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Abstract

Fortran90 is a modern, powerful language with features that support important new 
programming concepts, including those used in object-oriented programming.  This 
paper explains the concepts of data encapsulation, function overloading, classes, objects, 
inheritance, and dynamic dispatching, and how to implement them in Fortran90.  As a 
result, a methodology can be developed to do object-oriented programming in the 
language.
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I. Introduction

      Fortran, still the most widely used scientific programming language, has evolved every 
10 years or so to incorporate the most recent, proven, ideas which have emerged from 
computer science and software engineering.  The latest version, Fortran90, has incorporated 
a great many new ideas, but scientific programmers generally are aware of only one of 
them: array syntax. These other new ideas permit better and safer programming design.  
Furthermore, they allow the software application to be expressed in terms of familiar and 
appropriate scientific concepts.  These new capabilities in Fortran90 make scientific 
programs easier to understand, modify, share, explain and extend.  As a result, much more 
ambitious programming problems can be attacked in a manageable way.
      There are several properties of program design that are useful in the programming and 
maintenance of large computational projects.  First, the code which modifies a given data 
structure should be localized or confined to one location in the program and not spread, 
uncontrollably, throughout the program.  This property is called an encapsulation.  In a 
sense, it is a generalization of the familiar notion of a function or subroutine.  However, 
modern encapsulation allows all related operations to be grouped together around a data 
type.  For example, given a data type representing a logical, encapsulation may group 
together a set of operations that perform logical operations.  A related notion is that of 
information hiding.  Once all the operations are encapsulated, one can hide the details by 
which the results are computed, allowing only well defined operations to be applied to the 
data.  For example, one can use the .not. operation on the intrinsic type logical, without 
worrying about the way the compiler writers implemented the operation or the internal 
representation of logicals.  The divide operation on logicals, on the other hand, is not 
defined in Fortran and therefore cannot be used.
       Using encapsulation and information hiding, the users can define their own data types, 
called abstract data types.   For example, one can define a data type representing an 
angle.  Abstract data types are further defined by the operations that can be applied to 
them.  A class definition  encapsulates the code for the allowable operations, or methods, 
written by the programmer along with the abstract data type, hiding the implementation 
details there.  For instance, users of the data type angle  can apply the sine and cosine 
functions to angle  variables (objects) if such methods have been defined for angles, but 
cannot multiply two angles  if such a method has not been defined.  Encapsulated code can 
be safely changed (for example, a different method of computing sines could be used on a 
new architecture) without the need to change the code using these functions.  The other 
advantage of abstract data types is that the software designer can describe the program in 
terms resembling the application domain.  For example, if a data type electron  is defined, 
one could define what it means to push an electron  object a given distance in space. (The 
electron  is pushed in this view, whereas in Fortran77 the values of arrays representing the 
electron coordinates are updated).
      Some operations are defined for more than one standard type.  For example 
multiplication can be defined for integer arguments, real arguments, vectors and arrays.  This 
property is called overloading  and the concept extends to abstract data types.  Consider 
an electron  type and an ion  type, both of which permit a push operation to be applied, 
but using a different procedure in each case.  Overloading helps to write shorter and clearer 
programs by providing a general operation in which the specific action taken is defined by 
the type of the arguments at compile-time.
      Often in science, properties of some entities are abstracted and grouped into classes.  
For example, electron  and ion  types can be considered different kinds of species  types.  
If separate data types were created for electron  and ion, many operations would be 
shared by these two types.  Overloading can help, but it is even more convenient to 
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introduce the abstract data type species  for the common properties.   Then, like in 
everyday life, everything that applies to the species  type can also be applicable to 
electron  and ion  types (but not the opposite).  Once the data type species  is defined 
one can simplify the description  of ion  and electron  types by permitting inheritance  of  
species  properties by those two more specialized data types.
      All of the ideas presented so far are part of the modern programming paradigm called 
object-oriented programming (OOP).  Many users with large investments in Fortran77 have 
reason to be reluctant to shift to a very different programming style and language.  The 
demands on development time and the training required to shift to a new approach, 
combined with the many years invested in existing Fortran77 based applications and the 
need to continually produce new science are good reasons to be skeptical of 
experimenting with new ideas, as promising as they might appear.
      Fortran90 supports these new important programming concepts, including those used in 
object-oriented programming.  Since Fortran90 is backward compatible with Fortran77, it is 
possible to incorporate these new ideas into old programs in an incremental fashion, 
enabling the scientist to continue his or her scientific activities.  Some of these ideas are 
useful for the typical kinds of programs written by individual authors now.  The usefulness of 
other ideas only becomes apparent for more ambitious programs written by multiple 
authors.  These are programs that might never have been written in Fortran77 because the 
complexity involved would have been unmanageable.  These new ideas enable more 
productive program development, encourage software collaboration and allow the scientist 
to use the same abstract concepts in a program that have been used so successfully in 
scientific theory. Scientific productivity will then improve.  Additionally, there is also a 
migration path to parallel computers, since High Performance Fortran (HPF) is also based 
on Fortran90.
      In this paper, we will introduce the concepts of data encapsulation, function overloading, 
classes and objects, inheritance, and dynamic dispatching in Fortran90.  Since these are the 
fundamental building blocks of object-oriented programming, it is important to understand 
them before one can effectively use OOP in Fortran90.  Many of these ideas are powerful 
by themselves and are useful even without adopting the object-oriented paradigm.  This 
paper is intended to be introductory in nature.  For those who wish to pursue these ideas 
further, there are a number of references which discuss object-oriented ideas in a language 
independent manner [1-3].  There are many textbooks available on Fortran90 and C++.  
Two that we have found useful are those by Ellis [4] and Lippman [5].
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II. Data Encapsulation with Array Objects

      The first concept we will discuss is data encapsulation, which means that only those 
procedures which need to have access to certain data are aware of it.  To illustrate how data 
encapsulation works in Fortran90, consider an example from a real to complex Fast Fourier 
Transform (FFT) subroutine written in Fortran77.  The interface  to the procedure, that is, the 
list of arguments and their types, is defined as follows:

      subroutine fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
      integer isign, indx, nx, nxh, mixup(nxh)
      real f(nx)
      complex sct(nxh), t(nxh)
c rest of procedure goes here
      return
      end   

Here f is the array to be transformed (and the output), t is a temporary work array, mixup 
is a bit-reverse table, sct is a sine/cosine table, indx is the power of 2 defining the length 
of the transform, and nx (>=2**indx) is the size of the f array, and nxh (=nx/2) is the size 
of the remaining arrays.  The variable isign determines the direction of the transform (or if 
zero, initiates the tables mixup and sct.) 
      Since the procedure fft1r is designed to work with variable size data (and might be 
compiled separately), and Fortran77 cannot dynamically allocate such data, the work and 
table arrays t, sct, and mixup have to be declared in the main program and passed to the 
procedure.  If the FFT procedure is itself embedded inside other procedures, then all these 
arrays have to be passed down the chain of arguments or else stored in a common block.  
Thus the main program might look something like:

      program main
      integer isign, indx, nx, nxh
      parameter(indx=11,nx=2**indx,nxh=nx/2)
      integer mixup(nxh)
      real f(nx)
      complex sct(nxh), t(nxh)
c initialize fft tables
      isign = 0
      call fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
      stop
      end 

The goal of data encapsulation is make the FFT call look like:

      call fft1r(f,isign)

where all the auxiliary arrays and constants which are needed only by the FFT are hidden 
inside the FFT, and the rest of the program does not have to be concerned about them.  
This hiding of data greatly simplifies bookkeeping with procedures.
      Fortran90 allows dynamic arrays which are only used inside a procedure to be created 
and destroyed there, and they are therefore unknown outside the procedure.  One 
mechanism for such encapsulation is the automatic array, which is created on entry and 
destroyed upon exiting a procedure.  It is easy to implement the work array t as an 
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automatic array.  One just omits the name from the argument list:

      subroutine fft1r(f,isign,mixup,sct,indx,nx,nxh)
      integer isign, indx, nx, nxh, mixup(nxh)
      real f(nx)
      complex sct(nxh)
! t is an automatic array, it disappears on exit
      complex, dimension(nxh) :: t
! rest of procedure goes here
      end subroutine fft1r

