma, we must consider two cases. If the corre-
sponding symbolic rule judgment holds, then we apply Lemma 7.1
to conclude directly—i.e., the machine exits kernel code into user
mode. Otherwise, we apply Lemma 7.2 and derive a contradiction
that the fault handler ends in a failing state in kernel mode.

Lemmas 9.5 and 9.6 can be summarized graphically by:

qs1 qs2

csu1 csu2αc

.cs

αa

.cs [.ce]

qs0

csu0 csk1 cskn csun+1τ
?
k τ

.cs
.cs

Given two matching states of the concrete and symbolic rule ma-
chines, and a concrete execution starting at that concrete state, these
two lemmas can be applied repeatedly to build a matching execu-
tion of the symbolic rule machine. There is just one last case to
consider, namely when the execution ends with a fault into ker-
nel mode and never returns to user mode. However, no output is
produced in this case, guaranteeing that the full trace is matched.
We thus derive the following refinement via states, of which Theo-
rem 9.4 is a corollary.

Lemma 9.7. The pair (.cs, .
c
e) defines a refinement via states

between the symbolic rule machine and the concrete machine.

Concrete machine refines abstract machine By composing the
refinement of Lemma 9.2 and the refinement of Theorem 9.4 in-
stantiated to the concrete machine running φRabs , we can conclude
that the concrete machine refines the abstract one.



Abstract machine refines concrete machine The previous refine-
ment, (.cs, .

c
e), would also hold if the fault handler never returned

when called. So, to ensure the concrete machine reflects the behav-
iors of the abstract machine, we next prove an inverse refinement:

Theorem 9.8. The abstract IFC machine refines the concrete IFC
machine via (.−ci , .−ce ), where .−ci and .−ce are the relational
inverses of .ci and .ce.

This guarantees that traces of the abstract machine are also
emitted by the concrete machine. As above we use the symbolic
rule machine as an intermediate step and show a state refinement
of the concrete into the symbolic rule machine. We rely on the
following lemma, where .−cs is the inverse of .cs.

Lemma 9.9 (Forward refinement). Let qs0 and cs0 be two states
with cs0 .−cs qs0. Suppose that the symbolic rule machine takes a
step qs0

αa−−→ qs1. Then there exist concrete state cs1 and action
αc such that cs0

αc−−→? cs1, with cs1 .−cs qs1 and αc [.−ce ] αa.

To prove this lemma, we consider two cases. If the cache input
of cs0 matches the opcode and data of cs0, then the concrete
machine can take a step cs0

αc−−→ cs1. Moreover, R ` κ in cs0
says the cache output is consistent with the symbolic rule judgment,
so the tags in αc and cs1 are properly related to the labels in
αa and qs1. Otherwise, a cache fault occurs, loading the cache
input and calling the fault handler. By Lemma 7.1 and the fact that
qs0

αa−−→ qs1, the cache output is computed to be consistent with
R, and this allows the concrete step as claimed.

Discussion The two top-level refinement properties (9.4 and 9.8)
share the same notion of matching relations but they have been
proved independently in our Coq development. In the context of
compiler verification [30, 42], another proof methodology has been
favored: a backward simulation proof can be obtained from a proof
of forward simulation under the assumption that the lower-level
machine is deterministic. (CompCertTSO [42] also requires a re-
ceptiveness hypothesis that trivially holds in our context.) Since our
concrete machine is deterministic, we could apply a similar tech-
nique. However, unlike in compiler verification where it is common
to assume that the source program has a well-defined semantics (i.e.
it does not get stuck), we would have to consider the possibility that
the high-level semantics (the symbolic rule machine) might block
and prove that in this case either the IFC enforcement judgment is
stuck (and Lemma 9.6 applies) or the current symbolic rule ma-
chine state and matching concrete state are both ill-formed.

10. Noninterference
In this section we define TINI [1, 19] for generic machines, show
that the abstract machine of §3 satisfies TINI (Theorem 10.4), that
TINI is preserved by refinement (Theorem 10.5), and finally, using
the fact that the concrete IFC machine refines the abstract one (The-
orem 9.4), that the concrete machine satisfies TINI (Theorem 10.7).

Termination-insensitive noninterference (TINI) To define non-
interference, we need to talk about what can be observed about the
output trace produced by a run of a machine.

Definition 10.1 (Observation). A notion of observation for a generic
machine is a 3-tuple (Ω, b·c·, ·≈· ·). Ω is a set of observers (i.e.,
different degrees of power to observe), ranged over by o. For each
o ∈ Ω, b·co ⊆ E is a predicate of observability of events for ob-
server o, and · ≈o · ⊆ I × I is a relation of indistinguishability of
input data for observer o.

We write btco for the trace in which all unobservable events in t
are filtered out using b·co. We write t1 ≈ t2 to say that traces t1 and
t2 are indistinguishable; this truncates the longer trace to the same

length as the shorter and then demands that the remaining elements
be pairwise identical.

Definition 10.2 (TINI). A machine (S,E, I, · .−→ ·, Init) with a
notion of observation (Ω, b·c·, · ≈· ·) satisfies TINI if, for any
observer o ∈ Ω, pair of indistinguishable initial data i1 ≈o i2,
and pair of executions Init(i1)

t1−→? and Init(i2)
t2−→?, we have

bt1co ≈ bt2co.

Since a machine’s program is part of its input data, this defini-
tion of TINI, quantified over all observers and input data, is concep-
tually quantified over all programs too. Because of the truncation
of traces, the observer cannot detect the absence of output, i.e., it
cannot distinguish between successful termination, failure with an
error, or entering an infinite loop with no observable output. This
TINI property is standard for a machine with output [1, 19].2

TINI for abstract machine

Definition 10.3 (Observation for abstract machine). Let L be a
lattice, with partial order ≤. Define indistinguishability of atoms,
a1 ≈ao a2 by

a ≈ao a
¬ba1co ¬ba2co

a1 ≈ao a2
. (1)

The notion of observation is (L, b·ca· , · ≈a· ·), where

bn@Lcao , L ≤ o
(p, args1 , n,L) ≈ao (p, args2 , n,L) , args1 [≈ao ] args2 .

