
MIDI Code

Juan P Bello

MIDI Code: the message format

•  2 types of MIDI message bytes: the status byte and the data byte

•  Status bytes always begin with 1, and data bytes with 0. That leaves only
7 bits per byte to represent the message (128 possible values).

•  MIDI messages begin with the status byte, where 3 bits (sss) are used to
denote the type of message, and 4 bits (nnnn) to denote the channel
number to which the message apply (max. 16 channels).

1 s s s n n n n 0 x x x x x x x 0 y y y y y y y

Status Data 1 Data 2

1 byte

MIDI Messages

•  There are two main types of MIDI messages: channel and system

•  As their names indicate they are addressed to individual channels
or the whole system (exception: “omni on” channel messages)

Channel messages

Message Status Data 1 Data 2

Note off 8n Note number Velocity

Note on 9n Note number Velocity

Polyphonic aftertouch An Note number Pressure

Control change Bn Controller number Data

Program change Cn Program number -

Channel aftertouch Dn Pressure -

Pitch wheel En LSbyte MSbyte

•  MIDI channel numbers (n) are referred as 1 to 16, while in reality
they are represented by binary values 0 to 15 (0-F).

•  Example: the status byte of a note off message for channel 7 is
“86”

Note on / Note off (1)

•  They make the bulk of the information commonly sent through a
MIDI channel

•  “Note on” triggers a musical note, “note off” turns it off

•  All notes MUST be turned off (otherwise they’ll sound indefinitely)

Message Status Data 1 Data 2

Note off 8n Note number Velocity

Note on 9n Note number Velocity

Note on / Note off (2)

•  There are 128 (0-127) possible note values (~10 octaves)
mapped to the chromatic western music scale.

•  Commonly, middle C is mapped to MIDI’s C-3 (note number 60,
6th octave).

Note on / Note off (3)

•  Note on messages are also associated to a “velocity” value,
characterizing how hard the key was hit.

•  Note on velocity can be used to control volume and timbre of a
sound (e.g. by controlling the scaling of an envelope generator)

•  The mapping between velocity and the parameter it controls is
often logarithmic.

•  Note off velocity relates to the speed at which a note was released
•  It could be used to affect a sound, but it is not normally used.

Note on / Note off (4)

•  Note on, velocity zero is equivalent to note off.

•  It is convenient when large amounts of data are sent to the MIDI
bus (e.g. a high-polyphony chord)

•  Normally we will need 6 bytes for each note of a chord: [9n]
[pitch][velocity] and [8n][pitch][velocity]

•  Instead we can clutter note on and off messages together: [9n]
[pitch][vel][pitch][vel]…[pitch][vel]

•  This is known as running status

•  For a 4-note chord it means 17 bytes are transmitted rather than
24 bytes (assuming running status remains unchanged).

Aftertouch

•  Key pressure messages are called aftertouch
•  It refers to the amount of pressure placed on a key at the bottom

of its travel (triggering performance parameters, e.g. vibrato)

•  Polyphonic key pressure transmits a separate value per key (thus
requiring separate sensors)

•  This is expensive as most players do
not maintain constant pressure on the
bottom of the key

•  Most instruments use a single sensor,
thus one message is sent with the approx.
total pressure sensed (channel aftertouch)

Message Status Data 1 Data 2

Polyphonic aftertouch An Note number Pressure

Channel aftertouch Dn Pressure -

Control change (1)

•  MIDI is also capable of transmitting orders for the controllers (e.g.
pedals, switches and wheels) of a given device

•  All these controllers are addressed by using the same status byte,
with the first data byte determining the specific controller

•  The number of controllers has augmented significantly since the
introduction of MIDI

•  Thus, although not originally specified, the MMA administers an
agreement as to which ID corresponds to which controller

Message Status Data 1 Data 2

14-bit controllers MSbyte Bn 00-1F (controllers) Data

14-bit controllers LSbyte Bn 20-3F (same order) Data

7-bit controllers/switches Bn 40-65 Data

Undefined Bn 66-77 -

Channel mode Bn 78-7F Data

Control change (2)

 The first 64 numbers are
used for 32 physical
controllers at greater
control resolution

 Thus 2 data bytes (14
bits) are used to represent
the controller’s position
(16384 possible values)

Control change (3)

 7-bit controllers use only 1 data
byte for their position

 On/off switches are represented
with values 00-3F for off, and
40-7F for on.