Notice that we have begun to use the new Fortran 90 :: syntax for declaring arrays, and a 
new END SUBROUTINE statement.  Automatic arrays differ from local arrays previously 
available in Fortran77 because their dimensions can now be variables.
      Another mechanism for encapsulation of arrays in Fortran90 is the allocatable (or 
deferred-size) array.   They are similar to automatic arrays, except that their creation 
(allocation) and destruction (deallocation) are entirely under programmer control.  Such arrays 
are created with the ALLOCATE statement.  If the SAVE attribute is used in their 
declaration, then they will not be destroyed on exit from the procedure.  They can be 
explicitly destroyed with the DEALLOCATE statement.
      For now, let us assume that the table arrays mixup and sct do not change between 
calls to the FFT.  We can then remove them from the argument list in our example and 
explicitly ALLOCATE them inside the procedure when the tables are initialized, as follows:

      subroutine fft1r(f,isign,indx,nx,nxh)
      integer isign, indx, nx, nxh
      real f(nx)
! mixup and sct are saved, allocatable arrays
      integer, dimension(:), allocatable, save :: mixup
      complex, dimension(:), allocatable, save :: sct
! t is an automatic array
      complex, dimension(nxh) :: t
! special initialization call
      if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
      end subroutine fft1r

Later, we will add error checking conditions.
      A very powerful feature of Fortran90 is that arrays are actually array objects which contain 
not only the data itself, but information about their size. This was previously only available 
for character arrays in Fortran77, which supplied the LEN intrinsic to obtain the character 
length.  In Fortran90,  assumed-shape arrays are available whose dimensions can be 
obtained from the SIZE intrinsic.  This is a third mechanism useful for data encapsulation.  
They are declared like ordinary arrays, except their dimension lengths are replaced with a 
colon.  We can now omit the dimensions nx and nxh from the argument list, and obtain 
them inside the procedure.  The declaration of the automatic array t also has to be revised 
to use the SIZE intrinsic.  The result is:

      subroutine fft1r(f,isign,indx)
! f is an assumed-shape array
      real, dimension(:) :: f
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      integer :: isign, indx, nx, nxh
      integer, dimension(:), allocatable, save :: mixup
      complex, dimension(:), allocatable, save :: sct
! t is an automatic array whose size is determined from array f
      complex, dimension(size(f)/2) :: t
! size of arrays mixup and sct are determined from array f.
      nx = size(f)
      nxh = nx/2
! special initialization call
      if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
      end subroutine fft1r

In order to use assumed-shape arrays the compiler must have knowledge of the actual 
argument types being used when the procedure is called.  One way this information can be 
supplied is with the INTERFACE statement, which declares to the main program the 
argument types of the procedure.  For example, one can write:

      program main
      integer :: isign
      integer, parameter :: indx=11, nx=2**indx
      real, dimension(nx) :: f
! declare interface
      interface
         subroutine fft1r(a,i,j)
         real, dimension(:) :: a
         integer :: i, j
         end subroutine fft1r
      end interface
! initialize fft tables
      isign = 0
      call fft1r(f,isign,indx)
      stop
      end                     

where we have used the new form of the PARAMETER statement.  An additional 
advantage of explicit INTERFACE blocks is the compiler will now check and require that the 
actual arguments passed to the procedure match in number and type with those declared in 
the interface.  Thus if one accidentally omits the argument isign in a procedure call

      call fft1r(f,indx)
the compiler will flag this.
        One possible source of error is that one can mistakenly declare the data in an 
INTERFACE block to be different than the actual data in the procedure.  This source of error 
is removed if the procedure is stored in a MODULE which is then “used,” because in this 
case the compiler creates the INTERFACE automatically.  The USE statement is similar to 
the INCLUDE extension commonly found in Fortran77, but it is not a text substitution.  
Rather, it makes information “available”, and is much more powerful than the INCLUDE 
statement.  Thus:

      module fft1r_module
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      contains
         subroutine fft1r(f,isign,indx)
         real, dimension(:) :: f
         integer :: isign, indx, nx, nxh
         integer, dimension(:), allocatable, save :: mixup
         complex, dimension(:), allocatable, save :: sct
         complex, dimension(size(f)/2) :: t
         nx = size(f)
         nxh = nx/2
! special initialization call
         if (isign.eq.0) allocate(mixup(nxh),sct(nxh))
! rest of procedure goes here
         end subroutine fft1r
      end fft1r_module
!
      program main
      use fft1r_module     ! explicit interface not needed now
      integer :: isign = 0
      integer, parameter :: indx=11, nx=2**indx
      real, dimension(nx) :: f
! initialize fft tables
      call fft1r(f,isign,indx)
      stop
      end   

where we have used a new way to initialize the integer isign.
      Fortran90 supports a number of other statements and attributes that contribute to 
programming safety.  One is the IMPLICIT NONE statement that requires all variables to 
be explicitly declared.  Another is the INTENT attribute for arguments, that declares whether 
arguments are intended as input only, output only, or both.  If we declare the arguments in 
fft1r as follows:

         subroutine fft1r(f,isign,indx)
         implicit none
         real, dimension(:), intent(inout) :: f
         integer, intent(in) :: isign, indx

then the variables isign and indx cannot be modified in this procedure since they were 
declared with INTENT(IN) attributes.  Such features mean that more errors are now caught 
by the compiler rather than by the operating system when the code is running.  Because of 
this added safety we will use modules for all of the remaining subroutines in this paper.
      The encapsulation of data we have illustrated in this example makes it easier for multiple 
authors to independently develop programs which will be used by others.  The FFT 
program now has a simple interface which is less likely to be changed, so that even if the 
author of the procedure makes changes internally, users of the procedure do not have to 
change their code.
      Another benefit of such an approach is that one can hide old, ugly code that cannot be 
changed, perhaps because one does not have access to the source.  For example, if one 
were using a library FFT which was optimized for some specific architecture, one could 
encapsulate it in a “shell” procedure which allocates any work or table arrays needed and 
then calls the library FFT.  Since the details of the library FFT are hidden from the user, one 
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could  replace it with another by making changes only in this “shell” procedure and not 
impact the rest of the code.  This allows a code to remain portable and yet optimized.
      Let us now add more error checking when allocating data.  The ALLOCATE statement 
allows an optional error return code to check if the data was actually allocated.  And the 
ALLOCATED statement allows one to check if the data is already allocated (perhaps we 
had previously used the FFT with different length data).  Thus the following version of the 
allocation is safer:

      if (isign.eq.0) then
         if (allocated(mixup)) deallocate(mixup)
         if (allocated(sct)) deallocate(sct)
         allocate(mixup(nxh),sct(nxh),stat=ierr)
         if (ierr.ne.0) then
            print *,’allocation error’
            stop
         endif
      endif

One can simplify the interface even further by noting that the FFT length parameter indx is 
only needed during the initialization of the FFT.  In subsequent calls it would be an error to 
use a different value without initializing new tables.  Fortran90 supports the use of 
OPTIONAL arguments and the intrinsic PRESENT to determine if it was passed.  With 
these tools, we can save the indx parameter passed during initialization and not require it 
to be passed subsequently.  Furthermore, if we initialize the saved indx parameter to 
some nonsense value, we can test it subsequently to prevent the FFT from being used 
before the FFT tables were initialized.  The result is:
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      subroutine fft1r(f,isign,indx)
      integer, intent(in), optional :: indx
      integer, save :: saved_indx = -1  ! initialize to nonsense
      if (isign.eq.0) then
         if (.not.present(indx)) then
            print *,’indx must be present during initialization!’
            stop
         endif
         saved_indx = indx
      else
         if (saved_indx.lt.0) then
            print *,’fft tables not initialized!’
            stop
         endif
      endif

In the following version of the FFT,  the procedure lib_fft1r is intended to refer to some 
library FFT where either the source code is unavailable or one does not desire to change it.  
This new version is much safer and easier to use and modify.
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      subroutine fft1r(f,isign,indx)
      implicit none
      real, dimension(:), intent(inout) :: f
      integer, intent(in) :: isign
      integer, intent(in), optional :: indx
      integer :: nx, nxh, ierr
      integer, save :: saved_indx = -1
      integer, dimension(:), allocatable, save :: mixup
      complex, dimension(:), allocatable, save :: sct
      complex, dimension(size(f)/2) :: t
      nx = size(f)
      nxh = nx/2
! special initialization call
      if (isign.eq.0) then
! indx must be present during initialization
         if (.not.present(indx)) then
            print *,’indx must be present during initialization’
            stop
         endif
! indx must be non-negative
         if (indx.lt.0) then
            print *,’indx must be non-negative’
            stop
         endif
! save indx for future calls
         saved_indx = indx
! deallocate if already allocated
         if (allocated(mixup)) deallocate(mixup)
         if (allocated(sct)) deallocate(sct)
! allocate table arrays
         allocate(mixup(nxh),sct(nxh),stat=ierr)
! check if allocation error
         if (ierr.ne.0) then
            print *,’allocation error’
            stop
         endif
! make sure fft tables initialized
      else
         if (saved_indx.lt.0) then
            print *,’fft tables not initialized!’
            stop
         endif
      endif
! call old, ugly but fast fft here
! saved_indx used here instead of indx
      call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
      end subroutine fft1r
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During initialization one would call:

      call fft1r(f,isign,indx)

