
Spatially-Encoded Far-Field Representations for Interactive
Walkthroughs

Andrew Wilson Ketan Mayer-Patel Dinesh Manocha

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27599-3175

fawilson,kmp,dmg@cs.unc.edu
http://www.cs.unc.edu/˜geom/Video/SE

Abstract: We introduce the notion of spatially encoded video
and use it for efficiently representing image-based impostors for
interactive walkthroughs. As part of a pre-process, we automat-
ically decompose the model and compute the far-fields. The re-
sulting texture images are organized along multiple dimensions
and can be accessed in a user-steered order at interactive rates.
Our encoding algorithm can compress the impostors size by two
orders of magnitude. Furthermore, the storage cost for addi-
tional impostors or samples grows sub-linearly. The resulting
system has been applied to a complex CAD environment com-
posed of 13 million triangles. We are able to render it at inter-
active rates on a PC with little loss in image quality.
Keywords: image databases, image-based rendering, MPEG,
rendering systems, spatial data structures

1 Introduction
Many applications like computer-aided design (CAD), architec-
tural and urban visualization, flight simulation and virtual en-
vironments generate large and complex three-dimensional (3D)
models composed of tens of millions of primitives. One of the
important problems in computer graphics and virtual environ-
ments is to create an interactive system that enables a viewer
to experience the synthetic environment by simulating a user-
steered display or walkthrough of the model. However, these
datasets cannot be directly rendered at interactive rates on cur-
rent high-end graphics systems.

Different rendering acceleration techniques that reduce or
limit the number of geometric primitives rendered in each frame
have been proposed in the literature. These include visibility
culling, level-of-detail modeling, and use of image-based rep-
resentations. In this paper, we focus on image-based rendering
techniques that have been used to replace subsets of the geomet-
ric model with image-based impostors or simplifications. Typ-
ically these impostors are used to replace geometry far from a
given viewpoint. We refer to an approximation of this distant ge-
ometry as a far-field. A number of rendering acceleration algo-
rithms and systems based on far-field representations have been
developed [2, 3, 4, 7, 8, 18, 25, 26, 27, 28, 31].

Some key issues in using image-based impostors for large
3D datasets are memory storage, bandwidth and sampling. Each
sample of reasonable resolution takes a few mega-bytes (MBs)
or more. Most algorithms discretize the viewing space and gen-
erate impostors from a finite set of viewing directions. This
can lead to image artifacts such as popping, cracks, aliasing or
stretching. Moreover, the pre-computed far-fields for moderately
sized environments (composed of a few million polygons) can

easily take a few or tens of giga-bytes [2, 3, 8] and it is hard to
fit them into main memory. Many of the image artifacts can be
reduced by taking more impostor samples, but that adds to the
storage and bandwidth complexity.

Given the storage complexity, different compression tech-
niques have been applied to image-based representations. These
include motion estimation and compensation techniques used to
encode synthetic or parameterized animations [1, 6, 12, 16, 30].
These have been designed for streaming over a network. The
resulting application is different from interactive walkthroughs,
where the constraints imposed by faithful response to user spon-
taneity are different from pre-recorded videos or synthetic an-
imations. Some impostor based rendering acceleration algo-
rithms have used compression techniques based on DCT (JPEG)
or Lempel-Ziv (PNG) to reduce the storage complexity of tex-
ture images [2, 8, 31]. However, these techniques as well as
current standards like MPEG do not utilize spatial relationships
and other properties unique to image-based impostors.

Main Results: In this paper, we introduce the notion
of spatially-encoded video and use it for efficiently represent-
ing far-fields for interactive walkthroughs. As part of pre-
computation, we use spatial partitioning algorithms to automat-
ically decompose the model into rectangular cells and enclose
each cell with a cull-box. We approximate the geometry outside
each cull-box using image-based impostors and encode them
spatially. These frames are accessed in a user-steered order at
runtime. They are decoded at interactive rates and rendered us-
ing projective texture mapping. The rest the model contained
inside the cull-box is rendered as geometry.

The spatially-encoded video representation differs from con-
ventional video streams and compression algorithms in many
ways. The frames are organized along multiple dimensions that
include position and orientation. Furthermore, our encoding al-
gorithm utilizes spatial coherence between the impostors and
model-based depth information. As compared to earlier walk-
through systems that use image-based impostors, our approach
offers the following advantages:

1. Automaticity: Our approach for decomposing the model into
cells, computing cull-boxes, and encoding impostors is fully au-
tomatic. Moreover, it is applicable to all geometric datasets.
2. Storage Efficiency: Our compression algorithm can lower
the storage overhead by an order of magnitude as compared to
earlier approaches. Moreover, as we generate more samples or
impostors, our storage cost grows sub-linearly (as compared to
linear growth for earlier approaches).

 Model
Subdivision

Cell
Placement

Cull Box
Optimization

Spatial
Video

Encoding

Imposter
Generation

Subcell
Generation

Fig. 1(a): Preprocess Fig. 1(b): Runtime System

Find visible
geometry

Decode
Impostors

Draw
geometry

Draw
Impostors

Find current/
nearby cells

Nearby
cell

queue

Dequeue
cell

Find
geometry/
Impostors

Fetch
geometry

Fetch
Impostors

Geometry

cache
Imposter

cache

View
tracking

Figure 1: Overview of our approach. Spatial video techniques are used for impostor representation and rendering.

