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ABSTRACT

There are many sources of systematic variation in microarray experiments which a�ect the measured gene expression
levels. Normalization is the term used to describe the process of removing such variation, e.g. for di�erences in
labeling eÆciency between the two 
uorescent dyes. In this case, a constant adjustment is commonly used to force the
distribution of the log-ratios to have a median of zero for each slide. However, such global normalization approaches
are not adequate in situations where dye biases can depend on spot overall intensity and location on the array
(print-tip e�ects). This paper describes normalization methods that account for intensity and spatial dependence
in the dye biases for di�erent types of cDNA microarray experiments, including dye-swap experiments. In addition,
the choice of the subset of genes to use for normalization is discussed. The subset selected may be di�erent for
experiments where only a few genes are expected to be di�erentially expressed and those where a majority of genes
are expected to change. The proposed approaches are illustrated using gene expression data from a study of lipid
metabolism in mice.
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1. INTRODUCTION

DNA microarrays are part of a new class of biotechnologies which allow the monitoring of expression levels for
thousands of genes simultaneously. Applications of microarrays range from the study of gene expression in yeast under
di�erent environmental stress conditions to the comparison of gene expression pro�les for tumors from cancer patients.
In addition to the enormous scienti�c potential of DNA microarrays to help in understanding gene regulation and
interactions, microarrays have very important applications in pharmaceutical and clinical research. By comparing
gene expression in normal and disease cells, microarrays may be used to identify disease genes and targets for
therapeutic drugs.

For cDNA microarrays, the purpose of dye normalization is to balance the 
uorescence intensities of the two dyes
(green Cy3 and red Cy5 dye) as well as to allow the comparison of expression levels across experiments (slides).
Dye bias can be most obviously seen in an experiment where two identical mRNA samples are labeled with di�erent
dyes and subsequently hybridized to the same slide. In this situation, it is rare to have the dye intensities equal
on average and often the intensities are higher for the green dye. This bias can stem from a variety of factors
including physical properties of the dyes (heat and light sensitivity, relative half-life), eÆciency of dye incorporation,
experimental variability in probe coupling and processing procedures, and scanner settings at the data collection
step. Many of these factors, whether internal or external to the sample, present unique diÆculties to a global
normalization procedure. Furthermore, the relative gene expression levels (as measured by log ratios) from replicate
experiments may have di�erent spreads due to di�erences in experimental conditions. Some scale adjustment may
then be required so that the relative expression levels from one particular experiment do not dominate the average
relative expression levels across replicate experiments.

This paper describes normalization methods for di�erent types of cDNA microarray experiments. We illustrate
the di�erent approaches using gene expression data from a study of lipid metabolism in mice (Callow et al.1). The
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goal of these experiments was to identify genes with altered expression in apolipoprotein AI knock-out (apo AI ko)
mice with very low HDL cholesterol levels (treatment groups) compared to inbred C57Bl/6 control mice.

The paper is organized as follows. Section 2 describes the di�erent subsets of genes commonly used for normal-
ization purposes. The data used to illustrate the strengths and weaknesses of the various normalization methods are
described in Section 3. In Section 4, we brie
y review a number of existing normalization methods and discuss new
methods we have developed for di�erent types of microarray experiments. The results are presented in Section 5.
Finally, Section 6 summarizes our �ndings and outlines open questions.

2. WHICH GENES TO USE

Normalization can be done in a number of ways, depending on the experimental set-up. We distinguish between
three situations: (i) within-slide normalization, (ii) paired-slides normalization for dye-swap experiments, and (iii)
multiple slide normalization (see Section 4). In each of these situations, a decision must be made as to the set of
genes to use for the normalization. A number of considerations in
uence this decision, such as the proportion of
genes that are expected to be di�erentially expressed in the red and green samples, and the availability of control
DNA sequences. Three types of approaches are described next.

