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Introduction

Symmetry: Relationship between parts of an object with respect to size, shape
and position.

Easy to recognize symmetry in nature: Flowers, leaves, animals etc....

Group Theory developed in the late 1700’s. Early 1800’s Evariste Galois
(1811-1832) invented much of the fundamentals of group theory. This
coincided with developments in matrix mathematics.

Chemists use a subset of group theory called representation theory.

Group characters were primarily the work of George Frobenious (1849-1917)

Early chemical applications to quantum mechanics came from the work of
Hermann Weyl (1885-1955) and Eugene Wigner (1902-1995)

Symmetry Elements and Symmetry Operations

A symmetry element is a geometric entity (point, line or plane)

A symmetry operator performs and action on a three dimensional object
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Symmetry operators are similar to other mathematical operators (X, =, +,
log, cos, etc...)

We will be use only five types of operators in this subject

Operator Symbol

Identity E
Rotation C
Mirror plane o
Inversion i
Improper rotation S

All symmetry operators leave the shape (molecule) in an equivalent position,
i.e. it is indistinguishable before and after the operator has performed its
action.

Identity (E)
This operator does nothing and is required for completeness. Equivalent to
multiplying by 1 or adding 0 in algebra.

Rotation (C)
Rotate clockwise around an axis by 2m/n if the rotation brings the shape
(molecule) into an equivalent position.

The symmetry element is called the axis of symmetry. For a 2m\n rotation
there is an n-fold axis of symmetry. This is denoted as Cx .

Many molecules have more than one symmetry axis. The axis with the largest
n is called the principal axis.
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Consider a square planar molecule like PtCla.

Cl
Cl—Pt—l
cl C, CZ C? Cf possiblerotations. CZ — C,and Cf - E

We classify this as E, 2C4, C2. There are also two other C; axes (along the
bonds and between the bonds)

Reflection (o)

The shape (molecule) is reflected through a plane. (spiegel is German for
“mirror”

If a plane is L to the principal rotation axis then it is called on (horizontal). If it
is along the principal axis then it is called oy (vertical). There may be more

than one ov. If the plane bisects an angle between 3 atoms then it is called o4
(dihedral).

The reflection plane is the symmetry element.

Inversion (i)

All points in the shape (molecule) are reflected though a single point. The
point is the symmetry element for inversion. This turns the molecule inside
outin a sense. The symmetry element is the point through which the shape is
inverted.
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Improper Rotation (S)

Rotation by 2m/n followed by reflection, o L to the rotation axis. Since
performing o two times is the same as doing nothing (E), S can only be

performed an odd number of time.
Sk =g,CF ifkisodd

Sk =ck ifkiseven

kmust be an odd value

e.g. S2=C?andS; =0,C3
Additionally...

S1 =0y

Sy =0, ifnisodd

St =F ifniseven

The symmetry element for S is the rotation axis.
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Immediate Applications of Symmetry

Dipole Moments

If a molecule has a dipole moment then the dipole must lie along the
symmetry elements (lines, planes).

e Ifamolecule has 1 axis of rotation, then no dipole exists.

e Ifthereisa o, then the dipole must lie within the plane. If there are
multiple o the dipole must lie at the intersection of the planes.

e Ifamolecule has an inversion center (i) then no dipole exists.

Examples with H20, NH3, PtCla.
Optical Activity

In general, if a molecule has an improper rotation (S»), then it is optically
inactive. This is because, a molecule with an S, is always superimposable on
its mirror image.
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Symmetry Operations

Identifying all symmetry elements and operations in molecules.

Cyclopropane - D3n

H H

H
H E, 2C3, 3C2, Oh, 233, 3Gv

There is an S and an S5 (also called S3'1)

Ethane (staggered) - D3q
H H

H

H H E, 2Cs3, 3Cy, i, 2S¢, 304

1,3,5-trihydroxybenzene (planar) - C3x

H

o

0 0

H E, 2Cs3, on 2S3

There is an S3 and an S5 (also called S3'1)
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Algebra of Operators

An operator is a symbol for the operation (rotation, reflection, etc...)
e.g. C3 is the operator for the operation of clockwise rotation by 2m/3

Operators can operate on functions f{x) to generate new functions

e.g. 0= multiply by 3
f(x) = 2+3x% Then Of(x)= 6+9x2

O can be defined any way we like, d/dx, ()2, etc...

Special case of linear operators
Linear operators have the following property

O(fi+ £) = 0fi+ O
And O(kf;) = kOf; where ks a constant

Differentiation clearly is a linear operator

d d d
— (x?+x)=2x+1or —x?+—x=2x+1

dx dx dx
and

d d

22— .2

dex dex 6x

Page 12
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Algebra of linear operators
1. Sum Law
2. Product Law
3. Associative Law
4. Distributive Law

Sum Law

(01 + 0)f(x) = 01f(x) + O,f(x)

Product Law

0,0,f(x) = 01(02f(x))

(O operates first to produce a new function, then O: operates to produce
another new function.

Note: the order of operations is important here. 01> may not be the same as
004, i.e. operators do not necessarily commute with each other.

Associative Law
01(0203) = (0102)03

2nd st 2nd st

Distributive Law
01(02 + 03) = 0,0, + 0103

and

(02 + 03)01 = 0,0, + 030,

Do symmetry operators obey these laws? (they do)
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consider acetone E, Cz, ov1, Ov2
Sum Law: there is no process to “add” symmetry operators

Algebra of Symmetry Operators
Product Law:

We define the product of symmetry operators as: do one operation followed
by another:

e.g. PQf means apply Q to f and then apply P to the result where P and Q are
some symmetry operation. Or, alternatively PQ = R where Ris also a
symmetry operation.

(C2ov1)f = C2(ov1)f

C20v1 = ov2 and Cz(ov1)f results in the same configuration as ov.f

Associative Law:

C2(ov1 ov2)f = (C20v1) ovwof
ov1 ov2 = C2 C20v1 = Ow2
C2C2 - E ov2 Ov2— E

Generically (PQ)R =P(QR)

Distributive Law:

There is no process to “add” symmetry operators
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Consider the ammonia molecule (C3v)

N'/
/ \////H
H 'y
E, 3C3, 30v

Note here that C3CZ = E

If two operators combine to give the identity, we say that they are inverse to
each other.

€2 = (51 and CiC7Y = E = C5C2
Itis also true that C3C3' = C31C; = E or generically PQ =QP = E
i.e. symmetry operators that are inverse to one another commute.
onoh = E
ii=E

mirror planes are always inverse to themselves, likewise inversion is always
inverse to itself.

Generically we write (PQ)1 = P-1Q-1
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Definition of a Group
There are four defining rules for groups.

1. The combination of any two elements as well as the square of each
element must be in the group.

Combining rule can be defined as anything (multiplication, differentiation, one
followed by another, etc...)

PQ = R, R must be in the group
The commutative law may not hold AB # BA

2. One element must commute with all other elements and leave them
unchanged. That is, an identity element must be present.

ER = RF =R ; F must be in the group

3. The associative law must hold.
P(QR) = (PQ)R, for all elements

4. Every element must have an inverse which is also in the group.
RR! =RIR =E; R must be in the group

Summary
Definition of a group

PO =R R must be in the group
ER = RE =R FE must be in the group
P(QR) = (PQ)R for all elements

RRT=RIR=F R must be in the group
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Example Groups
With a combining rule of addition, a// integers form a group.

The identity element is 0, and the inverse of each element is the negative
value.

This is an example of an infinite group.

With a combining rule of multiplication, we can form a finite group with the
following set {i, -i, 1, -1}

The identity element is 1 in this case.

A set of matrices can also form a finite group with the combining rule of
matrix multiplication.

1 0 0 O 0O 1 0 O 0O 0 0 1 0O 0 1 o0
0 1 0 O 1 0 0 O 0 0 1 0O 0O 0 0 1
0O 0 1 0 0O 0 0 1 01 0 O 1 0 0 O
0O 0 0 1 0O 0 1 O 1 0 0 O 0O 1 0 O
1 0 O
. . ...10 1 0 O
The identity matrix is 00 1 0
0O 0 0 1
e.g.
0O 1 0 O 0O 0 0 1 0O 0 1 O
1 0 0 O 0 0 1 0O 10 0 0 1
0O 0 0 1 01 0 O 11 0 0 O
0O 0 1 O 1 0 0 O 0O 1 0 O

n
zAik X Byj = (AB);;
i

Aix =element in the ith row and kth column
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Lastly, the set of symmetry operators (not symmetry elements) present for a
given molecular shape forms a group with the combining rule of one followed
by another.

