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Abstract  In this paper the initial value method is extended for solving singularly perturbed two point boundary 
value problems with internal and terminal layers. It is distinguished by the following fact: The given singularly 
perturbed boundary value problem is replaced by two first order initial value problems. These first order problems 
are solved using Runge Kutta method. Model example for each is solved to demonstrate the applicability of the 
method. 
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1. Introduction 
Singular perturbation problems are of common 

occurrence in many branches of applied mathematics, 
such as fluid dynamics, elasticity, chemical reactor theory, 
aerodynamics, plasma dynamics, magneto-hydrodynamics 
and other domains of the world of fluid motion. A few 
notable examples are boundary layer problems, WKB 
problems, the modeling of steady and unsteady viscous 
flow problems with large Reynolds number, convective 
heat transport problems with large peclet numbers etc. It is 
well known fact that the solutions of these problems 
exhibit a multi scale character. That is, there is a thin 
layer(s) where the solution varies rapidly (non-uniformly), 
while away from the layer the solution behaves regularly 
(uniformly) and varies slowly. Therefore, the numerical 
treatment for singularly perturbed boundary value 
problems gives major computational difficulties. 

A wide variety of papers and books have been published 
in the recent years, describing various methods for solving 
singular perturbation problems, among these we mention 
Awoke [1], Bender and Orzag [2], Kadalbajoo and Reddy 
[3,4], Hemker and Miller [5], Kevorkian and Cole [6], 
Nayfeh [7], O’Malley [8], Y.N.Reddy [9] and Van Dyke 
[10].  

In this paper the initial value method is extended for 
solving singularly perturbed two point boundary value 
problems with internal and terminal layers. It is distinguished 
by the following fact: The given singularly perturbed 
boundary value problem is replaced by two first order 
initial value problems. These first order problems are 
solved using Runge Kutta method. Model example for 
each is solved to demonstrate the applicability of the 
method. It is observed that the present method 
approximates the exact solution very well. 

2. Initial Value Method 
To describe the initial value method, we consider a 

class of singularly perturbed two point boundary value 
problem of the form: 

 ( ) ( ) ( ) ( ) ( ) [ ]0,1ny x y x b x y x f x xε α ′+ + = ∈  (1) 

 ( )0with y α=  (2a) 

 ( )1and y β=  (2b) 

where ε is a small positive parameter 0 1,ε< <<  ,α β  are 
given constants, ( ) ( ),a x b x  and ( )f x  are assumed to be 

sufficiently continuously differentiable functions in [ ]0,1 .  

Furthermore, we assume that ( ) 0a x M≥ >  throughout 

the interval [ ]0,1 where M is some positive constant. This 
assumption merely implies that the boundary layer will be 
in the neighborhood of 0.x =  We now present an initial 
value method as follows: 
Step 1: We obtain the reduced problem of (1) by taking ε= 0. 

 ( ) ( ) ( ) ( ) ( ) [ ]0,1a x y x b x y x f x x′ + = ∈  (3) 

 ( )1y β=  (3a) 

Let its solution be ( )0 0.y x y=  
Step 2: Integrate equation (1) 

 ( ) ( ) ( ) ( ) ( ) ( )y x a x y x dx b x y x dx f x dxε ′ ′+ + =∫ ∫ ∫  

 ( ) ( ) ( )y x a x y x R Kε ′ + + =  (4) 

where K  is a constant and 
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 ( ) ( ) ( ) ( ) ( )R b x y x dx a x y x dx f x dx′= − −∫ ∫ ∫  

 ( ) ( ) ( ) ( ) ( )R b x y x a x y x f x′ ′= − −  (5) 

Step 3: If R0 = R0(x) satisfies (5) we can approximate the 
solution of (1) – (2) by solving the initial value problem  

 ( ) ( ) ( ) [ ]0 0,1y x a x y x R K xε ′ + + = ∈  (6) 

 ( )0y α=  (6a) 

with a suitable choice of 0R  and K 
Step 4: To determine one solution 0R  of (5) we note that 

0y  satisfies (3). If we require 0R  =0 we will be able to 
find 0R  by solving the initial value problem 

 ( ) ( ) ( ) ( ) ( )0 0 0R b x y x a x y x f x′ ′= − −  (7) 

 ( )0 1 0with R =  (7a) 

Step 5: To find an approximate value for ' 'K  we impose 
the condition that the reduced equation of (4) satisfy the 
boundary condition ( )1y β=  

 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0

0

0

1

1 1 1

1 sin ce 1 0

a x y x R K with y

K R a y

K a R

β

β

+ = =

= +

= =

 