But subsequently one can use just:

      call fft1r(f,isign)

      Logically, we have bundled two distinct operations, initialization and performing the FFT, 
into one procedure.  There is a third procedure which would be useful, deallocating the 
internal table arrays to free up memory if we are done with performing FFTs.  This could be 
done by adding an extra, OPTIONAL argument to the procedure, and adding more code, 
but this is unattractive.  It makes for clearer programming to separate logically distinct 
operations into distinct procedures.  The difficulty with this is how to allow distinct procedures 
to share access to the internal table arrays mixup and sct.  In Fortran77, the only 
mechanism to do this was common blocks.  In Fortran90, there is a new mechanism: 
modules can contain global data which are shared by all the procedures in the module 
without explicitly declaring them inside the procedures.  This is a new idea in Fortran, 
although common in other languages such as C++.  Furthermore, this global data can be 
made local to the module and inaccessible to other procedures which USE the module.
      In our example, we will make the table arrays mixup and sct, as well as the integer 
saved_indx global by moving their declaration outside the procedure to the declaration 
section at the beginning of the module.  We will also add the PRIVATE attribute, to block 
access to this data from outside the module.  Adding the deallocation procedure, the 
module looks like:

      module fft1r_module
! all module procedures have access to this data
      integer, save, private :: saved_indx = -1
      integer, dimension(:), allocatable, save, private :: mixup
      complex, dimension(:), allocatable, save, private :: sct
      contains
         subroutine fft1r_end
! this procedure has access to saved_indx, mixup, and sct
! reset saved_indx to nonsense value
         saved_indx = -1
! deallocate table arrays
         deallocate(mixup,sct)
         end subroutine fft1r_end
! other procedures go here
      end module fft1r_module

By separating the original fft1r procedure into a new initialization (fft1r_init) and FFT 
procedure, we no longer need to use optional arguments.  In the final version of this module 
which is shown in Appendix A, we have used the ‘;’ syntax which allows multiple 
statements on one line.
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      Allocatable arrays can also be used in the main program, which allows one to create all 
arrays at run time rather than at compile time.  In Fortran90, one no longer has to recompile a 
code because the dimensions change.  (It is the programmer’s responsibility, however, not 
to use an allocatable array before it has been allocated or after it has been deallocated.)  In 
the following main program, we make f an allocatable array, obtain the value of indx from 
the input device, allocate f, and use the new array constructor syntax to initialize it.
 
      program main
      use fft1r_module
      implicit none
      integer :: indx, nx, i
      real, dimension(:), allocatable :: f
! write prompt without linefeed
      write (6,’(a)’,advance=’no’) ’enter indx: ’
! obtain indx from input device
      read (5,*) indx
! allocate array f
      nx = 2**indx
      allocate(f(nx))
! initialize data using array constructor
      f = (/(i,i=1,nx)/)
! initialize fft
      call fft1r_init(indx)
! call fft
      call fft1r(f,-1)
! terminate fft
      call fft1r_end
      stop
      end

Notice that we have not modified the original lib_fft1r procedure, which is a private 
procedure in the module.  Instead we have simplified the user interface to the bare 
essentials while adding substantial safety to its usage.
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III. Function Overloading

      Function overloading refers to using the same function name but performing different 
operations based on argument type.  Fortran77 intrinsic functions and operators have 
always had this feature.  For example, the divide ‘/’ symbol gives different results 
depending on whether the operands are integers, reals, or complex variables. Similarly, the 
intrinsic procedure REAL(a) will convert an integer to a real, if a is an integer, but will return 
the real part of a, if a is complex.
      In Fortran90, generic functions allow user defined functions to also have this feature.  In 
the case of the FFT example, users of Fortran77 have had to remember to use different 
function names for every possible type of FFT, such as real to complex, complex to 
complex, 1 dimensional, 2 dimensional, single precision or double precision FFTs.  The 
generic function facility allows a single name, for example, fft, to be used for all of them, 
and the compiler will automatically select the correct FFT to use based on the number and 
types of arguments actually used.
      Thus in the case of the 1d real to complex FFT, we had a procedure with the following 
interface:

      subroutine fft1r(f,isign)
      real, dimension(:), intent(inout) :: f
      integer, intent(in) :: isign

In a manner similar to what we described in the previous section, one can construct a 2d real 
to complex FFT with the following interface:

      subroutine fft2r(f,isign)
      real, dimension(:,:), intent(inout) :: f
      integer, intent(in) :: isign

where the procedure fft2r “hides” an old, ugly but fast 2d real to complex FFT which has 
lots of arguments.  In the first case the argument f is a real, one dimensional array, while in 
the second case it is a real, two dimensional array.  If both of these procedures are in the 
same module, one constructs a generic function fft by placing the following statements in 
the declaration section of the module:

      interface fft
         module procedure fft1r
         module procedure fft2r
      end interface

Then in a main program which uses the module, the statement

      call fft(f,isign)

will call the procedure fft1r, if f is a real, one dimensional array, or will call fft2r, if f is a 
real, two dimensional array.  If f is any other type of argument, a compile error will be 
generated.
      If the 2 dimensional FFT is contained in a separate module, then two separate 
INTERFACE statements are required.  In the first module one includes

      interface fft
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         module procedure fft1r
      end interface

and in the second module one includes

      interface fft
         module procedure fft2r
      end interface

The main program then uses both modules, and each module procedure will then be 
added to the list of procedures that have the generic interface fft.
      In a similar manner, one can include in the same interface all other types of FFTs and the 
programmer is protected from making errors in calling the wrong procedure.  If desired, one 
can even make the specific names fft1r, fft2r inaccessible by adding the declaration:

      private :: fft1r, fft2r

in the module.  One advantage of this is that the specific names can be reused in other 
modules without conflict.  Function overloading is also called ad hoc polymorphism.
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IV. Derived Types, Classes, and Objects

      Fortran has a number of intrinsic data types, such as integer, real, complex, logical, and 
character, for which operators and functions are defined in the language.  An important new 
feature of Fortran90 is user defined data types.  A user defined type, also known as an 
abstract data type, is called a derived type in Fortran90. It is built up from intrinsic types and 
previously defined user types.  One simple use of this new capability is to bundle together 
various scalars that normally get passed together as arguments to procedures.  For 
example, consider the following interface from a particle pushing subroutine written in 
Fortran77:

      subroutine push1 (part,fx,qbm,dt,ek,np,idimp,nop,nx)
      integer np, idimp, nop, nx
      real qbm, dt, ek, part(idimp,nop), fx(nx)
c rest of procedure goes here
      return
      end   

Here part is the array which contains the particle coordinates and velocities and fx is the 
electric field array.  The integer idimp is the dimensionality of phase space, nop is the 
maximum number of particles allowed, and nx is the size of the electric field array.  As we 
saw in the FFT example, we do not have to pass these integers in Fortran90, since they 
can be determined by the SIZE intrinsic if part and fx are passed as assumed-shape 
arrays.  The integer np (np<=nop) is the actual number of valid particles in the part array, 
qbm is the charge/mass ratio, ek is the kinetic energy of the np valid particles, and dt is the 
time step.  All of the scalars except for the time step describe a group of charged particles 
and they usually are passed together whenever the particles are processed by some 
procedure.  We can use a derived type to store them together as follows:

      type species_descriptor
         integer :: number_of_particles
         real :: charge, charge_to_mass, kinetic_energy
      end type species_descriptor

This is similar to structures and record types which appear in other programming languages. 
We have added charge to the list, since there are some procedures which also require that.  
Notice that in this derived type, there are components of both integer and real type, so that 
this could not have been implemented with just an array in Fortran77.  To create a variable 
of this type, one makes the following declaration:

      type (species_descriptor) :: electron_args, ion_args

where we have created two variables of type species_descriptor, one for electrons 
and one for ions.  The components of this new type are accessed with the ‘%’ symbol.  
Thus we can assign values as follows:

      electron_args%number_of_particles = 1000
      electron_args%charge = 1.0

It is best to put the definition in the declaration section of a module along with the new 
push1 subroutine (to avoid having to declare an explicit interface for it), as shown in 
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Appendix B.  Then this module is “used” in the main program to give access to the derived 
type and new push1 procedure, which can now be called with a much simpler interface:

      call push1(part,fx,electron_args,dt)

      We have shown here a simple use of derived types, merely to reduce bookkeeping 
when passing arguments to procedures.  But derived types are much more powerful than 
that.  They can be used to express sophisticated, abstract quantities.  In fact, with derived 
types it is possible to express in programming the same high level, abstract quantities that 
physicists are used to in their mathematics.  To illustrate how one might begin to express 
more sophisticated mathematics in programming, let us define a new private_complex 
type and the procedures which will operate on that type.  This is, of course, an academic 
exercise for Fortran programmers, since the complex type already exists in the language.  
Nevertheless, it is a useful example to illustrate the basic principles involved and will lead to 
our definition of classes.  This type is defined as follows:

      type private_complex
         real :: real, imaginary
      end type private_complex