These types of groups are called point groups.

Group Multiplication Tables
The number of elements in the group is called the order of the group (h)

Rearrangement Theorem:
In a group multiplication table, each row and column lists each element in the
group once and only once. No two rows or two columns may be identical.

Consider a group of order 3

G:|E A B

E|E A B
AlA ? ?
B|B ? ?
There are two options for filling out the table AA=B or AA=E

If AA = E then the table becomes...

G|E A B
E|E A B
A|A E B
B|B A E

This violates the rearrangement theorem as the last two columns have
elements that appear more than once.
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The only solution for group Gz is

G|E A B
E|E A B
A|A B E
B|B E A

Note: The group Gs is a member of a set of groups called cyclic groups. Cyclic
groups have the property of being Abelian, that is all elements commute with
each other.

A cyclic group is one which every element can be generated by a single
element and it’s powers. In this case A=A and AA=A2=Band AAA=A3=
E.

There are two possible groups of order 4

O Wy MO
O W > m|m
m o w > | >
> m O W
W mon
O Wy O
O W > m|m
wom >
> m O W |
MW oo

In the second case of G4 there is a subgroup of order 2 present.
G2|E A

E |E A
A|A E

The order of a subgroup (g) must be a divisor of the order of the main group
(h), thatis h/g = k, where k is an integer.
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Classes

Groups can further be divided into smaller sets called classes.

Similarity Transforms

If A, Band X are in a group and X-1AX = B we say that B is similarity
transform of A by X. We also can say that A and B are conjugate of each other.

Conjugate elements have the following properties

1) All elements are conjugate with themselves
A = X1AX for some X

2) If A is conjugate to B, then B is conjugate to A
A =X-1BX and B = Y-1AY with X, Y in the group

3) If Ais conjugate to B and C then B and C are also conjugates of each
other.

The complete set of elements (operations) that are conjugate to each other is
called a class.

Find the classes in Ge

Ge|lE A B CDF
E|E A B C D F
A/A E D F B C
BB F E DU CA
C|C DF E A B
DD CA B F E
F|F B C A E D

E is in a class by itself of order 1

A-1EA =E etc..
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Other classes in Gg

ETAE=A
ATAA=A
B-1AB=C
C1AC=B
D-1AD =B
F1AF =C

We see here that the elements A,B and C are all conjugate to each other and
form a class of order 3.

E-DE=D
AIDA=F
B-1IDB=F
CIDC=F
D-1DD =D
F1DF =D

We see here that the elements D and F are conjugate to each other and form a
class of order 2.
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Homework Set 1

NAME :

(1) Below is one of the two possible group multiplication tables of order 6, G¢. Write the

group multiplication table for Ge¢®.

Keep in mind the rearrangement theorem when building the new table.
The result of “multiplication” of XY is the intersection of the X column and they Y row so
that BC = F and CB = D in the given table below. Hint, the group G¢®@ is a cyclic group.

Ge@

E ABCDF

G®» E A B CDF
E |[E ABCDF
A A EDYFBZC
B B FEDTCA
C C DF E AB
D D CABTFE
F F B CAED

OO W I

(2) Identify all of the subgroups within G¢® and write their group

multiplication tables.
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Point Groups

Consider all of the symmetry operations in NHs

<
T

E Gv, GV” GV”, C3 C:)Z)

Cs Cs3 oy o/ o) C% E
C:)Z’ C§ O-V" O-V”’ O-V, E C3

Note that all of the rules of a group are obeyed for the set of allowed
symmetry operations in NHs.

Ge|lE A B C D F
EIE ABCDF
AlA E D F B C
BB F EDZCA
Cc|C DF E A B
D|D C A B F E
FIF B C A E D

Compare the multiplication table of NH3 to that of Ge.
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There is a 1:1 correspondence between the elements in each group

E—-E

oy = A
o, — B
oy’ —C
C:—»D
C:->F

Groups that have a 1:1 correspondence are said to be isomorphic to each
other.

If there is a more than 1:1 correspondence between two groups, they are said
to be homomorphic to each other. All groups are homomorphic with the
groupE. i.e.A—>E,B—-E, C— Eetc..

Classification of Point Groups
Shoenflies Notation

Group Essential Symmetry

Name Elements*

Cs one o

Ci one i

Cn one Cy

Dn one C, plus nCz L to Cy

Chv one C, plus noy

Cnh one C, plus on

Dnn those of Dy plus on

Dnd those of Dy plus o4

Sn (evenn) one S,

Tq tetrahedron

On octahedron Special G
In icosahedrons pecial Lroups
Hi sphere
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Systematic Method to Assign Point Groups

special group?

No | Yes
-
Cn? linear ?
No | Yes Yes | No
sl 9,
Gh? iy
No | Yes No | Yes
i '
B Ty Dy
No | Yes platonic salids
) -
G, Ceey Doy
nCo ltaCy?
C; C; No | Yes
O} Gh?
No [ Yes No | Yes
~ L
o, ? Og°
No | Yes No | Yes
bl 9,
S o ? Cuf? D nwh
No | Yes
U =l
{:rm D;; Dﬂ d
Ci:‘ S2H
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Assign the point groups to the following molecules

Cl H

jasi
I“m
=
Q
S
o)
—

Br

dichlorodibromo ethane only - C;

H
\\\\\\\
triphenyl methane Ch—C3
H
\0
H
0 o
/N,,,/
7
H
H trishydroxy benzene (., H \H

C3V
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Classes in Symmetry Point Groups

You can test all possible similarity transforms to find the conjugate elements.

X-1AX = B, however this is tedious and with symmetry elements it is much
easier to sort classes.

Two operations belong to the same class if one may be replaced by another in

a new coordinate system which is accessible by an allowed symmetry

operation in the group.

Consider the following for a D4 group

¥

r

h,

Cs [xy] = [-y,x] and CJ[xy] =[y,x]

Reflect the coordinate system by o4

Cs [xy] = [y, -x] and C}'[xy] =[-y.X]

By changing the coordinate system we have simply replace the roles that Cs4
and C2play. Thatis C, » C3and C}' - C,
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More generally we can state the following

1. £ i and opare always in a class by themselves.

2. CFand C;* are in the same class for each value of k as long as there is a
plane of symmetry along the C¥ axis ora C; L to C¥. If not then
Ck and C;* are in classes by themselves. Likewise for S¥ and S, *.

3. o’ and ¢” are in the same class if there is an operation which moves one
plane into the other. Likewise for C and C}’ that are along different
axes.

Consider the elements of D4 (square plane)

There are 10 classes in this group with order 14

C,(xy) E
v C,and C; 1
1
Oh
, ovand oy’
Y oqand od’
e (3 ) Cz (along z)
o Czand G5’ (xy)
. Ciand C)' (xy)
’ S, and S; 1
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Homework Set 2
1. Listall of the symmetry operations and symmetry elements for the following
molecules. List the operations that commute with each other. Exclude E which
always commutes with every element - For example in water you could write
C20v(xy) = ov(xy)Cz , where oy(xy) is the mirror plane containing the H-O-H atoms.
ov(xz) is the mirror plane containing only the O atom.

Cl
o
N water F F
H H \l/
F/ | \F
AN AT i '
H 0 hydro(%elglnr;igomde sulfur choropentafluoride

2. Construct the group multiplication table for the symmetry operations of water.

3. Assign the following sets of geometric isomers to their respective point groups
(ignore any hydrogen atoms when assigning the group) .

| |
Fe Fe
ferrocene ferrocene
(staggered) (eclipsed)
biphenyl biphenyl biphenyl
(planar) (twisted) (perpendicular)
Cl Cl
HsN——Pt—Cl HsN——Pt——NHj;
NH, al
cis-platin trans-platin

4. How many classes are in the point group assigned to sulfur cholorpentafluoride?
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Properties of Matrices

Matrix: rectangular array of numbers or elements

a1 442 Q13
1 Q2 Qzz| aj; ithrow and jt column
az1 dzp 0aszz

A vector is a one dimensional matrix

a1
az1] This could be a set of Cartesian coordinates (x,y,z)
asy

Matrix math basics

Addition and Subtraction
Matrices must be the same size

cij = ajj £ bjj add or subtract the corresponding elements in each matrix

Multiplication by a scalar (k)

k[aij] = [kay] every element is multiplied by the constant k

Page 30



Introduction to the Chemical Applications of Group Theory

Matrix multiplication

n
2 Ak X bj = cyj
k
aik =element in the ith row and kth column
a1 Qg €11 €12 (13
byy bip bi3
a a X =|c C C
21 22 b b b 21 C22 (33
asz1 dsp 21 22 23 C31 (32 C33

Where c11 = (a1ib11 + azbz1)
ci2 = (a1ib1z + aizbzz)
etc...

matrix multiplication is not commutative (ab # ba)

Matrix Division
Division is defined as multiplying by the inverse of a matrix. Only square
matrices may have an inverse.