(On the right-hand side of the second equation, [≈ao ] is indistin-
guishability of atoms, lifted to lists.)

We prove TINI for the abstract machine using a set of stan-
dard unwinding conditions [18, 22]. For this we need to define
indistinguishability on states, and thus also indistinguishability of
stacks; this is where we encounter one subtlety. Indistinguishability
of stacks is defined pointwise when the label of the PC is observ-
able (Lpc ≤ o). When the PC label is not observable, however, we
only require that the stacks are pointwise related below the most
recent Call from an observable state. This is necessary because the
two machines run in lock step only when their PC labels are observ-
able; they can execute completely different instructions otherwise.

Theorem 10.4. The abstract IFC machine enjoys TINI.

TINI preserved by refinement

Theorem 10.5 (TINI preservation). Suppose that generic machine
M2 refines M1 by refinement (.i, .e) and that each machine is
equipped with a notion of observation. Suppose that, for all ob-
servers o2 of M2, there exists an observer o1 of M1 such that the
following compatibility conditions hold for all e1, e′1 ∈ E1, all
e2, e

′
2 ∈ E2, and all i2, i′2 ∈ I2. (i) e1.ee2 ⇒ (be1co1 ⇔ be2co2);

(ii) i2 ≈o2 i′2 ⇒ ∃ i1≈o1 i′1. (i1 .i i2 ∧ i′1 .i i
′
2); (iii) (e1 ≈o1

e′1 ∧ e1 .e e2 ∧ e′1 .e e
′
2)⇒ e2 ≈o2 e′2. Then, if M1 has TINI,

M2 also has TINI.

Some formulations of noninterference are subject to the refine-
ment paradox [23], in which refinements of a noninterferent system
may violate noninterference. We avoid this issue by employing a
strong notion of noninterference that restricts the amount of non-
determinism in the system and is thus preserved by any refinement
(Theorem 10.5).3 Since our abstract machine is deterministic, it is
easy to show this strong notion of noninterference for it. In §13
we discuss a possible technique for generalizing to the concurrent
setting while preserving a high degree of determinism.

2 It is called “progress-insensitive noninterference” in a recent survey [19].
3 The recent noninterference proof for the seL4 microkernel [35, 36] works
similarly (see §12).



instr ::= extensions to instruction set
| . . .
| Alloc allocate a new frame
| SizeOf fetch frame size
| Eq value equality
| SysCall id system call
| GetOff extract pointer offset
| Pack atom from payload and tag
| Unpack atom into payload and tag
| PushCachePtr push cache address on stack
| Dupn duplicate atom on stack
| Swapn swap two data atoms on stack

Figure 5. Additional instructions for extensions

ι(n) = Alloc alloc k (L∨Lpc) aµ = (id , µ′)

µ [(Int k)@L, a, σ] n@Lpc
τ−→

µ′ [(Ptr (id , 0))@L, σ] (n+1)@Lpc

ι(n) = SizeOf length (µ(id)) = k

µ [(Ptr (id , o))@L, σ] n@Lpc
τ−→ µ [(Int k)@L, σ] (n+1)@Lpc

ι(n) = GetOff

µ [(Ptr (id , o))@L, σ] n@Lpc
τ−→ µ [(Int o)@L, σ] (n+1)@Lpc

ι(n) = Eq

µ [v1@L1, v2@L2, σ] n@Lpc
τ−→

µ [(Int (v1 == v2))@(L1∨L2), σ] (n+1)@Lpc

ι(n) = SysCall id T (id) = (k , f)
f(σ1) = v@L length (σ1) = k

µ [σ1++σ2] n@Lpc
τ−→ µ [v@L, σ2] (n+1)@Lpc

Figure 6. Semantics of selected new abstract machine instructions

TINI for concrete machine with IFC fault handler It remains
to define a notion of observation on the concrete machine, instanti-
ating the definition of TINI for this machine. This definition refers
to a concrete lattice CL, which must be a correct encoding of an ab-
stract latticeL: the lattice operators genBot, genJoin, and genFlows
must satisfy the specifications in §7.

Definition 10.6 (Observation for the concrete machine). Let L
be an abstract lattice, and CL be correct with respect to L. The
observation for the concrete machine is (L, b·cc· , · ≈c· ·), where

bn@Tcco , Lab(T) ≤ o,
(p, args ′1 , n, T) ≈co (p, args ′2 , n, T) , args1 [≈ao ] args2 ,

and args ′i = map (fun n@L→ n@Tag(L)) argsi .

Finally, we prove that the backward refinement proved in §9 sat-
isfies the compatibility constraints of Theorem 10.5, so we derive:

Theorem 10.7. The concrete IFC machine running the fault han-
dler φRabs satisfies TINI.