To create variables a, b, and c of this new type, and assign values, one proceeds as 
before:

      type (private_complex) :: a, b, c
! assign values to a
      a%real = 1.0
      a%imaginary = 2.0

If this private_complex type behaves the same as ordinary complex numbers, then 
multiplication of c = a*b can be defined as  follows:

      c%real = a%real*b%real - a%imaginary*b%imaginary
      c%imaginary = a%real*b%imaginary + a%imaginary*b%real

A new function pc_mult to multiply private_complex numbers could then be written:
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      type (private_complex) function pc_mult(a,b)
      type (private_complex), intent(in) :: a, b
      pc_mult%real = a%real*b%real - a%imaginary*b%imaginary
      pc_mult%imaginary = a%real*b%imaginary + a%imaginary*b%real
      end function pc_mult

Note that this function returns a variable of type private_complex.  One can thus multiply 
two numbers of this type with the following statement:

      c = pc_mult(a,b)

      It makes sense to place a new derived type together with the procedures which 
operate on that type into the same module:

      module private_complex_module
! define private_complex type
      type private_complex
         real :: real, imaginary
      end type private_complex
      contains
       type (private_complex) function pc_mult(a,b)
! multiply private_complex variables
       type (private_complex), intent(in) :: a, b
       pc_mult%real = a%real*b%real - a%imaginary*b%imaginary
       pc_mult%imaginary = a%real*b%imaginary + a%imaginary*b%real
       end function pc_mult
      end module private_complex_module

A program to illustrate the multiplication of two private_complex numbers then looks like 
the following:

      program main
! bring in private_complex definition and procedures
      use private_complex_module
! define sample variables
      type (private_complex):: a, b, c
! initialize sample variables
      a%real = 1. ; a%imaginary = -1.
      b%real = -1. ; b%imaginary = 2.
! perform multiplication
      c = pc_mult(a,b)
      print *,’c=’, c%real, c%imaginary
      stop
      end program main

      It is also possible to encapsulate the individual components of a derived type.  This is a 
common and useful practice in object-oriented programming.  It means that when a module 
is ”used” in another program unit, the private_complex type can be defined, but the 
individual components, such as a%real or a%imaginary are not accessible.  In the sample 
program above, the individual components were accessed in initializing the data and in 
printing the result of the multiplication.  If the components are encapsulated, then additional 
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procedures would have to be provided in the module to perform this function.  The 
encapsulation is achieved by adding the PRIVATE attribute to the derived type definition 
as follows:

      type private_complex
         private
         real :: real, imaginary
      end type private_complex

A procedure to initialize a private_complex number from real numbers can be written as 
follows:

      subroutine pc_init(a,real,imaginary)
! initialize private_complex variable from reals
      type (private_complex), intent(out) :: a
      real, intent(in) :: real, imaginary    
      a%real = real
      a%imaginary = imaginary
      end subroutine pc_init

while one to display the contents can be written:

      subroutine pc_display(a,c)
! display value of private_complex variable with label
      type (private_complex), intent(in) :: a
      character*(*), intent(in) :: c
      print *, c, a%real, a%imaginary
      end subroutine pc_display

The main program then looks like the following:

      program main
      use private_complex_module
      type (private_complex) :: a, b, c
! initialize sample variables
      call pc_init(a,1.,-1.)
      call pc_init(b,-1.,2.)
! perform multiplication
      c = pc_mult(a,b)
! display result
      call pc_display(c,’c=’)
      stop
      end program main

The advantage of such encapsulation is that procedures in other modules can never impact 
the internal representation of the private_complex type.  Furthermore, any changes 
made to the internal representation of private_complex type would be confined to this 
module, and would not impact program units in other modules.  This makes it easier to 
develop software with interchangeable parts.
      We have seen earlier how functions can be overloaded.  In Fortran90, operators such 
as ’*’ can also be overloaded.  This is also done with the INTERFACE statement, which 
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is placed in the declaration section of the module, as follows:

      interface operator(*)
         module procedure pc_mult
      end interface

We have now equated the operator ‘*’ with the name pc_mult.  Thus in the main program, 
one can multiply two private_complex numbers using the more familiar syntax:

      c = a*b

If one adds the declaration:

      private :: pc_mult

to the module, one can also make the original name pc_mult no longer accessible.
      In the language of object-oriented programming, the module we have just created is 
known as a class.  It consists of a derived type definition, known as a class name, along with 
the procedures which operate on that class, called class member functions.  The 
components of the derived type are called the class data members, while global data in the 
module (if any) corresponds to static class data members.  The actual variable of type 
private_complex is known as an object.
      To make this appear more familiar to those who already know C++, we will adopt the 
convention to make the derived type the first argument in all the module procedures, and 
we will give it the name “this.”  We will also overload the initialization function pc_init 
and give it the public name “new,” while making the specific name pc_init private.  The 
final version of the  private_complex class is listed in Appendix C.  In this version we 
have provided a new public name “display” to the procedure pc_display, but we 
have not made it private, so both names can still be used.
      The main program which uses this class can be written:

      program main
      use private_complex_class
      type (private_complex) :: a, b, c
      call new(a,1.,-1.)
      call new(b,-1.,2.)
! perform multiplication
      c = a*b
      call pc_display(c,’c=’)
      stop
      end program main
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V. Inheritance

      We have seen how to create simple classes in Fortran90 by storing together derived 
type definitions and procedures operating on that type which can then be “used” in other 
program units, including other modules.  Inheritance, in the most general sense, can be 
defined as the ability to construct more complex (derived) classes from simpler (base) 
classes in a hierarchical fashion. Inheritance has been also used as a term that describes how 
this idea is implemented in a particular language, which results in as many definitions as there 
are languages.  We will discuss two methods of implementing this idea which are useful in 
Fortran90, a general one and a more specialized but common one.
      We will begin with the most general case, where one class makes use of another.  Such 
a form of inheritance is sometimes called class composition, since classes are composed of 
other classes.  To illustrate this, let us create a new class which consists of 
private_complex arrays.  Array syntax for intrinsic data types is a powerful new feature 
of Fortran90, and it is instructive to see how one can implement it for user defined types.  
Fortran90 permits one to define arrays of derived types as follows:

      program main
      use private_complex_class
      integer, parameter :: nx = 8
      type (private_complex), dimension(nx) :: f

We can initialize the elements of this array type by calling in a loop the “new” procedure we 
defined in the private_complex_class:

      do i = 1, nx
         call new(f(i),real(i),-real(i))
      enddo

Note that the do loop without statement numbers is now an official part of Fortran90.  In this 
way, we can create a procedure called pcarray_init which will convert two real arrays 
into an array of type (private_complex).  We place this procedure in a new module called 
complex_array_class, as follows:
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      module complex_array_class
! get private_complex type and its public procedures
      use private_complex_class
      contains
         subroutine pcarray_init(this,real,imaginary)
! initialize private_complex array from real arrays
         type (private_complex), dimension(:), intent(out) :: this
         real, dimension(:), intent(in) :: real, imaginary
         do i = 1, size(this)
! new here uses the pc_init procedure
            call new(this(i),real(i),imaginary(i))
         enddo
         end subroutine pcarray_init
      end module complex_array_class

      In this example, the private_complex module is “used” (or inherited) by the 
complex_array  module. This means that all the public entities in the first module (the 
base class) will be available to the second module (the derived class).  Since arrays of 
derived type are considered a different type than a single scalar of that type, we can include 
the following interface statement in the module to overload the procedure new  so that it can 
also execute pcarray_init:

      interface new
         module procedure pcarray_init
      end interface

Now, if the argument of new is a scalar of type private_complex, then pc_init will be 
executed, but if the argument of new is an array of type private_complex, then 
pcarray_init will be executed.  The main program which uses this new module looks 
like the following:

      program main
! bring in complex_array (and private_complex) procedures
      use complex_array_class
      integer, parameter :: nx = 8
! define a single scalar of type private_complex 
      type (private_complex) :: a
! define an array of type private_complex
      type (private_complex), dimension(nx) :: f
! initialize a single scalar
      call new(a,1.0,-1.0)
! initialize an array
      call new(f,(/(real(i),i=1,nx)/),(/(-real(i),i=1,nx)/))
      stop
      end program main