3. Reduced Pre-processing Overhead: The spatial coherence
and model information reduces the encoding time.
4. Improve Runtime Performance: Our average time to ac-
cess, decode and render the encoded impostors is reduced and
is more predictable. It significantly reduces the load on the pre-
fetching algorithm and this results in less variation in the frame
rates.
5. Dynamic Impostors: We use an auxiliary index to store in-
terframe relationships in multiple dimensions. This facilitates
dynamically adding new impostors.

The resulting algorithm has been implemented on a dual-
processor PC with a nVIDIA Quadro2 graphics card. We
demonstrate its performance on a large and complex CAD en-
vironment composed of more than 13 million triangles. It is able
to render the scene at 12� 25 frames a second with little loss in
image quality.
Overview: The rest of the paper is organized in the following
manner. We give a brief survey of related work on image-based
impostors and compression techniques in Section 2. We present
an overview of our approach in Section 3. We introduce spatial
video in Section 4 and show that it can be used to encode differ-
ent impostor representations efficiently. Section 5 presents the
algorithm for decomposing the model into cells and cull-boxes
as well as generating the far fields. We describe its implementa-
tion and performance on complex CAD environment in Section
6. Finally, we highlight many areas of future research in Section
7.

2 Previous Work
In this section, we give a brief survey on image-based represen-
tations, compression algorithms and spatial encoding.

2.1 Image-Based Representations for Interactive
Walkthroughs

Image-based representations and impostors have been widely
used for faster display of large environments. For example, many
flight simulation systems have used images to represent terrains
and other specialized models. In many cases these images were
hand-generated. More recently, different kinds of far-field repre-
sentations have been used for rendering acceleration. Different
representations, ordered in terms of increasing space and time
complexity, include:

1. Point Samples: Approximate the geometry with point
primitives and render them directly [10, 23].

2. Cached Images: Render portions of the scene and cache
the resulting images. These images are texture mapped
onto planar projections [4, 18, 27, 25, 31].

3. Texture Depth Meshes (TDMs): Render the scene onto a
planar projection, generate a depth mesh and apply a poly-
gon simplification algorithm to the resulting mesh. At run-
time, the simplified mesh is displayed using projective tex-
ture mapping [2, 7, 28].

4. Multi-Mesh Impostors (MMIs): Consist of multiple lay-
ers of textured meshes and limit the dis-occlusion errors
[8].

5. Range or Depth Images: Consist of per-pixel depth along
with the intensity values. They are rendered at runtime us-
ing 3D image warping [21, 20, 24]

6. Layered Depth Images (LDIs): Each pixel consists of
multiple depth values corresponding to all the intersections
of the ray with the scene. They reduce the dis-occlusion ar-
tifacts [3, 26].

These representations are either pre-computed from a set of
viewpoints or can be dynamically updated [8, 25, 27]. Other
dynamic impostor representations are based on compositing in-
dividually updated image layers [15]. All of them take consider-
able memory resources. For example, a full-screen sized image
in 24-bit color takes almost three megabytes. Additional space is
needed to represent the meshes for TDMs or MMIs and the depth
values for range images or LDIs. In practice, most rendering ac-
celeration algorithms trade off storage overhead for frame rate or
image fidelity. Our spatial encoding algorithm can compress all
these representations, though we mainly focus on cached images
and TDMs in this paper.

2.2 Compression
Data compression is a well-studied area. In this section, we
briefly survey algorithms for compressing image-based repre-
sentations and synthetic animations.

Some of the commonly used image compression algorithms
include lossless schemes like Lempel-Ziv, transform coding
schemes such as JPEG, vector quantization, etc. They have been
used to compress textures in a number of software rendering and
walkthrough systems [2, 3, 5, 8]. However, these algorithms do
not utilize the spatial coherence between adjacent impostors.

Video compression is also a well studied area and standard
video compression techniques like MPEG [14] were developed
for use on natural scenes. Many algorithms have also been pro-
posed for compressing synthetic animations, where the avail-
able model information is used to compute the optical flow

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 2

X

Y Z

I I
B B B B B B

B B B B
B B B B B B

Time

I IP PB B B B B B

1Frame No: 2 3 4 5 6 7 8 9 10

Fig. 2(b) Spatial Encoding Fig. 2(a) Traditional MPEG Encoding

Figure 2: Traditional MPEG Encoding vs. Spatial Encoding. The latter represents the impostors along multiple spatial dimensions.
They are traversed in a user-steered order at runtime.

field between successive frames. These include the lossless mo-
tion compensation algorithm [11], fast computation of optical
flow, and per-block motion vectors using the Gouraud interpo-
lation or texture mapping hardware [30], and accounting for
non-translational block motion using a least-squares formulation
[1]. Other approaches include partitioning the rendering task be-
tween the server and the client and using polygon assisted com-
pression [16] as well as algorithms for texture intensive stream-
ing applications that use pre-computed view-dependent textures
[6]. An approach for arbitrary-dimensional parameterized ani-
mations that uses the texture mapping rasterization hardware for
decoding has been presented in [12]. All of these algorithms
were developed for faster transmission of synthetic animations
over networks, and utilize temporal coherence between succes-
sive frames.

Many techniques have been used for compressing the dual-
plane lumigraph parameterizations. These include vector quan-
tization and entropy coding for light-fields [17], wavelet basis
[13] and block-based DCT encoders [22]. Gortler et al. [9] have
treated lumigraphs as arrays of 2D images and proposed using
JPEG and MPEG for intra-frame and inter-frame compression,
respectively. Other algorithms include model-based coders for
view-dependent texture mapping [19].