The inverse of a matrix is defined as
aal=46; 0i — Kronecker delta
0ij = 1 if i=j otherwise &;; = 0

1 0 O

0 0 1
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Special Matrices
Block diagonal matrix multiplication

1 0 0 0 0 04 1 0 0 O O] 41 0 0 0 Of
1 2 0 0 0 O|2 3 0 0 0 O 8 7 0 0 0 O
0 0 300 0fj0O1T 0O0O0_f003 0 0 O
0O 0 01 3 2f]lo 00 0 1 2 0 0 0 13 3 10
0O 0 01 2 2f]0 00 3 0 2 0 0 0 10 3 8
o oo 40 14to 0 0 2 1 14 o o 0 2 5 9
Each block is multiplied independently

i.e.

1 0] 4 11_14 1

1 212 3 8 7

[31[1] =

1 3 2710 1 2 13 3 10

1 2 213 0 2|=|10 3 8

4 0 1112 1 1 2 5 9

Square Matrices

Xa = 2jajj This is the sum of the diagonal elements of a matrix (trace).

Xa is call the character of a matrix
properties of x

if c=aband d = ba then xc = x4
conjugate matrices have identical x

r =b1pb then xr=x»

Operations that are in the same class have the same character.
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Matrix Representations of Symmetry Operations
We will now use matrices to represent symmetry operations.

Consider how an {x,y,z} vector is transformed in space

Identity

s o blb

Reflection
O-XY

1 0
0 1

0 0

—Z
Oxz

1 0 O
0 -1 0

0

Inversion
i

-1
0
0

I
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Rotation
Cn about the z axis

707
[? ? 0] [y = ly’] The z coordinate remains unchanged.
0 0 1

Consider a counter clockwise rotation by 8 about the z axis

y
A
) C} I — (x1y1)

b ) y2

; 0 !

: ral :

1 » X
X2 X1

From trigonometry we know that
X, = xy €080 —y;sinf and y, = x; sin6 + y; cos 8
Represented in matrix form this gives:
[cos 6 —sin 6] [x1] _ [xz]
sinf cos@ 1LY1 X2
For a clockwise rotation we find

3% gL

The transformation matrix for a clockwise rotation by ¢ is:

e e o B[

recall cos ¢ = cos(—¢) andsing = —sin(—¢)

—sing¢ cosqb 0
0
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Improper Rotations
Sn

Because an improper rotation may be expressed as oxyCn we can write the

following since matrices also follow the associative law.

(1 0 cos¢p sing O
0 1 ][—smqﬁ cosqb O
0 0 -1
[ cos¢p  sing
—sing¢ cosqb

0 —1

The set of matrices that we have generated that transform a set of {x,y,z}
orthogonal coordinates are called orthogonal matrices. The inverse of these
matrices is found by exchanging rows into columns (taking the transpose of

the matrix).

Consider a C3 rotation about the z-axis.

BEE I
2 2
\/§ 1 =C3
2 2
0 0

exchanging rows into columns gives

BRI

[-1
[«5 E 0‘=(63)T=632
2

2
0 1
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Multiplying these two matrices gives the identity matrix
(=2 % o[ =% 9] ;100
2 o2 o[
0 0 14t o 0 1
We know from symmetry that C3C% = C3C; = E
Here we see that C; and CZare inverse and orthogonal to each other.

In general we can write a set of homomorphic matrices that from a
representation of a given point group

For example, consider the water molecule which belongs to the Czv group.
C2v contains E, Cy, 0xz, Oy

The set of four matrices below transform and multiply exactly like the
symmetry operations in Czv. That is, they are homomorphic to the symmetry

operations.
1 0 O -1 0 O 1 0 O -1 0 0
o1 0,{0 -1 0,0 -1 0,0 1 O
0 0 1 0 0 1 0 0 1 0O 0 1
E CZ Oxz GyZ

Show that C; ox; = oy

-1 0 OJfr 0 O] [-1 O O
0O -1 0|0 -1 0f=10 1 O

0O 0 1110 0 1 0 0 1

The algebra of matrix multiplication has been substituted for the geometry of
applying symmetry operations.
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Vectors and Scalar Products
Consider two vectors in 2D space

: 4
A
.
OB
V=6+¢

The scalar or “dot” product results in a scalar or number

Defined as the length of each vector times each other times the cos of the
angle between them: A-B = ABcos 6

If0 =90°then A-B=0
If 6 = 0° then A-B = AB
We can write the following:
¢ = angle to the x axis for A

= greater angle to the x axis for B (y =6 + ¢)

Projections
Ax=Acos ¢
Ay=Asin ¢
Bx=Bcos
By =Bsiny

Using a trig identity we can write
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A-B = AB(cos ¢ cos Y + sin ¢ sin )
Rearrange to A cos ¢ Bcos Y + Asin ¢ Bsin Y
Substitute from above

A-B = AxBx + AyBy

More generally

n
A-B = ZAL-Bi for n-dimensional space

=1

Orthogonal vectors are defined as those in which the following is true

Representations of Groups
The following matrices form a representation of the Czy point group

1 0 O -1 0 O 1 0 O -1 0 O

o1 0,10 -1 O0f,|]0 -1 O0[,]0 1 O

0 0 1 0 0 1 O 0 1 0O 0 1
E C2 o o

XZ yzZ

Group Multiplication Table for Cay

C 2v E C 2 Oxz Oyz

E E C2 Oxz Oyz
C2 (0) E Oyz Oxz
Oxz Oxz Oyz E C2
Oyz: |Oyz Oxz C2 E
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How many other representations exist for the Czy point group?
A: As many as we can think up
The set of numbers {1,1,1,1} transform like Cay etc...

However, there are only a few representations that are of fundamental
importance.

Consider the matrices E, A, B, C, ... and we perform a similarity transform with

Q

E’'=Q1EQ
A’ = Q1AQ
B’ = Q1BQ
Etc...

For example A’ = Q-1AQ

A'=Q1AQ A}

The similarity transform of A by Q will block diagonalize all of the matrices
All of the resulting subsets form representations of the group as well
e.g. Ej, A}, B; ..etc ...

We say that E, A, B, C... are reducible matrices that form a set of reducible
representations.

If Q does not exist which will block diagonalize all of the matrix
representations then we have an irreducible representation.
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The Great Orthogonality Theorem
The theorem states

* h
D LRl ® ] = == 83 S
F i

Terms

h = order of the group (# of symmetry operators)
[; = ith representation

[; =dimensionofI; (e.g.3x3,[; =3)

R = generic symbol for an operator

[[;(R)mn] = the element in the mt™ row and nt column of an operator R in
representation [;

[F] (R)mrn/]* = complex conjugate of the element in the m’th row and n’th
column of an operator R in representation I}

What does this all mean?
For any two irreducible representations [, I

Any corresponding matrix elements (one from each matrix) behave as
components of a vector in h-dimensional space, such that all vectors are
orthonormal. That is, orthogonal and of unit length.
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Examine the theorem under various conditions...

If vectors are from different representations then they are orthogonal

D Rl [ R ] = 0 i %

R

If vectors are from the same representation but are different sets of elements
then they are orthogonal

Z[Fi (R) ] [T (R ]* = 0 ifm # m' orn # n’

The square of the length of any vector is h/I;

h
> Rl (R)nl” = 7

R li

Irreducible Representations

There are five important rules concerning irreducible representations

1) The sum of the squares of the dimensions of the irreducible
representations of a group is equal to the order of the group

21§=h
i

2) The sum of the squares of the characters in an irreducible
representation is equal to the order of the group
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DL =h

3) Vectors whose components are the characters of two irreducible
representations are orthogonal

D @I R)] =0 wheni =]

4) In a given representation (reducible or irreducible) the characters of all
matrices belonging to the same class are identical

5) The number of irreducible representations of a group is equal to the
number of classes in the group.

Let’s look at a simple group, Czy (E, C2, oy, 6v')

There are four elements each in a separate class. By rule 5, there must be 4
irreducible representations. By rule 1, the sum of the squares of the
dimensions must be equal to h (4).

B+B+15+15=4
The only solutionisl; =1, =l; =1, =1

Therefore the Czv point group must have four one dimensional irreducible
representations.
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All other representations must satisfy Y;[x;(R)]* = 4

This can only work for x; = + 1. And for each of the remaining I" to be
orthogonal to I'1 there must be two +1 and two -1.