In a similar fashion we can add a multiply function to the new module which will multiply 
arrays.  To do this we take advantage of a new feature of Fortran90, which is that functions 
can return entire arrays.  This is done by declaring the function name to be an array, and 
setting its dimension from another array in the argument list with the SIZE intrinsic.  Since the 
‘*’ operator for scalars of type private_complex has already been defined in the module 
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private_complex_class, the array function is created by calling this operator in a loop, 
as follows:

      function pcarray_mult(this,b)
! multiply arrays of private_complex variables
      type (private_complex), dimension(:), intent(in) :: this, b
! declare output array to be of same size as ”this” array
      type (private_complex), dimension(size(this)) ::pcarray_mult
      do i = 1, size(this)
! this multiplication is actually performed by function pc_mult
         pcarray_mult(i) = this(i)*b(i)
      enddo
      end function pcarray_mult

Finally, we can overload the ’*’ operator to call pcarray_mult when the arguments are 
arrays of type private_complex, as follows:

      interface operator(*)
         module procedure pcarray_mult
      end interface

In the final version of the derived class complex_array, which is listed in Appendix D, we 
have also overloaded the display function so that we can print out the array elements.  In 
the following main program, we can now multiply arrays of type private_complex using 
array syntax:

      program main
      use complex_array_class
      integer, parameter :: nx = 8
! define sample arrays
      type (private_complex), dimension(nx) :: f, g, h
! initialize sample arrays
      call new(f,(/(real(i),i=1,nx)/),(/(-real(i),i=1,nx)/))
      call new(g,(/(-real(i),i=1,nx)/),(/(real(2*i),i=1,nx)/))
! perform multiplication of arrays
      h = f*g
! display the first three elements of the results
      call display(h(1:3),'h=')
      stop
      end program main

      Thus we have constructed a derived class built upon the definitions and procedures in a 
base class using class composition.  It was not necessary to construct a new derived type 
for arrays, since arrays of derived types are automatically supported in the language.  
Procedures which operate on the arrays, however, had to be constructed.  This was done in 
two stages.  First a new procedure for the derived class is written (for example, 
pcarray_mult) which executes the original base class operator (‘*’) in a loop.  The original 
base class operator (‘*’) is then overloaded to include the new derived class procedure.  
Note that the base class was never modified during this process.
      Inheritance is generally used to mean something more restricted than class composition.  
In this form of the inheritance relation, the base class contains the properties (procedures) 
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which are common to a group of derived classes.  Each derived class can modify or extend 
these procedures for its own needs if necessary.
      As an example, consider the private_complex class discussed in the previous 
section.  Suppose we want to extend this class so that it keeps track of the last operation 
performed.  Such a feature could be useful in debugging, for example.  Except for the 
additional feature of monitoring operations, we would like this extended class to behave 
exactly like the private_complex class.  We can accomplish this by creating a new class 
called the monitor_complex class.  First we create a new derived type, as follows:

      type monitor_complex
         type (private_complex) :: pc
         character*8 :: last_op
      end type monitor_complex

which contains one instance of a private_complex type plus an additional character 
component to be used for monitoring.  We want to extend all three procedures of the 
private_complex class (new,’*’,and display) so that they also work in the new 
monitor_complex class.  We will accomplish this with methods very similar to those we 
used in composition.  Initializing the monitor_complex type can be performed by making 
use of the new operator in the private_complex class to initialize the 
private_complex component of the monitor_complex type as follows:
  
      type (monitor_complex) :: x
      call new(x%pc,1.0,-1.0)

The additional monitor component can be initialized in the usual way:

      x%last_op = 'INIT'

This initialization can be embedded in a procedure called mc_init.  By also adding the 
interface new to the monitor_complex class,  we can overload the new  procedure so that it 
calls mc_init if the argument is of type monitor_complex.  As a result, the operator new 
which previously worked on private_complex type has been extended to also work on  
monitor_complex types, as required.  The resulting monitor_complex class looks like:
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      module monitor_complex_class
! get (inherit) private_complex type and its public procedures
      use private_complex_class
! define monitor_complex type
      type monitor_complex
         private
         type (private_complex) :: pc
         character*8 :: last_op
      end type monitor_complex
      interface new
         module procedure mc_init
      end interface
      contains
         subroutine mc_init(this,real,imaginary)
! initialize monitor_complex variable from reals
         type (monitor_complex), intent(out) :: this
         real, intent(in) :: real, imaginary    
! initialize private_complex component of monitor_complex
         call new(this%pc,real,imaginary)
         this%last_op = 'INIT'     ! set last operation
         end subroutine mc_init
      end module monitor_complex_class

      In a similar fashion we can extend the multiplication function to also work on 
monitor_complex types.  Multiplication is performed by using the ’*’ operator (defined 
in the private_complex class) on the private_complex component of the 
monitor_complex type, as follows:

         type (monitor_complex) :: x, y, z
         z%pc = x%pc*y%pc

This operation can be embedded in a function which returns a result of type 
monitor_complex.  We also want to add to this function the operation of setting the 
monitor component.  The resulting procedure can be written:

         type (monitor_complex) function mc_mult(this,b)
         type (monitor_complex), intent(in) :: this, b
         mc_mult%pc = this%pc*b%pc
         mc_mult%last_op = 'MULTIPLY'
         end function mc_mult

Finally, we can overload the ’*’ operator with the interface statement so that it calls mc_mult 
when the arguments are of type monitor_complex.  In the final version of the derived 
class monitor_complex, which is listed in Appendix E, we have extended the display 
function to work with the monitor_complex class, as well as written an entirely new 
procedure (last_op) to display the last operation performed.   In order to allow 
expressions with mixed types, we have also written a conversion operator mc to convert 
from private_complex to monitor_complex types.  In the following main program, all 
of the procedures in the base class have been extended to work in the derived class:

      program main
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! bring in monitor_complex definition and procedures
      use monitor_complex_class
! define sample variables
      type (private_complex) :: a, b, c
      type (monitor_complex) :: x, y, z
! initialize private_complex variables
      call new(a,1.,-1.)
      call new(b,-1.,2.)
! initialize monitor_complex variables
      call new(x,1.,-1.)
      call new(y,-1.,2.)
      call new(z,0.,0.)
! perform multiplication with private_complex types
      c = a*b
! perform multiplication with monitor_complex types
      z = x*y
! display results
      call display(c,'c=')
      call display(z,'z=')
! perform multiplication with mixed types
      z = mc(c)*z
! display last operation for monitor_complex type
      call last_op(z,'z')
      end program main

      Thus we have constructed a derived class which has a special form of relationship to its 
base class.  Here, the derived type definition in the derived class contains within it exactly 
one component of the derived type definition in the base class.  In other words, each object 
of the derived class contains within it exactly one object of the base class.  Furthermore all 
the procedures in the base class have been extended to also work in the derived class, 
although two have been internally modified, and one new one created.  In addition, a 
conversion operator was supplied.  Extending the procedures was accomplished by first 
writing a derived class procedure which called the base class procedure on the base class 
component, and then overloading the name to be the same as the base class procedure 
name.  As in class composition, the base class was never modified during this process.
      This form of inheritance is sometimes called subtyping because derived class objects 
can use base class procedures as if they were the same type.  Although inheritance by 
subtyping is rather restrictive, it is also very convenient because special mechanisms exist 
in some languages (such as C++) to automatically extend unmodified base class 
procedures to derived types through automatic conversion of types.  Fortran90 does not 
have such mechanisms and therefore inheritance by subtyping must be constructed 
explicitly, which can be cumbersome.
      In many object-oriented languages, composition and subtyping are considered 
separately because they are implemented by two different language mechanisms, and 
composition is rarely considered a form of inheritance.  However, in Fortran90, subtyping is 
implemented as a special case of composition and is constructed using similar methods, so 
that it makes sense here to consider the two ideas as related and describe them jointly.  In 
our experience, composition is a more powerful idea which reflects more closely than 
subtyping how concepts are constructed in physics.
      This example with private_complex types shows one of the reasons object-
oriented programming is so powerful: if we decide to change the internal representation of 
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private_complex to use polar coordinates instead of cartesian, we would have to modify 
only the procedures in the private_complex class to accommodate the change, while the 
derived classes would still work without modification.  This example is perhaps academic.  
However, one can use the same techniques to create more powerful and interesting 
classes to represent other kinds of algebras.  For example, one can create vector classes 
with procedures such as gradient operators, or tensor classes and associated procedures.  
One can then program at the same high level that one can do mathematics, with all the 
power and safety such abstractions give.
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VI. Derived Types with Pointers

      In the species_module created earlier (listed in Appendix B), we wrote a new 
subroutine push1 which had the following arguments:

      subroutine push1(part,fx,species_args,dt)