All genes on the array. Frequently, biological comparisons made on microarrays are very speci�c in nature-i.e.,
only a small proportion of genes are expected to be di�erentially expressed. Therefore, the remaining genes are
expected to have constant expression and so can be used as indicators of the relative intensities of the two dyes. In
other words almost all genes on the array may be used for normalization when there are good reasons to expect that
(i) only a relatively small proportion of the genes will vary signi�cantly in expression between the two mRNA samples
(see exception with self-normalization), or (ii) there is symmetry in the expression levels of the up/down-regulated
genes.

Constantly expressed genes. Instead of using all genes on the array for normalization, one may use a smaller
subset of genes, often called housekeeping genes, that are believed to have constant expression across a variety of
conditions (e.g. � actin). Although it is very hard to identify a set of housekeeping genes that do not change
signi�cantly under any conditions, it may be possible to �nd sets of \temporary" housekeeping genes for particular
experimental conditions. A limitation of housekeeping genes is that they tend to be highly expressed and hence may
not be representative of other genes of interest.

Controls. An alternative to normalization by housekeeping genes is to use spiked controls or a titration series of
control sequences. In the spiked controls method, synthetic DNA sequences or DNA sequences from an organism dif-
ferent from the one being studied are spotted on the array (with possible replication) and included in the two di�erent
mRNA samples at equal amount. These spotted control sequences should thus have equal red and green intensities
and could be used for normalization. In the titration series approach, spots consisting of di�erent concentrations of
the same gene or EST are printed on the array. These spots are expected to have equal red and green intensities
across the range of intensities. Genomic DNA, which is supposed to have constant expression levels across various
conditions, may be used in the titration series. In practice, however, genomic DNA is often too complex to exhibit
much signal and setting a titration series that spans the range of intensities for di�erent experiments is technically
very challenging. We are aware of e�orts to achieve the same result with what might be called pseudo-genomic DNA,
(J. Ngai, pers. comm.).

3. DATA

A) Apo AI experiment

The apo AI experiment was carried out as part of a study of lipid metabolism and atherosclerosis susceptibility
in mice. Apolipoprotein AI (apo AI) is a gene known to play a pivotal role in HDL metabolism. Mice with the apo
AI gene knocked-out have very low HDL cholesterol levels and the goal of the apo AI experiment was to identify
genes with altered expression in the livers of these knock-out mice compared to inbred control mice.

The treatment group consisted of eight mice with the apo AI gene knocked-out and the control group consisted
of eight \normal" C57Bl/6 mice. For each of these 16 mice, target cDNA was obtained from mRNA by reverse
transcription and labeled using a red-
uorescent dye, Cy5. The reference sample used in all hybridizations was
prepared by pooling cDNA from the eight control mice and was labeled with a green-
uorescent dye, Cy3. In this
experiment, target cDNA was hybridized to microarrays containing 6,384 cDNA probes, including 200 related to



lipid metabolism. Note that we call the spotted DNA sequences \genes", whether they correspond to actual genes,
ESTs (expressed sequence tags), or DNA sequences from other sources.

Each of the 16 hybridizations produced a pair of 16-bit images, which were processed using the software package
Spot.2 The main quantities of interest produced by the image analysis methods (segmentation and background
correction) are the (R;G) 
uorescence intensity pairs for each gene on each array. After image processing and
normalization (see Section 4 below) the gene expression data can be summarized by a matrix X of log-intensity
ratios log

2
R=G, with p rows corresponding to the genes being studied and n = n1 + n2 columns corresponding to

the n1 control hybridizations (C57Bl/6) and n2 treatment hybridizations (apo AI knock-out). In the experiment
considered here n1 = n2 = 8 and p = 5; 548.