Therefore, the remaining I' must be (E is always +1)

Coy E C2 oy o/
I’y 1 1 1 1
I 1 -1 -1 1
I3 1 -1 1 -1
[4 1 1 -1 -1

Take any two and verify that they are orthogonal
['1F2=(1x1)+ (1%x-1) + (1x-1) +(1x1) =0

These are the four irreducible representation of the point group Czv

Consider the Czy group (E, 2C3, 30v)

There are three classes so there must be three irreducible representations
Z+15+15=6

The only values which workare l; =1,[, =1,l; =2

That is, two one dimensional representations and one two dimensional
representation.

So for I'1t we can choose

Cav ‘ E 2C3 3oy

rn |1 1 1

For I'; we need to choose + 1 to keep orthogonality
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Cav | E 2C3 3oy
I'1 1 1 1
) 1 1 -1

2= (1x1) + 2(1x-1) + 3(1x-1) =0

Csv | E 2C: 3oy

I'1 1 1 1
I 1 1 -1
['3 2

To find I's we must solve the following

D @@ = (M@ + 2] +3(Dlxs(0,)] = 0

Z[XZ(R)][XB(R)] = (W(2) + 2D [x3(C)] + 3(=D[x3(a,)] = 0

Solving this set of two equation and two unknowns gives

[x3(C3)] = —1 and [x5(0,)] =0

Therefore the complete set of irreducible representations is

Cv | E 2C3 3oy
I'1 1 1 1
I, 1 1 -1
I3 2 -1 0

We have derived the character tables for Czy and Csy (check the book
appendix)

Cv | E CG o o Cz | E 2C3 3oy
A1 1 1 1 Al 11
A, |1 -1 -1 1 A, 1 1 -1

Page 44



Introduction to the Chemical Applications of Group Theory

Bi | 1 -1 1 -1 E |2 -1 0
B. | 1 1 -1 -1

We now know that there is a similarity transform that may block diagonalize a
reducible representation. During a similarity transform the character of a
representation is left unchanged.

X® = 4R

J

Where x(R) is the character of the matrix for operation R and aj is the number
of times that the jt irreducible representation appears along the diagonal.

The good news is that we do not need to find the matrix Q to perform the
similarity transform and block diagonalize the matrix representations.
Because the characters are left intact, we can work with the characters alone.

We will multiply the above by xi(R) and sum over all operations.

D AR LB =) ap®u® = ) > 4R xR
R R j J R

and
> 1® xR = sy
R
For each sum over j we have

> 4 ® x® =4 ) 1R xR = ahsy
R

R
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The characters for x; and x; form orthogonal vectors we can only have non-
zero values when i # j

The Reduction Formula

The above leads to the important result called “The Reduction Formula”
1
ai == x® x(R)
R

Where aj is the number of times the it irreducible representation appears in
the reducible representation.

C3v E 2C3 3O'V
I'1 1 1 1
I 1 1 -1
I3 2 -1 0
[a 5 2 -1
Iy 7 1 -3

Apply the reduction formula to I'z and I'y

ForI'a
@ = (WG + @M@ +BD(-1) = 1
1
1 = (DD + DD + B(-D(-1) = 2
3 = (D) + DD + GO = 1
For I'b
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1
a, = (DM@ + @DMD) + G)(D(=3) =0

(DM@ + )W)+ BR)(=D(=3)=3

a2=

ANl R O

[(DR)(7) + ) (D@D + (3)(0)(=3) = 2

a3=

Sum the columns...

ForI'a

C3v E 2C3 30'v
I'1 1 1 1

I 1 1 -1

I2 1 1 -1

I3 2 -1 0

[a 5 2 -1

For I'y

Cav E 2C3 3oy
I2 1 1 -1

I2 1 1 -1

) 1 1 -1

I3 2 -1 0

I3 2 -1 0

Iy 7 1 -3
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Character Tables
For Czv we find the following character table with four regions.

Cay E 2Cs3 3oy

A1 1 1 1 |z X%+y?, 72

Az 1 1 -1 |Rz

E 2 -1 0 |(xy)RxRy) | (x*y? xy)(xz,yz)

I

II I11 IV

Region I - Mulliken Symbols for Irreducible Representations

1) All 1X1 representations are “A” or “B”, 2x2 are “E” and 3X3 are “T”

2) 1x1 which are symmetric with respect to rotation by 2m/n about the
principle C, axis are “A” (i.e. the character is +1 under C,). Those that
are anti-symmetric are labeled “B” (the character is -1 under Cy).

3) Subscripts 1 or 2 are added to A and B to designate those that are
symmetric (1) or anti-symmetric (2) to a Cz L to Cy or if no Cz is present
then to a ov.

4) "and " are attached to those that are symmetric (') or anti-symmetric
("relative to a on.

5) In groups with an inversion center (i), subscript g (German for gerade
or even) is added for those that are symmetric with respect toior a
subscript u (German for ungerade or uneven) is added for those anti-
symmetric with respect to i.

6) Labels for E and T representations are more complicated but follow the
same general rules.
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Region II - Characters
This region list the characters of the irreducible representations for all
symmetry operations in each group.

Region III - Translations and Rotations

The region assigns translations in x,y and z and rotations Rx, Ry, Rz to
irreducible representations. E.g., in the group above (x,y) is listed in the same
row as the E irreducible representation. This means that if one formed a
matrix representation based on x and y coordinates, it would transform (that
is have the same characters as) identically as E.

Recall that previously we looked at a C3 transformation matrix for a set of
Cartesian coordinates

5% R

Notice that this matrix is block diagonalized. If we break this into blocks we
are left with

1B
2 2 | [*1_[x"_ [ —
2 A|BlEl e ma miE =21 =
2 2
Compare the characters of these matrices to the characters under Cs in the
table above. Notice that for (x,y) x = -1 and for (z) x = 1. If you compared the
characters for all of the other transformation matrices you will see that (x,y)

— E and (z) = A1 as shown in region III of the table. Similar analysis can be
made with respect to rotations about x, y and z.

Region IV- Binary Products

This region list various binary products and to which irreducible
representation that they belong. The d-orbitals have the same symmetry as
the binary products. For example the dxy orbital transforms the same as the
Xy binary product.
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Writing Chemically Meaningful Representations

We will begin by considering the symmetry of molecular vibrations. To a
good approximation, molecular motion can be separated into translational,
rotational and vibrational components.

Each atom in a molecule has three degrees of freedom (motion) possible. An
entire molecule therefore has 3N degrees of freedom for N atoms.

3 DOF are for translation in x, y and z.

3 DOF are for rotation in x, y and z (note: linear molecules can only rotate in 2
dimensions)

The remain DOF are vibrational in nature
A molecule will have 3N - 6 possible vibrations
3N - 5 for linear molecules

Using the tools of classical mechanics it is possible to solve for the energies of
all vibrations (think balls and springs model for a molecule). The calculations
are tedious and complicated and as early as the 1960’s computers have been
used to do the calculations.!

Vibrations
We can use the tools of group theory to deduce the qualitative appearance of
the normal modes of vibration.

We'll start with a simple molecule like H20.

1 For more information on these calculations, look up F and G matrices in a group theory or physical
chemistry text. In summary this method sums up and solves all of the potential energies based on the force

constants (bond strength) and displacement vectors (vibrations).V = %Zi,k fikSiSk where, fi is the force

constant and s; and sk are displacements (stretching or bending). The term fjis;? represents the potential
energy of a pure stretch or bend while the cross terms represent interactions between the vibrational modes.

Page 50



Introduction to the Chemical Applications of Group Theory

For water we expect 3N-6 = 3 normal modes of vibration. Water is simple

enough that we can guess the modes.

H

~

N H
N

symmetric stretching

@)

Ny

anti-symmetric stretching

o)
H N

bending

Assign these three vibrations to irreducible representations in the Czy point

group.

Cav E C2 O (xz) 0-'()12)

A1 1 1 1 1 |z

Az 1 1 -1 -1 |R;
Bi | 1 -1 1 -1 |xR
B: | 1 -1 -1 1 |yR

Consider the displacement vectors (red arrows) for each mode and write

what happens under each symmetry operation.