Controller messages (1)

•  Control messages (status byte Bn) can be implemented in many
ways in sound generators

•  Although standard definitions exist for many of these controllers,
it is possible to remap them in sequencers and sound devices

•  14-bit continuous controllers are rarely used. Oftentimes only the
MSbyte of the 32 14-bit controllers is used

•  The internal mixing of voices can be controlled (independent from
velocity) using volume (07) and pan (0A) channel controllers.

Controller messages (2)

•  A number of alternative expressive
controllers have been proposed over the
years.

•  Examples include so-called breath
controllers (controller ID 02), which were
originally intended for wind controllers
but that are often used individually to
add expressiveness.

•  The sensed blowing pressure can be
applied to envelope generators or
modulation parameters to affect the
sound.

Sound controllers (1)

•  Sound and effect controllers provide control over the sound
quality of a device and the parameters of built-in effects

•  They are device dependent, intended for real-time and high-level
(abstract) control of the synthesis and effect processes

•  Sound variations refer to pre-programmed variants of a basic
sound (e.g. piano, lid open/closed, honky tonk).

Controller # Function Controller # Function

46 Sound variation 5B External effects depth

47 Timbre/harmonic content 5C Tremolo depth

48 Release time 5D Chorus depth

49 Attack time 5E Detune depth

4A Brightness 5F Phase depth

4B-4F No default

Sound controllers (2)

•  Timbre and brightness are used to affect the spectral content of
the sound (e.g. by controlling filtering characteristics)

•  Envelope controllers modify the attack and release time of a
sound (following the ADSR envelope approximation).

•  Both progressively shorter (data byte < 40) and longer (data byte
> 40) times can be assigned

RPN and NRPN (1)

•  Registered (RPN) and non-registered (NRPN) parameter numbers
are specific control change messages that allow for the control of
the internal parameters of a voice patch

•  Any aspect of a voice (e.g. velocity sensitivity of an envelope
generator, range of modulation or bending, etc) can be modified
remotely via these messages

•  RPNs are universal and should be registered with the MMA while
NRPNs can be manufacturer specific

RPN Parameter

00 00 Pitch bend sensitivity

00 01 Fine tuning

00 02 Coarse tuning

00 03 Tuning program select

00 04 Tuning bank select

7F 7F Cancels RPN or NRPN

RPN and NRPN (2)

Channel mode messages (1)

•  Channel Mode Messages are a special case of Control Change
Messages (status byte Bn).

•  They set the mode of operation of the instrument receiving on
channel n.

•  A change of channel mode should turn all notes off automatically

Status
Index
Argument

Description

==

Bn

78
00

All Sounds Off

Bn

79
7F

Reset All Controllers

Bn

7A
7F on/00 off
Local Control On/Off

Bn

7B
00

All Notes Off

Bn

7C
00

Omni Mode Off (All Notes Off)

Bn

7D
00

Omni Mode On (All Notes Off)

Bn

7E
channels

Mono Mode On (Poly Mode Off)

Bn

7F
00

Poly Mode On (Mono Mode Off)

Channel mode messages (2)

•  All sounds off turns off all
sound generators

•  Reset all controllers returns a
device to its standard settings

•  Local on/off breaks the link
between the instrument’s
keyboard and its sound
generator

•  Omni off (default) sets the
instrument to receive on the
appropriate channel

•  Omni on sets the instrument to
receive in all channels

•  Mono mode sets the instrument
to monophonic

•  Poly mode sets it to polyphonic

Program change

•  Program change is used to change between patches or presets of
an instrument: the set-up of stone generators and the way they
are interconnected

•  The message is channel specific
•  There is only one byte of data used (only 128 presets to choose

from)

•  In other devices, e.g. effect processors, the program change is
used to switch between effects

•  On some instruments, programs are organized in “banks” of 8, 16
or 32 presets

Message Status Data 1 Data 2

Program change Cn Program number -

Voice selection

•  The program change message
(Cn) only allows for the selection
of one of 128 voices.

