
Challenges and Future Directions of Software Technology:
Secure Software Development*

(Invited Paper)

Bhavani Thuraisingham and Kevin W. Hamlen
Computer Science Department

The University of Texas at Dallas
Richardson, Texas, USA

{bhavani.thuraisingham,hamlen}@utdallas.edu

Abstract—Developing large scale software systems has major
security challenges. This paper describes the issues involved
and then addresses two topics: formal methods for emerging
secure sytems and secure services modeling.

I. INTRODUCTION

Large scale software development is one of the biggest
challenges faced by corporations. Incorporating security into
the software development process is even more challeng-
ing. Some of the systems need end-to-end security while
some others have to carry out the mission securely even
if the components may be compromised. Secure software
development involves many aspects, from security policy
definition, formal modeling, developing security architecture
and software models, testing verification and validation, and
finally evaluation, certification, and accreditation. It does not
end here. The process continues throughout the life cycle of
the software system.

Today we are developing new types of software archi-
tectures including service oriented architectures and object
management systems. These systems use new paradigms for
computing and need novel security features. There is not a
lot of work on incorporating security into object systems
as well as service oriented systems. However, there are few
efforts on developing approaches for incorporating security
into the modeling process for such systems.

In this paper we discuss two security challenges that have
to be considered in building evolvable and flexible secure
systems. One is on applying formal methods needed—
especially those that need high assurance; the other is secure
services modeling of systems. In Section II we discuss
security for overall software development. We discuss for-
mal methods for software development in Section III. We
discuss secure service modeling in Section IV. The paper is
concluded in Section V.

II. SECURE SOFTWARE DEVELOPMENT

The first step in developing a secure system is to de-
velop the security policy. The policy has to be consistent

*This research was supported by Young Investigator Award FA9550-08-
1-0044 provided by the U.S. Air Force Office of Scientific Research.

with the organization’s security policy that is developed
by the executive management. The security professionals
of the corporation have to work with the secure systems
research and development professionals in coming up with
the security policy. The next step is to develop a security
model. This model could be based on formal principles if
the level of assurance has to be high. Once the modeling is
completed, the system is designed. This is a crucial stage as
it is during this stage that the security-critical components
have to be identified. If the system is composed of many
components (or services) and the components come from
different organizations, the security professionals have to
take into consideration this aspect and ensure that the overall
system has sufficient assurance.

The next step is to develop the system followed by
security testing. This testing may include penetration testing
carried out by an independent organization. In addition, unit
testing and integrated testing are also carried out. Once
the system is designed, developed, and tested, it is then
evaluated by agencies such as the National Computer Secu-
rity Center. Many of these agencies now use the Common
Criteria to evaluate the system. After the evaluation, the
corporations that use the system have to conduct certi-
fication. This ensures that the system operates securely.
Finally, the management will accredit the system. There are
several challenges that need to be addressed throughout the
process. We will explore two aspects. One is applying formal
methods for emerging secure systems in the verification and
validation process, and the other is security modeling of the
applications based on the services paradigm.

III. FORMAL METHODS FOR SECURE SYSTEMS
DEVELOPMENT

The task of reliably enforcing and verifying high-level
security policies at a (relatively low-level) software level is
a notoriously difficult problem whose roots can be traced
back to the original incomputability results of Gödel and
Turing. For example, even simple policies, such as access
control policies with only one principal, one object, and one
permission, turn out to be program properties that are in gen-
eral undecidable [1]. Traditional formal methods that attempt



to prove software policy-adherence purely statically have
therefore historically faced an array of daunting tractability
challenges, such as state-space and prove-size explosion
issues for model-checkers and theorem-provers when they
are applied to large, real-world systems and complex, real-
world policies.

An exciting, emerging alternative to traditional formal
methods involves provably correct runtime monitoring [2],
[3]. Here, some of the tractability burden of purely static
verification is shifted to runtime. The result is a dramatic
increase in verification tractability at the expense of a
marginal increase in runtime overhead for the verified code.
The increase in runtime overhead is minimized through the
use of certified in-lined reference monitors [3], [4], which
instrument the untrusted code with runtime security checks
that provably suffice to enforce the policy.