Di�erentially expressed genes were identi�ed by computing t-statistics. For gene j, the t-statistic comparing gene
expression in the control and treatment groups is

tj =
�x2j � �x1jq
s2
1j

n1
+

s2
2j

n2

;

where �x1j and �x2j denote the average background corrected and normalized expression level of gene j in the n1 control
and n2 treatment hybridizations, respectively. Similarly, s

2

1j and s2
2j denote the variances of gene j's expression level

in the control and treatment hybridizations, respectively. Large absolute t-statistics suggest that the corresponding
genes have di�erent expression levels in the control and treatment groups. The statistical signi�cance of the results
was assessed based on p-values adjusted for multiple comparisons. These adjusted p-values were estimated using
Westfall and Young's step-down adjusted p-value algorithm 4.1.3 The analysis of the data-set is described in detail
in Dudoit et al..4

B) Follow-up experiment

The 20 \clones" with the largest absolute t-statistics in the apo AI experiment were selected and spotted on a
mini-array. Some clones actually comprised more than one clone and these were puri�ed and re-checked. Each of
the approximately 50 distinct clones from the top 20 clones were spotted eight times on the mini-array down a single
column in the same print-tip group. Anticipating that most genes on the mini-array were di�erentially expressed,
a dye-swap experiment was done to allow normalization of the red and green 
uorescence intensities. In the �rst
hybridization, named C3K5, the treatment (apo AI ko) mRNA is labeled red and the control mRNA is labeled green.
In the second hybridization, named C5K3, the original labeling is reversed, with treatment labeled green and control
labeled red.

In addition to the 50 distinct clones that were spotted on the mini-array, another 72 genes were spotted in the
same pattern for normalization purposes. These genes were studied in another experiment and are not expected
to be di�erentially expressed in the apo AI knock-out mice. They are treated as proxies for housekeeping genes
(for this experiment only) and used for normalization purposes in order to (re-)examine di�erential expression of the
approximately 20 genes from the original apo AI experiment. Without this set of genes, veri�cation of the correctness
of the self-normalization procedure described below would have been diÆcult, as most of the genes from the apo AI
experiment were expected to be di�erentially expressed.

4. METHODS

4.1. Single-slide data displays

Notation. For a spot j, j = 1; : : : ; p, let Rj and Gj denote the measured 
uorescence intensities (after background
correction) for the red and green dyes, respectively.

Single-slide expression data are typically displayed by plotting the log-intensity log2R of the red dye vs. the
log-intensity log

2
G of the green dye. We �nd that such plots give an unrealistic sense of concordance and we prefer

to plot the log intensity ratio M = log2R=G vs. the mean log-intensity A = log2
p
RG. An M vs. A plot amounts

to a 45o counterclockwise rotation of the (log2G; log2R)-coordinate system, followed by scaling of the coordinates.
If M 0 and A0 denote the rotated coordinates, then A = A0=

p
2 and M =M 0

p
2.

An M vs. A plot is thus another representation of the (R;G) data in terms of the log-intensity ratios M which
are the quantities of interest to most investigators. We have found M vs. A plots to be more revealing than their
log

2
R vs. log

2
G counterparts in terms of identifying spot artifacts, detecting intensity dependent patterns in the

log-ratios etc. They are also very useful for the purpose of normalization as illustrated next.



4.2. Within-slide normalization : Location

In this case, the normalization is done separately for each slide, using only the red and green intensities for this slide.
Several approaches are described below.

4.2.1. Global normalization

Global methods assume that the red and green intensities are related by a constant factor. That is, R = k �G, and
in practice, the center of the distribution of log-ratios is shifted to zero:

log
2
R=G! log

2
R=G� c = log

2
R=(kG):

A common choice for the location parameter c = log2 k is the median or mean of the log-intensity ratios for a
particular gene set. Global normalization methods are mentioned as pre-processing steps in a number of papers on
the identi�cation of di�erentially expressed genes in single-slide cDNA microarray experiments. In one of the �rst
treatments of the problem, Chen et al.5 assume that R = k � G and propose an iterative method for estimating the
constant normalization factor k and cut-o�s for the red and green intensity ratio R=G. In some software packages
(e.g. GenePix6), a constant normalization factor is estimated such that the arithmetic mean of the intensity ratios
of all the genes on a given microarray is one. Global normalization methods are still the most widely used methods
in spite of the evidence of spatial or intensity dependent dye biases in numerous experiments.

4.2.2. Intensity dependent normalization

In many cases, the dye bias appears to be dependent on spot intensity, as revealed by plots of the log-ratio M vs.

overall spot intensity A. An intensity or A-dependent dye normalization method may thus be preferable to global
methods.