3 Algorithm Overview
Our rendering algorithm uses a combination of image-based and
geometry representations to render the datasets. The impostors
or far-fields are used as a low-cost approximation of the far ge-
ometry. The nearby geometry is rendered using a combination
of level-of-detail modeling and visibility culling. The perfor-
mance and fidelity of the rendering algorithm is governed by the
choice of image-based impostor. Each impostor representation
(except point samples) highlighted in Section 2 is typically gen-
erated from a single viewpoint in the scene. As a result, when-
ever the viewer moves away from that viewpoint, image artifacts
are introduced. The only way to minimize these artifacts is to
pre-compute more samples or add them dynamically. However,
they add considerably to the storage complexity. For example,
the memory cost for a TDM that uses a few thousand triangles to
represent the mesh and a 512 � 512 image texture in true color
is a few megabytes. For a large environment, we may use tens or
hundreds of thousands of cells. Furthermore, we generate mul-
tiple impostors for each cell, thereby resulting in a few million
impostors for the entire model.

We use spatially encoded cached images or TDMs as impos-
tor representations. Their main benefit arises from the fact that
they can efficiently use the texture-mapped polygon rasterization
hardware. Furthermore, as we generate more samples, the stor-

age overhead for additional impostors grows sub-linearly. This
allows us to pre-compute impostors from multiple viewpoints
within each cell. It also reduces the load on the pre-fetching al-
gorithm because of low storage complexity. The pre-processing
and runtime phases of the algorithms are shown in Fig. 1.

Pre-process: (Fig. 1(a)) We use cells and cull-boxes to classify
the model into near and far geometry [2]. Our algorithm au-
tomatically decomposes the environment into rectangular cells
using spatial partitioning algorithms and encloses each cell with
a rectangular cull-box. The partitioning algorithm takes into ac-
count maximum deviation error in the impostor representation
from any viewpoint in the cell and based on that subdivides some
of the cells into sub-cells. All the sub-cells of a given cell, share
the same cull-box. It also bounds the maximum geometry con-
tained in the cull-box for each cell. Finally, it computes six far
fields for each cell and sub-cell.

Runtime System: (Fig. 1(b)) The algorithm tracks the cell that
contains the viewpoint. It maintains separate geometry and im-
postor caches and uses pre-fetching algorithms to load the ge-
ometry and impostors. The pre-fetching algorithms run asyn-
chronously and use spatial coherence to determine which geom-
etry and impostors to load. The impostors corresponding to the
particular cell or sub-cell are decoded and rendered using projec-
tive texture mapping. Furthermore, we use visibility culling and
select an appropriate level-of-detail for each object contained in
the cull box. If a second rendering pipeline is available, it is
used to generate additional impostors and encodes them asyn-
chronously. They can be dynamically added to the set of far-field
representations.

4 Spatially Encoded Video
The rendering algorithm uses either cached images or TDMs as
far-field representations. In either case, the texture images dom-
inate the storage cost, which is up to 85 � 95% of the entire
database. The simplest compression algorithms treat each im-
age separately, and use DCT (JPEG) encoding. In practice, we
achieve 5 � 20 times compression with JPEG. As we generate
more samples, the storage overhead grows almost linearly. How-
ever, the far-field impostors corresponding to adjacent cells or
sub-cells exhibit strong image or spatial coherence. In this sec-
tion, we present new spatial encoding algorithms that utilize this
coherence and achieve an order of magnitude improvement in
the compression ratios as well as faster encoding and decoding
performance.

Traditional video encoding schemes like MPEG have been
designed for frame sequences that are organized along a single
temporal dimension. The compression techniques attempt to ex-

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 3

ploit inter-frame coherence by using one frame to predictively
encode the next one (as shown in Fig. 2(a)). Algorithms for
synthetic or parameterized animations make use of model infor-
mation to compute the optical flow between successive frames,
that improves the performance of the compression algorithm.

We introduce the notion of spatially-encoded video and use
it for encoding the far-fields for interactive walkthroughs. As
compared to the prior work on video compression, the spatially-
encoded video differs in the following manner:
1. Multi-dimensional Representation: The video frames are
generated from a camera moving in space. However, there is no
single camera path, but instead the frames correspond to samples
of a multi-dimensional real world or synthetic environment. The
different dimensions may correspond to the position and orienta-
tion of the camera. For dynamic environments, we can also add
the time dimension.
2. Random Access: No assumptions are made regarding the
order in which frames are accessed at runtime. They will typi-
cally be used in an interactive or user-steered application, where
nothing is known a priori about user’s motion.
3. Interactive Decoding: Given the interactive nature of the
underlying application, it is important to decode the frames at
interactive rates.
4. Dynamic Updates: New frames or images can be generated
dynamically or on-the-fly. The underlying representation should
be able to add them as encoded frames.

For interactive walkthroughs, we present a new spatial en-
coding scheme that extends the traditional MPEG standard.

4.1 Traditional MPEG encoding
In this section, we give a short overview of MPEG compression
scheme [14, 29] as it is usually applied to video sequences. The
scheme encodes the video frames as one of three types: I, P, or
B. I-frames contain all information required to decode the frame.
Each frame is subdivided into 16� 16 pixel regions called mac-
roblocks. Each macroblock is encoded using the Discrete Cosine
Transform (DCT). P-frames are predictively encoded using the
previous I- or P-frame. Each macroblock in a P-frame may be
associated with a motion vector that defines a region in the refer-
ence frame of the same size to be used as a predictive base. The
difference between the prediction region and the actual pixel val-
ues is DCT encoded. B-frames are predictively encoded in the
same way using both the previous I- or P-frame as well as the
subsequent I- or P-frame. Fig. 2(a) shows a typical pattern for I,
P, and B frames and their referential relationships.

