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ABSTRACT
The main goal of this work is to develop a competitive segment-
based speaker verification system that is computationally effi-
cient. To achieve our goal, we modified SUMMIT [12] to suit
our needs. The speech signal was first transformed into a hi-
erarchical segment network using frame-based measurements.
Next, acoustic models for 168 speakers were developed for a
set of 6 broad phoneme classes. The models represented feature
statistics with diagonal Gaussians, preceded by principle com-
ponent analysis. The feature vector included segment-averaged
MFCCs, plus three prosodic measurements: energy, fundamen-
tal frequency (F0), and duration. The size and content of the fea-
ture vector were determined through a greedy algorithm while
optimizing overall speaker verification performance. We were
able to achieve a performance of 2.74% equal error rate (EER)
using cohorts during testing; and 1.59% EER using all speakers
during testing. We reduced computation significantly through
the use of a small number of features, a small number of phonetic
models per speaker, few model parameters, and few competing
speakers during testing (when cohorts are used).

1. INTRODUCTION

Speaker verification involves the task of automatically
verifying a person’s identity by his/her speech through the
use of a computer. The outcome of speaker verification
is a binary decision as to whether or not the incoming
voice belongs to the purported speaker. Speaker verifi-
cation has been pursued actively by researchers, because
it is presently a palpable task with many uses that involve
security access authorizations. In the past, applications for
speaker verification systems mainly involved physical ac-
cess control, automatic telephone transaction control (e.g.,
bank-by-phone), and computer data access control. How-
ever, due to the revolution in telecommunications, uses for
speaker verification systems also include Internet access
control, and cellular telephone authorizations.

Figure 1 illustrates the basic components of a speaker ver-
ification system. The feature extraction component deter-
mines acoustic measurements from the user’s speech sig-
nal that are relevant to inter-speaker differences. During
training, the acoustic features are used to build speaker-
specific models. During testing, measurements extracted
from the test data are scored against the stored speaker
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Figure 1: General speaker verification system

models to see how well the test data match the reference
models. The speaker is accepted or rejected based on this
score. Many details are left out of the block diagram, such
as the type of text the system prompts, the features the
system extracts, and the speaker models and classifiers the
system implements. For a detailed tutorial on speaker ver-
ification, refer to [7].

In this paper, we describe how we developed a speaker
verification system that extracts acoustic features from
speech segments. Our investigation is motivated by
past observations that speaker-specific cues may manifest
themselves differently depending on the manner of artic-
ulation of the phonemes [10]. By treating the speech sig-
nal as a concatenation of phone-sized units (segments),
one may be able to capitalize on measurements for such
units more readily. A potential side benefit of such an
approach is that one may be able to achieve good perfor-
mance with unit (i.e., phonetic inventory) and feature sizes
that are smaller than what would normally be required for
a frame-based system, thus deriving the benefit of reduced
computation.

2. SYSTEM DESCRIPTION

2.1. Corpus

The TIMIT [4] corpus was used in our experiments.
TIMIT consists of 630 speakers, 70% male and 30% fe-
male, representing 8 major dialect regions of the United
States. We selected a subset of 168 speakers from the stan-
dard NIST-train set for development, and a separate set of
168 speakers (TIMIT’s standard NIST-test and NIST-dev
sets) for evaluation. Eight sentences (SX, SI) were used
to develop each speaker model, and the remaining 2 SA
sentences were used to test each speaker. We clustered
the 61 TIMIT-labeled phones into 6 broad manner classes
(vowels, weak fricatives, strong fricatives, nasals, stops,



silence), in the hope of developing robust models that can
distinguish among speakers.

2.2. Signal Representation

Past observations have shown that the Mel-frequency-
based cepstral coefficients (MFCCs) and prosodic features
are useful for speaker verification [6, 11]. Thus, the ini-
tial set of features used consisted of MFCCs and sev-
eral prosodic measurements. Specifically, 14 MFCCs, the
logarithm of energy, duration and fundamental frequency
(FO) were computed2. The features were averaged across
speech segments, which were proposed by a segmentation
algorithm implemented in SUMMIT .