11. An Extended System
Thus far we have described our model and proof results only for a
simple machine architecture and IFC discipline. Our Coq develop-
ment actually works with a significantly more sophisticated model,
extending the basic machine architecture with a frame-based mem-
ory model supporting dynamic allocation and a system call mecha-
nism for adding special-purpose primitives. Building on these fea-
tures, we define an abstract IFC machine that uses sets of principals
as its labels and a corresponding concrete machine implementation

ι(n) = Alloc alloc k u a µ = (id , µ′)
µ(cache) = alloc Tpc T1 TD TD Trpc Tr

u µ [(Int k)@T1, a, σ] n@Tpc
τ−→

u µ′ [(Ptr (id , 0))@Tr, σ] (n+1)@Trpc

φ(n) = Alloc alloc k k a µ = (id , µ′)

k µ [(Int k)@ , a, σ] n@
τ−→

k µ′ [(Ptr (id , 0))@TD, σ] (n+1)@TD

φ(n) = PushCachePtr

k µ [σ] n@
τ−→ k µ [(Ptr (cache, 0))@TD, σ] (n+1)@TD

φ(n) = Unpack

k µ [v1@v2, σ] n@
τ−→ k µ [v2@TD, v1@TD, σ] (n+1)@TD

φ(n) = Pack

k µ [v2@ , v1@ , σ] n@
τ−→ k µ [v1@v2, σ] (n+1)@TD

ι(n) = SysCall id T (id) = (k ,n ′) length (σ1) = k

u µ [σ1++σ2] n@T
τ−→ k µ [σ1++(n+1@T, u);σ2] n ′@TD

Figure 7. Semantics of selected new concrete machine instructions

where tags are pointers to dynamically allocated representations of
these sets. While still much less complex than the real SAFE sys-
tem, this extended model shows how our basic approach can be
incrementally scaled up to more realistic designs. Verifying these
extensions requires no major changes to the proof architecture of
the basic system, serving as evidence of its robustness.

Fig. 5 shows the new instructions supported by the extended
model. Instruction PushCachePtr, Unpack, and Pack are used
only by the concrete machine, for the compiled fault handler (hence
they only have a kernel-mode stepping rule; they simply get stuck
if executed outside kernel mode, or on an abstract machine). We
also add two stack-manipulation instructions, Dup and Swap, to
make programming the kernel routines more convenient. It remains
true that any program for the abstract machine makes sense to run
on the abstract rule machine and the concrete machine. For brevity,
we detail stepping rules only for the extended abstract IFC machine
(Fig. 6) and concrete machine (Fig. 7); corresponding extensions to
the symbolic IFC rule machine are straightforward (we also omit
rules for Dup and Swap). Individual rules are explained below.

Dynamic memory allocation High-level programming languages
usually assume a structured memory model, in which independently
allocated frames are disjoint by construction and programs cannot
depend on the relative placement of frames in memory. The SAFE
hardware enforces this abstraction by attaching explicit runtime
types to all values, distinguishing pointers from other data. Only
data marked as pointers can be used to access memory. To obtain
a pointer, one must either call the (privileged) memory manager to
allocate a fresh frame or else offset an existing pointer. In partic-
ular, it is not possible to “forge” a pointer from an integer. Each
pointer also carries information about its base and bounds, and the
hardware prevents it from being used to access memory outside of
its frame.

Frame-based memory model In our extended system, we model
the user-level view of SAFE’s memory system by adding a frame-
structured memory, distinguished pointers (so values, the payload
field of atoms and the tag field of concrete atoms, can now either be
an integer (Intn) or a pointer (Ptr p)), and an allocation instruction
to our basic machines. We do this (nearly) uniformly at all levels of



abstraction.4 A pointer is a pair p = (id, o) of a frame identifier id
and an offset o into that frame. In the machine state, the data mem-
ory µ is a partial function from pointers to individual storage cells
that is undefined on out-of-frame pointers. By abuse of notation, µ
is also a partial function from frame identifiers to frames, which are
just lists of atoms.

The most important new rule of the extended abstract machine
is Alloc (Fig. 6). In this machine there is a separate memory region
(assumed infinite) corresponding to each label. The auxiliary func-
tion alloc in the rule for Alloc takes a size k, the label (region) at
which to allocate, and a default atom a; it extends µ with a fresh
frame of size k, initializing its contents to a. It returns the id of the
new frame and the extended memory µ′.

IFC and memory allocation We require that the frame identifiers
produced by allocation at one label not be affected by allocations at
other labels; e.g., alloc might allocate sequentially in each region.
Thus, indistinguishability of low atoms is just syntactic equality,
preserving Definition 10.3 from the simple abstract machine, which
is convenient for proving noninterference, as we explain below.
We allow a program to observe frame sizes using a new SizeOf
instruction, which requires tainting the result of Alloc with L,
the label of the size argument. There are also new instructions
Eq, for comparing two values (including pointers) for equality,
and GetOff, for extracting the offset field of a pointer into an
integer. However, frame ids are intuitively abstract: the concrete
representation of frame ids is not accessible, and pointers cannot be
forged or output. The extended concrete machine stepping rules for
these new instructions are analogous to the abstract machine rules,
with the important exception of Alloc, which is discussed below.

A few small modifications to existing instructions in the ba-
sic machine (Fig. 2) are needed to handle pointers properly. In
particular: (i) Load and Store require pointer arguments and get
stuck if the pointer’s offset is out of range for its frame. (ii) Add
takes either two integers or an integer and a pointer, where Intn +
Intm = Int (n+m) and Ptr (id , o1) + Int o2 = Ptr (id , o1+o2).
(iii) Output works only on integers, not pointers. Analogous mod-
ifications are needed in the concrete machine semantic rules.

Concrete allocator The extended concrete machine’s semantics
for Alloc differ from those of the abstract machine in one key
respect. Using one region per tag would not be a realistic strategy
for a concrete implementation; e.g., the number of different tags
might be extremely large. Instead, we use a single region for all
user-mode allocations at the concrete level. We also collapse the
separate user and kernel memories from the basic concrete machine
into a single memory. Since we still want to be able to distinguish
user and kernel frames, we mark each frame with a privilege mode
(i.e., we use two allocation regions). Fig. 7 shows the corresponding
concrete stepping rule for Alloc for two cases: non-faulting user
mode and kernel mode. The concrete Load and Store rules prevent
dereferencing kernel pointers in user mode. The rule cache is now
just a distinguished kernel frame cache; to access it, the fault
handler uses the (privileged) PushCachePtr instruction.