Symmetric stretching (I'v1)

E->1 , C2 - 1, 0-()(2)_)1; Gl(yz)_) 1

Anti - Symmetric stretching (I'V2)

E->1 , CZ - —1, G(Xz)_)l, 0"(yz) - -1

Bending (I'V3)

E-1,C—>-1,0mm~1, 0'py— -1
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Cav E C2 O (xz) 0-'(yz)

A1 1 1 1 1 |z

Az 1 1 -1 -1 |R;
Bi | 1 -1 1 -1 |xR
B | 1 -1 -1 1 |yRe
[vi 1 1 1 1

[v2 1 -1 1 -1

['v3 1 1 1 1

In a more complicated case we would apply the reduction formula to find the
[irr which comprise I'V. However, in this case we see by inspection that

'Vl— A
FVZ - B1

v3—- A

A more generalized approach to finding I'V will be discussed later.
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Selection Rules for Vibrations
Born-Oppenheimer approximation: electrons move fast relative to nuclear
motion.

Y =Yathy
j EDle/’X/aEDeﬂ/Jz'vdTeszN

Where:
Y, is the electronic wavefunction and yy is the nuclear wavefunction

d is the dipole moment operator

d= Z(—e)ri + z Z,er,
i a

Where:

ri is the radius vector from the origin to a charge gi (an electron in this case)
—e is the proton charge

Zq is the nuclear charge

rq is the radius vector for a nucleus

Integrals of this type define the overlap of wavefunctions. When the above
integral is not equal to 0, a vibrational transition is said to be allowed. That is,
there exists some degree of overlap of the two wavefunctions allowing the
transition from one to the other.

In 1800 Sir William Herschel put a thermometer in a dispersed beam of light.
When he put the thermometer into the region beyond the red light he noted
the temperature increased even more than when placed in the visible light.
He had discovered infrared (IR) light.
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Similar to electronic transitions with visible and UV light, IR can stimulate
transitions from vi — v2. A simplified integral describing this transition is

R
which is allowed when the integral does not equal zero.
In this integral 15*?* = vibrational ground state wavefunction and ¥, is the

pth fundamental vibrational level wavefunction.

What this all means is that a vibrational transition in the infrared region is
only allowed if the vibration causes a change in the dipole moment of the
molecule.

Dipole moments translate just like the Cartesian coordinate vectors x, y and z.
Therefore only vibrations that have the same symmetry as x, y or z are
allowed transitions in the infrared.

Selection Rules for Raman Spectroscopy

In Raman spectroscopy, incident radiation with an electric field vector E may
induce a dipole in a molecule. The extent of which depends on the
polarizability of the molecule («;; polarizability operator).

ib* p
J Yo'y Yrdr
Transitions in Raman spectroscopy are only allowed if the vibration causes a
change in polarizability.

Polarizability transforms like the binary product terms (xy, z? etc...) and
therefore vibrations that have the same symmetry as the binary products are
allowed transitions in Raman spectroscopy.

For water, all three vibrations are IR and Raman active.
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Normal Coordinate Analysis
Let’s find all of the vibrational modes for NHz. We expect 3N-6 =6
vibrations.

A simple way to describe all possible motions of a molecule is to consider a set
of three orthonormal coordinates centered on each atom. For NH3, this results
in a set of 12 vectors. Any motion will be the sum of all twelve components.

As performed previously for a set of three x, y and z vectors we can write a
transformation matrix that describes what happens to each of the vectors for
each symmetry operation in the group.

We now need to find the characters of ['3N

C3V E 2 C3 3O-V

Ay 1 1 |z x?+y?, 72

E -1 0 | ®XY)(RxRy) | (x2-y? xy)(x2,yZ)

1

Az 1 1 -1 |Rz
2
?

[3N ? ?

The transformation matrices will be 12x12. However, we are only interested
in the characters (x) of each matrix. For E the character will be 12 since all
elements remain unchanged.

Consider a Cs3 rotation:
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Only vectors on the N atom will go into + themselves. From our previous
results we know that x, y and z transform like...

N
2
V3
2
o 0o 1 0 0 0 0 O0 0O 0 0 O

—% 0 0 0 0 0 0 0 0 0 0

(e
(@)
(@)
(e
(e
(@)
=
—_
=
(e
(e
o

o
o
o
o
o
o
I
-
o
o
o
o
o

All other components are off diagonal and do not contribute to the character
of the matrix. Here, x = 0 for Cs.
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For the vertical mirror plane, oy

Four vectors remain unchanged (on N and H) and two
go into -1 of themselves (on N and H). The other 6 on
the out of plane H atoms all become off diagonal
elements.

X=2 (1+1-1+14+1-1+0+0+0+0+0+0)

Now we can write I'3N

Csv E 2Cs 3oy

A1 1 1 1 |z X%+y?, 72
A | 1 1 -1 |Rz
E 2 -1 0 | (xy)RXRy) | (x2-y? xy)(Xz,yZ)

[3N | 12 0 2

Apply the reduction formula to find what I'''r comprise I'3N

1
a; = EZ XR) 3R

ar: = 2 [(D(D(12) + @ WO + BD(@)] = 3
ar: = 2 [(D(D)(12) + DO + B(-D@)] = 1
ar® =2 [(D@)(12) + (DO + BOD)] = 4
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We write the following
M3V = 3r4: @Iz @ 41

However, I'3N describes all possible motion, including translation and rotation.
Inspection of the character table reveals that

[trans — 14: @ T'E
Frot — FAZ @ FE
This leaves the vibrations as

[vv = 2141 @ 2T'F notice we predicted 6 normal modes and we have 6
dimensions represented (two 1X1 and two 2X2).

Now we will write pictures representing what the vibrations look like.

't is symmetric with respect to all operations

41 - symmetric stretching ' - symmetric bending
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The E modes are degenerate. That is they are made up of vibrations that are
of equal energy.

- asymmetric stretching

1A

The third possible way of drawing an asymmetric stretch is just a linear
combination of the two above (add the two vibrations).

- asymmetric bending

hpe

As with the stretches, the third bend is formed from a linear combination of
the other two and is not unique (subtract the two bends).
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IR and Raman Spectra of CHs and CH3F
Methane CH4 belongs to the T4 point group

Perform the normal coordinate analysis for methane and determine the

number and symmetry of all IR and Raman active bands

There will be 3(5)-6 = 9 normal modes of vibration in both molecules

Normal Coordinate Analysis of CHa

1st write the characters for I'3N

Tq E 8C3 3C2 6Ss 604

Aq 1 1 1 1 1 X2+y2+72
Az 1 1 1 -1 -1

E 2 -1 2 0 0 272-x2-y?2
T1 3 0 -1 1 -1 |(RgRyRy) |x2-y2

T 3 0O -1 -1 1 |xy2) (Xy,XZ,yZ)
[N]115 0 -1 -1 3

Reduce I'3N into its irreducible representations.

1
Mi=—(15+0-3-6+18) =1

1
Me=—(15+0-3+6-18) =0

1
FEzﬁ(30+0—6+0+0)=1

1
Fleﬁ(45+0+3—6—18)=1

1
FT2=ﬁ(45+0+3+6+18)=3
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PN =T Qre@rt @ 3re
Ftrans — FTZ and Frot — FTl

Subtracting the translational and rotational irreducible representations we
are left with

Fvib — FAl @ FE @ ZFTZ
IR active modes are the 6 modes in 2I'"2
All 9 modes are Raman active

Calculated IR and Raman spectra for CH4 are shown below?

IR Spectrum
100 e — ) , B
s
o
g
£ 50
£
[0}
S
g
0
1 T T T T T T T T ] T ]
3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200

Energy (cm-1)

2 Spectra calculated by GAMESS using Hartree-Fock methods
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Raman Spectrum

-
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Normal Coordinate Analysis of CH3F

Now we perform the identical analysis for CHsF which belongs to the Csy point
group.

1st write the characters for I'3N

Cv | E 2C3 3ov

A1 1 1 1 Z x2+4y?2, 72
A; 1 1 -1 R:
E 12 -1 0 |&y) RsRy) | (X%-y2 xy)(xz,y7)

[3N 115 0 3

Reduce I'3N into its irreducible representations.

1
FA1=€(15+0+9):4

1
FAZ:E(15+O_9)=1

E‘:l =
¥ =2(30+0+0)=5
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3N =414 @ 142 @ 5TE
Ftrans — FAl @ l"E and Frot — FAZ ea l"E

Subtracting the translational and rotational irreducible representations we
are left with

rvib = 3r4: @ 3re

All 9 modes are IR active

All 9 modes are Raman active

Calculated IR and Raman spectra for CHsF are shown below

IR Spectrum

100 ——— —

. e N/
\ / \ /

50

Transmittance (%)

T ‘ T ‘ T ‘ T ‘ T ‘ T T T T
3000 2500 2000 1500 1000 500 0
Energy (cm-1)
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Raman Spectrum
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\ ‘ \
3200 3000
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Alternate Basis Sets
To help draw pictures of the vibrational modes we can use a basis setthat
relates to vibrations. For CH4 we can use CH bond stretches as a basis and

T 1
2400 2200

\ ‘ \
2000 1800

Energy (cm-1)

HCH bends as a basis.