2.3. Feature Search

The 17 measurements mentioned above represent a pool
of possible features to characterize segments. We did not
use all 17 measurements in the system for several reasons.
First, some features may discriminate between speakers
well, while others may not. Second, some of the mea-
surements may be correlated or essentially carrying the
same information. In addition, training models with high
dimensionality may be problematic since not much data
are available per speaker. Finally, computation increases
as the number of features increases, which may become
prohibitive if all 17 measurements are used in the system.

To find a (sub)-optimal subset of the 17 features, we con-
ducted a greedy search [2]. At every decision point in a
greedy algorithm, the best choice, based on an optimality
criterion, is selected. Our criterion is the speaker veri-
fication performance of each proposed feature set. Per-
formance is measured in terms of a distance metric that
minimizes the two types of errors, false rejection of true
users (FR) and the false acceptance of impostors (FA).
While our goal is to minimize both types of errors, we
have chosen to weigh the cost of false acceptances of im-
postors more than the cost of false rejections of true users.
Specifically, we obtain the receiver operating characteris-
tic (ROC) curve (FR vs. FA) for each feature set. The sys-
tem’s performance is then measured in terms of a distance
between the point on the feature’s ROC curve that corre-
sponds to the lowest false acceptance rate, to the origin,
which corresponds to the ideal performance of 0% error.

The search algorithm begins by obtaining FR rates and
FA rates for the speaker set, using each of the 17 fea-
tures. Thus, we obtain 17 performance results correspond-
ing to each measurement. The feature that results in the
smallest distance measure (minimum error rates) is cho-
sen as the best 1-dimensional measurement. Next, the
best 1-dimensional feature is combined with each of the
remaining measurements. Two-dimensional feature sets
are grouped in this fashion, and are each used to test
the speakers. The best 2-dimensional feature vector, in
terms of speaker verification performance, is then used

2To estimate F0, we used the ESPS tracker, in particular the
FORMANT function [3]. Although the tracker estimates proba-
bilities of voicing for each frame, we retained F0 information for
every frame, regardless of whether the underlying sounds were
voiced or unvoiced.

for the next stage of the search. The search continues
to accumulate dimensions to the feature set until there
is no longer significant improvement in speaker verifica-
tion performance, or until performance actually degrades
as more features are added.

2.4. Training and Testing

In order to train and test the utterances, each utterance
must first be delineated into segments that correspond
to the broad manner classes. In our case, this is ac-
complished through a forced-alignment of the signal with
the underlying phonetic transcription, after the phone la-
bels have been collapsed into their corresponding broad
classes. To facilitate this alignment, we must first develop
a set of speaker-independent (SI) models. For our exper-
iments, we actually developed two sets of SI models, one
to test on the development set and another to evaluate on
the test set speakers.

Diagonal Gaussian speaker models of the segment-based
acoustic features are then developed using the forced tran-
scriptions for each speaker and broad class. Conventional
maximum likelihood estimates are used to approximate
the distribution parameters. To ensure that the features fit
the diagonal models better, principal components analysis
(PCA) is performed on the acoustic features before devel-
oping the models. In our experiments, we did not reduce
dimensionality with PCA since the feature search already
prunes the number of features used in the system.

Once speaker models are developed, test utterances are
scored against these models to classify speakers and make
verification decisions. It is ideal to compare test utterances
to all speaker models in the system, and accept the pur-
ported speaker if his/her model scores test data the best.
However, computation becomes more expensive as speak-
ers are added to the system. Since speaker verification is
simply a binary decision of accepting or rejecting a pur-
ported speaker, the task should be independent of the user
population size. To keep our system independent of the
number of users and computationally efficient, we imple-
mented a technique calledcohort normalization. For each
speaker, we pre-detected a small set of speakers, called a
cohort set, who are acoustically similar to the purported
speaker. For each feature set and speaker, we found 14
nearest neighbors using the Mahalanobis distance metric.