Proof by refinement As before, we prove noninterference for the
concrete machine by combining a proof of noninterference of the
abstract machine with a two-stage proof that the concrete machine
refines the abstract machine. By using this approach we avoid some
well-known difficulties in proving noninterference directly for the
concrete machine. In particular, when frames allocated in low and
high contexts share the same region, allocations in high contexts
can cause variations in the precise pointer values returned for al-

4 It would be interesting to describe an implementation of the memory
manager in a still-lower-level concrete machine with no built-in Alloc
instruction, but we leave this as future work.

locations in low contexts, and these variations must be taken into
account when defining the indistinguishability relation. For exam-
ple, Banerjee and Naumann [4] prove noninterference by param-
eterizing their indistinguishability relation with a partial bijection
that keeps track of indistinguishable memory addresses. Our ap-
proach, by contrast, defines pointer indistinguishability only at the
abstract level, where indistinguishable low pointers are identical.
This proof strategy still requires relating memory addresses when
showing refinement, but this relation does not appear in the non-
interference proof at the abstract level. The refinement proof itself
uses a simplified form of memory injections [31]. The differences
in the memory region structure of both machines are significant,
but invisible to programs, since no information about frame ids is
revealed to programs beyond what can be obtained by comparing
pointers for equality. This restriction allows the refinement proof to
go through straightforwardly.

System calls To support the implementation of policy-specific
primitives on top of the concrete machine, we provide a new system
call instruction. The SysCall id instruction is parameterized by a
system call identifier. The step relation of each machine is now
parameterized by a table T that maps system call identifiers to their
implementations.

In the abstract and symbolic rule machines, a system call imple-
mentation is an arbitrary Coq function that removes a list of atoms
from the top of the stack and either puts a result on top of the stack
or fails, halting the machine. The system call implementation is re-
sponsible for computing the label of the result and performing any
checks that are needed to ensure noninterference.

In the concrete machine, system calls are implemented by ker-
nel routines and the call table contains the entry points of these
routines in the kernel instruction memory. Executing a system call
involves inserting the return address on the stack (underneath the
call arguments) and jumping to the corresponding entry point. The
kernel code terminates either by returning a result to the user pro-
gram or by halting the machine.

This feature has no major impact on the proofs of noninterfer-
ence and refinement. For noninterference, we must show that all
the abstract system calls preserve indistinguishability of abstract
machine states; for refinement, we show that each concrete sys-
tem call correctly implements the abstract one using the machinery
of §7.

Labeling with sets of principals The full SAFE machine supports
dynamic creation of security principals. In the extended model,
we make a first step toward dynamic principal creation by taking
principals to be integers and instantiating the (parametric) lattice
of labels with the lattice of finite sets of integers.5 In this lattice,
⊥ is ∅, ∨ is ∪, and ≤ is ⊆. We enrich our IFC model by adding a
new classification primitive joinP that adds a principal to an atom’s
label, encoded using the system call mechanism described above.
The operation of joinP is given by the following derived rule, which
is an instance of the SysCall rule from Fig. 6.

ι(n) = SysCall joinP

µ [v@L1, (Intm)@L2, σ] n@Lpc
τ−→

µ [v@(L1∨L2∨{m}), σ] (n+1)@Lpc

At the concrete level, a tag is now a pointer to an array of prin-
cipals (integers) stored in kernel memory. To keep the fault han-
dler code simple, we do not maintain canonical representations of
sets: one set may be represented by different arrays, and a given
array may have duplicate elements. (As a consequence, the map-
ping from abstract labels to tags is no longer a function; we return

5 This lattice is statically known, but models dynamic creation by supporting
unbounded labels and having no top element.



to this point below.) Since the fault handler generator in the ba-
sic system is parametric in the underlying lattice, it doesn’t require
any modification. All we must do is provide concrete implementa-
tions for the appropriate lattice operations: genJoin just allocates a
fresh array and concatenates both argument arrays into it; genFlows
checks for array inclusion by iterating through one array and testing
whether each element appears in the other; and genBot allocates
a new empty array. Finally, we provide kernel code to implement
joinP, which requires two new privileged instructions, Pack and
Unpack (Fig. 7), to manipulate the payload and tag fields of atoms;
otherwise, the implementation is similar to that of genJoin.

A more realistic system would keep canonical representations
of sets and avoid unnecessary allocation in order to improve its
memory footprint and tag cache usage. But even with the present
simplistic approach, both the code for the lattice operations and
their proofs of correctness are significantly more elaborate than
for the trivial two-point lattice. In particular, we need an additional
code generator to build counted loops, e.g., for computing the join
of two tags.

genFor c =
[Dup] ++ genIf (genLoop(c ++ [Push (−1),Add])) []
where genLoop c = c ++ [Dup,Bnz (−(length c+ 1))]

Here, c is a code sequence representing the loop body, which is ex-
pected to preserve an index value on top of the stack; the generator
builds code to execute that body repeatedly, decrementing the index
each time until it reaches 0. The corresponding specification is

Pn(κ, σ) := ∃ Tσ′. σ = n@T, σ′ ∧ Inv(κ, σ)
Qn(κ, σ) := ∃ Tσ′. σ = n@T, σ′

∧ ∀ T′. Inv(κ, ((n − 1)@T′, σ′))
∀n. 0 < n =⇒ {Pn} c {Qn}
P(κ, σ) := ∃n Tσ′. 0 ≤ n ∧ σ = n@T, σ′ ∧ Inv(κ, σ)
Q(κ, σ) := ∃ Tσ′. σ = 0@T, σ′ ∧ Inv(κ, σ)

{P} genFor c {Q}
To avoid reasoning about memory updates as far as possible,

we code in a style where all local context is stored on the stack and
manipulated using Dup and Swap. Although the resulting code is
lengthy, it is relatively easy to automate the corresponding proofs.