As an example, consider a classic confidentiality pol-
icy that prohibits untrusted applications from performing
network-send operations after they have read from a con-
fidential file. Formally verifying a large software system
for adherence to this policy traditionally requires numerous
heavy-weight code analyses, such as interprocedural (and
even inter-module) control-flow and dataflow analyses that
attempt to trace all possible flows from file-read to network-
send operations in the untrusted code. The policy is in
general undecidable, so any purely static, sound analysis is
subject to false positives, wherein the verifier cannot prove
that certain flows are safe. Eliminating these false positives
typically requires human experts to then assist the verifier
by formulating appropriate preconditions, post-conditions,
and loop invariants. In total the effort can easily escalate
to tens or even hundreds of thousands of man-hours for a
large system.

In contrast, a certifying in-lined reference monitor (IRM)
framework simply replaces operations that are not provably
safe with guarded operations that detect and prevent policy
violations at runtime. In the case of the policy above, the
IRM might inject a new state variable into the untrusted
code that tracks whether a read of a confidential file has
yet occurred. The new guard operations set the variable
immediately after each confidential file-read and consult
the variable before any network-send. The result is self-
monitoring code that is guaranteed to satisfy the security
policy when executed.

Key to this approach is the insight that IRM-instrumented
code is typically far easier to formally verify that the original
code. In particular, a verifier need only prove that each
inserted guard suffices to prevent a local policy violation,
and that the guards are not circumventable by the surround-
ing untrusted code. This greatly reduced verification facili-
tates far more light-weight, automated verification of IRM
code. Past work has implemented certified IRM systems for
Java bytecode, .NET bytecode, and ActionScript bytecode
architectures using simple, light-weight type-checking and

model-checking technologies for fully automated formal ver-
ification [3], [5]–[7]. Our current work involves developing
a certifying IRM system for x86 binary code applications.

An emerging challenge in this research therefore involves
the development of hybrid systems that span the gap between
purely static and purely dynamic policy enforcement. This
introduces a useful tradeoff between verification tractability
and the runtime overhead imposed by security. That is,
stronger static verification reduces runtime overhead by
provably eliminated unnecessary runtime security checks,
whereas more efficient runtime enforcement of software
security policies reduces the static verification burden by
simplifying the verification problem. Further development
of such systems will therefore lead to a range of options
whereby verification and runtime efficiency may be balanced
to form high-assurance yet practical security for large, real-
world software systems.

IV. SECURE SERVICES MODELING

Security has been incorporated into the software engineer-
ing life cycle and more recently on the object-oriented life
cycle. For example, secure software design and development
includes defining security policies, incorporating security
into the design of the system, developing security architec-
tures, and then security testing and maintenance. In the case
of object-oriented system life cycles, security considerations
will include defining the security policies on objects and
their activities as well as incorporating society into the
design of the object system and the security testing and
maintenance. Similarly, in the case of secure service-oriented
life cycles, we need to determine the security policies, the
security levels of the services, and the interactions between
the services, including the composition of the services,
incorporating security into the design and development of
the services, and subsequently testing the secure services.

In his book on SOA, Thomas Erle explained the service
life cycle [8]. He stated three ways to develop services:
one is the top-down approach, the second is the bottom-
up approach, and the third is what he called the agile
approach. Security cannot be an afterthought in the design
of services; one has to consider security throughout all three
approaches. In the top-down approach, one has to conduct
analysis, then design the services, develop the services, test
the services, integrate the services, and then maintain the
services. Here, security policies have to guide throughout
the process. For example, when two services are composed,
what is the resulting policy on the composed service? In the
bottom-up approach, services are designed and developed as
needed. Therefore, as services are designed, security has to
be considered. For example, when a new service is designed,
it should not violate the security policies specified for the
prior services. In the agile approach, an integrated approach
is used. That is, the application is analyzed and the services
are identified. However, one does not have to wait until



all the services are identified. Security impact on this agile
approach is yet to be investigated.