To accept or reject a speaker, we compute forced align-
ment scores, described in [9], for the purported speaker’s
two test utterances. The scores are computed using 15
models, the speaker’s model and his/her 14 cohort models.
These scores are then sorted, and the speaker is accepted
if the score using his/her model is in the topN scores of
the 15 results.N is a rank-threshold that we varied.

3. FEATURE SELECTION

3.1. Development Set

We conducted a feature search using 168 development
speakers. After the first stage of the search, 10 out of
the 17 features were eliminated due to significantly poorer
performances. We realized that such pruning will result



in a search that is not greedy in the strictest sense of
the word. Eventually, the algorithm led us to obtain a
(sub)-optimal 6-dimensional feature set which consisted
of energy, MFCC10, MFCC8, MFCC4, MFCC12, and
MFCC6. The feature search terminated because perfor-
mance leveled off and degraded after the sixth stage.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

Distance

D
im

e
n

s
io

n

Energy

E_mfcc10

E_mfcc10_8

E_mfcc10_8_4

E_mfcc10_8_4_12

E_mfcc10_8_4_12_6

E_mfcc10_8_4_12_6_14

E_mfcc10_8_4_12_6_14_2

Figure 2: Distances for best feature sets of each search stage
using development speaker set

3.2. Test Set

To investigate whether the feature selection process is in-
dependent of the speakers used, we conducted an iden-
tical search using a set of 168 test speakers. The opti-
mal feature set found in this search also consisted of 6 di-
mensions: energy, MFCC10, MFCC5, MFCC8, MFCC6,
and MFCC14. The feature search terminated after perfor-
mance degraded using 7, 8-dimensional feature sets. The
performances of the best stages of each search stage are
shown in Figures 2 and 3.
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Figure 3: Distances for best feature sets of each search stage
using test set

3.3. Discussion

As illustrated in Figures 2 and 3, speaker verification per-
formance initially improves as more measurements are
added to the feature set (distance decreases), because the
additional features contribute further speaker-specific in-
formation. Also, there are sufficient amounts of training

data to accurately estimate the speaker model parame-
ters. However, adding features eventually degrades per-
formance, presumably because not enough training data
is available to accurately estimate the model parameters.

The features selected for each speaker set vary slightly (4
out of 6 features are the same). The differences may be
due to the fact that the SI models used to create forced
transcriptions for each speaker set are different. However,
general trends in each search are similar. In the first stages
of both searches, we found that energy performed well
and duration performed poorly. To analyze these results,
we computed the average Mahalanobis distances between
cohort models for energy and duration. We found that the
average Mahalanobis distance for the energy models is ap-
proximately twice that of the duration models, suggesting
that the energy speaker models are much more different
than the duration speaker models within cohort sets. Con-
sequently, it is easier to distinguish between speakers us-
ing energy as a feature than using duration as a feature.

4. SPEAKER VERIFICATION
PERFORMANCE

4.1. Effects of Cohort Normalization

As previously mentioned, computation during testing is
reduced by only scoring test data against the purported
speaker’s model and models of the his/her cohort set. This
technique is based on the assumption that speaker models
outside of the cohort set will not adversely affect speaker
verification performance. Since these outliers are consid-
ered too different from the purported speaker, their mod-
els are expected to match the test data poorly compared
to the speaker models within the cohort set. If this is the
case, the ROC curves corresponding to performance using
all speakers during testing can be obtained from the ROC
curves using only cohort sets during testing, via normal-
ization. The normalization divides the number of false ac-
ceptances obtained for a feature set, using for each speaker
only the 14 speakers in his/her cohort set as impostors, by
the number of possible false acceptances when all the re-
maining 167 speakers pose as impostors for each speaker
(168 speakers x 167 impostors).

