
Introduction to Object-Oriented Concepts using Fortran90

Viktor K. Decyk

Department of Physics and Astronomy
University of California, Los Angeles

Los Angeles, CA 90095-1547
&

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

email: decyk@physics.ucla.edu

Charles D. Norton* and Boleslaw K. Szymanski

Department of Computer Science
and

Scientific Computation Research Center (SCOREC)
Rensselaer Polytechnic Institute

Troy, NY 12180-3590

email: szymansk@cs.rpi.edu

*Current address: Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109-8099

 email: nortonc@olympic.jpl.nasa.gov

Abstract

Fortran90 is a modern, powerful language with features that support important new
programming concepts, including those used in object-oriented programming. This
paper explains the concepts of data encapsulation, function overloading, classes, objects,
inheritance, and dynamic dispatching, and how to implement them in Fortran90. As a
result, a methodology can be developed to do object-oriented programming in the
language.

1

I. Introduction

 Fortran, still the most widely used scientific programming language, has evolved every
10 years or so to incorporate the most recent, proven, ideas which have emerged from
computer science and software engineering. The latest version, Fortran90, has incorporated
a great many new ideas, but scientific programmers generally are aware of only one of
them: array syntax. These other new ideas permit better and safer programming design.
Furthermore, they allow the software application to be expressed in terms of familiar and
appropriate scientific concepts. These new capabilities in Fortran90 make scientific
programs easier to understand, modify, share, explain and extend. As a result, much more
ambitious programming problems can be attacked in a manageable way.
 There are several properties of program design that are useful in the programming and
maintenance of large computational projects. First, the code which modifies a given data
structure should be localized or confined to one location in the program and not spread,
uncontrollably, throughout the program. This property is called an encapsulation. In a
sense, it is a generalization of the familiar notion of a function or subroutine. However,
modern encapsulation allows all related operations to be grouped together around a data
type. For example, given a data type representing a logical, encapsulation may group
together a set of operations that perform logical operations. A related notion is that of
information hiding. Once all the operations are encapsulated, one can hide the details by
which the results are computed, allowing only well defined operations to be applied to the
data. For example, one can use the .not. operation on the intrinsic type logical, without
worrying about the way the compiler writers implemented the operation or the internal
representation of logicals. The divide operation on logicals, on the other hand, is not
defined in Fortran and therefore cannot be used.
 Using encapsulation and information hiding, the users can define their own data types,
called abstract data types. For example, one can define a data type representing an
angle. Abstract data types are further defined by the operations that can be applied to
them. A class definition encapsulates the code for the allowable operations, or methods,
written by the programmer along with the abstract data type, hiding the implementation
details there. For instance, users of the data type angle can apply the sine and cosine
functions to angle variables (objects) if such methods have been defined for angles, but
cannot multiply two angles if such a method has not been defined. Encapsulated code can
be safely changed (for example, a different method of computing sines could be used on a
new architecture) without the need to change the code using these functions. The other
advantage of abstract data types is that the software designer can describe the program in
terms resembling the application domain. For example, if a data type electron is defined,
one could define what it means to push an electron object a given distance in space. (The
electron is pushed in this view, whereas in Fortran77 the values of arrays representing the
electron coordinates are updated).
 Some operations are defined for more than one standard type. For example
multiplication can be defined for integer arguments, real arguments, vectors and arrays. This
property is called overloading and the concept extends to abstract data types. Consider
an electron type and an ion type, both of which permit a push operation to be applied,
but using a different procedure in each case. Overloading helps to write shorter and clearer
programs by providing a general operation in which the specific action taken is defined by
the type of the arguments at compile-time.
 Often in science, properties of some entities are abstracted and grouped into classes.
For example, electron and ion types can be considered different kinds of species types.
If separate data types were created for electron and ion, many operations would be
shared by these two types. Overloading can help, but it is even more convenient to

2

introduce the abstract data type species for the common properties. Then, like in
everyday life, everything that applies to the species type can also be applicable to
electron and ion types (but not the opposite). Once the data type species is defined
one can simplify the description of ion and electron types by permitting inheritance of
species properties by those two more specialized data types.
 All of the ideas presented so far are part of the modern programming paradigm called
object-oriented programming (OOP). Many users with large investments in Fortran77 have
reason to be reluctant to shift to a very different programming style and language. The
demands on development time and the training required to shift to a new approach,
combined with the many years invested in existing Fortran77 based applications and the
need to continually produce new science are good reasons to be skeptical of
experimenting with new ideas, as promising as they might appear.
 Fortran90 supports these new important programming concepts, including those used in
object-oriented programming. Since Fortran90 is backward compatible with Fortran77, it is
possible to incorporate these new ideas into old programs in an incremental fashion,
enabling the scientist to continue his or her scientific activities. Some of these ideas are
useful for the typical kinds of programs written by individual authors now. The usefulness of
other ideas only becomes apparent for more ambitious programs written by multiple
authors. These are programs that might never have been written in Fortran77 because the
complexity involved would have been unmanageable. These new ideas enable more
productive program development, encourage software collaboration and allow the scientist
to use the same abstract concepts in a program that have been used so successfully in
scientific theory. Scientific productivity will then improve. Additionally, there is also a
migration path to parallel computers, since High Performance Fortran (HPF) is also based
on Fortran90.
 In this paper, we will introduce the concepts of data encapsulation, function overloading,
classes and objects, inheritance, and dynamic dispatching in Fortran90. Since these are the
fundamental building blocks of object-oriented programming, it is important to understand
them before one can effectively use OOP in Fortran90. Many of these ideas are powerful
by themselves and are useful even without adopting the object-oriented paradigm. This
paper is intended to be introductory in nature. For those who wish to pursue these ideas
further, there are a number of references which discuss object-oriented ideas in a language
independent manner [1-3]. There are many textbooks available on Fortran90 and C++.
Two that we have found useful are those by Ellis [4] and Lippman [5].

3

II. Data Encapsulation with Array Objects

 The first concept we will discuss is data encapsulation, which means that only those
procedures which need to have access to certain data are aware of it. To illustrate how data
encapsulation works in Fortran90, consider an example from a real to complex Fast Fourier
Transform (FFT) subroutine written in Fortran77. The interface to the procedure, that is, the
list of arguments and their types, is defined as follows:

 subroutine fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
 integer isign, indx, nx, nxh, mixup(nxh)
 real f(nx)
 complex sct(nxh), t(nxh)
c rest of procedure goes here
 return
 end

Here f is the array to be transformed (and the output), t is a temporary work array, mixup
is a bit-reverse table, sct is a sine/cosine table, indx is the power of 2 defining the length
of the transform, and nx (>=2**indx) is the size of the f array, and nxh (=nx/2) is the size
of the remaining arrays. The variable isign determines the direction of the transform (or if
zero, initiates the tables mixup and sct.)
 Since the procedure fft1r is designed to work with variable size data (and might be
compiled separately), and Fortran77 cannot dynamically allocate such data, the work and
table arrays t, sct, and mixup have to be declared in the main program and passed to the
procedure. If the FFT procedure is itself embedded inside other procedures, then all these
arrays have to be passed down the chain of arguments or else stored in a common block.
Thus the main program might look something like:

 program main
 integer isign, indx, nx, nxh
 parameter(indx=11,nx=2**indx,nxh=nx/2)
 integer mixup(nxh)
 real f(nx)
 complex sct(nxh), t(nxh)
c initialize fft tables
 isign = 0
 call fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
 stop
 end

The goal of data encapsulation is make the FFT call look like:

 call fft1r(f,isign)

where all the auxiliary arrays and constants which are needed only by the FFT are hidden
inside the FFT, and the rest of the program does not have to be concerned about them.
This hiding of data greatly simplifies bookkeeping with procedures.
 Fortran90 allows dynamic arrays which are only used inside a procedure to be created
and destroyed there, and they are therefore unknown outside the procedure. One
mechanism for such encapsulation is the automatic array, which is created on entry and
destroyed upon exiting a procedure. It is easy to implement the work array t as an

4

automatic array. One just omits the name from the argument list:

 subroutine fft1r(f,isign,mixup,sct,indx,nx,nxh)
 integer isign, indx, nx, nxh, mixup(nxh)
 real f(nx)
 complex sct(nxh)
! t is an automatic array, it disappears on exit
 complex, dimension(nxh) :: t
! rest of procedure goes here
 end subroutine fft1r