The argument species_args was an instance of type species_descriptor that 
contained certain parameters describing a group of charged particles.  The array part 
contained the particle coordinates for that group.  This works well and the subroutine 
interface is considerably simplified from the original version.
      Nevertheless, it is possible to add even more safety and simplicity.  Clearly, the array 
part needs to have the object species_args always present.  This leads to a possible 
source of error, since one can pass a descriptor which is inconsistent with the particle data.  It 
makes sense therefore to make a new derived type which unites the two data types 
together.  One might define such a type as follows:

      type species
         type (species_descriptor) :: descriptor
         real, dimension(idimp,nop) :: coordinates
      end type species

If idimp and nop are parameters known at compile time, such a definition is perfectly valid.  
However, it is not convenient, since changing idimp or nop would require much of the code 
to be recompiled.  One might guess that it would be better to have an allocatable array in 
the type definition, such as:

      type species
         type (species_descriptor) :: descriptor
         real, dimension(:,:), allocatable :: coordinates
      end type species

It turns out that this is invalid: allocatable arrays cannot be used in derived type definitions.  
There is an alternative, however, which is valid, namely pointers to arrays.  In order to 
explain how this works, we have to make a digression and explain how Fortran90 pointers 
work.
      Pointers in any language refer to the location in memory of data, rather than the data 
itself.  Fortran90 pointers are in reality a special kind of object.  Compared to pointers in 
other languages, their use is greatly restricted in order to avoid the kind of performance 
degradation common with indiscriminant use of pointers.  The programmer does not have 
access to the value of a pointer nor is pointer arithmetic permitted.  Instead, pointers are 
really aliases to other data.  Suppose we define two real arrays, and two pointers to real 
arrays:

      real, dimension(4), target :: a, b
      real, dimension(:), pointer :: ptr1, ptr2

One can then associate the first pointer with the array a using the ’=>’ operator as follows:

      ptr1 => a
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Notice that the TARGET attribute must be used for the arrays a and b, in order to allow 
them to be pointed to.  The kind of data with which a pointer can be associated is 
determined in its declaration.  Thus, the pointer ptr1 can only point to real, one dimensional 
arrays, and cannot point to a real, two dimensional array, for example.  Once associated with 
a target, the pointer can then be used just as if it were the array a, including passing it as an 
argument to a procedure.  This is called dereferencing.  For example the statement

      ptr1(1) = 1.0

will assign the value of 1.0 to a(1).  The NULLIFY intrinsic is used to disassociate a pointer 
from an array:

      nullify(ptr1)

Similarly, if we associate the second pointer with b,

      ptr2 => b

then the statement

      ptr2(2) = 2.0

will assign the value of 2.0 to b(2).  The ASSOCIATED intrinsic function can be used to 
determine if a pointer has been associated with any array:

      if (associated(ptr1)) print *,’ptr1 associated!’

It can also be used to determine if two pointers point to the same location in memory.

      if (associated(ptr1,ptr2)) print *,’associated together!’

For our purposes, the most useful feature of pointers is that they can be associated with an 
unnamed variable with the ALLOCATE statement.  For example, the statements

      nullify(ptr1)
      allocate(ptr1(4))

will first disassociate ptr1 from any previous array,  then allocate an unnamed array 
consisting of 4 real words and associate the pointer ptr1 to that unnamed array.  The 
pointer ptr1 can then be used as if it were a normal array.  When we are finished with that 
array, we can deallocate it with:

      deallocate(ptr1)

The ALLOCATED intrinsic does not work with pointers to arrays.  However, the 
ASSOCIATED statement can tell us whether the data had actually been allocated, if we first 
NULLIFY ptr1 before allocating it.  For all practical purposes, pointers to unnamed arrays 
function just like allocatable arrays, except that they have the advantage they can be used in 
derived type definitions.
      Thus, the correct definition for the new species type is:
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      type species
         type (species_descriptor) :: descriptor
         real, dimension(:,:), pointer :: coordinates
      end type species

If we define an object of type species called electrons,

      type (species) :: electrons

then the pointer array for the particle data can be allocated as follows:

      allocate(electrons%coordinates(idimp,nop),stat=ierr)

 The new push1 procedure can now be called with the simple statement:

      call push1(electrons,fx,dt)

This can be organized efficiently by creating two classes.  First, we create a 
species_descriptor class (see Appendix F) which contains the type definition for this 
class along with procedures to read and write objects of this class.  This class is then 
”inherited” by a derived class called species (see Appendix G), which uses the base 
class information to define a species type along with a creation procedure and a new 
push1 subroutine.
      There is one subtle issue that occurs when using derived types containing pointers.   
When two such types are copied:

      type (species) :: electrons, ions
      ions = electrons

what actually occurs is

      ions%descriptor = electrons%descriptor
      ions%coordinates => electrons%coordinates 

In the second line, the pointer component is copied, not the data to which it points.  
Sometimes this is not the desired behavior. If we want to copy the data instead of the 
pointer, we need to perform the following operation instead:

      ions%coordinates = electrons%coordinates

which will dereference the pointer and copy the data.  To accomplish this, we create a 
procedure:

      subroutine copy_species(a,b)
      type (species), intent(out) :: a
      type (species), intent(in) :: b
      a%descriptor = b%descriptor
      a%coordinates = b%coordinates 
      end subroutine copy_species

Fortran90 allows such a procedure to be associated with the ‘=’ operator by means of the 
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interface statement in the module:

      interface assignment (=)
         module procedure copy_species
      end interface 

If we implement such a procedure, then the statement:

      ions = electrons

will copy the data instead of the pointer, assuming memory for the ion coordinates has 
been allocated.
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VII. Dynamic Dispatching

      One concept we have not discussed so far is the idea of dynamic dispatching, 
sometimes called run-time polymorphism, which is often said to be a distinguishing feature 
of object-oriented programming.  The subtyping inheritance model we discussed in Section 
V was static, meaning that the compiler could resolve which procedure to call at any given 
point in the program.  The purpose of dynamic dispatching is to allow one to write generic 
or abstract procedures which would work on all classes in an inheritance hierarchy, yet 
produce results that depend on which object was actually used at run-time.  Dynamic 
dispatching is most useful when there are many objects which are similar to one another, but 
not identical, and which can be processed by some generic procedures.  A common 
example occurs in database processing [8], where there are many similar kinds of records, 
students and teachers, for example.  One wants to avoid writing different programs for each 
kind of record, yet one wants to handle each type of record differently.
      To illustrate this, let us write a subroutine which does some kind of work using the 
methods in our private_complex class hierarchy.  Since this inheritance hierarchy was 
rather simple, our work subroutine will also be simple: it will square a number and then print 
out the result:

      subroutine work(a)
      type (private_complex), intent(inout) :: a
      a = a*a
      call display(a,’work:’)
      end subroutine work

We will define a display procedure so that it works differently in each class (for example, 
by modifying the display procedure in the monitor_complex class listed in Appendix 
E so that it calls last_op).  The work subroutine is written for the private_complex 
type, but we would like it to function correctly even if we pass a monitor_complex type 
instead (which would normally be a type violation).  In other words, when we say that this 
procedure works on a private_complex type, we actually mean that it is supposed to 
work on all types derived from private_complex as well.  Furthermore, we want to 
decide at run time which we mean. Thus, if we declare and initialize the class objects as 
follows:

      type (private_complex), pointer :: pc
      type (private_complex), target :: a
      type (monitor_complex), target :: b
! initialize private_complex variables
      call new(a,1.,-1.)
! initialize monitor_complex variables
      call new(b,1.,-1.)

we would like to do something like:

31 



! point to private_complex variable
      pc => a
      call work(pc)
! point to monitor_complex variable
      pc => b                         !error, type violation
      call work(pc)

This is not possible in Fortran90, because the pointer pc can only point to targets of type 
private_complex, so that the statement:

      pc => b

is illegal.  The solution is to first define a derived type which contains a pointer to each of the 
possible types in the inheritance hierarchy, such as:

      type complex_subtype
         type (private_complex), pointer :: pc
         type (monitor_complex), pointer :: mc
      end type complex_subtype 

This subtype has the ability to point to either complex type:

      type (complex_subtype) :: generic_pc
! point to private_complex variable
      generic_pc%pc => a
! point to monitor_complex variable
      generic_pc%mc => b

      Dynamic dispatching can then be implemented by defining a subtype class which 
inherits all the classes in the inheritance hierarchy and contains a new version of each class 
member function.  This new version will test which of the pointers in the complex_subtype 
type has been associated and execute the corresponding version of the function.  For 
example, one can define a new display procedure as follows:

      subroutine display_subtype(a,c)
      type (complex_subtype), intent(in) :: a
      character*(*), intent(in) :: c
! check if pointer is associated with private_complex type
      if (associated(a%pc)) then
! if so, execute private_complex version of display
         call display(a%pc,c)
! check if pointer is associated with monitor-_complex type
      elseif (associated(a%mc)) then
! if so, execute monitor_complex version of display
         call display(a%mc,c)
      endif
      end subroutine display_subtype