We use the robust scatter-plot smoother lowess from the statistical software package R7 to perform a local
A-dependent normalization:

log2R=G! log2R=G� c(A) = log2R=(k(A)G);

where c(A) is the lowess �t to the M vs. A plot. The lowess() function is a scatter-plot smoother which
performs robust locally linear �ts. In particular, the lowess() function will not be a�ected by a small percentage
of di�erentially expressed genes which will appear as outliers in the M vs. A plot. The user de�ned parameter f is
the fraction of the data used for smoothing at each point; the larger the f value, the smoother the �t. We typically
use f = 20%.

Sapir and Churchill8 suggest using the orthogonal residuals from the robust regression of logR vs. logG as
normalized log-ratios. Since an M vs. A plot amounts to a 45o counterclockwise rotation of the (logG ,logR) -
coordinate system (up to multiplicative constants), their method is similar to �tting a robust regression line through
the M vs. A plot instead of a lowess curve. One can view this linear normalization as a more constrained version
of intensity dependent normalization. Kepler9 proposes a more general intensity dependent normalization approach
which uses a di�erent local regression method instead of the lowess smoother function.

4.2.3. Within-print-tip-group normalization

Every grid in an array is printed using the same print-tip. Di�erent experiments may be done using di�erent printing
set-ups depending on the layout of the tips in the print-head of the arrayer (e.g. 4 by 4 or 2 by 2 print-heads). Some
systematic di�erences may exist between the print-tips, such as slight di�erences in the length or in the opening of
the tips, and deformation after many hours of printing. Alternatively, print-tip groups are proxies for spatial e�ects
on the slide. Within-print-tip-group normalization is simply a (print-tip + A)-dependent normalization, that is,

log2R=G! log2 R=G� ci(A) = log2R=(ki(A)G);

where ci(A) is the lowess �t to the M vs. A plot for the ith grid only, i = 1; : : : ; I , and I represents the number of
print-tips.



4.3. Within-slide normalization: Scale

After within-print-tip-group normalization, all the normalized log-ratios from the di�erent print-tip groups will be
centered around zero. However, it is possible that the log-ratios from the various print-tip groups have di�erent
spread and some scale adjustment is required.

One approach that we have found to work is to assume that all log-ratios from the ith print-tip group follow a
normal distribution with mean zero and variance a2i�

2, where �2 is the variance of the true log-ratios and a2i is the
scale factor for the ith print-tip group. In order to perform scale normalization, the scale factors ai for the di�erent
print-tip groups must be estimated. Enforcing the natural constraint

PI

i=1 log a
2

i = 0, with I denoting the total
number of print-tips on the array, the maximum likelihood estimate for ai is

âi =

Pni

j=1M
2

ij

I

qQI

k=1

Pni

j=1M
2

kj

;

where Mij denotes the jth log-ratio in the ith print-tip group, j = 1; : : : ; ni. A robust alternative to this estimate,
which we �nd preferable, is

âi =
MADi

I

qQI

i=1MADi

;

where the median absolute deviation MAD is de�ned by

MADi = medianjfjMij � medianj(Mij) jg:
This procedure assumes that a relatively small proportion of the genes will vary signi�cantly in expression between
the two mRNA samples. In addition, it assumes that the spread of the distribution of the log-ratios should be roughly
the same for all print-tip groups. The robust statistic MAD, like the robust lowess smoother, will not be a�ected
by a small percentage of di�erentially expressed genes which will appear as outliers in the M vs. A plots.

4.4. Paired-slides normalization (dye-swap)

Paired-slides normalization applies to dye-swap experiments: two hybridizations for two mRNA samples, with dye
assignment reversed in the second hybridization.