4.2 Multi-dimensional Impostor Representation
The far-fields used in the walkthrough system are generated by
taking finite samples of the virtual environment. The camera
position corresponds to the center of each cell or sub-cell. We
generate a texture image for each face of the cull box and the
camera’s orientation and field of view is determined by each face
separately (as shown in Fig. 5 in Section 5). This results in a
4D representation of frames, given by the 3D cell position and
1D orientation of the frames within each cell. Moreover, each
impostor is “near” several other impostors in 4 different dimen-
sions. Other sampling strategies or spatial decompositions of the
environment can result in different multi-dimensional represen-
tations.

Given that the user can move in an arbitrary direction at run-
time, we do not know in advance the order in which the impos-
tors will be accessed. As a result, the compressed representation
of the far fields must have support for random access. Tradi-
tional I-, P-, and B- frame sequences in MPEG-encoded streams
do not support random access. Furthermore, the reference rela-
tionships between encoded frames need to reflect the underlying
multi-dimensional relationship of the impostors.

Pworld

PB-frame PI-frame

Motion Vector = (P
I-frame

 - P
B-frame

)

Cell N (B-cell) Cell N+1 (I-cell)

Figure 3: The motion vector associated with PB�frame is cal-
culated by back projecting the screen coordinates into world
space (PWorld) using depth information and then reproject-
ing PWorld into screen coordinates for the reference frame
(PI�frame). The difference between these coordinates is a can-
didate motion vector for encoding the macroblock containing
PB�frame.

To accommodate these requirements, we extend the tradi-
tional MPEG encoding scheme in three important ways.

1. We avoid using P-frames altogether.

2. We construct and store an auxiliary index which explicitly
defines reference information.

3. We encode impostors by organizing them in a 4-D space
and define reference relationships within that space.

The auxiliary index data structure supports random access by re-
solving reference relationships without having to scan through
and decode the compressed representations in any particular or-
der.

4.3 Spatial Encoding
Given our representation, we use the notion of I-cells. An I-cell
is simply a cell for which all of the far-field impostors are en-
coded as I-frames. Surrounding each I-cell in all directions are
B-cells. The far-field impostors associated with a B-cell are en-
coded as B-frames. Each impostor encoded as a B-frame uses
the two I-frame encoded impostors in the same orientation asso-
ciated with the two nearest I-cells. Thus, each I-cell is associated
with 26 B-cells. Fig. 2(b) illustrates the organization of I-cells
and B-cells.

4.3.1 Encoding Heuristics
A traditional video encoder is not provided with any depth in-
formation associated with the video frames. Thus, the heuristics
used by available encoders for motion vector calculation are all
based on some sort of search. On the other hand, our encoding
algorithm uses the model and depth information. When encod-
ing an impostor as a B-frame, the spatial encoder is provided
with the depth of each pixel as well as the camera information
associated with the impostor and both reference frames. To en-
code a macroblock, the depth associated with each pixel in the
macroblock is used to calculate a candidate motion vector asso-
ciated with that pixel. This is illustrated in Fig. 3, where the
difference PI�Frame � PB�Frame is a candidate motion vec-
tor for encoding the macroblock of the B-frame that contains the
point.

The back projection produces 256 candidate motion vectors
for each 16� 16 macroblock for each reference frame. Because
many of the pixels of a macroblock will correspond to the same
object in the virtual environment, many of the 256 motion vec-
tors will be identical since they represent the relative spatial mo-
tion of that object. Thus, the number of motion vectors to test is

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 4

C
om

pr
es

si
on

 R
at

io

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

No B Frames

Sample Density (samples/cm)

B/I = 26
B/I = 17

B/I = 5

Figure 4: Average compression ratios as a function of the sam-
pling density and ratio of B-frames to I-frames

kept small which speeds up encoding considerably. Traditional
search heuristics do not use the depth information for finding
motion vectors. Given the same limited number of candidate
vectors, they will be constrained to a very small search area.

4.4 Interactive Decoding
The organization of I-cells and B-cells in our system guaran-
tees that no more than 2 reference frames will be required to
decode any particular B-frame. Since the frames are organized
along spatial dimensions, decoded reference frames are cached
and used to decode other nearby frames as the user interactively
moves through the model. Given a user-specified direction, the
access pattern for I- and B-frames is similar to a traditionally
encoded MPEG stream using only I- and B-frames. By storing
the multidimensional reference relationships between frames in
an auxiliary index, we are able to locate each required frame
in constant time. Once a frame is located and reference frame
data obtained (either from cache or as a result of decoding), time
required to decode a frame is the same as that for a traditional
MPEG decoder.

4.5 Representing Dynamically Generated Impostors
Many rendering acceleration algorithms augment the pre-
computed far fields with dynamically generated impostors [8].
Typically, they use a second rendering pipeline and generate
additional far fields from new viewpoints within a cell. For
each additional viewpoint, our algorithm computes a sub-cell
and generates the impostors corresponding to the faces of the
cull-box. The center of the new sub-cell and the orientation
within that sub-cell are used to add it to the multi-dimensional
data structure. Since the position of the encoded representation
is no longer entangled with the reference relationships, the new
far-field can be added to the auxiliary index.