Stateful encoding of labels Changing the representation of tags
from integers to pointers requires modifying one small part of the
basic system proof. Recall that in §6 we described the encoding of
labels into tags as a pure function Lab. To deal with the memory-
dependent and non-canonical representation of sets described above,
the extended system instead uses a relation between an abstract la-
bel, a concrete tag that encodes it, and a memory in which this tag
should be interpreted.

If tags are pointers to data structures, it is crucial that these
data structures remain intact as long as the tags appear in the
machine state. We guarantee this by maintaining the very strong
invariant that each execution of the fault handler only allocates
new frames, and never modifies the contents of existing ones,
except for the cache frame (which tags never point into). A more
realistic implementation might use mutable kernel memory for
other purposes and garbage collect unused tags; this would require
a more complicated memory invariant.

The TINI formulation is similar in essence to the one in §10, but
some subtleties arise for concrete output events, since tags in events
cannot be interpreted on their own anymore. We wish to (i) keep
the semantics of the concrete machine independent of high-level
policies such as IFC and (ii) give a statement of noninterference that
does not refer to pointers. To achieve these seemingly contradictory
aims, we model an event of the concrete machine as a pair of
a concrete atom plus the whole state of the kernel memory. The
resulting trace of concrete events is abstracted (i.e., interpreted in

terms of abstract labels) only when stating and proving TINI. This
is an idealization of what happens in the real SAFE machine, where
communication of labeled data with the outside world involves
cryptography. Modeling this is left as future work.

12. Related Work
The SAFE design spans a number of research areas, and a compre-
hensive overview of related work would be huge. We focus here on
a small set of especially relevant points of comparison. The long
version discusses additional related work.

Language-based IFC Static approaches to IFC have generally
dominated language-based security research [40, etc.]; however,
statically enforcing IFC at the lowest level of a real system is chal-
lenging. Soundly analyzing native binaries with reasonable pre-
cision is hard, even more so without the compiler’s cooperation
(e.g., for stripped or obfuscated binaries). Proof-carrying code [5,
etc.] and typed assembly language [33, etc.] have been used for
enforcing IFC on low-level code without low-level analysis or
adding the compiler to the TCB. In SAFE [14, 17] we follow
a different approach, enforcing noninterference using purely dy-
namic checks, for arbitrary binaries in a custom-designed instruc-
tion set. The mechanisms we use for this are similar to those
found in recent work on purely dynamic IFC for high-level lan-
guages [3, 20, 21, 39, 44, etc.]; however, as far as we know, we are
the first to push these ideas to the lowest level.

seL4 Murray et al. [35] recently demonstrated a machine-
checked noninterference proof for the implementation of the seL4
microkernel. This proof is carried out by refinement and reuses the
specification and most of the existing functional correctness proof
of seL4 [27]. Like the TINI property in this paper, the variant of in-
transitive noninterference used by Murray et al. is preserved by re-
finement because it implies a high degree of determinism [36]. This
organization of their proof was responsible for a significant saving
in effort, even when factoring in the additional work required to re-
move all observable non-determinism from the seL4 specification.
Beyond these similarities, SAFE and seL4 rely on completely dif-
ferent mechanisms to achieve different notions of noninterference.
Whereas, in SAFE, each word of data has an IFC label and labels
are propagated on each instruction, the seL4 kernel maintains sep-
aration between several large partitions (e.g., one partition can run
an unmodified version of Linux) and ensures that information is
conveyed between such partitions only in accordance with a fixed
access control policy.

PROSPER In parallel work, Dam et al. [13, 26, etc.] verified in-
formation flow security for a tiny proof-of-concept separation ker-
nel running on ARMv7 and using a Memory Management Unit for
physical protection of memory regions belonging to different par-
titions. The authors argue that noninterference is not well suited
for systems in which components are supposed to communicate
with each other. Instead, they use the bisimulation proof method to
show trace equivalence between the real system and an ideal top-
level specification that is secure by construction. As in seL4 [35],
the proof methodology precludes an abstract treatment of schedul-
ing, but the authors contend this is to be expected when information
flow is to be taken into account.

TIARA and ARIES The SAFE architecture embodies a number
of innovations from earlier paper designs. In particular, the TIARA
design [43] first proposed the idea of a zero-kernel operating sys-
tem and sketched a concrete architecture, while the ARIES project
proposed using a hardware rule cache to speed up information-flow
tracking [7]. In TIARA and ARIES, tags had a fixed set of fields
and were of limited length, whereas, in SAFE, tags are pointers to



arbitrary data structures, allowing them to represent complex IFC
labels encoding sophisticated security policies [34]. Moreover, un-
like TIARA and ARIES, which made no formal soundness claims,
SAFE proposes a set of IFC rules aimed at achieving noninterfer-
ence; the proof we present in this paper, though for a simplified
model, provides evidence that this goal is within reach.

RIFLE and other binary-rewriting-based IFC systems RIFLE
[46] enforces user-specified information-flow policies for x86 bi-
naries using binary rewriting, static analysis, and augmented hard-
ware. Binary rewriting is used to make implicit flows explicit; it
heavily relies on static analysis for reconstructing the program’s
control-flow graph and performing reaching-definitions and alias
analysis. The augmented hardware architecture associates labels
with registers and memory and updates these labels on each in-
struction to track explicit flows. Additional security registers are
used by the binary translation mechanism to help track implicit
flows. Beringer [6] recently proved (in Coq) that the main ideas in
RIFLE can be used to achieve noninterference for a simple While
language. Unlike RIFLE, SAFE achieves noninterference purely
dynamically and does not rely on binary rewriting or heroic static
analysis of binaries. Moreover, the SAFE hardware is generic, sim-
ply caching instances of software-managed rules.