Denote the normalized log-ratios for the �rst slide by log2R=G�c and those for the second slide by log2R0=G0�c0.
Here, c and c0 denote the normalization functions for the two slides; these could be obtained by any of the within-slide
normalization methods described above. If c � c0, then

1

2

�
log2R=G� c�

�
log2R

0=G0 � c0

��
� 1

2

�
log2R=G+ log2G

0=R0

�
=

1

2
log2

RG0

GR0
=

1

2
(M �M 0):

Thus, we may combine the relative expression levels for the two slides without explicit normalization. We refer to
this procedure as self-normalization. The main assumption here is that c � c0 and this method can be applied to all
genes, even if they are di�erentially expressed. With this approach, the genes that are not supposed to change should
have (M �M 0)=2 = 1

2
log

2
(RG0=GR0) � 0. The validity of this assumption may be checked using a set of genes

expected to have constant expression levels (e.g. housekeeping genes or genomic DNA), if such as set is available.

Given that the dye assignments are reversed in the two experiments, one expects that the normalized log-ratios
on the two slides are of equal magnitude and opposite sign, that is,

log2R=G� c � �(log2R0=G0 � c0):

Therefore, rearranging the equation and assuming again that c � c0, we can estimate the normalization function c
by

c � 1

2

�
log

2
R=G+ log

2
R0=G0

�
=

1

2
(M +M 0):

In practice, c = c(A) is estimated by the lowess �t to the plot of 1

2
(M +M 0) = 1

2
log2 RR

0=GG0 vs. 1

2
(A + A0),

where this time all the genes are used.

Note that the normalization method just described adjusts for location only and assumes that the spread of the
log-ratios is roughly the same for the two slides.



4.5. Multiple slide normalization

After within-slide normalization, all normalized log-ratios will be centered around zero, regardless of the normalization
method. Multiple slide normalization methods, which aim to allow experiment to experiment comparisons, may also
need to be adjusted for scale when the di�erent slides have substantially di�erent spreads in their log-ratios. Failing
to perform a scale normalization could lead to one or more slides having undue weight when averaging log-ratios
across experiments.

The within-slide scale normalization method described in Section 4.3 may also be used for multiple slide scale
adjustment. We are currently evaluating this approach with experiments where a scale normalization seems called
for.

4.6. Comparison between di�erent normalization methods

In order to compare the di�erent within-slide normalization methods, we consider their e�ect on the location and
scale of the log-ratios. We produce density plots of the log-ratios for each of the normalization methods using a
gaussian kernel density estimator (density() function of the statistical software package R, bandwith size of 0.17).

The di�erent methods are also evaluated based on their ability to identify genes which are known to be di�er-
entially expressed. A good method should enable a clear distinction between di�erentially and constantly expressed
genes, as re
ected by the t-statistics and the adjusted p-values. That, is one expects a large jump in the t-statistics
and adjusted p-values between the least extreme of the di�erentially expressed genes and the most extreme of the
remaining genes. For experiment (A), the apo A1 gene is knocked-out in the eight treatment mice, so one expects
the t-statistics to take on very large negative values for this gene. In order to compare the di�erent methods, we
produce truncated plots of the extreme t-statistics for each of the methods.

5. RESULTS

5.1. Within-slide normalization

Global normalization amounts to a vertical translation in an M vs. A plot and does not allow for spatial or intensity
dependent dye biases. This may not be the best strategy as suggested by the M vs. A plot in Figure 1. The 16
within-print-tip-group lowess curves clearly illustrate the dependence of the log-ratioM on the overall spot intensity
A. Furthermore, four within-print-tip-group lowess curves stand out from the remaining twelve curves, indicating
strong print-tip or spatial e�ects. These 4 curves correspond to the last row of print-tips in the 4 by 4 print-head
(print-tips 13, 14, 15, and 16). This pattern was visible in the images, where the bottom 4 grids tended to have high
red signal. Hence, Figure 1 suggests that within-print-tip-group intensity dependent normalization methods may be
preferable to global methods.

Figure 2 displays the spatial distribution on the array of the largest 5% absolute log-ratios, after within-print-
tip-group location normalization (panel (a)) and after within-print-tip-group location and scale normalization (panel
(b)). In panel (a), there is a disproportionately large number of extreme log-ratios in the lower four grids. This
pattern is also noticeable in Figure 3, which shows boxplots of the log-ratios for the di�erent print-tip groups and
suggests that the spread of the log-ratios for the last four grids is larger than that in the remaining twelve grids.
After scale normalization the extreme log-ratios seem to be evenly distributed on the array (panel (b) of Figure 2).