The argument to this procedure is a variable of type complex_subtype.  The procedure 
hides the decision about which actual function to call.  In a similar fashion, one could write a 
new multiplication function, which would hide the decisions about the appropriate 

32 



multiplication procedure to call.  If one overloads the procedure names to have the same 
names as the corresponding class member functions, the resulting work procedure then 
has exactly the same form as before, except that the argument is of type 
complex_subtype rather than private_complex, to indicate that this subroutine is 
intended to be used with the entire class hierarchy:

      subroutine work(a)
      type (complex_subtype), intent(inout) :: a
! multiplication operator has been overloaded to cover all types
      a = a*a
      call display(a,'work:')
      end subroutine work
       
      From the above, it is clear that the subtype class will need an assignment operator.  
Since we will make the components of the complex_subtype class private, one has to 
write a procedure to dynamically assign one of the possible pointers in the class hierarchy 
and nullify  the rest.  For example, the assignment of the private_complex pointer 
would be performed by:

      subroutine assign_pc(cs,pc)
      type (complex_subtype), intent(out) :: cs
      type (private_complex), target, intent(in) :: pc
! assign private_complex to complex_subtype
      cs%pc => pc
! nullify monitor_complex pointer
      nullify(cs%mc)
      end subroutine assign_pc

A similar procedure, which we call assign_mc, must be created to assign the 
monitor_complex pointer.  Finally, in order for the following expression:

      a = a*a

to produce the expected results, one also needs to define a new copy operator, 
copy_subtype, which copies data rather than pointers, similar to the one we defined at the 
end of the section VI.  These assignment and copy operators can be overloaded to the 
assignment operator (‘=’).  The complex_subtype class which combines all these 
features is shown in Appendix H.  It encapsulates all the details of how dynamic dispatching 
works, so that users of this class can freely write abstract or generic procedures based on 
the class hierarchy without being aware of how dynamic dispatching is implemented.
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      The program which calls work looks like:

      program main
      use complex_subtype_class
      type (complex_subtype) :: pc
      type (private_complex), target :: a
      type (monitor_complex), target :: b
      call new(a,1.,-1.)
      call new(b,1.,-1.) 
      call assign(pc,a)
      call work(pc)
      call assign(pc,b)
      call work(pc)
      end program main

      A distinguishing feature of typed object-oriented languages, is that support for the 
equivalent of such a subtype class is supported automatically by the compiler.  There is 
always a performance penalty for using dynamic dispatching, however, even in object-
oriented languages.
      The rules for implementing a subtype class in Fortran90 which supports dynamic 
dispatching are as follows: create a derived type which contains exactly one pointer to each 
possible class in the inheritance hierarchy.  Then implement a generic method for each class 
member function which will test which of the possible pointers have been associated and 
pass the corresponding pointer to the appropriate function.  Assignment procedures are 
also required.  The users of the subtype class, however, do not need to concern 
themselves with the details of how it is constructed.
      Clearly, it is more cumbersome to implement dynamic dispatching in Fortran90 than in 
an object-oriented language.  Once implemented, however, the usage is similar.  Whether 
this feature is important depends on the nature of the problem one wants to model.  Some 
studies of object-oriented programming [9] indicate that dynamic dispatching is needed 
about 15% of the time.  There is some debate about what constitutes object-oriented 
programming.  Some would argue that if a program does not use dynamic dispatching, it is 
not object-oriented.  Others, however, argue that object-oriented is a question of design, 
not a question of what features of an object-oriented language are used.  We tend to agree 
with the latter view.
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VIII. Conclusions

      Fortran90 is a modern, powerful language.  There is much more here than array syntax, 
useful though that is.  Many important programming concepts are supported, such as data 
encapsulation, function overloading and user defined types.  The language also supports 
many safety features such as argument checking across procedures, implicit none, and intent 
attributes that enable the compiler to find many programming errors.  Although Fortran90 is 
not considered an object-oriented language, a methodology can be developed to do 
object-oriented programming.  The details of designing object-oriented programs are 
beyond the scope of this introductory article, but we have successfully written and 
compared Fortran90 and C++ versions of an object-oriented plasma particle-in-cell 
program [6-7]. But even if one did not wish to adopt the entire object-oriented paradigm, 
the programming concepts are very useful even if used selectively.  It is possible to design 
simple, safer user interfaces to hide old, ugly procedural codes which may still work very 
well.
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Appendix A: Final version of fft1r_module

      module fft1r_module
      integer, save, private :: saved_indx = -1
      integer, dimension(:), allocatable, save, private :: mixup
      complex, dimension(:), allocatable, save, private :: sct
      contains
         subroutine fft1r_init(indx)
! initialization call
         integer, intent(in) :: indx
         integer :: nx, nxh, ierr, isign=0
! allocate f and t: old, ugly fft requires them as arguments
         real, dimension(2**indx) :: f
         complex, dimension(2**(indx-1)) :: t
         if (indx.lt.0) then
            print *,'indx must be non-negative'
            stop
         endif
         nx = 2**indx ; nxh = nx/2 ; saved_indx = indx
         if (allocated(mixup)) deallocate(mixup)
         if (allocated(sct)) deallocate(sct)
         allocate(mixup(nxh),sct(nxh),stat=ierr)
         if (ierr.ne.0) then
            print *,'allocation error'
            stop
         endif
! call old, ugly but fast fft here
         call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
         end subroutine fft1r_init
!
         subroutine fft1r_end
! deallocate internal data
         saved_indx = -1
         deallocate(mixup,sct)
         end subroutine fft1r_end
!
         subroutine fft1r(f,isign)
         real, dimension(:), intent(inout) :: f
         integer, intent(in) :: isign
         integer :: nx, nxh
         complex, dimension(size(f)/2) :: t
         nx = size(f) ; nxh = nx/2
! do nothing if isign is invalid
         if (isign.eq.0) return
         if (saved_indx.lt.0) then
            print *,'fft tables not initialized!'
            stop
         endif
! call old, ugly but fast fft here
         call lib_fft1r(f,t,isign,mixup,sct,saved_indx,nx,nxh)
         end subroutine fft1r
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      end module fft1r_module
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Appendix B: Initial version of species_module

      module species_module
! define derived type
      type species_descriptor
         integer :: number_of_particles
         real :: charge, charge_to_mass, kinetic_energy
      end type species_descriptor
      contains
         subroutine push1(part,fx,species_args,dt)
! declare assumed-shape arrays
         real, dimension(:,:), intent(inout) :: part
         real, dimension(:), intent(in) :: fx
! declare argument of derived type
         type (species_descriptor), intent(inout) :: species_args
         real, intent(in) :: dt
         integer :: np, idimp, nop, nx
         real :: qbm, ek
! extract array sizes
         idimp = size(part,1) ; nop = size(part,2) ; nx = size(fx)
! unpack input scalars from derived type
         qbm = species_args%charge_to_mass
         np = species_args%number_of_particles
! call old, ugly but fast particle pusher here
         call orig_push1(part,fx,qbm,dt,ek,np,idimp,nop,nx)
! pack output scalars into derived type
         species_args%kinetic_energy = ek
         end subroutine push1
      end module species_module
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Appendix C: Final version of private_complex class

      module private_complex_class
      private :: pc_init, pc_mult
      type private_complex
         private
         real :: real, imaginary
      end type private_complex
      interface new
         module procedure pc_init
      end interface
      interface operator(*)
         module procedure pc_mult
      end interface
      interface display
         module procedure pc_display
      end interface
      contains
         subroutine pc_init(this,real,imaginary)
! initialize private_complex variable from reals
         type (private_complex), intent(out) :: this
         real, intent(in) :: real, imaginary    
         this%real = real
         this%imaginary = imaginary
         end subroutine pc_init
!
         type (private_complex) function pc_mult(this,b)
! multiply private_complex variables
         type (private_complex), intent(in) :: this, b
         pc_mult%real = this%real*b%real - 
     &this%imaginary*b%imaginary
         pc_mult%imaginary = this%real*b%imaginary + 
     &this%imaginary*b%real
         end function pc_mult
!
         subroutine pc_display(this,c)
! display value of private_complex variable with optional label
         type (private_complex), intent(in) :: this
         character*(*), intent(in), optional :: c
         if (present(c)) then
            print *, c, this%real, this%imaginary
         else
            write (6,’(2f14,7)’,advance=’no’) this%real,
     &this%imaginary
         endif
         end subroutine pc_display
      end module private_complex_class
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Appendix D: Final version of complex_array class