Notice that we have begun to use the new Fortran 90 :: syntax for declaring arrays, and a
new END SUBROUTINE statement. Automatic arrays differ from local arrays previously
available in Fortran77 because their dimensions can now be variables.
 Another mechanism for encapsulation of arrays in Fortran90 is the allocatable (or
deferred-size) array. They are similar to automatic arrays, except that their creation
(allocation) and destruction (deallocation) are entirely under programmer control. Such arrays
are created with the ALLOCATE statement. If the SAVE attribute is used in their
declaration, then they will not be destroyed on exit from the procedure. They can be
explicitly destroyed with the DEALLOCATE statement.
 For now, let us assume that the table arrays mixup and sct do not change between
calls to the FFT. We can then remove them from the argument list in our example and
explicitly ALLOCATE them inside the procedure when the tables are initialized, as follows:

 subroutine fft1r(f,isign,indx,nx,nxh)
 integer isign, indx, nx, nxh
 real f(nx)
! mixup and sct are saved, allocatable arrays
 integer, dimension(:), allocatable, save :: mixup
 complex, dimension(:), allocatable, save :: sct
! t is an automatic array
 complex, dimension(nxh) :: t
! special initialization call
 if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
 end subroutine fft1r

Later, we will add error checking conditions.
 A very powerful feature of Fortran90 is that arrays are actually array objects which contain
not only the data itself, but information about their size. This was previously only available
for character arrays in Fortran77, which supplied the LEN intrinsic to obtain the character
length. In Fortran90, assumed-shape arrays are available whose dimensions can be
obtained from the SIZE intrinsic. This is a third mechanism useful for data encapsulation.
They are declared like ordinary arrays, except their dimension lengths are replaced with a
colon. We can now omit the dimensions nx and nxh from the argument list, and obtain
them inside the procedure. The declaration of the automatic array t also has to be revised
to use the SIZE intrinsic. The result is:

 subroutine fft1r(f,isign,indx)
! f is an assumed-shape array
 real, dimension(:) :: f

5

 integer :: isign, indx, nx, nxh
 integer, dimension(:), allocatable, save :: mixup
 complex, dimension(:), allocatable, save :: sct
! t is an automatic array whose size is determined from array f
 complex, dimension(size(f)/2) :: t
! size of arrays mixup and sct are determined from array f.
 nx = size(f)
 nxh = nx/2
! special initialization call
 if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
 end subroutine fft1r

In order to use assumed-shape arrays the compiler must have knowledge of the actual
argument types being used when the procedure is called. One way this information can be
supplied is with the INTERFACE statement, which declares to the main program the
argument types of the procedure. For example, one can write:

 program main
 integer :: isign
 integer, parameter :: indx=11, nx=2**indx
 real, dimension(nx) :: f
! declare interface
 interface
 subroutine fft1r(a,i,j)
 real, dimension(:) :: a
 integer :: i, j
 end subroutine fft1r
 end interface
! initialize fft tables
 isign = 0
 call fft1r(f,isign,indx)
 stop
 end

where we have used the new form of the PARAMETER statement. An additional
advantage of explicit INTERFACE blocks is the compiler will now check and require that the
actual arguments passed to the procedure match in number and type with those declared in
the interface. Thus if one accidentally omits the argument isign in a procedure call

 call fft1r(f,indx)
the compiler will flag this.
 One possible source of error is that one can mistakenly declare the data in an
INTERFACE block to be different than the actual data in the procedure. This source of error
is removed if the procedure is stored in a MODULE which is then “used,” because in this
case the compiler creates the INTERFACE automatically. The USE statement is similar to
the INCLUDE extension commonly found in Fortran77, but it is not a text substitution.
Rather, it makes information “available”, and is much more powerful than the INCLUDE
statement. Thus:

 module fft1r_module

6

 contains
 subroutine fft1r(f,isign,indx)
 real, dimension(:) :: f
 integer :: isign, indx, nx, nxh
 integer, dimension(:), allocatable, save :: mixup
 complex, dimension(:), allocatable, save :: sct
 complex, dimension(size(f)/2) :: t
 nx = size(f)
 nxh = nx/2
! special initialization call
 if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
 end subroutine fft1r
 end fft1r_module
!
 program main
 use fft1r_module ! explicit interface not needed now
 integer :: isign = 0
 integer, parameter :: indx=11, nx=2**indx
 real, dimension(nx) :: f
! initialize fft tables
 call fft1r(f,isign,indx)
 stop
 end

where we have used a new way to initialize the integer isign.
 Fortran90 supports a number of other statements and attributes that contribute to
programming safety. One is the IMPLICIT NONE statement that requires all variables to
be explicitly declared. Another is the INTENT attribute for arguments, that declares whether
arguments are intended as input only, output only, or both. If we declare the arguments in
fft1r as follows:

 subroutine fft1r(f,isign,indx)
 implicit none
 real, dimension(:), intent(inout) :: f
 integer, intent(in) :: isign, indx

then the variables isign and indx cannot be modified in this procedure since they were
declared with INTENT(IN) attributes. Such features mean that more errors are now caught
by the compiler rather than by the operating system when the code is running. Because of
this added safety we will use modules for all of the remaining subroutines in this paper.
 The encapsulation of data we have illustrated in this example makes it easier for multiple
authors to independently develop programs which will be used by others. The FFT
program now has a simple interface which is less likely to be changed, so that even if the
author of the procedure makes changes internally, users of the procedure do not have to
change their code.
 Another benefit of such an approach is that one can hide old, ugly code that cannot be
changed, perhaps because one does not have access to the source. For example, if one
were using a library FFT which was optimized for some specific architecture, one could
encapsulate it in a “shell” procedure which allocates any work or table arrays needed and
then calls the library FFT. Since the details of the library FFT are hidden from the user, one

7

could replace it with another by making changes only in this “shell” procedure and not
impact the rest of the code. This allows a code to remain portable and yet optimized.
 Let us now add more error checking when allocating data. The ALLOCATE statement
allows an optional error return code to check if the data was actually allocated. And the
ALLOCATED statement allows one to check if the data is already allocated (perhaps we
had previously used the FFT with different length data). Thus the following version of the
allocation is safer:

 if (isign.eq.0) then
 if (allocated(mixup)) deallocate(mixup)
 if (allocated(sct)) deallocate(sct)
 allocate(mixup(nxh),sct(nxh),stat=ierr)
 if (ierr.ne.0) then
 print *,’allocation error’
 stop
 endif
 endif

One can simplify the interface even further by noting that the FFT length parameter indx is
only needed during the initialization of the FFT. In subsequent calls it would be an error to
use a different value without initializing new tables. Fortran90 supports the use of
OPTIONAL arguments and the intrinsic PRESENT to determine if it was passed. With
these tools, we can save the indx parameter passed during initialization and not require it
to be passed subsequently. Furthermore, if we initialize the saved indx parameter to
some nonsense value, we can test it subsequently to prevent the FFT from being used
before the FFT tables were initialized. The result is:

8

 subroutine fft1r(f,isign,indx)
 integer, intent(in), optional :: indx
 integer, save :: saved_indx = -1 ! initialize to nonsense
 if (isign.eq.0) then
 if (.not.present(indx)) then
 print *,’indx must be present during initialization!’
 stop
 endif
 saved_indx = indx
 else
 if (saved_indx.lt.0) then
 print *,’fft tables not initialized!’
 stop
 endif
 endif

In the following version of the FFT, the procedure lib_fft1r is intended to refer to some
library FFT where either the source code is unavailable or one does not desire to change it.
This new version is much safer and easier to use and modify.

9

 subroutine fft1r(f,isign,indx)
 implicit none
 real, dimension(:), intent(inout) :: f
 integer, intent(in) :: isign
 integer, intent(in), optional :: indx
 integer :: nx, nxh, ierr
 integer, save :: saved_indx = -1
 integer, dimension(:), allocatable, save :: mixup
 complex, dimension(:), allocatable, save :: sct
 complex, dimension(size(f)/2) :: t
 nx = size(f)
 nxh = nx/2
! special initialization call
 if (isign.eq.0) then
! indx must be present during initialization
 if (.not.present(indx)) then
 print *,’indx must be present during initialization’
 stop
 endif
! indx must be non-negative
 if (indx.lt.0) then
 print *,’indx must be non-negative’
 stop
 endif
! save indx for future calls
 saved_indx = indx
! deallocate if already allocated
 if (allocated(mixup)) deallocate(mixup)
 if (allocated(sct)) deallocate(sct)
! allocate table arrays
 allocate(mixup(nxh),sct(nxh),stat=ierr)
! check if allocation error
 if (ierr.ne.0) then
 print *,’allocation error’
 stop
 endif
! make sure fft tables initialized
 else
 if (saved_indx.lt.0) then
 print *,’fft tables not initialized!’
 stop
 endif
 endif
! call old, ugly but fast fft here
! saved_indx used here instead of indx
 call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
 end subroutine fft1r

10

During initialization one would call:

 call fft1r(f,isign,indx)

But subsequently one can use just:

 call fft1r(f,isign)