While many other information flow tracking systems based
on binary rewriting have been proposed, few are concerned with
soundly handling implicit flows [11, 32], and even these do so
only to the extent they can statically analyze binaries. Since, un-
like RIFLE (and SAFE), these systems use unmodified hardware,
the overhead for tracking implicit flows can be large. To reduce this
overhead, recent systems track implicit flows selectively [25] or not
at all—arguably a reasonable tradeoff in settings such as malware
analysis or attack detection, where speed and precision are more
important than soundness.

Hardware taint tracking The last decade has seen significant
progress in specialized hardware for accelerating taint tracking [12,
15, 45, 47, etc.]. Most commonly, a single tag bit is associated with
each word to specify if it is tainted or not. Initially aimed at mitigat-
ing low-level memory corruption attacks by preventing the use of
tainted pointers and the execution of tainted instructions [45, etc.],
hardware-based taint tracking has also been used to prevent high-
level attacks such as SQL injection and cross-site scripting [12].
In contrast to SAFE, these systems prioritize efficiency and overall
helpfulness over the soundness of the analysis, striking a heuris-
tic balance between false positives and false negatives (missed at-
tacks). As a consequence, these systems ignore implicit flows and
often don’t even track all explicit flows. While early systems sup-
ported a single hard-coded taint propagation policy, recent ones al-
low the policy to be defined in software [12, 15, 47] and support
monitoring policies that go beyond taint tracking [8, 15, etc.]. Har-
moni [15], for example, provides a pair of caches that are quite sim-
ilar to the SAFE rule cache. Possibly these could even be adapted
to enforcing noninterference, in which case we expect the proof
methodology introduced here to apply.

Verification of low-level code The distinctive challenge in verify-
ing machine code is coping with unstructured control flow. Our ap-
proach using structured generators to build the fault handler is sim-
ilar to the mechanisms used in Chlipala’s Bedrock system [9, 10]
and by Jensen et al. [24], but there are several points of difference.
These systems each build macros on top of a powerful low-level
program logic for machine code (Ni and Shao’s XCAP [38], in
the case of Bedrock), whereas we take a simpler, ad-hoc approach,
building directly on our stack machine’s relatively high-level se-
mantics. Both these systems are based on separation logic, which
we can do without since (at least in the present simplified model)
we have very few memory operations to reason about. We have

instead focused on developing a simple Hoare logic specifically
suited to verifying structured runtime-system code; e.g., we omit
support for arbitrary code pointers, but add support for reasoning
about termination. We use total-correctness Hoare triples (similar
to Myreen and Gordon [37]) and weakest preconditions to guaran-
tee progress, not just safety, for our handler code. Finally, our level
of automation is much more modest than Bedrock’s, though still
adequate to discharge most verification conditions on straight-line
stack manipulation code rapidly and often automatically.

13. Conclusions and Future Work
We have presented a formal model of the key IFC mechanisms of
the SAFE system: propagating and checking tags to enforce se-
curity, using a hardware cache for common-case efficiency and a
software fault handler for maximum flexibility. To formalize and
prove properties at such a low level (including features such as
dynamic memory allocation and labels represented by pointers to
in-memory data structures), we first construct a high-level abstract
specification of the system, then refine it in two steps into a realistic
concrete machine. A bidirectional refinement methodology allows
us to prove (i) that the concrete machine, loaded with the right fault
handler (i.e. correctly implementing the IFC enforcement of the
abstract specification) satisfies a traditional notion of termination-
insensitive noninterference, and (ii) that the concrete machine re-
flects all the behaviours of the abstract specification. Our formal-
ization reflects the programmability of the fault handling mecha-
nism, in that the fault handler code is compiled from a rule table
written in a small DSL. We set up a custom Hoare logic to specify
and verify the corresponding machine code, following the structure
of a simple compiler for this DSL.

The development in this paper concerns three deterministic ma-
chines and simplifies away concurrency. While the lack of concur-
rency is a significant current limitation that we would like to re-
move as soon as possible by moving to a multithreading single-core
model, we still want to maintain the abstraction layers of a proof-
by-refinement architecture. This requires some care so as not to run
afoul of the refinement paradox [23] since some standard notions of
noninterference (for example possibilistic noninterference) are not
preserved by refinement in the presence of non-determinism. One
promising path toward this objective is inspired by the recent non-
interference proof for seL4 [35, 36]. If we manage to share a com-
mon thread scheduler between the abstract and concrete machines,
we could still prove a strong double refinement property (concrete
refines abstract and vice versa) and hence preserve a strong notion
of noninterference (such as the TINI notion from this work) or a
possibilistic variation.

Although this paper focuses on IFC and noninterference, the
tagging facilities of the concrete machine are completely generic. In
current follow-on work, we aim to show that the same hardware can
be used to efficiently support completely different policies targeting
memory safety and control-flow integrity. Moreover, although the
rule cache / fault handler design arose in the context of SAFE, we
believe that this mechanism can also be ported to more traditional
architectures. In the future, we plan to reuse and extend the formal
development in this paper both to a larger set of high-level proper-
ties and to more conventional architectures. For instance, we expect
the infrastructure for compiling DSLs to fault handler software us-
ing verified structured code generators to extend to runtime-system
components (e.g. garbage collectors, device drivers, etc.), beyond
IFC and SAFE.

Acknowledgments We are grateful to Maxime Dénès, Deepak
Garg, Greg Morrisett, Toby Murray, Jeremy Planul, Alejandro
Russo, Howie Shrobe, Jonathan M. Smith, Deian Stefan, and Greg
Sullivan for useful discussions and helpful feedback on early drafts.



We also thank the anonymous reviewers for their insightful com-
ments. This material is based upon work supported by the DARPA
CRASH program through the US Air Force Research Laboratory
(AFRL) under Contract No. FA8650-10-C-7090. The views ex-
pressed are those of the authors and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

References
[1] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-

insensitive noninterference leaks more than just a bit. ESORICS. 2008.