      module complex_array_class
      use private_complex_class
      private :: pcarray_init, pcarray_mult
      interface new
         module procedure pcarray_init
      end interface
      interface operator(*)
         module procedure pcarray_mult
      end interface
      interface display
         module procedure pcarray_display
      end interface
      contains
         subroutine pcarray_init(this,real,imaginary)
! initialize private_complex variable from reals
         type (private_complex), dimension(:), intent(out) :: this
         real, dimension (:), intent(in) :: real, imaginary    
         do i = 1, size(this)
            call new(this(i),real(i),imaginary(i))
         enddo
         end subroutine pcarray_init
!
         function pcarray_mult(this,b)
! multiply arrays of private_complex variables
         type (private_complex), dimension(:),intent(in) :: this,b
         type (private_complex), dimension(size(this))::
     &pcarray_mult
! this multiplication is actually defined by function pc_mult
         do i = 1, size(this)
            pcarray_mult(i) = this(i)*b(i)
         enddo
         end function pcarray_mult
!
         subroutine pcarray_display(this,c)
! display value of private_complex array with label
         type (private_complex), dimension(:), intent(in) :: this
         character*(*), intent(in) :: c
         write (6,'(a)',advance='no') c
         do i = 1, size(this)
            call display(this(i))
         enddo
         print *
         end subroutine pcarray_display
      end module complex_array_class
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Appendix E: Final version of monitor_complex class

      module monitor_complex_class
! get (inherit) private_complex type and its public procedures
      use private_complex_class
      private :: mc_init, mc_mult, mc_display
! define monitor_complex type
      type monitor_complex
         private
         type (private_complex) :: pc
         character*8 :: last_op
      end type monitor_complex
      interface new
         module procedure mc_init
      end interface
      interface operator(*)
         module procedure mc_mult
      end interface
      interface display
         module procedure mc_display
      end interface
      contains
         subroutine mc_init(this,real,imaginary)
! initialize monitor_complex variable from reals
         type (monitor_complex), intent(out) :: this
         real, intent(in) :: real, imaginary    
! initialize private_complex component of monitor_complex
         call new(this%pc,real,imaginary)
! set last operation
         this%last_op = 'INIT'
         end subroutine mc_init
!
         type (monitor_complex) function mc_mult(this,b)
! multiply monitor_complex variables
         type (monitor_complex), intent(in) :: this, b
! this multiplication is actually defined by function pc_mult
         mc_mult%pc = this%pc*b%pc
! set last operation
         mc_mult%last_op = 'MULTIPLY'
         end function mc_mult
!
         subroutine mc_display(this,c)
! display value of monitor_complex variable with label
         type (monitor_complex), intent(in) :: this
         character*(*), intent(in), optional :: c
         call display(this%pc,c)
         end subroutine mc_display
!
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         subroutine last_op(this,c)
! display last operation
         type (monitor_complex), intent(in) :: this
         character*(*), intent(in) :: c
            print *, 'last op for ', c, ' was ', this%last_op
         end subroutine last_op
!
         type (monitor_complex) function mc(pc)
! convert private_complex object to monitor_complex object
         type (private_complex), intent(in) :: pc
         mc%pc = pc
         mc%last_op = 'INIT'
         end function mc
      end module monitor_complex_class
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Appendix F: Final version of species_descriptor class

      module species_descriptor_class
      type species_descriptor
         private
         integer :: number_of_particles
         real :: charge, charge_to_mass, kinetic_energy
      end type species_descriptor
      contains
         subroutine get_species(this,np,qm,qbm,ek)
! unpack components of species descriptor
         implicit none
         type (species_descriptor), intent(in) :: this
         integer, intent(out), optional :: np
         real, intent(out), optional :: qm, qbm, ek
         if (present(np)) np = this%number_of_particles
         if (present(qm)) qm = this%charge
         if (present(qbm)) qbm = this%charge_to_mass
         if (present(ek)) ek = this%kinetic_energy
         end subroutine get_species
!
         subroutine put_species(this,np,qm,qbm,ek)
! pack components of species descriptor
         implicit none
         type (species_descriptor), intent(out) :: this
         integer, intent(in), optional :: np
         real, intent(in), optional :: qm, qbm, ek
         if (present(np)) this%number_of_particles = np
         if (present(qm)) this%charge = qm
         if (present(qbm)) this%charge_to_mass = qbm
         if (present(ek)) this%kinetic_energy = ek
         end subroutine put_species
      end module species_descriptor_class
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Appendix G: Final version of species class

      module species_class
! inherit species descriptor class
      use species_descriptor_class
      type species
         private
         type (species_descriptor) :: descriptor
         real, dimension(:,:), pointer :: coordinates
      end type species
      interface new
         module procedure species_init
      end interface
      contains
         subroutine species_init(this,species_args,idimp,nop)
! allocate particle coordinate pointer array and store descriptor
         type (species), intent(inout) :: this
         type (species_descriptor), intent(in) :: species_args
         integer, intent(in) :: idimp, nop
         integer :: ierr
! allocate pointer array
         allocate(this%coordinates(idimp,nop),stat=ierr)
! check for allocation error
         if (ierr.ne.0) then
            print *,'species allocation error'
! store descriptor
         else
            this%descriptor = species_args
         endif
         end subroutine species_init
!
         subroutine push1(this,fx,dt)
         type (species), intent(inout) :: this
         real, dimension (:), intent(in) :: fx
         real, intent(in) :: dt
         integer :: np, idimp, nop, nx
         real :: qbm, ek
! extract array sizes
         idimp = size(this%coordinates,1)
         nop = size(this%coordinates,2)
         nx = size(fx)
! unpack input scalars from derived type with inherited procedure
         call get_species(this%descriptor,np=np,qbm=qbm)
! call old, ugly but fast particle pusher here
         call orig_push1(this%coordinates,fx,qbm,dt,ek,np,idimp,
     &nop,nx)
! pack output scalar into derived type with inherited procedure
         call put_species(this%descriptor,ek=ek)
         end subroutine push1
      end module species_class
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Appendix H: Final version of complex_subtype class

      module complex_subtype_class
! get (inherit) private_complex type and its public procedures
      use private_complex_class
! get (inherit) monitor_complex type and its public procedures
      use monitor_complex_class
      private
      public :: private_complex, monitor_complex, complex_subtype
      public :: new, assign, assignment(=), operator(*), display
! define complex_subtype type
      type complex_subtype
         private
         type (private_complex), pointer :: pc
         type (monitor_complex), pointer :: mc
      end type complex_subtype 
      interface assign
         module procedure assign_pc
         module procedure assign_mc
      end interface
      interface assignment (=)
         module procedure copy_subtype
      end interface
      interface operator(*)
         module procedure mult_subtype
      end interface
      interface display
         module procedure display_subtype
      end interface
      contains
         subroutine assign_pc(cs,pc)
! assign private_complex to complex_subtype
         type (complex_subtype), intent(out) :: cs
         type (private_complex), target, intent(in) :: pc     
         cs%pc => pc
         nullify(cs%mc)
         end subroutine assign_pc
!
         subroutine assign_mc(cs,mc)
! assign monitor_complex to complex_subtype
         type (complex_subtype), intent(out) :: cs
         type (monitor_complex), target, intent(in) :: mc     
         nullify(cs%pc)
         cs%mc => mc
         end subroutine assign_mc
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         subroutine copy_subtype(this,b)
! assign contents of complex_subtype to complex_subtype
         type (complex_subtype), intent(inout) :: this
         type (complex_subtype), intent(in) :: b
! check if pointer is associated with private_complex type
         if (associated(b%pc)) then
            this%pc = b%pc
            nullify(this%mc)
! check if pointer is associated with monitor_complex type
         elseif (associated(b%mc)) then
            this%mc = b%mc
            nullify(this%pc)
         endif
         end subroutine copy_subtype
!
         function mult_subtype(this,b) result(output)
! multiply complex_subtype variables
         type (complex_subtype), intent(in) :: this, b
         type (complex_subtype) :: output
         type (private_complex), target, save :: tpc
         type (monitor_complex), target, save :: tmc
! check if pointer is associated with private_complex type
         if (associated(this%pc)) then
            tpc = this%pc*b%pc
            output = tpc
! check if pointer is associated with monitor_complex type
         elseif (associated(this%mc)) then
            tmc = this%mc*b%mc
            output = tmc
         endif
         end function mult_subtype
!
         subroutine display_subtype(a,c)
! display value of complex_subtype variable with label
         type (complex_subtype), intent(in) :: a
         character*(*), intent(in) :: c
! check if pointer is associated with private_complex type
         if (associated(a%pc)) then
            call display(a%pc,c)
! check if pointer is associated with monitor_complex type
         elseif (associated(a%mc)) then
            call display(a%mc,c)
         endif
         end subroutine display_subtype
      end module complex_subtype_class
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