T« | E 8C; 3C; 6S+ 604 | |
[cH 4 1 0 0 2 | Stretches
[HCH | 6 0 2 0 2 | bends

FCH — FAl 69 FTZ

FHCH — FAl @ l"E 69 FTZ

\ ‘ \
1600 1400

‘ 1
1200

If we add this up we find that this is 10 normal modes but we expect only 9.

Looking at the bending modes we see an A; representation. Since there is no
way to increase all the bond angles at once in CH4 this must be discounted.

In order to visualize the vibrations be must make linear combinations of our
basis set elements that are orthonormal (symmetry adapted).
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Homework Set 3
1. Construct the set of 3x3 matrices that transform a set of {x,y,z} coordinates for the
following operations : E, Cz, i, on. Show that these matrices form a reducible
representation of the Cz, point group.

2. Consider the following molecule (tetrachloroplatinate)

Cl

Cl—P:t—Cl ii

Cl
Write the characters for I'3N
Find all of the irreducible representations that form I'3N
Indicate which irreducible representation correspond to I'tran, ['rot and ['vib
How many vibrations are infrared active and what are their symmetries?
How many vibrations are Raman active and what are their symmetries?

3. Hydrogen peroxide (H202) is non-planar with both H atoms lying above the plane.

H
0—o”
d
Assign the point group and determine the symmetry of the vibrations for this
molecule.

Sketch what the vibrations might look like. After you've finished, check your results
using the 3DNormalModes program (link on the course website). How well do your
predictions match?

Page 65



Introduction to the Chemical Applications of Group Theory

Projection Operator

The projection operator allows us to find the symmetry adapted linear
combinations we need to visualize the vibrational modes in CHs and CDHs.

pi= (1) Y u®®
R

Where

l; = the dimension of the irreducible representation T’

h = the order of the group

xi(R)= character of operation R

R = result of the symmetry operation R on a basis function

Project out the A; mode for methane (recall ! = ' @ I'"2)

Tq E 8Cz 3Cz 6Ss 604

Ay 1 1 1 1 1

Vi

V3
Vs V4
Now we must label our basis functions and keep track of what happens to
them under each operation.

~ 1
PAl(vl)zﬁ(v1+v1+v1+v2+v3 T e R e ol e e Vs o T
tvatvytvztvstvatvi vty vy s tvy)
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pAl(Vl) = i(6v1 + 6V2 + 6V3 + 6V4) = i(vl + Vz + V3 + V4)

As you would predict this is the totally symmetric stretch

Aj stretching mode
Do the same for the T2 mode

T« | E 8C; 3C; 6S: 604

T. | 3 0 -1 -1 1
~ 3
PTZ(VI):ﬂ(3V1+O(V1+V1+V2+V3+V3+V4+V2+V4)—V2_V3_V4

_VZ_V4_V2_V3_V3_V4+V1+V1+V1+V2+V3+V4)
. 3 1
P*2(vy) =ﬁ(6V1—2V2_2V3_2V4) =Z(3V1_V2 — V3= V)

This is an asymmetric stretching mode that is triply degenerate.

1\

T2 stretching modes

One must project out two other basis functions to find the other two modes.
They will look identical but be rotated relative to the mode drawn here.

Notice the v1 function is displaced 3 times more than the other 3 basis
functions.
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In an analogous manner the bending modes may be projected to reveal the
following:

_ #
O ¢ ¢

E bending modes T2 bending modes

Animations of these vibrations can be seen online here:

http://www.molwave.com /software/3dnormalmodes/3dnormalmodes.htm
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Bonding Theories

Lewis Bonding Theory
Atoms seek to obtain an octet of electrons in the outer shell (duet for
hydrogen).

A single bond is formed when two electrons are shared between two atoms
e.g. H:H

A double bond is formed when two pairs of electrons are shared

e.g. 0::0

Lewis theory works well for connectivity but does not give predictions about
three dimensional shape.

VSEPR - Valence Shell Electron Pair Repulsion Theory
Predicts shape by assuming that atoms and lone electron pairs seek to
maximize the distance between other atoms and lone pairs.

Works well for shapes but must be combined with Lewis theory for
connectivity and bond order.

e.g. An atom with four “things” (i.e. bonds or lone pairs) would adopt a
tetrahedral geometry with respect to the things. The molecular shape is
described relative to the bonds only.

NH3z has three bonds and one lone pair on the N atom, giving a tetrahedral
geometry. However, the shape of NH3 is described as trigonal pyramidal when
only the bonds are considered.
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Valance Bond Theory

VB theory was developed in the 1920’s and was the first quantum mechanical
description of bonding. In VB theory bonds are formed from the overlap of
atomic orbitals between adjacent atoms. This theory predicted different
shapes for single (o) and multiple (1) bonds.

Consider the overlap of an electron in hydrogen 1s! orbital and an electron in

a carbon 2p! orbital

The resulting overlap of wavefunctions results in continuous electron density
between the atoms which is classified as a bonding interaction. The resulting
o bond has cylindrical symmetry relative to the bond axis.

Double and triple bonds form from the overlap of adjacent parallel p-orbitals.
The result is shown below.

88 8

A double bond consists of one o bond and one w bond. A triple bondisao
bond and two 1 bonds.
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Hybrid Orbital Theory

VB theory gets us started but we know that other geometries exist in
molecules. Consider carbon with a ground state electron configuration of
[He]2s2sp2. With the addition of a small amount of energy one 2s electron is
promoted to the 2p shell and the following configuration results
[He]2s12px!2py!2p.L. This leaves four half filled orbitals that can overlap with
other orbitals on adjacent atoms.

Will this result in different types of bonds? Overlap of an s-orbital and a p-
orbital will not be the same. However, we know that in CH4 all of the bonds
are equivalent.

The solution is to create hybrid orbitals that are formed when we take linear
combinations of the four available atomic orbitals.

The four unique linear combinations that can be formed are as follows
hi=s+px+py+p. ha=s-px-py+p:
hs=s-px+py-p- hs=s+px-py-p-

Graphically the results are shown below:

80900
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These linear combination give rise to four new orbitals that have electron
density pointed along tetrahedral angles. The orbitals are named sp3 hybrid
orbitals.

Other hybrid orbitals are possible with differing geometry

Orbital  Shape

sp Linear

sp? Trigonal planar

sp3 Tetrahedral
sp3d Trigonal pyramidal
sp3d? octahedral

Overlap of the hybrid orbitals with other orbital (hybrid or atomic) describe
the o bonding network in molecule. Multiple bonds are formed with unused
p-orbitals overlapping to form m bonds as described in VB theory.

Molecular Orbital Theory

MO theory was also developed during the 1920’s and is a quantum mechanical
description of bonding. All of the preceding bonding models are termed
localized electron bonding models because it is assumed that a bond is formed
when electrons are shared between two atoms only. MO theory allows for
delocalization of electrons. That is, electrons may be shared between more
than two atoms over longer distances.

Similarly to VB theory, MO’s are formed from the interaction of atomic
orbitals. Here we form linear combinations of atomic orbitals. When we
combine two AO’s we must form two MO'’s

Y1 = P15, + P1s,
Yy = 1/J1sA - 1/)153
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Constructive interference leads to the MO shown in the top example and the
resulting MO is said to be bonding. Destructive interference gives the second
example is termed anti-bonding.

For Oz the MO diagram is shown below. This correctly predicts that O; has
two unpaired electrons. None of the previous theories could accommodate for
this fact.

1 ++i\\ 1
%% -7 I Iy

—_—
~1

Quantum mechanical description of orbitals
Erwin Schrodinger proposed a method to find electron wavefunctions. The
time-independent Schrodinger equation in one dimension is

2 d2¢

h
B V()Y = EY

where | is the wavefunction and
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h
h=—=1.054x 10734
2T

V(x)\ is the potential energy of the electron at position x and

h2 d2y . L : L.
and — Tz 1S the kinetic energy of the electron. This equation is often

simplified as
Hp =Ey
where 7 is called the Hamiltonian operator. Written in this form we see that

this is an Eigen value equation. The total energy of the electron becomes the
Eigen value of the Hamiltonian and ¢ is the Eigen function.

 describes the dynamic information about a given electron. The probability
of finding an electron in a given volume of infinitely small size is

P = [¢?|dt
dt = dxdydz

With regard to specifically identifying the dynamic information about an
electron we are limited by the following:

1
Ax-ApZEh

This is known as the Heisenberg uncertainty principle and states that we
cannot know both the position and momentum of a particle with arbitrary
precision. Ax is the error (uncertainty) in position and Ap is the error in
momentum.
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Group Theory and Quantum Mechanics

If we exchange any two particles in a system by carrying out a symmetry
operation, the Hamiltonian must remain unchanged because we are in an
equivalent state.