[2] A. Askarov and A. Sabelfeld. Tight enforcement of information-release
policies for dynamic languages. CSF. 2009.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. PLAS. 2009.

[4] A. Banerjee and D. A. Naumann. Stack-based access control and secure
information flow. JFP, 15(2):131–177, 2005.

[5] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference Java bytecode verifier. ESOP. 2007.

[6] L. Beringer. End-to-end multilevel hybrid information flow control.
APLAS. 2012.

[7] J. Brown and T. F. Knight, Jr. A minimally trusted computing base
for dynamically ensuring secure information flow. Technical Report 5,
MIT CSAIL, 2001. Aries Memo No. 15.

[8] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C. Mowry,
V. Ramachandran, O. Ruwase, M. P. Ryan, and E. Vlachos. Flexible
hardware acceleration for instruction-grain program monitoring. ISCA.
2008.

[9] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. PLDI, 2011.

[10] A. Chlipala. The Bedrock structured programming system: Combin-
ing generative metaprogramming and Hoare logic in an extensible pro-
gram verifier. ICFP. 2013.

[11] J. A. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint
analysis framework. ISSTA. 2007.

[12] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible informa-
tion flow architecture for software security. ISCA, 2007.

[13] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz.
Formal verification of information flow security for a simple ARM-
based separation kernel. CCS, 2013. To appear.

[14] A. DeHon, B. Karel, T. F. Knight, Jr., G. Malecha, B. Montagu,
R. Morisset, G. Morrisett, B. C. Pierce, R. Pollack, S. Ray, O. Shivers,
J. M. Smith, and G. Sullivan. Preliminary design of the SAFE platform.
PLOS, 2011.

[15] D. Y. Deng and G. E. Suh. High-performance parallel accelerator for
flexible and efficient run-time monitoring. DSN. 2012.

[16] U. Dhawan and A. DeHon. Area-efficient near-associative memories
on FPGAs. In International Symposium on Field-Programmable Gate
Arrays, (FPGA2013), 2013.

[17] U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C. Pierce, J. M. Smith,
A. DeHon, G. Malecha, G. Morrisett, T. F. Knight, Jr., A. Sutherland,
T. Hawkins, A. Zyxnfryx, D. Wittenberg, P. Trei, S. Ray, and G. Sulli-
van. Hardware support for safety interlocks and introspection. AHNS,
2012.

[18] J. A. Goguen and J. Meseguer. Unwinding and inference control. IEEE
S&P. 1984.

[19] D. Hedin and A. Sabelfeld. A perspective on information-flow control.
Marktoberdorf Summer School. IOS Press, 2011.

[20] D. Hedin and A. Sabelfeld. Information-flow security for a core of
JavaScript. CSF. 2012.

[21] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All
your IFCException are belong to us. IEEE S&P. 2013.

[22] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis,
A. Azevedo de Amorim, and L. Lampropoulos. Testing noninterfer-
ence, quickly. ICFP, 2013.

[23] J. Jacob. On the derivation of secure components. IEEE S&P. 1989.
[24] J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic

for low-level code. POPL. 2013.
[25] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++:

Dynamic taint analysis with targeted control-flow propagation. NDSS.
2011.

[26] N. Khakpour, O. Schwarz, and M. Dam. Machine assisted proof of
ARMv7 instruction level isolation properties. CPP, 2013. To appear.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: Formal verification of an OS kernel.
SOSP. 2009.

[28] M. N. Krohn and E. Tromer. Noninterference for a practical DIFC-
based operating system. IEEE S&P. 2009.

[29] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and A. DeHon.
Low-fat pointers: compact encoding and efficient gate-level implemen-
tation of fat pointers for spatial safety and capability-based security.
CCS. 2013.

[30] X. Leroy. A formally verified compiler back-end. Journal of Auto-
mated Reasoning, 43(4):363–446, 2009.

[31] X. Leroy and S. Blazy. Formal verification of a C-like memory model
and its uses for verifying program transformations. JAR, 41(1):1–31,
2008.

[32] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging
insecure information flows. ISSRE. 2004.

[33] R. Medel, A. B. Compagnoni, and E. Bonelli. A typed assembly
language for non-interference. ICTCS. 2005.

[34] B. Montagu, B. C. Pierce, and R. Pollack. A theory of information-
flow labels. CSF. 2013.

[35] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: from general pur-
pose to a proof of information flow enforcement. IEEE S&P. 2013.

[36] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and G. Klein.
Noninterference for operating system kernels. CPP. 2012.

[37] M. O. Myreen and M. J. C. Gordon. Hoare logic for realistically
modelled machine code. TACAS. 2007.

[38] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. POPL. 2006.

[39] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. CSF. 2010.

[40] A. Sabelfeld and A. Myers. Language-based information-flow secu-
rity. JSAC, 21(1):5–19, 2003.

[41] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Ershov
Memorial Conference. 2009.

[42] J. Sevcı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
Relaxed-memory concurrency and verified compilation. POPL. 2011.

[43] H. Shrobe, A. DeHon, and T. F. Knight, Jr. Trust-management,
intrusion-tolerance, accountability, and reconstitution architecture
(TIARA), 2009.

[44] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information flow control in Haskell. Haskell. 2011.

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. ASPLOS, 2004.

[46] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. A. Blome, G. A. Reis, M. Vachharajani, and D. I. August. RIFLE:
An architectural framework for user-centric information-flow security.
MICRO, 2004.

[47] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flex-
iTaint: A programmable accelerator for dynamic taint propagation.
HPCA, 2008.