•  A sound generating device may
allow the user to define a
program change map to decide
which voice correspond to which
message

•  Commonly, current devices have
very large (>> 128) program
memories

•  A solution is to precede program
changes with a 14-bit “bank
select” control change message

Pitch bend

•  The pitch wheel is the only controller with
a status byte of its own.

•  It uses 2 data bytes (14 bits of resolution)
•  Such resolution ensures smooth changes of

pitch
•  It is channel specific

•  In default position, the pitch bend value is in the middle of its
range ([En] [00] [40]). This allows pitch bending both up and
down.

•  The controlled pitch range is set in the receiving device

Message Status Data 1 Data 2

Pitch wheel En LSbyte MSbyte

System messages
Message Status Data 1 Data 2

System exclusive

System exclusive start F0 Manufacturer ID Data … (Data)

End of system exclusive F7 - -

System common

Quarter frame (MTC) F1 Data

Song pointer F2 LSbyte MSbyte

Song select F3 Song number -

Tune request F6 -

System Real-time

Timing clock F8 - -

Start FA - -

Continue FB - -

Stop FC - -

Active Sensing FE - -

Reset FF - -

System Exclusive (1)

•  SysEx messages are used for device-specific data transfer.
•  Except for SysEx for Universal Info, the standard only defines how

messages begin and end.
•  A return link is necessary for Handshaking.
•  Error checking (checksum) is applied to long data dumps

F0 Manufacturer ID Data 1 … Data N F7

SysEx start End of SysEx (EOX) Data

Manufacturers ID
Yamaha 43
Roland 41
Akai 47

Universal information
Universal non-commercial 7D Ed&R
Universal non-realtime 7E Sample dumps
Universal realtime 7F MTC

System Exclusive (2)

•  Manufacturer-specific SysEx messages are mainly used for
dumping/loading the settings of a device and for remotely
controlling its parameters.

•  Universal non-realtime messages include Sample/MIDI file dump,
General MIDI on/off, Inquiry requests, MIDI Tuning standard.

•  Universal realtime messages include MIDI timecode (MTC), MIDI
Machine/Show control, Master Volume/Balance control, Bar/Time-
signature markers.

•  Timecode is a digital code, used in the audiovisual industries, that
represents time in terms of hours, minutes, seconds and frames
(hh:mm:ss:ff)

System Exclusive (3)

•  Example: master volume and balance messages

System common messages

•  Like SysEx Universal messages, SCM are intended for the
attention of all systems

Status
Data 1

Data 2

Description

==

F1

Data

-

Quarter-frame (MTC)

F2

LSbyte

MSbyte
Song Pointer

F3

Song number
-

Song Select

F6

-

-

Tune Request

•  Song select determines which pre-recorded sequence of MIDI data
(song) from a collection is to be accessed.

•  Song pointer directs devices towards a particular location in a
song (in beats from the beginning of the song).

•  Tune request asks synthesizers to re-tune themselves to a pre-
specified reference.

MIDI and synchronization
•  An important function of MIDI is the handling of timing and

synchronization data between devices
•  MIDI sends sync info through the same data stream it uses for control
•  Sync info comes in two types: music-related timing data (related to

bars and beats) and timecode information, necessary to synchronize
to audio-visual devices in “real” time (seconds, hours, etc).

•  The first type is handled by the song pointer message in combination
with system real-time messages.

Note value # of MIDI beats # of MIDI clocks

Whole note 16 96

Half note 8 48

Quarter note 4 24

Eight note 2 12

Sixteenth note 1 6

System real-time messages

•  They control the execution of timed sequences in a MIDI system

System Real-Time Messages

STATUS
Description

Details

===

F8

Timing Clock

FA

Start

from beginning of song

FB

Continue

from stop position

FC

Stop

stops song’s execution

FE

Active Sensing
flags active connection (3/sec)

FF

System Reset

Reset all devices to init state

•  The MIDI clock is a single status byte (F8) to be sent 6 times per
MIDI beat (defined as a sixteenth note).