Remark: We have taken ( )0 1 0R =  and found ' 'K . In 

fact for any finite value of ( )0 1R , K  will change 
accordingly and there will be no effect to our problem. 
Step 6: Thus the two Initial value problems are (7), (6) as 
given below: 

 ( ) ( ) ( ) ( ) ( ) [ ]0 0 0 0,1R b x y x a x y x f x x′ ′= − − ∈  

with ( )0 1R  = 0 and 

 ( ) ( ) ( ) 0y x a x y x R Kε ′ + + =  

with ( )0 .y α=  
Thus it is possible to approximate the solution of the 

given two-point boundary value problem by solving two 
initial value problems. It is interesting to note that the 
approximate solution ( )y x  improves as the small 
parameter ε  tends to zero. 

3. Right End Boundary Layer 
We now describe this new initial value method for the 

singularly perturbed two point boundary value problems 
with the right end boundary layer of the underlying 
interval. To be specific we consider a class of linear 
singularly perturbed two point boundary value problems 
of the form  

 ( ) ( ) ( ) ( ) ( ) ( ) [ ]0,1y x a x y x b x y x f x xε ′′ ′+ + = ∈  (8) 

 ( )0with y α=  (9a) 

 ( )1and y β=  (9b) 

where ε  is a small positive parameter ( )0 1 ,ε< <<  ,α β  

are given constants ( ) ( ) ( ), ,a x b x h x  are assumed to be 

sufficiently continuously differentiable functions in [ ]0,1 . 

Furthermore, we assume that ( ) 0a x M≤ <  throughout 

the interval [ ]0,1  where M  is some negative constant. 
This assumption merely implies that the boundary layer 
will be in the neighborhood of 1.x =  We have the 
following steps 
Step 1: The reduced problem in this case would be  

 ( ) ( ) ( ) ( ) ( )a x y x b x y x h x′ + =  (10) 

 ( )0with y α=  (10a) 

Let 0y  be the solution of the reduced problem. A similar 
approach as in case of left end boundary layer problems 
leads to the following: 
Step 2: The two initial value problems are given by 

 ( ) ( ) ( ) ( ) ( )0 0 0R b x y x a x y x f x′ ′= − −  (11) 

 ( )0 0 0R =  (11a) 

and 

 ( ) ( ) ( ) [ ]0 0,1y x a x y x R K xε ′ + + = ∈  (12) 

 ( )1y β=  (12a) 

To find an approximate value for K , we impose the 
condition that the reduced equation of (12) satisfy the 
boundary condition ( )0y α= . This gives us  

 ( ) ( ) ( ) ( )00 0 0 0K y Rα α α= + =  

There exist several efficient methods for solving these 
initial value problems. For detailed discussion and 
numerical examples refer Awoke [1]. 

4. Internal Layer Problems 
We will now extend the new initial value method to 

singular perturbation problems with an internal layer of 
the underlying interval. In this case ( )a x  changes sign in 
the domain of interest. Without loss of generality we can 
take ( )0α =0 and the interval to be [-1,1]. 

To describe the method we shall consider a class of 
linear singularly perturbed two point boundary value 
problems of the form: 

 ( ) ( ) ( ) ( ) ( ) ( ) [ ]1,1y x a x y x b x y x f x xε ′′ ′+ + = ∈ − (13) 

 ( )1with y α− =  (14a) 

 ( )1and y β=  (14b) 

where ε  is a small positive parameter ( )0 1 , ,ε α β< <<  

are given constants ( ) ( ) ( ), ,a x b x f x  are assumed to be 
sufficiently continuously differentiable functions in 
[ ]1,1− . Furthermore, we assume that ( ) 0a x M≤ <  

throughout the interval [ ]1,0−  where M  is some negative 
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constant and ( ) 0a x M≤ <  in the interval [0,1] where M 
is some positive constant. This assumption merely implies 
that the boundary layer will be in the neighborhood of 

0x = . We now proceed as follows: 
Step 1: We first find the approximate solution at 0.x =  
Without loss of generality we can take ( )0 0a = . At 

0x =  equation (13) becomes 

 ( ) ( ) ( ) ( )0 0 0 0y b y fε ′′ + =  (15) 

The reduced problem of (15) gives us an approximation 
to ( )0y . 