Another aspect when considering security is dynamic
policies. That is, security policies enforced on the services
and service compositions may change with time. The chal-
lenge is to ensure that there is no security violation when
accommodating changing policies and security levels. This is
also a major challenge in designing secure service-oriented
systems.

In developing secure service-oriented analysis and design
approaches, the first step is to analyze the application and
determine the services that describe the applications. The
logic encapsulated by each service, the reuse of the logic
encapsulated by the service, and the interfaces to the service
have to be identified. From a security policy view, in defining
the services we have to consider the security policies. What
is the security level of the service? What are the policies
enforced on the service? Who can have access to the service?
When we decompose the service into smaller services, how
can we ensure that security is not violated? For example,
Service A may not have access to Service B. However,
Service B may be decomposed into Services C and D
wherein A has access to C but not to D. Now, if A has
access to both C and D then the policy that prohibits A
from accessing B might be violated.

The next step is for the relationship between the services,
including the composition of services, to be identified. In a
top-down strategy, one has to identify all the services and
their relationships before conducting the detailed design and
development of the services. For large application design,
this may not be feasible. In the case of bottom-up desgin,
one has to identify services and start developing them. In the
agile design both strategies are integrated. From a security
policy view, there may be policies that define the relationship
between the services. The example we gave earlier regarding
services A, B, C, and D shows that while A may have
access to C, A may not have access to D if we are to
enforce the policy that prohibits A from accessing B. Here,
access means invoking a particular service.

Note that business logic in applications could be mod-
eled as services. Furthermore, such an approach sets the
stage for orchestration-based service-oriented architectures.
Orchestration essentially implements workflow logic that
enables different applications to interoperate with each other.
Also, we have stated orchestrations themselves may be
implemented as services. Therefore, the orchestration service
may be invoked for different applications that are also
implemented as services in order to interoperate with each
other. Business services also promote reuse. From a security
point of view, we have yet to determine who can involve the
buisness logic and orchestration services. A lot of work has
gone into security for workflow systems including the BFA
model [9]. Therefore, we needed to examine the principles in
this work for business logic and orchestration services. When

a service is reused, what happens if there are conflicting
policies on reuse? Also, we have to make sure that there is
no security violation through reuse.

The main question is, “How do you define a service?” At
the highest level, an entire application, such as order man-
agement, can be one service. However, this is not desirable.
At the other extreme, a business process can be broken into
several steps and each step can be a service. The challenge is
to group steps that carry out some specific task into a service.
However, when security is given consideration, then not only
do we have to group steps that carry out some specific
task into services, we also have to group steps that can
be meaningfully executed. If security is based on mutilevel
security, then we may want to assign a security level for each
service. In this way, the service can be executed by someone
cleared at an appropriate level. Therefore, the challenge is to
group steps not only meaningful from a task point of view
but also meaningful from a security point of view.

Next we must examine the service candidates and de-
termine the relationships between them. One service may
call other services. Two services may be composed to
create a composite service. This would mean identifying the
boundaries and interface, and making the composition and
separations as clear as possible. Dependencies may result
in complex service designs. The service operations could
be simple operations such as performing calculations, or
complex operations such as invoking multiple services. Here
again, security may impact the relationships between the
services. If two services have some relationships between
them then both services should be accessible to a group of
users or to users cleared at a particular level. For example,
if Service A and Service B are tightly integrated, it may not
make sense for any service to have access to A and not to
B. If A is about making a hotel reservation and B is about
making a rental car reservation, then an airline reservation
service C should be able to involve both services A and B.

Once the candidate services and the service operations
are identified, the next step is to refine the candidates and
state the design of the services and the service operations.
Therefore, from a security point of view, we have to refine
the services and service operations that are not only mean-
ingful but also secure. Mapping of the candidate service
to the actual service has to be carried out according to
the policies. Next we will briefly examine secure service
oriented modeling approaches. More details can be found
in [10].