 Logically, we have bundled two distinct operations, initialization and performing the FFT,
into one procedure. There is a third procedure which would be useful, deallocating the
internal table arrays to free up memory if we are done with performing FFTs. This could be
done by adding an extra, OPTIONAL argument to the procedure, and adding more code,
but this is unattractive. It makes for clearer programming to separate logically distinct
operations into distinct procedures. The difficulty with this is how to allow distinct procedures
to share access to the internal table arrays mixup and sct. In Fortran77, the only
mechanism to do this was common blocks. In Fortran90, there is a new mechanism:
modules can contain global data which are shared by all the procedures in the module
without explicitly declaring them inside the procedures. This is a new idea in Fortran,
although common in other languages such as C++. Furthermore, this global data can be
made local to the module and inaccessible to other procedures which USE the module.
 In our example, we will make the table arrays mixup and sct, as well as the integer
saved_indx global by moving their declaration outside the procedure to the declaration
section at the beginning of the module. We will also add the PRIVATE attribute, to block
access to this data from outside the module. Adding the deallocation procedure, the
module looks like:

 module fft1r_module
! all module procedures have access to this data
 integer, save, private :: saved_indx = -1
 integer, dimension(:), allocatable, save, private :: mixup
 complex, dimension(:), allocatable, save, private :: sct
 contains
 subroutine fft1r_end
! this procedure has access to saved_indx, mixup, and sct
! reset saved_indx to nonsense value
 saved_indx = -1
! deallocate table arrays
 deallocate(mixup,sct)
 end subroutine fft1r_end
! other procedures go here
 end module fft1r_module

By separating the original fft1r procedure into a new initialization (fft1r_init) and FFT
procedure, we no longer need to use optional arguments. In the final version of this module
which is shown in Appendix A, we have used the ‘;’ syntax which allows multiple
statements on one line.

11

 Allocatable arrays can also be used in the main program, which allows one to create all
arrays at run time rather than at compile time. In Fortran90, one no longer has to recompile a
code because the dimensions change. (It is the programmer’s responsibility, however, not
to use an allocatable array before it has been allocated or after it has been deallocated.) In
the following main program, we make f an allocatable array, obtain the value of indx from
the input device, allocate f, and use the new array constructor syntax to initialize it.

 program main
 use fft1r_module
 implicit none
 integer :: indx, nx, i
 real, dimension(:), allocatable :: f
! write prompt without linefeed
 write (6,’(a)’,advance=’no’) ’enter indx: ’
! obtain indx from input device
 read (5,*) indx
! allocate array f
 nx = 2**indx
 allocate(f(nx))
! initialize data using array constructor
 f = (/(i,i=1,nx)/)
! initialize fft
 call fft1r_init(indx)
! call fft
 call fft1r(f,-1)
! terminate fft
 call fft1r_end
 stop
 end

Notice that we have not modified the original lib_fft1r procedure, which is a private
procedure in the module. Instead we have simplified the user interface to the bare
essentials while adding substantial safety to its usage.

12

III. Function Overloading

 Function overloading refers to using the same function name but performing different
operations based on argument type. Fortran77 intrinsic functions and operators have
always had this feature. For example, the divide ‘/’ symbol gives different results
depending on whether the operands are integers, reals, or complex variables. Similarly, the
intrinsic procedure REAL(a) will convert an integer to a real, if a is an integer, but will return
the real part of a, if a is complex.
 In Fortran90, generic functions allow user defined functions to also have this feature. In
the case of the FFT example, users of Fortran77 have had to remember to use different
function names for every possible type of FFT, such as real to complex, complex to
complex, 1 dimensional, 2 dimensional, single precision or double precision FFTs. The
generic function facility allows a single name, for example, fft, to be used for all of them,
and the compiler will automatically select the correct FFT to use based on the number and
types of arguments actually used.
 Thus in the case of the 1d real to complex FFT, we had a procedure with the following
interface:

 subroutine fft1r(f,isign)
 real, dimension(:), intent(inout) :: f
 integer, intent(in) :: isign

In a manner similar to what we described in the previous section, one can construct a 2d real
to complex FFT with the following interface:

 subroutine fft2r(f,isign)
 real, dimension(:,:), intent(inout) :: f
 integer, intent(in) :: isign

where the procedure fft2r “hides” an old, ugly but fast 2d real to complex FFT which has
lots of arguments. In the first case the argument f is a real, one dimensional array, while in
the second case it is a real, two dimensional array. If both of these procedures are in the
same module, one constructs a generic function fft by placing the following statements in
the declaration section of the module:

 interface fft
 module procedure fft1r
 module procedure fft2r
 end interface

Then in a main program which uses the module, the statement

 call fft(f,isign)

will call the procedure fft1r, if f is a real, one dimensional array, or will call fft2r, if f is a
real, two dimensional array. If f is any other type of argument, a compile error will be
generated.
 If the 2 dimensional FFT is contained in a separate module, then two separate
INTERFACE statements are required. In the first module one includes

 interface fft

13

 module procedure fft1r
 end interface

and in the second module one includes

 interface fft
 module procedure fft2r
 end interface

The main program then uses both modules, and each module procedure will then be
added to the list of procedures that have the generic interface fft.
 In a similar manner, one can include in the same interface all other types of FFTs and the
programmer is protected from making errors in calling the wrong procedure. If desired, one
can even make the specific names fft1r, fft2r inaccessible by adding the declaration:

 private :: fft1r, fft2r

in the module. One advantage of this is that the specific names can be reused in other
modules without conflict. Function overloading is also called ad hoc polymorphism.

14

IV. Derived Types, Classes, and Objects

 Fortran has a number of intrinsic data types, such as integer, real, complex, logical, and
character, for which operators and functions are defined in the language. An important new
feature of Fortran90 is user defined data types. A user defined type, also known as an
abstract data type, is called a derived type in Fortran90. It is built up from intrinsic types and
previously defined user types. One simple use of this new capability is to bundle together
various scalars that normally get passed together as arguments to procedures. For
example, consider the following interface from a particle pushing subroutine written in
Fortran77:

 subroutine push1 (part,fx,qbm,dt,ek,np,idimp,nop,nx)
 integer np, idimp, nop, nx
 real qbm, dt, ek, part(idimp,nop), fx(nx)
c rest of procedure goes here
 return
 end

Here part is the array which contains the particle coordinates and velocities and fx is the
electric field array. The integer idimp is the dimensionality of phase space, nop is the
maximum number of particles allowed, and nx is the size of the electric field array. As we
saw in the FFT example, we do not have to pass these integers in Fortran90, since they
can be determined by the SIZE intrinsic if part and fx are passed as assumed-shape
arrays. The integer np (np<=nop) is the actual number of valid particles in the part array,
qbm is the charge/mass ratio, ek is the kinetic energy of the np valid particles, and dt is the
time step. All of the scalars except for the time step describe a group of charged particles
and they usually are passed together whenever the particles are processed by some
procedure. We can use a derived type to store them together as follows:

 type species_descriptor
 integer :: number_of_particles
 real :: charge, charge_to_mass, kinetic_energy
 end type species_descriptor

This is similar to structures and record types which appear in other programming languages.
We have added charge to the list, since there are some procedures which also require that.
Notice that in this derived type, there are components of both integer and real type, so that
this could not have been implemented with just an array in Fortran77. To create a variable
of this type, one makes the following declaration:

 type (species_descriptor) :: electron_args, ion_args

where we have created two variables of type species_descriptor, one for electrons
and one for ions. The components of this new type are accessed with the ‘%’ symbol.
Thus we can assign values as follows:

 electron_args%number_of_particles = 1000
 electron_args%charge = 1.0

It is best to put the definition in the declaration section of a module along with the new
push1 subroutine (to avoid having to declare an explicit interface for it), as shown in

15

Appendix B. Then this module is “used” in the main program to give access to the derived
type and new push1 procedure, which can now be called with a much simpler interface:

 call push1(part,fx,electron_args,dt)

 We have shown here a simple use of derived types, merely to reduce bookkeeping
when passing arguments to procedures. But derived types are much more powerful than
that. They can be used to express sophisticated, abstract quantities. In fact, with derived
types it is possible to express in programming the same high level, abstract quantities that
physicists are used to in their mathematics. To illustrate how one might begin to express
more sophisticated mathematics in programming, let us define a new private_complex
type and the procedures which will operate on that type. This is, of course, an academic
exercise for Fortran programmers, since the complex type already exists in the language.
Nevertheless, it is a useful example to illustrate the basic principles involved and will lead to
our definition of classes. This type is defined as follows:

 type private_complex
 real :: real, imaginary
 end type private_complex

To create variables a, b, and c of this new type, and assign values, one proceeds as
before:

 type (private_complex) :: a, b, c
! assign values to a
 a%real = 1.0
 a%imaginary = 2.0

If this private_complex type behaves the same as ordinary complex numbers, then
multiplication of c = a*b can be defined as follows:

 c%real = a%real*b%real - a%imaginary*b%imaginary
 c%imaginary = a%real*b%imaginary + a%imaginary*b%real