5.2. Paired-slides normalization (dye-swap)

For the dye-swap experiment (B), Figure 4 displays an M vs. A plot of the expression levels for both slides. The
solid cyan curve represents the lowess �t using the constantly expressed genes in the C3K5 slide and the dotted black
curve represents the lowess �t using the constantly expressed genes in the C5K3 slide. The two normalization lines
for the dye-swap experiment are very similar, suggesting that the dye bias is similar in the two slides and hence that
self-normalization is appropriate.

Figure 5 is a plot 1

2
(M �M 0) = 1

2
log

2
(RG0)=(GR0) vs. 1

2
(A + A0) for the self-normalization procedure applied

to experiment (B). The solid black curve represents the lowess �t (f = 0:5) through the constantly expressed genes
(blue solid dots). This curve is very close to the dotted black line corresponding to log-ratios of zero and this again
con�rms that a self-normalization procedure is appropriate.



5.3. Multiple slide normalization

Figure 6 displays boxplots of the log-ratios for each of the 16 slides in experiment (A), after within-print-tip-group
location and scale normalization. The boxplots are centered at zero and have fairly similar spreads. Although the
slides corresponding to knock-out mice 1, 5, and 6 seem to have larger spread than others, the noise introduced by
a scale normalization of the di�erent slides may be more detrimental than a small di�erence in scale. We thus chose
not to adjust for scale in this case.

5.4. Comparison between di�erent normalization methods

Figure 7 shows density plots of the log-ratios for di�erent normalization methods. Without normalization (black
curve), the log-ratios are centered around -1 indicating a bias towards the green (Cy3) dye. A global median
normalization (red curve) shifts the center of the log-ratio distribution to zero but does not a�ect the spread. The
dependence of the log-ratioM on the overall intensity A is also still present (Figure 1). Both the intensity dependent
(green curve) and within-print-tip-group (blue curve) location normalization methods reduce the spread of the log-
ratios compared to a global normalization. A within-print-tip-group scale normalization (cyan curve) further reduces
the spread slightly.

For experiment (A), Figure 8 shows a plot of the extreme t-statistics for di�erent normalization methods. The
global median, intensity dependent and within-print-tip-group location normalization methods seem to perform best
in terms of their ability to detect the three knocked-out apo AI genes. Table 1 shows the corresponding p-values
adjusted for multiple comparisons. The largest jump in p-values is observed for the within-print-tip-group location
normalization. For within-print-tip-group scale normalization, the t-statistics are less extreme and the gap in p-
values between the di�erentially expressed genes and the remaining genes decreases in comparison with a location
normalization only.

6. DISCUSSION

This paper introduced location and scale normalization methods for di�erent types of cDNA microarray experiments.
The di�erent normalization methods were compared using gene expression data from two sets of experiments: the apo
A1 experiment (data-set (A)), with replicated treatment and control slides, and the follow-up dye-swap experiment
(data-set (B)), with replicated spots on a slide.

For within-slide normalization, we found that the standard global median normalization can often be inadequate
due to spatial and intensity dependent dyes biases. We propose instead a within-print-tip-group location normaliza-
tion method which consists of applying a robust smoother to a plot of the log-ratiosM against overall spot intensities
A. Compared to other normalization methods, this approach provided a clearer distinction between the di�erentially
and constantly expressed genes in experiment (A).

The spatial plots in Figure 2 and the boxplots of the location normalized log-ratios in each print-tip group in Figure
3 suggest that some scale adjustment may also be required. However, within-print-tip-group scale normalization seems
to have decreased our ability to identify the di�erentially expressed genes in experiment (A). We believe that this is
due to an increase in the variability (the denominator of the t-statistic) of the log-ratios for the eight di�erentially
expressed genes compared to the rest of the genes. In general there is a trade-o� between the gains achieved by scale
normalization and the possible increase in variability introduced by this additional step. In cases where the scale
di�erences are fairly small, it may thus be preferable to perform only a location normalization. A similar approach to
that described in Section 4.3 for within-slide scale normalization may also be extended to perform scale normalization
across experiments. Further investigations are underway to develop an improved procedure for scale adjustment and
identify better comparison criteria to assess the e�ectiveness of various normalization procedures.