4.6 Compression Efficiency
The compression efficiency of our encoder is determined by two
factors: the ratio of B-frames to I-frames and the degree of spa-
tial coherence between the B-frames and their reference frames.
Because each I-frame is independently encoded and does not
exploit predictive encoding, for a given quality level, the size
of the I-frames represents a lower bound on the size of the en-
coded impostors. The degree to which B-frames are compressed
is highly content dependent. If the far-field impostors exhibit
strong spatial coherence, the size of B-frames in the system de-
creases because the effectiveness of the predictive encoding in-
creases. In general, this is related to the cell sizes or sampling

density associated with the impostors. A higher sampling den-
sity (i.e. smaller cells), will result in greater coherence. Ad-
ditionally, higher sampling densities also allow the ratio of B-
frames to I-frames to be increased while maintaining acceptable
quality since the number of B-frames that exhibit sufficient co-
herence with an I-frame increases.

Fig. 4 shows the results of an experiment designed to illus-
trate these tradeoffs. We generated a set of impostors from a
large virtual environment at different sampling densities. The
graph in Fig. 4 shows the average compression ratio achieved
for different B=I ratios, where B is the number of B-frames
coded between consecutive I-frames. We notice that for a given
B=I ratio, compression efficiency increases with sampling den-
sity. The rate of increase is super-linear. Moreover, the second
derivative of the curve relating compression ratios to the sam-
pling density decreases. Finally, for any given sampling density,
compression ratios increase with B=I .

Let s be the sampling density and I(s) be the storage over-
head of all the impostors generated by the system. It follows
from the graph, that I

0

(s) > 0 and I
00

(s) < 0. This implies:
1. I(s) is a sub-linear function. As we generate more sam-

ples, the average storage cost per impostor decreases.
2. When s is small, the rate of decrease in the average impos-

tor size is the highest.
This fits well in the context of walkthrough applications. Typ-
ically, we don’t use a very high sampling rate, otherwise pre-
fetching will become a bottleneck. As we generate more sam-
ples to reduce the image artifacts, the storage costs increases at
a slower rate.

5 Model Decomposition
Our algorithm partitions the environment into virtual cells and
places a cull box around each cell [2]. At runtime, cells and cull-
boxes are used to classify the scene into near and far geometry.
Objects which intersect or are contained in the cull box asso-
ciated with that particular cell are labeled as “near geometry”.
The remainder of the model outside the cull-box is classified as
“far geometry”. One of the most important issues in impostor-
based walkthroughs are the viewpoints used for pre-computing
the far-fields. In our case, the algorithm computes six impos-
tors for each cell and sub-cell (as shown in Fig. 5). In practice,
the databases have an uneven geometric distribution. Comput-
ing an optimal cell-decomposition is shown to be very hard in
practice [2]. For example, if we want an absolute bound on the
dis-occlusion artifacts, the algorithm may have to compute the
aspect graph of the model which can take O(m6) time (m is the
number of primitives). Some algorithms have been presented for
special cases, when the user motion is constrained along a line
and the primitives are extruded 2D objects [8].

We use a simple and adaptive approach for computing cells,
sub-cells and cull-boxes. It proceeds as:

� Compute a uniform grid of rectangular cells within the
model. This grid can be fairly coarse, although a denser
sampling improves the results achieved by the spatial video
encoder.

� Construct a cull-box for each cell. The cull-box is a cube
and its center is the same as that of the cell. Choose the
cull box size to be as large as possible while forcing the
size of the near geometry to lie beneath some ceiling (e.g.
100; 000 polygons). The algorithm has only one degree of
freedom in terms of adjusting the size of the cull-box and
it performs binary search.

� If the original cell contains more geometry than our up-
per limit, we uniformly subdivide a cell into sub-cells and
perform cull-box optimizations for each of them.

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 5

Impostor
view frustum

Cell

Subcell

Cull-box

Figure 5: Each cell is contained within a large cull box. A cell
may be further partitioned into sub-cells. Impostors are sampled
in six directions in 3D (north, south, east, west, up, down) from
the center of each cell and sub-cell. In this figure, view frusta for
the north face of each sub-cell are shown in different colors.

� Subdivide cells into sub-cells to improve the impostor fi-
delity. We use different error metrics based on the relative
size of the cell (or sub-cell) to its cull-box, the resolution
of the texture images, and maximum pixel deviation error
in the skins introduced by TDMs.

We share one copy of the model geometry among all the cells
and sub-cells. The potentially visible set for each cell is com-
puted and stored during preprocessing or computed at runtime
using hierarchical view frustum culling.

5.1 Far Field Generation
The far fields in our system correspond to either cached images
or TDMs. The TDM computation starts with a range image,
identifies the almost-planar regions, and simplifies each height
field [2, 28]. This process can result in “skins” wherever there is
significant depth discontinuity in the original range image.

The use of impostors results in many image artifacts during
runtime. These include stretching, aliasing and dis-occlusion ar-
tifacts as the viewer moves within the same cell (or sub-cell) and
popping as the viewer jumps from one cell (or sub-cell) to an ad-
jacent cell (or sub-cell). The three factors governing the quality
of impostors are as follows:

1. The size s of each cell or sub-cell. At runtime, the viewer
can be at most 1

2
s away from any viewpoint used to gener-

ate the impostor.
2. The relative size of the cull-box to the cell size. Based

on this ratio, the algorithm computes the maximum angu-
lar distortion for an object in the distant geometry and the
maximum pixel deviation in the impostor. A smaller ratio
leads to more artifacts.

3. The underlying impostor representation and the resolution
of the texture image. For example, a TDM reduces the
popping as compared to a cached image, when the viewer
jumps between cells.

The first two parameters are taken into account by our adaptive
sub-cell decomposition algorithm. More samples increase the
spatial coherence between different impostor representations.

6 Implementation and Performance
In this section we describe a walkthrough system which imple-
ments the algorithms outlined in this paper. We highlight its per-
formance on a complex CAD database and compare our work
with earlier approaches.