A new function pc_mult to multiply private_complex numbers could then be written:

16

 type (private_complex) function pc_mult(a,b)
 type (private_complex), intent(in) :: a, b
 pc_mult%real = a%real*b%real - a%imaginary*b%imaginary
 pc_mult%imaginary = a%real*b%imaginary + a%imaginary*b%real
 end function pc_mult

Note that this function returns a variable of type private_complex. One can thus multiply
two numbers of this type with the following statement:

 c = pc_mult(a,b)

 It makes sense to place a new derived type together with the procedures which
operate on that type into the same module:

 module private_complex_module
! define private_complex type
 type private_complex
 real :: real, imaginary
 end type private_complex
 contains
 type (private_complex) function pc_mult(a,b)
! multiply private_complex variables
 type (private_complex), intent(in) :: a, b
 pc_mult%real = a%real*b%real - a%imaginary*b%imaginary
 pc_mult%imaginary = a%real*b%imaginary + a%imaginary*b%real
 end function pc_mult
 end module private_complex_module

A program to illustrate the multiplication of two private_complex numbers then looks like
the following:

 program main
! bring in private_complex definition and procedures
 use private_complex_module
! define sample variables
 type (private_complex):: a, b, c
! initialize sample variables
 a%real = 1. ; a%imaginary = -1.
 b%real = -1. ; b%imaginary = 2.
! perform multiplication
 c = pc_mult(a,b)
 print *,’c=’, c%real, c%imaginary
 stop
 end program main

 It is also possible to encapsulate the individual components of a derived type. This is a
common and useful practice in object-oriented programming. It means that when a module
is ”used” in another program unit, the private_complex type can be defined, but the
individual components, such as a%real or a%imaginary are not accessible. In the sample
program above, the individual components were accessed in initializing the data and in
printing the result of the multiplication. If the components are encapsulated, then additional

17

procedures would have to be provided in the module to perform this function. The
encapsulation is achieved by adding the PRIVATE attribute to the derived type definition
as follows:

 type private_complex
 private
 real :: real, imaginary
 end type private_complex

A procedure to initialize a private_complex number from real numbers can be written as
follows:

 subroutine pc_init(a,real,imaginary)
! initialize private_complex variable from reals
 type (private_complex), intent(out) :: a
 real, intent(in) :: real, imaginary
 a%real = real
 a%imaginary = imaginary
 end subroutine pc_init

while one to display the contents can be written:

 subroutine pc_display(a,c)
! display value of private_complex variable with label
 type (private_complex), intent(in) :: a
 character*(*), intent(in) :: c
 print *, c, a%real, a%imaginary
 end subroutine pc_display

The main program then looks like the following:

 program main
 use private_complex_module
 type (private_complex) :: a, b, c
! initialize sample variables
 call pc_init(a,1.,-1.)
 call pc_init(b,-1.,2.)
! perform multiplication
 c = pc_mult(a,b)
! display result
 call pc_display(c,’c=’)
 stop
 end program main

The advantage of such encapsulation is that procedures in other modules can never impact
the internal representation of the private_complex type. Furthermore, any changes
made to the internal representation of private_complex type would be confined to this
module, and would not impact program units in other modules. This makes it easier to
develop software with interchangeable parts.
 We have seen earlier how functions can be overloaded. In Fortran90, operators such
as ’*’ can also be overloaded. This is also done with the INTERFACE statement, which

18

is placed in the declaration section of the module, as follows:

 interface operator(*)
 module procedure pc_mult
 end interface

We have now equated the operator ‘*’ with the name pc_mult. Thus in the main program,
one can multiply two private_complex numbers using the more familiar syntax:

 c = a*b

If one adds the declaration:

 private :: pc_mult

to the module, one can also make the original name pc_mult no longer accessible.
 In the language of object-oriented programming, the module we have just created is
known as a class. It consists of a derived type definition, known as a class name, along with
the procedures which operate on that class, called class member functions. The
components of the derived type are called the class data members, while global data in the
module (if any) corresponds to static class data members. The actual variable of type
private_complex is known as an object.
 To make this appear more familiar to those who already know C++, we will adopt the
convention to make the derived type the first argument in all the module procedures, and
we will give it the name “this.” We will also overload the initialization function pc_init
and give it the public name “new,” while making the specific name pc_init private. The
final version of the private_complex class is listed in Appendix C. In this version we
have provided a new public name “display” to the procedure pc_display, but we
have not made it private, so both names can still be used.
 The main program which uses this class can be written:

 program main
 use private_complex_class
 type (private_complex) :: a, b, c
 call new(a,1.,-1.)
 call new(b,-1.,2.)
! perform multiplication
 c = a*b
 call pc_display(c,’c=’)
 stop
 end program main

19

V. Inheritance

 We have seen how to create simple classes in Fortran90 by storing together derived
type definitions and procedures operating on that type which can then be “used” in other
program units, including other modules. Inheritance, in the most general sense, can be
defined as the ability to construct more complex (derived) classes from simpler (base)
classes in a hierarchical fashion. Inheritance has been also used as a term that describes how
this idea is implemented in a particular language, which results in as many definitions as there
are languages. We will discuss two methods of implementing this idea which are useful in
Fortran90, a general one and a more specialized but common one.
 We will begin with the most general case, where one class makes use of another. Such
a form of inheritance is sometimes called class composition, since classes are composed of
other classes. To illustrate this, let us create a new class which consists of
private_complex arrays. Array syntax for intrinsic data types is a powerful new feature
of Fortran90, and it is instructive to see how one can implement it for user defined types.
Fortran90 permits one to define arrays of derived types as follows:

 program main
 use private_complex_class
 integer, parameter :: nx = 8
 type (private_complex), dimension(nx) :: f

We can initialize the elements of this array type by calling in a loop the “new” procedure we
defined in the private_complex_class:

 do i = 1, nx
 call new(f(i),real(i),-real(i))
 enddo

Note that the do loop without statement numbers is now an official part of Fortran90. In this
way, we can create a procedure called pcarray_init which will convert two real arrays
into an array of type (private_complex). We place this procedure in a new module called
complex_array_class, as follows:

20

 module complex_array_class
! get private_complex type and its public procedures
 use private_complex_class
 contains
 subroutine pcarray_init(this,real,imaginary)
! initialize private_complex array from real arrays
 type (private_complex), dimension(:), intent(out) :: this
 real, dimension(:), intent(in) :: real, imaginary
 do i = 1, size(this)
! new here uses the pc_init procedure
 call new(this(i),real(i),imaginary(i))
 enddo
 end subroutine pcarray_init
 end module complex_array_class

 In this example, the private_complex module is “used” (or inherited) by the
complex_array module. This means that all the public entities in the first module (the
base class) will be available to the second module (the derived class). Since arrays of
derived type are considered a different type than a single scalar of that type, we can include
the following interface statement in the module to overload the procedure new so that it can
also execute pcarray_init:

 interface new
 module procedure pcarray_init
 end interface

Now, if the argument of new is a scalar of type private_complex, then pc_init will be
executed, but if the argument of new is an array of type private_complex, then
pcarray_init will be executed. The main program which uses this new module looks
like the following:

 program main
! bring in complex_array (and private_complex) procedures
 use complex_array_class
 integer, parameter :: nx = 8
! define a single scalar of type private_complex
 type (private_complex) :: a
! define an array of type private_complex
 type (private_complex), dimension(nx) :: f
! initialize a single scalar
 call new(a,1.0,-1.0)
! initialize an array
 call new(f,(/(real(i),i=1,nx)/),(/(-real(i),i=1,nx)/))
 stop
 end program main

In a similar fashion we can add a multiply function to the new module which will multiply
arrays. To do this we take advantage of a new feature of Fortran90, which is that functions
can return entire arrays. This is done by declaring the function name to be an array, and
setting its dimension from another array in the argument list with the SIZE intrinsic. Since the
‘*’ operator for scalars of type private_complex has already been defined in the module

21

private_complex_class, the array function is created by calling this operator in a loop,
as follows:

 function pcarray_mult(this,b)
! multiply arrays of private_complex variables
 type (private_complex), dimension(:), intent(in) :: this, b
! declare output array to be of same size as ”this” array
 type (private_complex), dimension(size(this)) ::pcarray_mult
 do i = 1, size(this)
! this multiplication is actually performed by function pc_mult
 pcarray_mult(i) = this(i)*b(i)
 enddo
 end function pcarray_mult