In other words, the Hamiltonian commutes with all R for a group
RH = HR
There are cases in which multiple Eigen functions give the same Eigen value.
Hipin = Egbi

Hipiy = Epin

Hpim = Ehin

We say that the Eigen value is degenerate or n-fold degenerate. In these cases
the Eigen functions are a solution to the Schrodinger equation and also any
linear combination of the degenerate Eigen functions

}TZ a;jij = E; Z a;jij
J J

We will construct the Eigen functions (and subsequently the linear
combinations) so that they are all orthonormal to each other.

Jllifllijdf = §j;

The set of orthonormal Eigen functions for a molecule can form the basis of an
irreducible representation of the group. For a non-degenerate Eigen function
we have

HRY; = E;RY;

so that Ry;is an Eigen function of the Hamiltonian.
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Because y;is normalized Ry, = + 1¢;. Therefore if we apply all R in a group
to a non-degenerate i, we get a representation were each matrix element,
['(R) will be + 1. A one-dimensional matrix is by definition irreducible.

A similar analysis for n-fold degenerate Eigen functions will result in an n-
dimensional irreducible representation.

How do we find the linear combination of wavefunctions that result in a set of
orthonormal Eigen functions?

The projection operator discussed previously for vibrational analysis is useful
again here.

Pli= (%) 2 xi(R)(R)
R

Construction of basis sets to project is the subject of theoretical chemistry and
physics. Because we cannot solve the Schréodinger equation directly we must
make approximations.

Hartree-Fock Approximation - write MO’s for each electron independently of
the others. The error that is introduced here is that the electron position
depends on the position of all of the other electrons (electron-electron
repulsion). A correction factor must be applied after solving the problem to
account for this. This is called the “correlation energy”.

Rules for Molecular Orbitals

1) Wavefunctions cannot distinguish between electrons
2) If electrons exchange positions, the sign of the wavefunction must
change.

LCAO Approximation
Molecular Orbitals are linear combinations of atomic orbitals.

T electron Approximation
— assume that o and 1 bonds are independent of each other. That is, c bonds
are localized, while ™ bonds may be delocalized.
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Hiickel t Orbital Method

We will use a redefined Hamiltonian called the effective Hamiltonian.
HIT () = B + ) (2 (1) = K@)
i

where | and K are the Coulomb and exchange integrals respectively. The
Coulomb integral takes into account the electron-electron repulsion between
two electrons in different orbitals, and the exchange integral relates to the
energy when electrons in two orbitals are exchanged with each other.3

In the Huckel it orbital method we construct new MQ'’s as follows

N
DT (k) = ) Csjhs(K)
s=1

where N is the number of atoms in the  orbital system, ¢s is a p, orbital on a
given atom and Cg;jis a coefficient (determined by projection).

Htickel theory makes the following approximations:

Hl' =

peffm _ { P (if r and s are nearest neighbors)
s 7 | 0 (otherwise)

a is the Coulombic integral which raises the energy of a wavefunction
(positive value) and 3 is the resonance integral which lowers the energy of a
wavefunction (negative value). These integrals can be evaluated numerically
but are beyond the scope of what we hope to accomplish here.3

3 For more information on bonding theory consult an appropriate text on quantum
mechanics.
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As it stands so far, we have a method for finding the energies of N m orbitals
for N atoms. The result is an N-dimensional polynomial. Problems of this type
can be solved but application of symmetry to the system greatly reduces the
amount of work to be done.

Hiickel Orbitals for Nitrite
Consider the 1 orbital system for the nitrite anion (NO;)

—
~

N\ N\
[O/ 0 =0

This molecule belongs to the Czv point group. We will use a p; orbital on each
atom to construct the m orbital system for nitrite. This forms the basis for a
reducible representation, ['A0

¢4

We must write the characters for I'A? in an analogous manner as we wrote the
characters for I'3N. Keep in mind the sign of the wavefunctions when
performing the symmetry operations.

Cav E C2 O xz) G'(yz)
A1 1 1 1 1
Az 1 1 -1 -1
B4 1 -1 1 -1
B; 1 -1 -1 1
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ro| 3 -1 1 -3 |

Next we reduce I'A0 to find the irreducible components.

1
as, =71+ MED+ M@+ (ME3)] =0

1

as, =7 1M+ WED+ EDM + EDE] =1
1

ag, =7 1D+ (=DED + (WD) + D3] =2
1

ag, =7 [(ME)+EDED +EDM + W3] =0

r40 =r42 @ 2r*s

Next we project the basis functions out of the irreducible representations.
Because ¢1 and ¢3 are equivalent it doesn’t matter which one we pick.
However, ¢2 is unique and must also be projected each time.

A 1 1
Pr (¢1)=Z(¢1_¢3_¢3+¢1)=§(¢1_¢3)
PT () = %(qﬁz — ¢, — ¢, + ¢,) = 0 (i.e. no contribution)
5 1 1
PT (¢1)=Z(¢1+¢3+¢3+¢1)=§(¢1+¢3)

By 1
Pr (¢2)=Z(¢2+¢2+¢2+¢2)=¢2

There are two orbitals with B; symmetry. So we will take linear combinations
of the two projected orbitals to find the orthogonal results

1
o, = §(¢1 - ¢3)
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1 1
D, =§¢1+¢2 +§¢3

1 1
b3 = §¢1 — ¢, +§¢3
Lastly we must normalize the orbitals since it is assumed that
There is a normalization factor N that is found as follows for ®;

1 1
jN§(¢1 - ¢3)*N§(¢1 —¢3)dr =1

1N2 * dr=1
Z j(¢1_¢3) (1 — Pp3)dt =

2 2

%Nz Z 2 f(¢1 —¢3)"(p1 —¢3)dr =1

i=1 j=1
Note that the sums here give §;; for the individual ¢i¢; terms. There are four
integrals in this case involving overlap of <d1,p1>, <P1-P3>, <-Pp3d1>,
<-¢3-Pp3>. These give 1 + 0 + 0 + 1 respectively.
1
—N?x2=1
4

solving for N we find N = v2 our normalized @ is then

®; = 2 (¢ — ¢5) (A symmetry)

Similarly we find the normalized ®; and @3 to be

b, = \E G o1+ P, + %¢3) (B1 symmetry)

Page 80



Introduction to the Chemical Applications of Group Theory

O, = \E G b1 — Py + %d’s) (B1 symmetry)

If we evaluate H¢//'™ for each new orbital we find that

effm V2 V2
HeHlas = | 5 @1 = 6) B2 9y = )i

Distributing the ¢i across the Hamiltonian and separating the integrals we are
left with the following sum

V2 V2

2 2 2
e e e @de+ [ 5 (s B (~g)de

V2 2
[ S @ nerra L gpar+ [Ty

V2 V2

(—¢3)df+f7(—¢3)*1'1€ff’“7

These integrals evaluate according to Hiickel approximations as

1 1
effm _ = -
H(CI>1<I>1) —2a+0+0+2a

Simplifying leaves us with:

1
effm _ _
Ho o) = E(a +a)=a

A similar analysis for ®; and @3 yields:

effm _2(1 41p.1 1o lp Yo gt
H(q,zq,z)_3(4a+zﬁ+2ﬁ+a+zﬁ+2ﬁ+4a)_a+3ﬁ

effm  _2(1 1, 1 _1y_1 1\, _%
H(<I>3<1>3)_3(4a zﬁ 2,B+a zﬁ 2,B+4a)—a 3

In order of increasing energy we find ®; < ®1 < @3

Recall that 3 is a negative term and lowers the energy of the orbital.
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Drawing pictures of the orbitals helps to visualize the results

B1 anti-bonding orbital

4
a3,8

Az non-bonding orbital

(04

B1 bonding orbital

a+=p

W
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Nitrite 1 orbitals calculated using ab initio methods.

B1 anti-bonding orbital

Az non-bonding orbital

B1 bonding orbital
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Hiickel MO’s for Cyclobutadiene
Find the 1 orbitals for cyclobutadiene using the Hiickel m orbital method.