Figure 6: Performance of cull-box optimization algorithm. The
size of the cull-boxes is represented in the following color order:
black < red < green < blue. The black areas represent regions
with very high density of geometry with very small cull-boxes
(and vice-versa for blue).

6.1 Implementation
Preprocessing We first subdivide the model into chunks of
roughly 1000 polygons apiece. We then apply the cell gener-
ation algorithm described in Section 5 to generate the cells, sub-
cells, and cull boxes throughout the model. Given this cell grid,
we render six samples of the environment and encode them spa-
tially.
Runtime Walkthrough The interactive portion of our walk-
through system, illustrated in Fig. 1(b), is organized as two
independent processes: a rendering process and a prefetching
process. The rendering process is responsible for handling user
interaction, locating nearby cells as the user moves through the
model, and rendering both geometry and impostor data corre-
sponding to the user’s viewpoint. The prefetching process is re-
sponsible for making sure that the data needed by the rendering
process is available in main memory before it is rendered. The
two processes communicate through a cell queue. If the data
corresponding to the current cell is not available, the rendering
thread will pause and load the missing items.

6.2 Spatial Encoding and Interface
The modifications required by our spatial encoding scheme are
not compatible with existing MPEG encoders and decoders. We
have developed software-only implementations of both the spa-
tial encoder and spatial decoder. The use of MPEG as a starting
point was motivated by its open standard definition, proven ef-
fectiveness for video compression, and wide acceptance within
the multimedia community.

We have developed a software library that defines an inter-
face to an impostor database which contains encoded impostors
and the auxiliary index used to define the reference relationships.
Each impostor in the database is associated with an index num-
ber that is calculated based on its spatial position and orienta-
tion. The encoder is written as a stand-alone program that can
encode a particular impostor either as an I-frame or a B-frame.
The decoder is implemented in the software. It provides a sim-
ple interface to retrieve encoded the impostors from the impos-
tor database and decodes them. The decoder also implements a
LRU caching policy of the decoded impostors to avoid decoding

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 6

reference frames more than once.

6.3 Performance and Results

0

10

20

30

40

50

60

70

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

15
60

16
80

18
00

19
20

20
40

21
60

22
80

24
00

Time

F
ra

m
e

P
er

 S
ec

on
d

Cached Images TDM

Figure 7: This graph highlights the frame rates through a sam-
ple path (shown in the video). We use spatial encoding to repre-
sent cached images as well as TDMs.

0

5

10

15

20

25

30

1

12
7

25
3

37
9

50
5

63
1

75
7

88
3

10
09

11
35

12
61

13
87

15
13

16
39

17
65

18
91

20
17

21
43

22
69

23
95

25
21

Frame

M
B

yt
es

With Spatial Encoding No Spatial Encoding

Figure 8: This graph highlights the memory efficiency achieved
by spatial encoding on the sample path shown in Fig. 7. It shows
the total data fetched from the disk at run time.

We have tested our system on a PC equipped with two 1GHz
Pentium III processors and an nVIDIA Quadro 2 graphics card.
The system itself was written in C++ and uses OpenGL for ren-
dering.

We used a geometric model of a coal-fired powerplant to test
the performance of our algorithms. This environment has a foot-
print 50 meters wide by 60 meters deep by 80 meters tall and
contains roughly 13:2 million triangles (as shown in Fig. 9). It
contains 1; 877 objects (before subdivision) and occupies 502
MB on disk. The power plant poses challenges to both geomet-
ric and image-based rendering acceleration algorithms. In par-
ticular, roughly half of the polygons in the model are devoted
to densely packed arrays of long, thin cylindrical pipes. These
pipes are difficult to simplify with level-of-detail algorithms, as
they are coarsely tessellated and the polygons are very long and
thin. They also cause considerable challenges in terms of us-
ing image-based samples, as a small change in the viewpoint
changes the occlusion relationship between different objects (as
shown in the video). Fig. 10, which was taken inside the power
plant, contains a lot of high-frequency information that can pose
problems for image compression schemes. Even rendering the

Figure 9: The Powerplant Model:13.2 million triangles

power plant using only the original geometry shows significant
aliasing in the displayed frames.

We generated a cell grid for a region near the top of the power
plant. Cell centers were initially spaced at 1-meter intervals. We
chose a budget of 100; 000 polygons for optimizing cull box
sizes. Due to the highly non-uniform distribution of geometry
within the power plant, optimized cull box sizes range from 1:5
meters on a side (in the middle of the arrays of pipes) to roughly
25 meters on a side (outside the building proper). Fig. 6 illus-
trates the distribution of cull box sizes. After sub-cell generation
and cull-box optimization, we had 3; 776 cells and 6; 464 sub-
cells (or 10; 240 cells). The sub-cells were generated to meet the
criterion that each cull-box is at least four times larger than the
size of its associated cell. The sampled images of the environ-
ment generated from the center of each cell had a resolution of
512� 512 (down-sampled from 1024 � 1024 images).

We arrange the cell grid in memory as a graph. Each cell has
links to its neighbors, its sub-cells (if any), and its parent cell (if a
sub-cell). The entire cell grid occupies roughly 1.5MB in mem-
ory. We also precompute the potentially visible set for each cell
at a cost of 680KB of memory. The indexing structures for our
spatially encoded impostors requires 960KB of memory at run-
time. We generated cached images and textured depth meshes
(TDMs) for a few sample paths within the model (as shown in
the video). These meshes were simplified from the original im-
postor depth fields (511 � 511 � 2 = 522; 242 triangles) to a
maximum of 10; 000 triangles apiece. TDMs can be prefetched
at runtime along with model geometry and impostor images.