Finally, we can overload the ’*’ operator to call pcarray_mult when the arguments are
arrays of type private_complex, as follows:

 interface operator(*)
 module procedure pcarray_mult
 end interface

In the final version of the derived class complex_array, which is listed in Appendix D, we
have also overloaded the display function so that we can print out the array elements. In
the following main program, we can now multiply arrays of type private_complex using
array syntax:

 program main
 use complex_array_class
 integer, parameter :: nx = 8
! define sample arrays
 type (private_complex), dimension(nx) :: f, g, h
! initialize sample arrays
 call new(f,(/(real(i),i=1,nx)/),(/(-real(i),i=1,nx)/))
 call new(g,(/(-real(i),i=1,nx)/),(/(real(2*i),i=1,nx)/))
! perform multiplication of arrays
 h = f*g
! display the first three elements of the results
 call display(h(1:3),'h=')
 stop
 end program main

 Thus we have constructed a derived class built upon the definitions and procedures in a
base class using class composition. It was not necessary to construct a new derived type
for arrays, since arrays of derived types are automatically supported in the language.
Procedures which operate on the arrays, however, had to be constructed. This was done in
two stages. First a new procedure for the derived class is written (for example,
pcarray_mult) which executes the original base class operator (‘*’) in a loop. The original
base class operator (‘*’) is then overloaded to include the new derived class procedure.
Note that the base class was never modified during this process.
 Inheritance is generally used to mean something more restricted than class composition.
In this form of the inheritance relation, the base class contains the properties (procedures)

22

which are common to a group of derived classes. Each derived class can modify or extend
these procedures for its own needs if necessary.
 As an example, consider the private_complex class discussed in the previous
section. Suppose we want to extend this class so that it keeps track of the last operation
performed. Such a feature could be useful in debugging, for example. Except for the
additional feature of monitoring operations, we would like this extended class to behave
exactly like the private_complex class. We can accomplish this by creating a new class
called the monitor_complex class. First we create a new derived type, as follows:

 type monitor_complex
 type (private_complex) :: pc
 character*8 :: last_op
 end type monitor_complex

which contains one instance of a private_complex type plus an additional character
component to be used for monitoring. We want to extend all three procedures of the
private_complex class (new,’*’,and display) so that they also work in the new
monitor_complex class. We will accomplish this with methods very similar to those we
used in composition. Initializing the monitor_complex type can be performed by making
use of the new operator in the private_complex class to initialize the
private_complex component of the monitor_complex type as follows:

 type (monitor_complex) :: x
 call new(x%pc,1.0,-1.0)

The additional monitor component can be initialized in the usual way:

 x%last_op = 'INIT'

This initialization can be embedded in a procedure called mc_init. By also adding the
interface new to the monitor_complex class, we can overload the new procedure so that it
calls mc_init if the argument is of type monitor_complex. As a result, the operator new
which previously worked on private_complex type has been extended to also work on
monitor_complex types, as required. The resulting monitor_complex class looks like:

23

 module monitor_complex_class
! get (inherit) private_complex type and its public procedures
 use private_complex_class
! define monitor_complex type
 type monitor_complex
 private
 type (private_complex) :: pc
 character*8 :: last_op
 end type monitor_complex
 interface new
 module procedure mc_init
 end interface
 contains
 subroutine mc_init(this,real,imaginary)
! initialize monitor_complex variable from reals
 type (monitor_complex), intent(out) :: this
 real, intent(in) :: real, imaginary
! initialize private_complex component of monitor_complex
 call new(this%pc,real,imaginary)
 this%last_op = 'INIT' ! set last operation
 end subroutine mc_init
 end module monitor_complex_class

 In a similar fashion we can extend the multiplication function to also work on
monitor_complex types. Multiplication is performed by using the ’*’ operator (defined
in the private_complex class) on the private_complex component of the
monitor_complex type, as follows:

 type (monitor_complex) :: x, y, z
 z%pc = x%pc*y%pc

This operation can be embedded in a function which returns a result of type
monitor_complex. We also want to add to this function the operation of setting the
monitor component. The resulting procedure can be written:

 type (monitor_complex) function mc_mult(this,b)
 type (monitor_complex), intent(in) :: this, b
 mc_mult%pc = this%pc*b%pc
 mc_mult%last_op = 'MULTIPLY'
 end function mc_mult

Finally, we can overload the ’*’ operator with the interface statement so that it calls mc_mult
when the arguments are of type monitor_complex. In the final version of the derived
class monitor_complex, which is listed in Appendix E, we have extended the display
function to work with the monitor_complex class, as well as written an entirely new
procedure (last_op) to display the last operation performed. In order to allow
expressions with mixed types, we have also written a conversion operator mc to convert
from private_complex to monitor_complex types. In the following main program, all
of the procedures in the base class have been extended to work in the derived class:

 program main

24

! bring in monitor_complex definition and procedures
 use monitor_complex_class
! define sample variables
 type (private_complex) :: a, b, c
 type (monitor_complex) :: x, y, z
! initialize private_complex variables
 call new(a,1.,-1.)
 call new(b,-1.,2.)
! initialize monitor_complex variables
 call new(x,1.,-1.)
 call new(y,-1.,2.)
 call new(z,0.,0.)
! perform multiplication with private_complex types
 c = a*b
! perform multiplication with monitor_complex types
 z = x*y
! display results
 call display(c,'c=')
 call display(z,'z=')
! perform multiplication with mixed types
 z = mc(c)*z
! display last operation for monitor_complex type
 call last_op(z,'z')
 end program main

 Thus we have constructed a derived class which has a special form of relationship to its
base class. Here, the derived type definition in the derived class contains within it exactly
one component of the derived type definition in the base class. In other words, each object
of the derived class contains within it exactly one object of the base class. Furthermore all
the procedures in the base class have been extended to also work in the derived class,
although two have been internally modified, and one new one created. In addition, a
conversion operator was supplied. Extending the procedures was accomplished by first
writing a derived class procedure which called the base class procedure on the base class
component, and then overloading the name to be the same as the base class procedure
name. As in class composition, the base class was never modified during this process.
 This form of inheritance is sometimes called subtyping because derived class objects
can use base class procedures as if they were the same type. Although inheritance by
subtyping is rather restrictive, it is also very convenient because special mechanisms exist
in some languages (such as C++) to automatically extend unmodified base class
procedures to derived types through automatic conversion of types. Fortran90 does not
have such mechanisms and therefore inheritance by subtyping must be constructed
explicitly, which can be cumbersome.
 In many object-oriented languages, composition and subtyping are considered
separately because they are implemented by two different language mechanisms, and
composition is rarely considered a form of inheritance. However, in Fortran90, subtyping is
implemented as a special case of composition and is constructed using similar methods, so
that it makes sense here to consider the two ideas as related and describe them jointly. In
our experience, composition is a more powerful idea which reflects more closely than
subtyping how concepts are constructed in physics.
 This example with private_complex types shows one of the reasons object-
oriented programming is so powerful: if we decide to change the internal representation of

25

private_complex to use polar coordinates instead of cartesian, we would have to modify
only the procedures in the private_complex class to accommodate the change, while the
derived classes would still work without modification. This example is perhaps academic.
However, one can use the same techniques to create more powerful and interesting
classes to represent other kinds of algebras. For example, one can create vector classes
with procedures such as gradient operators, or tensor classes and associated procedures.
One can then program at the same high level that one can do mathematics, with all the
power and safety such abstractions give.

26

VI. Derived Types with Pointers

 In the species_module created earlier (listed in Appendix B), we wrote a new
subroutine push1 which had the following arguments:

 subroutine push1(part,fx,species_args,dt)

The argument species_args was an instance of type species_descriptor that
contained certain parameters describing a group of charged particles. The array part
contained the particle coordinates for that group. This works well and the subroutine
interface is considerably simplified from the original version.
 Nevertheless, it is possible to add even more safety and simplicity. Clearly, the array
part needs to have the object species_args always present. This leads to a possible
source of error, since one can pass a descriptor which is inconsistent with the particle data. It
makes sense therefore to make a new derived type which unites the two data types
together. One might define such a type as follows:

 type species
 type (species_descriptor) :: descriptor
 real, dimension(idimp,nop) :: coordinates
 end type species

If idimp and nop are parameters known at compile time, such a definition is perfectly valid.
However, it is not convenient, since changing idimp or nop would require much of the code
to be recompiled. One might guess that it would be better to have an allocatable array in
the type definition, such as:

 type species
 type (species_descriptor) :: descriptor
 real, dimension(:,:), allocatable :: coordinates
 end type species

It turns out that this is invalid: allocatable arrays cannot be used in derived type definitions.
There is an alternative, however, which is valid, namely pointers to arrays. In order to
explain how this works, we have to make a digression and explain how Fortran90 pointers
work.
 Pointers in any language refer to the location in memory of data, rather than the data
itself. Fortran90 pointers are in reality a special kind of object. Compared to pointers in
other languages, their use is greatly restricted in order to avoid the kind of performance
degradation common with indiscriminant use of pointers. The programmer does not have
access to the value of a pointer nor is pointer arithmetic permitted. Instead, pointers are
really aliases to other data. Suppose we define two real arrays, and two pointers to real
arrays:

 real, dimension(4), target :: a, b
 real, dimension(:), pointer :: ptr1, ptr2

One can then associate the first pointer with the array a using the ’=>’ operator as follows:

 ptr1 => a

27

Notice that the TARGET attribute must be used for the arrays a and b, in order to allow
them to be pointed to. The kind of data with which a pointer can be associated is
determined in its declaration. Thus, the pointer ptr1 can only point to real, one dimensional
arrays, and cannot point to a real, two dimensional array, for example. Once associated with
a target, the pointer can then be used just as if it were the array a, including passing it as an
argument to a procedure. This is called dereferencing. For example the statement

 ptr1(1) = 1.0

will assign the value of 1.0 to a(1). The NULLIFY intrinsic is used to disassociate a pointer
from an array:

 nullify(ptr1)

Similarly, if we associate the second pointer with b,

 ptr2 => b

then the statement

 ptr2(2) = 2.0

will assign the value of 2.0 to b(2). The ASSOCIATED intrinsic function can be used to
determine if a pointer has been associated with any array:

 if (associated(ptr1)) print *,’ptr1 associated!’