In order to apply any of the location normalization methods discussed above one must identify a set of genes that
satisfy the following: (i) only a relatively small proportion of the genes vary signi�cantly in expression between the
two mRNA samples, or (ii) there is symmetry in the expression levels of the up/down-regulated genes. In general, the
set of genes to be used in normalization depends on the nature of the experiment. For experiments such as the apo
A1 knock-out experiment (A), where only a small proportion of the genes are expected to be di�erentially expressed,
a robust procedure based on all the genes is appropriate. For experiments where a large fraction of the genes are
expected to change, it is possible to use a set of constantly expressed genes (housekeeping genes or control sequences).
However, these usually represent a small fraction of all the genes on the array and the resulting normalization is



likely to be noisy. Alternatively, for dye swap experiments where the normalization curve is expected to be the same
for both slides, a self-normalization procedure may be used.

Acknowledgments

We would like to acknowledge Matthew J. Callow from the Lawrence Berkeley National Laboratory for providing
the data we used to develop the various normalization approaches. We would also like to thank the members of the
Ngai Lab at UC Berkeley for helpful discussions on the biology background.

This work was supported in part by the NIH through grants 5R01MH61665-02 (YHY, PL) and 8R1GM59506A
(TPS), and by an MSRI and a PMMB postdoctoral fellowship (SD).

REFERENCES

1. M. J. Callow, S. Dudoit, E. L. Gong, T. P. Speed, and E. M. Rubin, \Microarray expression pro�ling identi�es
genes with altered expression in hdl de�cient mice," Genome Research , 2000. Submitted.

2. M. J. Buckley, The Spot user's guide. CSIRO Mathematical and Information Sciences, August 2000.
http://www.cmis.csiro.au/IAP/Spot/spotmanual.htm.

3. P. H. Westfall and S. S. Young, Resampling-based multiple testing: examples and methods for p-value adjustment,
Wiley series in probability and mathematical statistics, Wiley, 1993.

4. S. Dudoit, Y. H. Yang, M. J. Callow, and T. P. Speed, \Statistical methods for identifying genes with di�erential
expression in replicated cDNA microarray experiments." (Submitted), 2000.

5. Y. Chen, E. R. Dougherty, and M. L. Bittner, \Ratio-based decisions and the quantitative analysis of cdna
microarray images," Journal of Biomedical Optics 2, pp. 364{374, 1997.

6. Axon Instruments, Inc., GenePix 4000A User's Guide, 1999.

7. R. Ihaka and R. Gentleman, \R: A language for data analysis and graphics," Journal of Computational and

Graphical Statistics 5, pp. 299{314, 1996.

8. M. Sapir and G. A. Churchill, Estimating the posterior probability of di�erential gene expression from microarray

data. Poster, The Jackson Laboratory, 2000.
http://www.jax.org/research/churchill/.

9. T. Kepler, \Normalization and analysis of dna microarray data by self-consistency and local regression."
http://www.ipam.ucla.edu/programs/fg2000/abstracts/fgsn tkepler.html.

Table 1. Names and adjusted p-values for the 9 genes with the largest absolute t-statistics for each of the normaliza-
tion methods described in Section 4. The �rst column gives the method name, and columns 2 to 10 give the names
and adjusted p-values of the top 9 genes for each of the methods. For example, column 2, with the header \1", gives
the adjusted p-values for the gene with the most extreme t-statistic. The adjusted p-value calculation is based on an
algorithm of Westfall and Young described in Dudoit et al..4 The symbols \A1", \A3", \SD", \E" and \O" denote
apo A1, apo CIII, sterol desaturase, a novel EST and other genes, respectively. The �rst four genes were con�rmed
by RT-PCR (Callow et al.1).