 ( ) ( )
( )

0
0

0
f

y
b

γ∴ = =  (16) 

Step 2: We now divide the interval [-1, 1] into two 
subintervals [-1, 0] and [0, 1] so that equation (13) has a 
right layer in [-1, 0] and a left layer in [0, 1]. 
Step 3: We now use our new initial value method for right 
end boundary layer as described in section (3), in the 
interval [-1,0]. The two initial value problems related to 
(13) are 

 ( ) ( ) ( ) ( ) ( ) ( )'
0 0 0 0 1 0R b x y x a x y x f x with R′= − − − = (17) 

and 

 ( ) ( ) ( ) ( )0 0y x a x y x R K with yε γ′ + + = =  (18) 

To find the value of K  in (18) we impose the condition 
that the reduced problem of (18) satisfy the boundary 
condition at 1.x = −  This yields 

 ( ) ( ) ( ) ( )0 1 1 1 1K R a y a α= − + − − = −  

Step 4: We next use our new initial value method for left 
end boundary layer as described in section (2) in the 
interval [0,1]. The two initial value problems related to 
(13) are  

 ( ) ( ) ( ) ( ) ( )'
0 0 0R b x y x a x y x f x′= − −  (19) 

 ( )0 1 0with R − =  

 ( ) ( ) ( ) 0y x a x y x R Kε ′ + + =  (20) 

 ( )0with y γ=  

To approximate K  in (20), we impose the condition 
that the reduced problem of (20) satisfy the boundary 
condition at 1x =  i.e. ( )1y β=  

 ( ) ( ) ( ) ( )01 1 1 1K y R aα β∴ = + =  

Thus in a manner of speaking we have replaced the 
original second order problem (13-14) with two equivalent 
first order problems in each of the two subintervals. We 
solve these initial value problems to obtain solutions over 
the interval [-1,0] and [0,1] respectively. There now exists 
a number of efficient methods for the solution of these 
initial value problems. We use classical Runge Kutta 
method for our problem. 

5. Numerical Example 

To demonstrate the applicability of the method we 
solve one problem 
Example 5.1: Consider the following SPP  

 
( ) ( ) ( ) [ ]

( ) ( )
0; 1,1

1 1 1 2

y x xy x y x x

with y and y

ε ′′ ′+ − = ∈ −

− = =
 

For this example we have ( ) ,a x x=  ( ) 1b x = −  and 

( ) 0f x = . Further we have an internal layer of width 

ο ε  at 0x =  (for details, see O’Malley [[8], pp 68-172, 
eq8.1case (i)] and Kevorkian and Cole [[6], pp 41-43, eqs 
(2.3.76) and (2.3.77)]  
Step 1: ( ) ( ) ( )0 0 / 0 0y f b γ= = =  
Step 2: In the interval [-1,0] we have a right layer. The 
problem is  

 ( ) ( ) ( ) [ ]0; 1,0y x xy x y x xε ′′ ′+ − = ∈ −  

with y(-1)=1 and y(0)=0. The solution of the reduced 
problem 
 ( ) ( )0 0 0xy x y x′ − =  

with ( )0 1 1y − =  is ( )0y x x= −  and 0.K =  
The two initial value problems are  

 ( )'
0 02 1 0R x with R= − =  

and ( ) ( ) 0 1y x xy x Rε ′ + + = −  with ( )0 0.y =  
Step 3: In the interval [0,1] we have a left layer. The 
problem is  

 ( ) ( ) ( ) [ ]0 0,1y x xy x y x xε ′′ ′+ − = ∈  

with ( )0 0y =  and ( )1 2.y =  

The solution of the reduced problem is ( )0 2y x x=  and 
2.K =  

The two initial value problems are  

 ( )'
0 04 1 0R x with R= − =  

and ( ) ( ) 0 2y x xy x Rε ′ + + =  with ( )0 1.y =  
We solve the above equations using Runge Kutta 

method. The numerical results are presented in Table 1(a) 
and 1(b) for 3 410 10andε ε− −= =  respectively. 

Table 1. (a): Computational results for Example 5.1 with 210ε −=  
and 0.01h =  

x  ( )y x  

-1.000 1.0000000 
-0.500 0.4791165 
-0.100 0.0220781 
-0.080 0.0109326 
-0.060 0.0041401 
-0.040 0.0009350 
-0.200 0.1327092 
0.000 0.0000000 
0.020 0.0005291 
0.040 0.0041332 
0.060 0.0134145 
0.080 0.0301369 
0.100 0.0550444 
0.500 0.9581506 
1.000 1.9797936 
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Table 1. (b): Computational results for Example 5.1 with 310ε −=  
and 0.01h =  

x  ( )y x  

-1.000 1.0000000 
-0.500 0.4979919 
-0.100 0.0884604 
-0.080 0.0642969 
-0.060 0.0384793 
-0.040 0.0152044 
-0.200 0.0021584 
0.000 0.0000000 
0.020 0.0049300 
0.040 0.0316510 
0.060 0.0777414 
0.080 0.1287349 
0.100 0.1768589 
0.500 0.9959838 
1.000 1.9979979 