Cyclobutadiene belongs to the D4, point group. This group has an order of 16.
To reduce the work, we can use a subgroup of Dan, D4 which has an order of 8.
In doing so we lose information about the odd or even nature of the orbital (g
or u). However, once the MO’s are constructed we can easily determine an
MO'’s g or u status through examination of symmetry operations on the new
MO'’s.

The basis set will be the four p; orbitals perpendicular to the molecular plane.

q)z ¢3 y ’

O} O C,’

C2”
Writing A0 for D4 we find;
D4 E  2C Co 2C" 2C”
Ay 1 1 1 1 1
A; 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0
[40 | 4 0 0 -2 0

Reducing I'0 results in ['A0 = T4z @ 'z P I'E
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Now we must project out the symmetry adapted linear combinations and
then normalize the resulting functions.

P™ () =%(¢1+¢2+¢4+¢3+¢1+¢3+¢2 + ¢s)
¢1=%(¢1+¢2+¢3+¢4)
P™ (1) =%<¢1 — o = Pa+ b3+ Py + b3 — by — ha)
®; =7 (91~ b2 + b2 — 9)

rE 2 1
p (¢1) = §(2¢1 - 2¢3) = §(¢1 — ¢3)

Because E is two-dimensional, we must project an additional orbital.

rE 2 1
P (¢2) = §(2¢2 - 2¢4) = E(d)z — P4)

The two E MO’s will be the linear combination (sum and difference) of the two
projections we have just made.

1
D3 =§(¢1+¢2_¢3_¢4)

1
¢4=§(¢1_¢2_¢3+¢4)
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Normalizing the MO’s results in the following orthonormal set of functions

Oy =~ (¢1 + b2 + 3 + By) A symmetry
®, = %(¢1 — ¢+ 3 —¢4) B2 symmetry
®3 = %(9’-”1 + ¢y — P33 — ¢s) E symmetry
D, = %(9’31 — ¢ — 3+ ¢4) E symmetry

To put the orbital in the correct order energetically, we evaluate Hf,{c I for

each MO.

effm _
H(<I>1<1>1) =a+ 20

Because the E orbital is degenerate, both orbitals must have the same energy.
We find the in order of increasing energy, ®1 < @3, &4 < &o.

Lastly we can look at how the each of these orbitals transforms in the D4h
point group and assign the g or u subscript. For example, the B orbital could
be Bzu or Bzg. Under inversion (i) the orbital goes into -1 of itself so it must be
B2u (the character under i for Bzg is +1 and -1 for Bzy). Analysis of the
remaining orbits gives Az, and Eg.
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B2y anti-bonding

a—2p

E; bonding

a

A2y bonding

a+ 26

1 molecular orbitals as calculated by ab initio methods

B2u

A2u
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A note of caution. We might be tempted to view cyclobutadiene as an
aromatic ring system based upon the appearance of the Az, T orbital.
However, examination of the electron density color mapped with the
electrostatic potential (red = negative, blue = positive) reveals a non-uniform
electron density distribution. This indicates that cyclobutadiene is not
aromatic but rather alternating double and single bonds.

If the structure is geometry optimized, we see that the symmetry is no longer
Dan, but rather that of a rectangle, Don. The electrostatic potential map places
extra electron density along the shorter double bonds we would predict. The
Hiickel rule for aromaticity requires 4n + 2 1 electrons and here we have only
4 1 electrons, so the lack of aromaticity is expected.

If the symmetry changes, the symmetry of the molecular orbitals also changes.
Calculations of the new orbitals are shown on the following page.
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Ab initio calculations for the m orbitals in geometry optimized cyclobutadiene.

Ay

B3g

BZg

Blu

Notice that the general shape of the MO’s is similar to what we calculated for
the molecule under Ds», symmetry, but the E; orbital has split into the non-
degenerate Bzg and Bsgorbitals shown above.
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Hiickel MO'’s for Boron Trifluoride

Dsn| E 2C3 3Cz on 2S3 30y
A’ | 1 1 1 1 1 1
A |1 1 -1 1 1 -1
E’ 2 -1 0 2 -1 0
A" |1 1 1 -1 -1 -1
A |1 1 -1 -1 -1 1
E” | 2 -1 0 -2 1 0

by b

Construct the Hiickel T molecular orbitals for carbonate and compare to the
results for semi-empirical calculations of all molecular orbitals for carbonate.

Step 1. Find I'40

Dsn | E 2C3 3C2 on 2S5 3oy

ol 4 1 -2 -4 -1 2
Step 2. Apply the reduction formula to find the irreducible representations.
1
aA;=E(4+2—6—4—2+6)=0
1
aA;=E(4+2+6—4—2—6)=0
1
aEu=E(8—2+O—8+2+O)=0
-2 44+2-6+4+2-6)=0
aA;_,_lz( )_
1
aAg=E(4+2+6+4+2+6)=2

1

40 = 2142 @ re”
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Step 3. Project the new MO’s

Because ¢1 is on the center atom we must project ¢1 and one of the others and
make linear combinations to be sure to have complete orbitals.

all 1
PF2(¢1)=E(¢1+¢1+¢1+¢1+¢1+¢1+¢1+¢1+¢1+¢1+¢1+¢1)=¢1

al 1
PF2(¢2):E@’z+¢3+¢4+¢2+¢3+¢4+¢2+¢3+¢4+¢2+¢3+¢4)
1
:§(¢2+¢3+¢4)

Taking the linear combinations of these two we obtain the following:
By = by + oy + =+
1= G1 5yt ds oy

1 1 1
d, = ¢1 —§¢2 _§¢3 _§¢4

Normalizing these results gives:

V3 1 1 1
?, = 7(‘]51 +§¢2 +§¢3 +§¢4)

V3 1 1 1
D, = 7(‘]51 _§¢2 _§¢3 _§¢4)

Now project the E” orbitals...

" 1
PE (¢1)ZE(2¢1_¢1_¢1+2¢1_¢1_¢1) =0

Because ¢1 does not contribute to the E” orbital we must project two other
basis functions and take their linear combinations.

rn 2 1
PE " (¢,) =E(2¢2 — 3 — Pyt 20, — Pz — P4) =€(2¢z — 3 — P4)
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rn 2 1
PE " (¢3) =E(2¢3 — s — Po+ 203 — Py — P3) =g(2¢3 — ¢y — P2)

1
b; = g(ﬁbz + ¢z — 2¢,)

b, = %(3452 — 3¢3)

After normalization we are left with

1
O3 = \/?(452 + ¢3 — 2¢,)

1
o, = \/?(sz — ¢3)

Step 4. Determine the energy of each orbital by evaluating Heft,

ef f.m 3 1 1 1 1 1 1 1 1 1
H(¢1¢’1) =Z<“+§B+§,8+§.3+§a+§ﬁ+§a+§ﬁ+§a+§ﬂ)

3
=C¥+§,B
effe 3¢ 1 1 1 1 1 1 1 1 1
Hiflss =3le-3p-3p-3p+5a-gh+5a-3h+5a-3p)
3
2

= —

B

1
effm _ _
Ho.o,) = g(a +a+4da) =a

1
effm _ —
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Step 5. Construct the MO diagram and draw pictures of the MO’s

Az"(d—%ﬁ)

E"(a)

Az"(a+§ﬁ)

These sketches are a top-down view. The sign of the wavefunction is opposite
on the bottom side.
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Ab initio calculations give the following MO pictures and the corresponding
energy (in Hartree).

=
&
©

Azn
0.0418 Ha

E}’
—0.9073 Ha

AZN
—0.9411 Ha
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Homework Set 4 - Final Exam

Take home final. You may use your book and class notes but please work on
your own. Exams are due Friday before noon. Turn them in to my chemistry
department mailbox. You must clearly show all of your work for full credit.

1. Construct the orthonormal Hiickel m molecular orbitals for benzene
using the subgroup D¢ (given below) and a basis set of the six p, orbitals
that lie perpendicular to the plane of the ring.

2. Determine the correct ordering of the MO’s energetically and construct
the MO diagram for the m system. Refer to the full Den point group

character table to assign ‘g’ and ‘u’ designations to the orbitals.

3. Sketch each of the six orbitals.

D¢ E 2C 2C3 C2 3C 3G

A |1 1 1 1 1 1

A, | 1 1 1 1 1 -1

B: | 1 1 1 1 1 1

B, 1 1 1 1 -1 1

Ei | 2 1 1 -2 0 0 g
E, | 2 1 A1 2 0 0 \

A0 [
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Ab initio calculations for the t orbitals of benzene are shown below

BZg
0.3480 Ha

. ) EZu
0.1322 Ha

Elg
-0.3396 Ha

A2u
-0.5073 Ha
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