Secure SOMA: IBM’s SOMA implements service-
oriented analysis and design (SOAD) through the identifica-
tion, specification, and realization of services, components
that realize the service components, and flows that can be
used to compose services. With secure SOMA, we need to
identify the policies enforced on the services and the various
components. For multilevel secure web services, we also
need to assign security levels of services. In addition, the



execution level of services should also be defined.
Secure SOMF: SOMF (the Service-Oriented Modeling

Framework) is a service-oriented development life cycle
methodology and offers a number of modeling practices and
disciplines that contribute to successful service-oriented life
cycle management and modeling. The security impact on
this framework needs to be examined.

Secure UML for Services: Secure UML for services es-
sentially developed secure UML for service-oriented analy-
sis and modeling. Several efforts on applying UML and other
object-oriented analysis and design approaches for secure
applications have been proposed. We need to extend these
approaches to secure SOAD. We also need to examine the
security impact on service-oriented discovery and analyss
modeling, service-oriented business integration modeling,
service-oriented logical design modeling, service-oriented
conceptual architecture modeling, and service-oriented log-
ical architecture modeling.

V. SUMMARY AND DIRECTIONS

This paper has provided a brief overview for some of
the security challenges in building software systems. We
have focused on two aspects: one is formal methods for
secure systems and the other is secure services modeling.
We started with a discussion of secure OOAD. Then we
discussed the concept of secure service-oriented life cycles.
This was followed by a discussion of secure SOAD and
secure services modeling. Finally, approaches to secure
SOAD were discussed. We discussed the challenges in
reliably enforcing and verifying high-level security policies
at a software level. We argued that traditional, purely static,
formal methods often face significant tractability challenges,
but emerging hybrid, static-dynamic solutions, such as cer-
tifying in-lined reference monitors, offer great promise for
safely alleviating much of the verification burden. In secure
services modeling we discuss some high-level concepts and
argued the need to examine the various approaches and
examine security.

There is still a lot of work to do in these fields as well
as in other areas, including software testing, evaluation, and
certification, especially for secure object systems and secure
services. Finally, one of the major challenges today is to

build secure systems and applications even if the components
may be compromised. For example, the components of the
supply chain may come from different corporations. One
cannot guarantee assurance for these systems. Therefore,
system developers have to ensure that the overall system
is secure even if the parts might be insecure.

REFERENCES

[1] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Com-
putability classes for enforcement mechanisms,” ACM Trans-
actions on Programming Languages and Systems, vol. 28,
no. 1, pp. 175–205, January 2006.

[2] I. Aktug, M. Dam, and D. Gurov, “Provably correct runtime
monitoring,” in Proc. 15th International Symposium on For-
mal Methods, May 2008.

[3] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Certified
in-lined reference monitoring on .NET,” in Proc. ACM Work-
shop on Programming Languages and Analysis for Security,
June 2006, pp. 7–16.

[4] F. B. Schneider, “Enforceable security policies,” ACM Trans-
actions on Information and System Security, vol. 3, no. 1, pp.
30–50, February 2000.

[5] M. Jones and K. W. Hamlen, “Disambiguating aspect-oriented
security policies,” in Proc. 9th International Conference on
Aspect-Oriented Software Development, March 2010, pp.
193–204.

[6] K. W. Hamlen and M. Jones, “Aspect-oriented in-lined ref-
erence monitors,” in Proc. ACM Workshop on Programming
Languages and Analysis for Security, June 2008, pp. 11–20.

[7] M. Sridhar and K. W. Hamlen, “Model-checking in-lined
reference monitors,” in Proc. 11th International Conference
on Verification, Model Checking, and Abstract Interpretation,
January 2010, pp. 312–327.

[8] T. Erl, Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. New Jersey: Prentice Hall, 2005.

[9] E. Bertino, E. Ferrari, and V. Atluri, “The specification
and enforcement of authorization constraints in workflow
management systems,” ACM Transactions on Information and
System Security, vol. 2, no. 1, pp. 65–104, 1999.

[10] B. Thuraisingham, Secure Semantic Service Oriented Infor-
mation Systems. CRC Press, 2010.