It can also be used to determine if two pointers point to the same location in memory.

 if (associated(ptr1,ptr2)) print *,’associated together!’

For our purposes, the most useful feature of pointers is that they can be associated with an
unnamed variable with the ALLOCATE statement. For example, the statements

 nullify(ptr1)
 allocate(ptr1(4))

will first disassociate ptr1 from any previous array, then allocate an unnamed array
consisting of 4 real words and associate the pointer ptr1 to that unnamed array. The
pointer ptr1 can then be used as if it were a normal array. When we are finished with that
array, we can deallocate it with:

 deallocate(ptr1)

The ALLOCATED intrinsic does not work with pointers to arrays. However, the
ASSOCIATED statement can tell us whether the data had actually been allocated, if we first
NULLIFY ptr1 before allocating it. For all practical purposes, pointers to unnamed arrays
function just like allocatable arrays, except that they have the advantage they can be used in
derived type definitions.
 Thus, the correct definition for the new species type is:

28

 type species
 type (species_descriptor) :: descriptor
 real, dimension(:,:), pointer :: coordinates
 end type species

If we define an object of type species called electrons,

 type (species) :: electrons

then the pointer array for the particle data can be allocated as follows:

 allocate(electrons%coordinates(idimp,nop),stat=ierr)

 The new push1 procedure can now be called with the simple statement:

 call push1(electrons,fx,dt)

This can be organized efficiently by creating two classes. First, we create a
species_descriptor class (see Appendix F) which contains the type definition for this
class along with procedures to read and write objects of this class. This class is then
”inherited” by a derived class called species (see Appendix G), which uses the base
class information to define a species type along with a creation procedure and a new
push1 subroutine.
 There is one subtle issue that occurs when using derived types containing pointers.
When two such types are copied:

 type (species) :: electrons, ions
 ions = electrons

what actually occurs is

 ions%descriptor = electrons%descriptor
 ions%coordinates => electrons%coordinates

In the second line, the pointer component is copied, not the data to which it points.
Sometimes this is not the desired behavior. If we want to copy the data instead of the
pointer, we need to perform the following operation instead:

 ions%coordinates = electrons%coordinates

which will dereference the pointer and copy the data. To accomplish this, we create a
procedure:

 subroutine copy_species(a,b)
 type (species), intent(out) :: a
 type (species), intent(in) :: b
 a%descriptor = b%descriptor
 a%coordinates = b%coordinates
 end subroutine copy_species

Fortran90 allows such a procedure to be associated with the ‘=’ operator by means of the

29

interface statement in the module:

 interface assignment (=)
 module procedure copy_species
 end interface

If we implement such a procedure, then the statement:

 ions = electrons

will copy the data instead of the pointer, assuming memory for the ion coordinates has
been allocated.

30

VII. Dynamic Dispatching

 One concept we have not discussed so far is the idea of dynamic dispatching,
sometimes called run-time polymorphism, which is often said to be a distinguishing feature
of object-oriented programming. The subtyping inheritance model we discussed in Section
V was static, meaning that the compiler could resolve which procedure to call at any given
point in the program. The purpose of dynamic dispatching is to allow one to write generic
or abstract procedures which would work on all classes in an inheritance hierarchy, yet
produce results that depend on which object was actually used at run-time. Dynamic
dispatching is most useful when there are many objects which are similar to one another, but
not identical, and which can be processed by some generic procedures. A common
example occurs in database processing [8], where there are many similar kinds of records,
students and teachers, for example. One wants to avoid writing different programs for each
kind of record, yet one wants to handle each type of record differently.
 To illustrate this, let us write a subroutine which does some kind of work using the
methods in our private_complex class hierarchy. Since this inheritance hierarchy was
rather simple, our work subroutine will also be simple: it will square a number and then print
out the result:

 subroutine work(a)
 type (private_complex), intent(inout) :: a
 a = a*a
 call display(a,’work:’)
 end subroutine work

We will define a display procedure so that it works differently in each class (for example,
by modifying the display procedure in the monitor_complex class listed in Appendix
E so that it calls last_op). The work subroutine is written for the private_complex
type, but we would like it to function correctly even if we pass a monitor_complex type
instead (which would normally be a type violation). In other words, when we say that this
procedure works on a private_complex type, we actually mean that it is supposed to
work on all types derived from private_complex as well. Furthermore, we want to
decide at run time which we mean. Thus, if we declare and initialize the class objects as
follows:

 type (private_complex), pointer :: pc
 type (private_complex), target :: a
 type (monitor_complex), target :: b
! initialize private_complex variables
 call new(a,1.,-1.)
! initialize monitor_complex variables
 call new(b,1.,-1.)

we would like to do something like:

31

! point to private_complex variable
 pc => a
 call work(pc)
! point to monitor_complex variable
 pc => b !error, type violation
 call work(pc)

This is not possible in Fortran90, because the pointer pc can only point to targets of type
private_complex, so that the statement:

 pc => b

is illegal. The solution is to first define a derived type which contains a pointer to each of the
possible types in the inheritance hierarchy, such as:

 type complex_subtype
 type (private_complex), pointer :: pc
 type (monitor_complex), pointer :: mc
 end type complex_subtype

This subtype has the ability to point to either complex type:

 type (complex_subtype) :: generic_pc
! point to private_complex variable
 generic_pc%pc => a
! point to monitor_complex variable
 generic_pc%mc => b

 Dynamic dispatching can then be implemented by defining a subtype class which
inherits all the classes in the inheritance hierarchy and contains a new version of each class
member function. This new version will test which of the pointers in the complex_subtype
type has been associated and execute the corresponding version of the function. For
example, one can define a new display procedure as follows:

 subroutine display_subtype(a,c)
 type (complex_subtype), intent(in) :: a
 character*(*), intent(in) :: c
! check if pointer is associated with private_complex type
 if (associated(a%pc)) then
! if so, execute private_complex version of display
 call display(a%pc,c)
! check if pointer is associated with monitor-_complex type
 elseif (associated(a%mc)) then
! if so, execute monitor_complex version of display
 call display(a%mc,c)
 endif
 end subroutine display_subtype

The argument to this procedure is a variable of type complex_subtype. The procedure
hides the decision about which actual function to call. In a similar fashion, one could write a
new multiplication function, which would hide the decisions about the appropriate

32

multiplication procedure to call. If one overloads the procedure names to have the same
names as the corresponding class member functions, the resulting work procedure then
has exactly the same form as before, except that the argument is of type
complex_subtype rather than private_complex, to indicate that this subroutine is
intended to be used with the entire class hierarchy:

 subroutine work(a)
 type (complex_subtype), intent(inout) :: a
! multiplication operator has been overloaded to cover all types
 a = a*a
 call display(a,'work:')
 end subroutine work

 From the above, it is clear that the subtype class will need an assignment operator.
Since we will make the components of the complex_subtype class private, one has to
write a procedure to dynamically assign one of the possible pointers in the class hierarchy
and nullify the rest. For example, the assignment of the private_complex pointer
would be performed by:

 subroutine assign_pc(cs,pc)
 type (complex_subtype), intent(out) :: cs
 type (private_complex), target, intent(in) :: pc
! assign private_complex to complex_subtype
 cs%pc => pc
! nullify monitor_complex pointer
 nullify(cs%mc)
 end subroutine assign_pc

A similar procedure, which we call assign_mc, must be created to assign the
monitor_complex pointer. Finally, in order for the following expression:

 a = a*a

to produce the expected results, one also needs to define a new copy operator,
copy_subtype, which copies data rather than pointers, similar to the one we defined at the
end of the section VI. These assignment and copy operators can be overloaded to the
assignment operator (‘=’). The complex_subtype class which combines all these
features is shown in Appendix H. It encapsulates all the details of how dynamic dispatching
works, so that users of this class can freely write abstract or generic procedures based on
the class hierarchy without being aware of how dynamic dispatching is implemented.