[48] S. A. Zdancewic. Programming Languages for Information Security.
PhD thesis, Cornell University, 2002.

http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cse.chalmers.se/~andrei/esorics08.pdf
http://www.cse.chalmers.se/~andrei/askarov-sabelfeld-csf09.pdf
http://www.cse.chalmers.se/~andrei/askarov-sabelfeld-csf09.pdf
http://slang.soe.ucsc.edu/cormac/papers/plas09.pdf
http://slang.soe.ucsc.edu/cormac/papers/plas09.pdf
http://www.cs.stevens-tech.edu/~naumann/publications/BanerjeeNaumannJFP.pdf
http://www.cs.stevens-tech.edu/~naumann/publications/BanerjeeNaumannJFP.pdf
http://www.irisa.fr/celtique/pichardie/papers/esop07.pdf
http://www.irisa.fr/celtique/pichardie/papers/esop07.pdf
http://tinyurl.com/l5xkx5t
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-15.pdf
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-15.pdf
http://www.cs.cmu.edu/~lba/papers/LBA-isca08.pdf
http://www.cs.cmu.edu/~lba/papers/LBA-isca08.pdf
http://adam.chlipala.net/papers/BedrockPLDI11/
http://adam.chlipala.net/papers/BedrockPLDI11/
http://adam.chlipala.net/papers/BedrockICFP13/
http://adam.chlipala.net/papers/BedrockICFP13/
http://adam.chlipala.net/papers/BedrockICFP13/
http://www.cc.gatech.edu/~orso/papers/clause.li.orso.ISSTA07.pdf
http://www.cc.gatech.edu/~orso/papers/clause.li.orso.ISSTA07.pdf
http://www.engr.uconn.edu/~zshi/course/cse5302/ref/dalton07raksha_isca.pdf
http://www.engr.uconn.edu/~zshi/course/cse5302/ref/dalton07raksha_isca.pdf
http://prosper.sics.se/papers/ccs13_dam_prosper_kernel_verification.pdf
http://prosper.sics.se/papers/ccs13_dam_prosper_kernel_verification.pdf
http://www.crash-safe.org/sites/default/files/plos11-final_0.pdf
http://tsg.ece.cornell.edu/lib/exe/fetch.php?media=pubs:flex-dsn2012.pdf
http://tsg.ece.cornell.edu/lib/exe/fetch.php?media=pubs:flex-dsn2012.pdf
http://www.crash-safe.org/node/21
http://www.crash-safe.org/node/21
http://www.crash-safe.org/sites/default/files/interlocks_ahns2012.pdf
http://doi.ieeecomputersociety.org/10.1109/SP.1984.10019
http://www.cse.chalmers.se/~andrei/mod11.pdf
http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf
http://www.cse.chalmers.se/~andrei/jsflow-csf12.pdf
http://www.crash-safe.org/node/23
http://www.crash-safe.org/node/23
http://www.crash-safe.org/node/24
http://www.crash-safe.org/node/24
http://www.cs.washington.edu/research/projects/poirot3/Oakland/sp/PAPERS/00044347.PDF
http://research.microsoft.com/en-us/um/people/nick/hlsl.pdf
http://research.microsoft.com/en-us/um/people/nick/hlsl.pdf
http://www.andrew.cmu.edu/user/ppoosank/papers/dta++-ndss11.pdf
http://www.andrew.cmu.edu/user/ppoosank/papers/dta++-ndss11.pdf
http://prosper.sics.se/
http://prosper.sics.se/
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_09.pdf
http://pdos.csail.mit.edu/~max/docs/kt09.pdf
http://pdos.csail.mit.edu/~max/docs/kt09.pdf
http://www.crash-safe.org/node/27
http://www.crash-safe.org/node/27
http://dx.doi.org/10.1007/s10817-009-9155-4
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://pauillac.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://www.cs.aub.edu.lb/wm13/ISSRE2004.pdf
http://www.cs.aub.edu.lb/wm13/ISSRE2004.pdf
http://www.cs.stevens.edu/~abc/publications/sif.pdf
http://www.cs.stevens.edu/~abc/publications/sif.pdf
http://www.crash-safe.org/node/25
http://www.crash-safe.org/node/25
http://www.nicta.com.au/pub?id=6464
http://www.nicta.com.au/pub?id=6464
http://ssrg.nicta.com.au/publications/papers/Murray_MBGK_12.abstract
http://www.cl.cam.ac.uk/~mom22/mc-hoare-logic.pdf
http://www.cl.cam.ac.uk/~mom22/mc-hoare-logic.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=78093
http://research.microsoft.com/apps/pubs/default.aspx?id=78093
http://www.cse.chalmers.se/~andrei/csf10.pdf
http://www.cse.chalmers.se/~andrei/csf10.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cse.chalmers.se/~andrei/psi09.pdf
http://www.cse.chalmers.se/~andrei/psi09.pdf
http://www.cl.cam.ac.uk/~pes20/CompCertTSO/doc/paper.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA511350
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA511350
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA511350
http://www.scs.stanford.edu/~deian/pubs//stefan:2011:flexible-ext.pdf
http://www.scs.stanford.edu/~deian/pubs//stefan:2011:flexible-ext.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-467/memo-467.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-467/memo-467.pdf
http://liberty.princeton.edu/Publications/micro37_rifle.pdf
http://liberty.princeton.edu/Publications/micro37_rifle.pdf
http://www.cc.gatech.edu/~milos/venkataramani_hpca08.pdf
http://www.cc.gatech.edu/~milos/venkataramani_hpca08.pdf
http://www.cis.upenn.edu/~stevez/papers/Zda02.pdf

	Introduction
	Overview of SAFE
	Abstract IFC Machine
	Symbolic IFC Rule Machine
	Concrete Machine
	Fault Handler for IFC
	Correctness of the Fault Handler Generator
	Refinement
	Refinements Between Concrete and Abstract
	Noninterference
	An Extended System
	Related Work
	Conclusions and Future Work