We first normalized the results for the (sub)-optimal fea-
ture sets found after feature selection. Then, we verified
whether these normalized approximations are reasonably
close to the performances using all speakers during test-
ing by repeating the experiments on the feature sets us-
ing all speakers during testing. As Table 1 illustrates, the
normalized (Cohorts) equal error rates, the rates at which
two possible errors are equal, are similar to the results ob-
tained using all speakers during testing (No Cohorts). The
performances do not match exactly and causes of the dis-
crepancies could be due to at least two reasons. First, we
selected cohorts using the Mahalanobis distance, whereas
during testing we compared speakers using forced-paths
scores. Second, the cohorts were not selected in a man-
ner that maximized a spread around each speaker as they
were in [8]. A spread prevents impostors that are far from
the purported speaker, but even further from the purported
speaker’s cohorts, to be falsely accepted.



Speaker Feature Old SUMMIT New SUMMIT

Set Selection Cohorts No Cohorts Cohorts No Cohorts
Dev energymfcc108 4 12 6 5.43% 6.27% 3.54% 1.19%
Test energymfcc105 8 6 14 4.13% 4.00% 2.74% 1.59%
Test 17 features 6.65% 15.15% � �

Table 1: Performance: All results are in terms of EER.

4.2. Effects of NewSUMMIT Recognizer

In addition to observing the effects of using cohorts dur-
ing testing, we determined whether a recent improvement
in the probabilistic framework for acoustic modeling in
SUMMIT affected speaker verification performance3. To
observe how performances of the selected feature sets
are affected, we evaluated the 168 development and test
speakers using the improved SUMMIT system. As Ta-
ble 1 illustrates, the new recognizer significantly improves
speaker verification performance over the old recognizer.

4.3. Effects of Feature Search

To observe whether the performance of the (sub)-optimal
features sets found above improves over using all 17 fea-
tures in the system, we evaluated the 168 test speakers
using the 17 initial measurements. The results are also
shown in Table 1. As expected, performance was poor.
Presumably, not enough data were available to accurately
estimate the large number of model parameters. Conse-
quently, when performance using all speakers during test-
ing is poor (>10% EER), normalized cohort approxima-
tions are inaccurate.

4.4. Performance Comparison

Below, we compare our system with two other state-of-
the-art systems that also use the TIMIT corpus. One sys-
tem implements HMMs to represent speakers [6], while
the other uses neural networks [1]. Both systems, if tested
using the same decision algorithm as ours, reach the ideal
performance of 0% error.

Unlike the HMM and neural network (NN) system, our
system does not achieve perfect performance. However,
performance degradation is somewhat compensated by
computational efficiency. We designed a simple system
and reduced computation in a variety of ways. First, we
used only 6 acoustic features, as opposed to 16 or 32 (NN
and HMM respectively), to represent the speech signals.
Second, we developed speaker models of 6 broad pho-
netic classes, as opposed to 31 as in the HMM system.
Third, each of the 6 broad classes is represented by a sin-
gle diagonal Gaussian distribution, as opposed to mixtures
of Gaussians (as in HMM system) or the nonlinear distri-
butions that neural networks typically produce. The two
latter models have more parameters to estimate, and hence
require more computation during training. Finally, we re-
duce computation during testing by using only a set of
speaker models similar to the purported speaker’s model,
as opposed to using all the speaker models in the system.

3SUMMIT ’s recent modification and improvement is dis-
cussed in [5].

Computation, in terms of the number of training param-
eters, is approximated on the order of10

6 for the HMM
system and on the order of104 for the SUMMIT speaker
verification system. Not enough information is reported
on the neural network system to reliably estimate the num-
ber of training parameters.

5. CONCLUSIONS

As described above, our system achieves a performance
of 1.59% EER when all speakers are used during testing.
In the process, we significantly reduced computation in
many ways. We believe that by considering the speech
signal as a concatenation of phone-sized units, we capital-
ized on measurements for such units more readily.

Future work includes representing acoustic features with
more complex distributions, adapting speaker models [6],
and conducting feature searches on NTIMIT and CTIMIT
to find robust features for the telephone and cellular tele-
phone domains, respectively.
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