•  Thus it represents musical tempo rather than real time.
•  It is the only MIDI byte that can interrupt the current status
•  The internal clock of the receiver is incremented with each clock

MIDI timecode (MTC)

•  MIDI timecode (MTC) is an alternative to MIDI clocks and song
pointers when real-time synchronization is important

•  It is used to distribute SMPTE/EBU timecode data thoughout a
MIDI system (for synchronization with audiovisual equipment)

•  It is also used to transmit information about “cue points” at which
certain events are to take place

•  There are two types of MTC sync messages: quarter frame
messages (used to update the receiver continuously with running
timecode) and full-frame messages (used for one-off updates of
the MTC position)

Quarter frame messages

•  The system common quarter-frame message can be used to
transmit MTC info.

•  This message consists of 1 status byte (F1) and 1 data byte.
•  As timecode info is much longer than this, then we split the

message into 8 separate messages transmitting the frames’ LS/
MSnybbles, seconds’ LS/MSnybbles, minutes’ LS/MSnybbles and
hours’ LS/MSnybbles.

•  The message type is encoded in the first data nybble (as 0-7)
•  Hour information is encoded as in SysEx MTC, including frame rate

info.
•  Despite the message name, the MTC is updated every two frames

(causing a delay at the receiver).
•  At 30 fps, and 8 messages to represent a frame, we need to send

120 messages per second.
•  If transmitted continuously this takes ~7.7% of the data bandwidth
•  SysEx full-frame messages can be used to avoid this.

Full frame messages

•  A SysEx Full-frame message transmits MTC: 7F is the universal realtime
identifier, channel number (set to 7F for the whole system), 01 identifies
the message as a MTC message, and a subID of 01 refers to full-frame
message.

•  Hours are coded as [0 qq ppppp], where qq represents the time-code
frame rate (in fps):

•  00 = 24 frame (used in films)
•  01 = 25 frame (EBU: PAL and SECAM TV pictures in Europe/Australia)
•  10 = 30 drop-frame (SMPTE drop frame: NTSC color TV in the US/Japan)
•  11 = 30 non-drop-frame (SMTPE: monochrome US TV pictures)
•  ppppp represents hours from 00 to 23. Minutes, seconds and frames are

represented by a byte each
•  SysEx can also transmit MTC origination information (user bits) and MTC

cue messages.

F0 7F Chan 01 subID hh mm ss ff F7

Standard MIDI files (1)

•  Standard MIDI files were designed to allow exchange of
sequenced data between devices / SW sequencers.

•  These files represent data as events belonging to individual
sequencer tracks, plus info such as track/instrument names and
time signatures.

•  There are 3 types of MIDI files for representing: single-track data
(type 0), synchronous multi-track data (type 1) and asynchronous
multi-track data (type 2).

•  Data is organized as bytes grouped into header and track chunks.

MS LS

4-byte ASCII 4-byte

Type
MThd: header
MTrk: tracks

Length of data
in chunk
(in bytes)

data

Standard MIDI files (2)
•  Header chunk: format defines the MIDI file type (0, 1 or 2), ntrks defines the

number of track chunks and division defines the timing format.
•  The timing format is defined by the MSB of the 2-byte division word. 0

indicates a division of ticks per quarter note, while 1 indicates a division of
ticks per timecode frame.

•  Track chunks contains strings of MIDI events, each labeled with a δ-time
(ticks since the last event) at which the event occurs.

•  MIDI events can be channel messages, SysEx and meta-events (containing
labels and internal data)

M T h d 0 0 0 6

format

Type Length ntrks

division

M T r k δ-time event

Type Length event event

2-8 bytes ?? bytes

Useful References

•  Francis Rumsey and Tim McCormick (2002). “Sound and Recording: An Introduction”, Focal
Press.

–  Chapter 13: MIDI

•  MIDI Manufacturers Association (2002). The complete MIDI 1.0 detailed specification
(www.midi.org)