6.3.1 Compression and Image Fidelity
Our system takes about 16 hours to generate all the impostors
and spatially encodes them. It takes 359 MB to represent 22; 656
impostors and the average size of an encoded 512 � 512 full
color texture image is less than 16K. The performance of the
encoding algorithm varies on different texture images. During
the encoding process, each 16 � 16 macroblock had about 7
distinct candidate vectors (among 256 vectors corresponding to
each pixel). This implies that our algorithm is able to capture the

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 7

Figure 10: This figure shows how far-fields are used to represent distant geometry (on the left), near geometry rendered as polygons
(in the middle) and the combined geometry + impostors (on the right).

spatial or object-to-object coherence and it eliminates the search
step. The average compression ratio obtained by the encoding
algorithm across the entire model is about 48. However, the vari-
ance is high and the ratio varies in the range 2 : 1 to 303 : 1.

Our encoding algorithm is not lossless. Like other encoders
[14], it uses a constant quality factor with every macroblock.
Moreover, its performance is content dependent. In general, if
the original frame does not have high frequency components,
the encoder produces little degradation that is not noticeable (as
shown in the video). In the context of the powerplant model,
we have opted for a slightly degraded compression ratio in ex-
change for good image fidelity. Our lowest compression ratio
occurs in situations like the one in Fig. 10(a). The image con-
tains many high-frequency components that are difficult to han-
dle with video-based encoding techniques.

6.4 Runtime Performance
Our spatially encoded impostor representation has allowed us to
achieve frame rates between 12 and 35 frames per second on
a PC using the power plant model. Fig. 7 shows a graph of
frame rates along a pre-recorded sample path through the model.
When we render this same path using only visibility culling, we
observe frame rates on the order of one frame every 10 � 14
seconds. As we generate more samples, there are fewer dis-
occlusion artifacts and it also reduces the popping problem.

The video highlights the performance of our system on dif-
ferent portions of the powerplant. We have also compared its
performance with an implementation that does not use spatial
encoding (i.e. 5 times more memory to represent the far-fields).
There is little additional loss in image fidelity when we use spa-
tial encoding.

We find that the prefetching task is not a bottleneck for our
system for reasonable user velocities (up to 3 meters/second).
Fig. 8 shows the cumulative number of bytes fetched along a
sample path. The average impostor size in this case is less than
16K, if we use spatial encoding, and about 49K if we use JPEG
compression for each far-field.

6.5 Comparison with Earlier Approaches
Our spatial encoding algorithm can also be used for other im-
postor based rendering acceleration algorithms, as highlighted
in Section 2. It will either reduce the storage overhead or let us

generate more samples in the same amount of storage. In terms
of interactive walkthrough of large datasets, spatial video can
improve the performance of the following algorithms and sys-
tems:

� MMIs: The MMIs based acceleration algorithm combines
pre-generated and dynamically updated impostors into a single
framework [8]. It has been applied to city walkthrough, where
the pre-computed impostor database is larger than 2GB. How-
ever, the storage requirement for impostors is a major issue [8].
Our spatial encoding algorithm can utilize the spatial coherence
between different MMIs, as well as among multiple layers of
textured meshes within the same MMI.

� Guaranteed Frame Rate with LDIs: Aliaga and Lastra [3]
replace portions of the model using LDIs. However, their sys-
tem assumes that the entire impostor database (about 4GB) fits
into main memory. Moreover, the size of the impostor databases
affects the performance of their system [3]. Our spatial encod-
ing algorithm can be applied to the intensity values of each LDI
and reduce its storage cost by a factor of two or three. How-
ever, no good techniques are known for compressing the depth
information.

� Cell Based Walkthrough System: The pre-computed impos-
tor database in the MMR system takes more than 10 GB and
pre-fetching the data at runtime is a major bottleneck [2]. Our
spatial encoding reduces the storage overhead and the compres-
sion ratios on different impostors vary in the range 2� 15 (aver-
age compression ratio is 5). It lowers the load on the prefetching
process. Our algorithm for cell and cull-box decomposition al-
gorithm is automatic. and we use an adaptive scheme to decom-
pose the cell into sub-cells and improve the impostor fidelity. For
example, the “skin” artifacts that arise in TDMs are considerably
reduced.

Wilson et al. [31] have presented a variation of the MMR sys-
tem, where they used cached images as impostors and arranged
them as a one dimensional array. They used traditional MPEG
encoding on the resulting stream of images, by treating it as a
temporal sequence. Our approach utilizes the spatial coherence
between different impostor representations and results in better
compression ratios as compared to the algorithm presented in
[31]. Furthermore, our system has fewer image artifacts.

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 8

7 Conclusions and Future Work
In this paper, we have introduced spatial video and applied it to
encode the far fields for interactive walkthroughs. We extended
the traditional MPEG encoding algorithm and showed that our
multi-dimensional representation can be used for interactive ap-
plications. We have demonstrated its performance on a complex
CAD environment composed of more than 13M triangles and
we are able to render it at 15� 25 frames on a PC. Spatial video
encoding can either lower the storage overhead or reduce the
popping artifacts. In practice, the storage cost for additional im-
postors grows sub-linearly.

There are many avenues for future work. We would like to
improve the encoding algorithm so that it results in fewer arti-
facts, especially when the images have high frequency compo-
nents. This will involve more investigation of the relationship
between the quality factor and compression rate. Another area
of research is depth encoding. Our current scheme, based on
video compression techniques, is only applicable to the image
portion of a far-field impostor.