33

 The program which calls work looks like:

 program main
 use complex_subtype_class
 type (complex_subtype) :: pc
 type (private_complex), target :: a
 type (monitor_complex), target :: b
 call new(a,1.,-1.)
 call new(b,1.,-1.)
 call assign(pc,a)
 call work(pc)
 call assign(pc,b)
 call work(pc)
 end program main

 A distinguishing feature of typed object-oriented languages, is that support for the
equivalent of such a subtype class is supported automatically by the compiler. There is
always a performance penalty for using dynamic dispatching, however, even in object-
oriented languages.
 The rules for implementing a subtype class in Fortran90 which supports dynamic
dispatching are as follows: create a derived type which contains exactly one pointer to each
possible class in the inheritance hierarchy. Then implement a generic method for each class
member function which will test which of the possible pointers have been associated and
pass the corresponding pointer to the appropriate function. Assignment procedures are
also required. The users of the subtype class, however, do not need to concern
themselves with the details of how it is constructed.
 Clearly, it is more cumbersome to implement dynamic dispatching in Fortran90 than in
an object-oriented language. Once implemented, however, the usage is similar. Whether
this feature is important depends on the nature of the problem one wants to model. Some
studies of object-oriented programming [9] indicate that dynamic dispatching is needed
about 15% of the time. There is some debate about what constitutes object-oriented
programming. Some would argue that if a program does not use dynamic dispatching, it is
not object-oriented. Others, however, argue that object-oriented is a question of design,
not a question of what features of an object-oriented language are used. We tend to agree
with the latter view.

34

VIII. Conclusions

 Fortran90 is a modern, powerful language. There is much more here than array syntax,
useful though that is. Many important programming concepts are supported, such as data
encapsulation, function overloading and user defined types. The language also supports
many safety features such as argument checking across procedures, implicit none, and intent
attributes that enable the compiler to find many programming errors. Although Fortran90 is
not considered an object-oriented language, a methodology can be developed to do
object-oriented programming. The details of designing object-oriented programs are
beyond the scope of this introductory article, but we have successfully written and
compared Fortran90 and C++ versions of an object-oriented plasma particle-in-cell
program [6-7]. But even if one did not wish to adopt the entire object-oriented paradigm,
the programming concepts are very useful even if used selectively. It is possible to design
simple, safer user interfaces to hide old, ugly procedural codes which may still work very
well.

Acknowledgments:

 The research of Viktor K. Decyk was carried out in part at UCLA and was sponsored by
USDOE and NSF. It was also carried out in part at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration. The research of Charles D. Norton was supported by the NASA Graduate
Student Researchers Program under grant NGT-70334, and that of Boleslaw K. Szymanski
was partially supported by the NSF under grant CCR-9527151. We acknowledge the
contribution of Steve Lantz, our friendly “in-house” reviewer, whose questions and
comments improved the paper.

35

References:

[1] Michel Beaudouin-Lafon, Object-oriented Languages, translated by Jack Howlett
[Chapman & Hall, New York, 1994].

[2] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen, Object-Oriented Modeling and Design [Prentice-Hall, Englewood Cliffs, NJ,
1991]

[3] Kathleen Fisher and John C. Mitchell, “Notes on typed object-oriented programming,” in
Theoretical Aspects of Computers Software, Proc. of International Symposium TACS ‘94,
Sendai, Japan, April, 1994, ed. M. Hagiya and J. C. Mitchell [Springer-Verlag, Berlin,
1994], p. 844.

[4] T. M. R. Ellis, Ivor R. Philips, and Thomas M. Lahey, Fortran 90 Programming,
[Addison-Wesley, Reading, Massachusetts, 1994].

[5] Stanley B. Lippman, C++ Primer, [Addison-Wesley, Reading, Massachusetts, 1991].

[6] Charles D. Norton, Boleslaw K. Szymanski, and Viktor K. Decyk, “Object-Oriented
Parallel Computation for Plasma Simulation,” Communications of the ACM, vol. 38, no. 10,
p. 88 (1995).

[7] Charles D. Norton, Viktor K. Decyk, and Boleslaw K. Szymanski, “On Parallel Object
Oriented Programming in Fortran90,” ACM SIGAPP Applied Computing Review, vol. 4,
no. 1, p. 27, 1996.

[8] R. Henderson and B. Zorn, “A Comparison of Object-Oriented Programming in Four
Modern Languages,” Software-Practice and Experience, Vol. 24, Num. 11, pp. 1077-
1095, Nov. 1994.

[9] Grady Booch, Object-Oriented Analysis and Design [Benjamin/Cummings, Redwood
City, CA, 1994], p. 120.

36

Appendix A: Final version of fft1r_module

 module fft1r_module
 integer, save, private :: saved_indx = -1
 integer, dimension(:), allocatable, save, private :: mixup
 complex, dimension(:), allocatable, save, private :: sct
 contains
 subroutine fft1r_init(indx)
! initialization call
 integer, intent(in) :: indx
 integer :: nx, nxh, ierr, isign=0
! allocate f and t: old, ugly fft requires them as arguments
 real, dimension(2**indx) :: f
 complex, dimension(2**(indx-1)) :: t
 if (indx.lt.0) then
 print *,'indx must be non-negative'
 stop
 endif
 nx = 2**indx ; nxh = nx/2 ; saved_indx = indx
 if (allocated(mixup)) deallocate(mixup)
 if (allocated(sct)) deallocate(sct)
 allocate(mixup(nxh),sct(nxh),stat=ierr)
 if (ierr.ne.0) then
 print *,'allocation error'
 stop
 endif
! call old, ugly but fast fft here
 call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
 end subroutine fft1r_init
!
 subroutine fft1r_end
! deallocate internal data
 saved_indx = -1
 deallocate(mixup,sct)
 end subroutine fft1r_end
!
 subroutine fft1r(f,isign)
 real, dimension(:), intent(inout) :: f
 integer, intent(in) :: isign
 integer :: nx, nxh
 complex, dimension(size(f)/2) :: t
 nx = size(f) ; nxh = nx/2
! do nothing if isign is invalid
 if (isign.eq.0) return
 if (saved_indx.lt.0) then
 print *,'fft tables not initialized!'
 stop
 endif
! call old, ugly but fast fft here
 call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
 end subroutine fft1r

37

 end module fft1r_module

38

Appendix B: Initial version of species_module

 module species_module
! define derived type
 type species_descriptor
 integer :: number_of_particles
 real :: charge, charge_to_mass, kinetic_energy
 end type species_descriptor
 contains
 subroutine push1(part,fx,species_args,dt)
! declare assumed-shape arrays
 real, dimension(:,:), intent(inout) :: part
 real, dimension(:), intent(in) :: fx
! declare argument of derived type
 type (species_descriptor), intent(inout) :: species_args
 real, intent(in) :: dt
 integer :: np, idimp, nop, nx
 real :: qbm, ek
! extract array sizes
 idimp = size(part,1) ; nop = size(part,2) ; nx = size(fx)
! unpack input scalars from derived type
 qbm = species_args%charge_to_mass
 np = species_args%number_of_particles
! call old, ugly but fast particle pusher here
 call orig_push1(part,fx,qbm,dt,ek,np,idimp,nop,nx)
! pack output scalars into derived type
 species_args%kinetic_energy = ek
 end subroutine push1
 end module species_module

39

Appendix C: Final version of private_complex class

 module private_complex_class
 private :: pc_init, pc_mult
 type private_complex
 private
 real :: real, imaginary
 end type private_complex
 interface new
 module procedure pc_init
 end interface
 interface operator(*)
 module procedure pc_mult
 end interface
 interface display
 module procedure pc_display
 end interface
 contains
 subroutine pc_init(this,real,imaginary)
! initialize private_complex variable from reals
 type (private_complex), intent(out) :: this
 real, intent(in) :: real, imaginary
 this%real = real
 this%imaginary = imaginary
 end subroutine pc_init
!
 type (private_complex) function pc_mult(this,b)
! multiply private_complex variables
 type (private_complex), intent(in) :: this, b
 pc_mult%real = this%real*b%real -
 &this%imaginary*b%imaginary
 pc_mult%imaginary = this%real*b%imaginary +
 &this%imaginary*b%real
 end function pc_mult
!
 subroutine pc_display(this,c)
! display value of private_complex variable with optional label
 type (private_complex), intent(in) :: this
 character*(*), intent(in), optional :: c
 if (present(c)) then
 print *, c, this%real, this%imaginary
 else
 write (6,’(2f14,7)’,advance=’no’) this%real,
 &this%imaginary
 endif
 end subroutine pc_display
 end module private_complex_class