1 2 3 4 5 6 7 8 9
None A1 0 A1 0 A3 0 SD 0 A1 .01 E .01 O .02 SD .07 A3 .10
Median A1 0 A1 0 A3 0 SD 0 A1 0 A3 0 E .01 SD .01 O .46

Global Lowess A1 0 SD 0 A1 0 A1 0 A3 0 E 0 A3 .01 SD .01 O .41
Print-tip Lowess A1 0 A1 0 SD 0 A3 0 A1 0 A3 0 E 0 SD 0 O .71
Print-tip Scale A1 0 A3 0 A1 0 E 0 SD 0 A1 .02 SD .06 A3 .12 O .44
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Figure 1. Within-slide normalization. M vs. A plot for within-print-tip-group location normalization displaying
the lowess lines (f = 20%) for each of the 16 print-tips. The curve labeled by \g" corresponds to the lowess �t for
the entire data-set (data from apo A1 knock-out mouse #8 in experiment (A)).

(a) (b)

Figure 2. Within-slide normalization. Spatial plot of the array highlighting the spots with the largest 5% absolute
log-ratios. The di�erent shades of red represent positive log-ratios and the di�erent shades of green represent negative
log-ratios. The plot is divided into 16 grids representing the 16 di�erent print-tip groups. Each small rectangular
cell represents the log-ratio of a spot on the array. (a) Extreme log-ratios after within-print-tip-group location
normalization but before scale adjustment. (b) Extreme log-ratios after within-print-tip-group location and scale
normalization (data from apo A1 knock-out mouse #8 in experiment (A)).
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Figure 3. Within-slide normalization. Boxplot displaying the log-ratio distribution after within-print-tip-group
location normalization for each of the 16 print-tip groups. The array was printed using a 4 by 4 print-head and the
print-tip groups are numbered �rst from left to right then from top to bottom starting from the top left corner (data
from apo A1 knock-out mouse #8 in experiment (A)).
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Figure 4. Paired-slide normalization. M vs. A plot showing the within-slide normalization curves for experiment
(B). The blue dots represent the log-ratios for slide C3K5 and the black crosses represent the log-ratios for slide
C5K3. The solid cyan curve is the lowess �t (f = 0:5) through the constantly expressed genes for slide C3K5 and
the dotted black curve is the lowess �t through the constantly expressed genes for slide C5K3.
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Figure 5. Paired-slide normalization. Plot of 1

2
(M � M 0) = 1

2
log2(RG

0)=(GR0) vs. 1

2
(A + A0) for the self-

normalization procedure applied to experiment (B). The green open circles represent the clones related to the apo
A1 experiment; these were selected because they had large absolute t-statistics in experiment (A). The blue solid dots
represent constantly expressed clones which were selected from another experiment. A solid lowess curve (f = 0:5)
is �tted through the blue solid dots. This lowess curve is very close to the horizontal dotted line corresponding to
a log-ratio of zero.
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Figure 6. Multiple slide normalization. Boxplots displaying the log-ratio distribution for di�erent slides/mice for
experiment (A), after within-print-tip-group location and scale normalization. The �rst 8 boxplots represent the
data for the 8 control mice and the last 8 boxplots represent the data for the 8 apo A1 knock-out mice.
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Figure 7. Within-slide normalization. Density plots of the log-ratios before and after di�erent normalization
procedures. The solid black curve represents the density of the log-ratios before normalization. The red, green, blue,
and cyan curves represent the densities after global median normalization, intensity dependent location normalization,
within-print-tip-group location normalization, and within-print-tip-group scale normalization, respectively (data from
apo A1 knock-out mouse #8 in experiment (A)).
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Figure 8. Within-slide normalization. Plot of t-statistics for di�erent normalization methods. The numbers from 1
to 8 represent the di�erentially expressed genes identi�ed in Dudoit et al.4 and con�rmed using RT-PCR: indices 1
to 3 represent the three apo A1 genes. Empty circles represent the remaining 6,376 genes where no e�ect is expected.
Only t-values less than -4 are shown.