Our algorithm generates more samples because of spatial en-
coding. However, the rendering system has some popping arti-
facts when the user switches between cells. We would like to ex-
plore blending techniques to reduce the popping. We would also
like to apply our rendering algorithm to other synthetic environ-
ments including terrains and urban models as well as dynamic
datasets. An exciting area of research is to apply this approach
to real-world models, including light-fields and lumigraphs as
well as range datasets. These are captured from known spatial
locations and spatial video techniques can be used to represent
them efficiently.

References
[1] M. Agrawala, A. Beers, and N. Chaddha. Model-based motion estimation

for synthetic animations. Proceedings of ACM Multimedia 95, 1995.

[2] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff, T. Hud-
son, W. Stuerzlinger, E. Baker, R. Bastos, M. Whitton, F. Brooks, and
D. Manocha. Mmr: An integrated massive model rendering system using
geometric and image-based acceleration. In Proc. of ACM Symposium on
Interactive 3D Graphics, 1999.

[3] D. Aliaga and A. Lastra. Automatic image placement to provide a guaranteed
frame rate. In Proc. of ACM SIGGRAPH, 1999.

[4] D. G. Aliaga. Visualization of complex models using dynamic texture-based
simplification. In Proc. of Visualization’96, pages 101–106, 1996.

[5] A. Beers, M. Agrawala, and N. Chaddha. Rendering from compressed tex-
tures. Proc. of ACM SIGGRAPH, 1996.

[6] D. Cohen-Or, Y. Mann, and S. Fleishman. Deep compression for streaming
texture intensive animations. Proceedings of SIGGRAPH 99, pages 261–268,
1999.

[7] L. Darsa, B. Costa, and A. Varshney. Walkthroughs of complex environ-
ments using image-based simplification. Computer and Graphics, 22(1):55–
69, 1998.

[8] X. Decoret, G. Schaufler, F. Sillion, and J. Dorsey. Multi-layered impostors
for accelerated rendering. Computer Graphics Forum, 18(3), 1999.

[9] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In
Proc. of ACM SIGGRAPH, pages 43–54, 1996.

[10] J. Grossman and W. J. Dally. Point sample rendering. Eurographics Work-
shop on Rendering, pages 181–192, 1998.

[11] B. Guenter, H. Yun, and R. Mersereau. Motion compensated compression of
computer animation frames. In Proc. of ACM SIGGRAPH, pages 297–304,
1993.

[12] Z. Hakura, J. Lengyel, and J. Snyder. Parameterized animation compression.
Proc. of 11th Eurographics Workshop on Rendering, pages 101–112, 2000.

[13] P. Lalonde and A. Fournier. Interactive rendering of wavelet projected light
fields. Proc. of Graphics Interface, pages 107–114, 1999.

[14] D. Legall. A video compression standard for multimedia applications. Com-
munications of the ACM, 34(4):46–58, 1991.

[15] J. Lengyel and J. Snyder. Rendering with coherent layers. Proc. of ACM
SIGGRAPH, pages 233–242, 1997.

[16] Marc Levoy. Polygon-assisted JPEG and MPEG compression of synthetic
images. In SIGGRAPH 95 Conference Proceedings, pages 21–28, 1995.

[17] Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH 96
Conference Proceedings, pages 31–42, 1996.

[18] P. Maciel and P. Shirley. Visual navigation of large environments using tex-
tured clusters. In ACM Symposium on Interactive 3D Graphics, pages 95–
102, 1995.

[19] M. Magnor and B. Girod. Model-based coding of multi-viewpoint imagery.
SPIE Conference on Visual Communications and Image Processing, pages
14–22, 2000.

[20] W. Mark, L. Mcmillan, and G. Bishop. Post-rendering 3d warping. Sympo-
sium on Interactive 3D Graphics, pages 7–16, 1997.

[21] N. Max and K. Ohsaki. Rendering trees from precomputed Z-buffer views.
In Eurographics Rendering Workshop 1995, 1995.

[22] G. Miller, S. Rubin, and D. Poncelen. Lazy decompression of surface light
fields for pre-computer global illumination. Proc. of Eurographics Workshop
on Rendering, pages 281–292, 1998.

[23] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements
as rendering primitives. Proc. of ACM SIGGRAPH, 2000.

[24] M. Rafferty, D. Aliaga, and A. Lastra. 3d image warping in architectural
walkthroughs. IEEE VRAIS, pages 228–233, 1998.

[25] G. Schaufler and W. Sturzlinger. A three dimensional image cache for virtual
reality. Computer Graphics Forum, 15(3):C227–C235, 1996.

[26] J. Shade, S. Gortler, Li wei He, and R. Szeliski. Layered depth images. Proc.
of ACM SIGGRAPH, pages 231–242, 1998.

[27] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical
image caching for accelerated walkthroughs of complex environments. In
Proc. of ACM SIGGRAPH, pages 75–82, 1996.

[28] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulation
for real-time visualization of urban scenery. In Computer Graphics Forum,
volume 16, 1997.

[29] International Telecommunications Union. Generic coding of moving pictures
and associated audio information. ITU-T Recommendation H.262, 1995.

[30] D. Wallach, S. Kunapalli, and M. Cohen. Accelerated MPEG compression
of dynamic polygonal scenes. In Proc. of ACM SIGGRAPH, pages 193–197,
1994.

[31] A. Wilson, M. Lin, D. Manocha, B. Yeo, and M. Yeung. Video-based ren-
dering acceleration algorithms for interactive walkthroughs. Proc. of ACM
Multimedia, pages 75–84, 2000.

Spatially-Encoded Far-Field Representations for Interactive Walkthroughs 9