40

Appendix D: Final version of complex_array class

 module complex_array_class
 use private_complex_class
 private :: pcarray_init, pcarray_mult
 interface new
 module procedure pcarray_init
 end interface
 interface operator(*)
 module procedure pcarray_mult
 end interface
 interface display
 module procedure pcarray_display
 end interface
 contains
 subroutine pcarray_init(this,real,imaginary)
! initialize private_complex variable from reals
 type (private_complex), dimension(:), intent(out) :: this
 real, dimension (:), intent(in) :: real, imaginary
 do i = 1, size(this)
 call new(this(i),real(i),imaginary(i))
 enddo
 end subroutine pcarray_init
!
 function pcarray_mult(this,b)
! multiply arrays of private_complex variables
 type (private_complex), dimension(:),intent(in) :: this,b
 type (private_complex), dimension(size(this))::
 &pcarray_mult
! this multiplication is actually defined by function pc_mult
 do i = 1, size(this)
 pcarray_mult(i) = this(i)*b(i)
 enddo
 end function pcarray_mult
!
 subroutine pcarray_display(this,c)
! display value of private_complex array with label
 type (private_complex), dimension(:), intent(in) :: this
 character*(*), intent(in) :: c
 write (6,'(a)',advance='no') c
 do i = 1, size(this)
 call display(this(i))
 enddo
 print *
 end subroutine pcarray_display
 end module complex_array_class

41

Appendix E: Final version of monitor_complex class

 module monitor_complex_class
! get (inherit) private_complex type and its public procedures
 use private_complex_class
 private :: mc_init, mc_mult, mc_display
! define monitor_complex type
 type monitor_complex
 private
 type (private_complex) :: pc
 character*8 :: last_op
 end type monitor_complex
 interface new
 module procedure mc_init
 end interface
 interface operator(*)
 module procedure mc_mult
 end interface
 interface display
 module procedure mc_display
 end interface
 contains
 subroutine mc_init(this,real,imaginary)
! initialize monitor_complex variable from reals
 type (monitor_complex), intent(out) :: this
 real, intent(in) :: real, imaginary
! initialize private_complex component of monitor_complex
 call new(this%pc,real,imaginary)
! set last operation
 this%last_op = 'INIT'
 end subroutine mc_init
!
 type (monitor_complex) function mc_mult(this,b)
! multiply monitor_complex variables
 type (monitor_complex), intent(in) :: this, b
! this multiplication is actually defined by function pc_mult
 mc_mult%pc = this%pc*b%pc
! set last operation
 mc_mult%last_op = 'MULTIPLY'
 end function mc_mult
!
 subroutine mc_display(this,c)
! display value of monitor_complex variable with label
 type (monitor_complex), intent(in) :: this
 character*(*), intent(in), optional :: c
 call display(this%pc,c)
 end subroutine mc_display
!

42

 subroutine last_op(this,c)
! display last operation
 type (monitor_complex), intent(in) :: this
 character*(*), intent(in) :: c
 print *, 'last op for ', c, ' was ', this%last_op
 end subroutine last_op
!
 type (monitor_complex) function mc(pc)
! convert private_complex object to monitor_complex object
 type (private_complex), intent(in) :: pc
 mc%pc = pc
 mc%last_op = 'INIT'
 end function mc
 end module monitor_complex_class

43

Appendix F: Final version of species_descriptor class

 module species_descriptor_class
 type species_descriptor
 private
 integer :: number_of_particles
 real :: charge, charge_to_mass, kinetic_energy
 end type species_descriptor
 contains
 subroutine get_species(this,np,qm,qbm,ek)
! unpack components of species descriptor
 implicit none
 type (species_descriptor), intent(in) :: this
 integer, intent(out), optional :: np
 real, intent(out), optional :: qm, qbm, ek
 if (present(np)) np = this%number_of_particles
 if (present(qm)) qm = this%charge
 if (present(qbm)) qbm = this%charge_to_mass
 if (present(ek)) ek = this%kinetic_energy
 end subroutine get_species
!
 subroutine put_species(this,np,qm,qbm,ek)
! pack components of species descriptor
 implicit none
 type (species_descriptor), intent(out) :: this
 integer, intent(in), optional :: np
 real, intent(in), optional :: qm, qbm, ek
 if (present(np)) this%number_of_particles = np
 if (present(qm)) this%charge = qm
 if (present(qbm)) this%charge_to_mass = qbm
 if (present(ek)) this%kinetic_energy = ek
 end subroutine put_species
 end module species_descriptor_class

44

Appendix G: Final version of species class

 module species_class
! inherit species descriptor class
 use species_descriptor_class
 type species
 private
 type (species_descriptor) :: descriptor
 real, dimension(:,:), pointer :: coordinates
 end type species
 interface new
 module procedure species_init
 end interface
 contains
 subroutine species_init(this,species_args,idimp,nop)
! allocate particle coordinate pointer array and store descriptor
 type (species), intent(inout) :: this
 type (species_descriptor), intent(in) :: species_args
 integer, intent(in) :: idimp, nop
 integer :: ierr
! allocate pointer array
 allocate(this%coordinates(idimp,nop),stat=ierr)
! check for allocation error
 if (ierr.ne.0) then
 print *,'species allocation error'
! store descriptor
 else
 this%descriptor = species_args
 endif
 end subroutine species_init
!
 subroutine push1(this,fx,dt)
 type (species), intent(inout) :: this
 real, dimension (:), intent(in) :: fx
 real, intent(in) :: dt
 integer :: np, idimp, nop, nx
 real :: qbm, ek
! extract array sizes
 idimp = size(this%coordinates,1)
 nop = size(this%coordinates,2)
 nx = size(fx)
! unpack input scalars from derived type with inherited procedure
 call get_species(this%descriptor,np=np,qbm=qbm)
! call old, ugly but fast particle pusher here
 call orig_push1(this%coordinates,fx,qbm,dt,ek,np,idimp,
 &nop,nx)
! pack output scalar into derived type with inherited procedure
 call put_species(this%descriptor,ek=ek)
 end subroutine push1
 end module species_class

45

Appendix H: Final version of complex_subtype class

 module complex_subtype_class
! get (inherit) private_complex type and its public procedures
 use private_complex_class
! get (inherit) monitor_complex type and its public procedures
 use monitor_complex_class
 private
 public :: private_complex, monitor_complex, complex_subtype
 public :: new, assign, assignment(=), operator(*), display
! define complex_subtype type
 type complex_subtype
 private
 type (private_complex), pointer :: pc
 type (monitor_complex), pointer :: mc
 end type complex_subtype
 interface assign
 module procedure assign_pc
 module procedure assign_mc
 end interface
 interface assignment (=)
 module procedure copy_subtype
 end interface
 interface operator(*)
 module procedure mult_subtype
 end interface
 interface display
 module procedure display_subtype
 end interface
 contains
 subroutine assign_pc(cs,pc)
! assign private_complex to complex_subtype
 type (complex_subtype), intent(out) :: cs
 type (private_complex), target, intent(in) :: pc
 cs%pc => pc
 nullify(cs%mc)
 end subroutine assign_pc
!
 subroutine assign_mc(cs,mc)
! assign monitor_complex to complex_subtype
 type (complex_subtype), intent(out) :: cs
 type (monitor_complex), target, intent(in) :: mc
 nullify(cs%pc)
 cs%mc => mc
 end subroutine assign_mc

46

 subroutine copy_subtype(this,b)
! assign contents of complex_subtype to complex_subtype
 type (complex_subtype), intent(inout) :: this
 type (complex_subtype), intent(in) :: b
! check if pointer is associated with private_complex type
 if (associated(b%pc)) then
 this%pc = b%pc
 nullify(this%mc)
! check if pointer is associated with monitor_complex type
 elseif (associated(b%mc)) then
 this%mc = b%mc
 nullify(this%pc)
 endif
 end subroutine copy_subtype
!
 function mult_subtype(this,b) result(output)
! multiply complex_subtype variables
 type (complex_subtype), intent(in) :: this, b
 type (complex_subtype) :: output
 type (private_complex), target, save :: tpc
 type (monitor_complex), target, save :: tmc
! check if pointer is associated with private_complex type
 if (associated(this%pc)) then
 tpc = this%pc*b%pc
 output = tpc
! check if pointer is associated with monitor_complex type
 elseif (associated(this%mc)) then
 tmc = this%mc*b%mc
 output = tmc
 endif
 end function mult_subtype
!
 subroutine display_subtype(a,c)
! display value of complex_subtype variable with label
 type (complex_subtype), intent(in) :: a
 character*(*), intent(in) :: c
! check if pointer is associated with private_complex type
 if (associated(a%pc)) then
 call display(a%pc,c)
! check if pointer is associated with monitor_complex type
 elseif (associated(a%mc)) then
 call display(a%mc,c)
 endif
 end subroutine display_subtype
 end module complex_subtype_class

47