6. Two Boundary Layers Problems 
The suggestions given for internal layer problems can 

be extended mutatis mutandis to problems with two 
boundary layers. To describe the method we shallconsider 
a class of linear singularly perturbed two point boundary 
value problems of the form 

 ( ) ( ) ( ) ( ) ( ) ( ) [ ]1,1y x a x y x b x y x f x xε ′′ ′+ + = ∈ − (21) 

 ( )1with y α− =  (22a) 

 ( )1and y β=  (22b) 

here ε  is a small positive parameter ( )0 1 , ,ε α β< <<  

are given constants ( ) ( ) ( ), ,a x b x f x  are assumed to be 
sufficiently continuously differentiable functions in 
[ ]1,1− . Furthermore, we assume that ( ) 0a x M≥ >  

throughout the interval [ ]1,0−  and ( ) 0a x M≤ <  in [0,1] 
where M  is some negative constant. This assumption 
merely implies that the boundary layer will be in the 
neighborhood of 1x = −  and 1. Without loss of generality 
( ) 0a x =  at 0x =  since it changes sign in the domain of 

interest.  
Step 1: We first find the approximate solution at 0x =  
without loss of approximate we can take ( )0 0a =  

At 0x =  equation (21) becomes 

 ( ) ( ) ( ) ( )0 0 0 0y b y fε ′′ + =  (23) 

The reduced problem of (23) gives us an approximation 
to ( )0 0y = . 

 ( ) ( )
( )

0
0

0
f

y
b

γ∴ = =  (24) 

Step 2: We now divide the interval [-1, 1] into two 
subintervals [-1, 0] and [0, 1] so that equation (21) has a 
left layer in [-1, 0] and a right layer in [0, 1]. 
Step 3: We now use our new initial value method for left 
end boundary layer as described in section (2) in the 

interval [-1,0]. The two initial value problems related to 
(21) are 

 ( ) ( ) ( ) ( ) ( ) [ ]'
0 0 0 1,0R b x y x a x y x f x x′= − − ∈ −  (25) 

with ( )0 0 0R =  and 

 ( ) ( ) ( ) [ ]0 1,0y x a x y x R K xε ′ = + = ∈ −  (26) 

With ( )1 .y α− =  
To find the value of K  in (26) we impose the condition 

that the reduced problem of (26) satisfy the boundary 
condition at 0x =  i.e. ( )0 .y γ=  

 ( ) ( ) ( ) ( )0 0 0 0 0K R a y a γ∴ = + =  

Step 4 ; We next use our new initial value method for 
right end boundary layer as described in section (3) in the 
interval [0,1]. The two initial value problems related to 
(21) are : 

 ( ) ( ) ( ) ( ) ( ) [ ]'
0 0 0 0,1R b x y x a x y x f x x′= − − ∈  (27) 

with ( )0 0 0R =  and 

 ( ) ( ) ( ) [ ]0 0,1y x a x y x R K xε ′ = + = ∈  (28) 

with ( )1 .y β=  

We obtain ( ) ( ) ( ) ( )00 0 0 0 .K a y R a γ= + =  
Thus in a manner of speaking we have replaced the 

original second order problem (21-22) with two equivalent 
first order problems in each of the two subintervals. We 
solve these initial value problems to obtain solutions over 
the intervals [-1,0] and [0,1] respectively. There now exist 
a number of efficient methods for the solution of initial 
value problems. We use classical Runge Kutta method for 
our problem. 

7. Numerical Example 
To demonstrate the applicability of the method we 

solve one problem 
Example 7.1: Consider the following SPP 

 
( ) ( ) [ ]

( ) ( )
0; 1,1

1 1, 1 2.

y xy x y x x

y y

ε ′′ ′− − = ∈ −

− = =
 

For this example we have ( ) ( ), 1a x x b x= − =  and 

( ) 0.f x =  Further we have two boundary layers one at 
1x = −  and one at 1x =  (for details, see O’Malley [[8], 

pp168-173, eq 8.1 case (i)] 

Step 1: ( ) ( )
( )

0
0 0

0
f

y
b

γ= = =  

Step 2: In the interval [-1,0] we have a left layer. The 
problem is  

 ( ) ( ) ( ) [ ]0; 1,0y x xy x y x xε ′′ ′− − = ∈ −  

with ( ) ( )1 1 0 0.y and y− = =  
The solution of the reduced problem 

 ( ) ( )0 0 0xy x y x′− − =  
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with ( )0 0 0y =  is ( )0 0y x =  and 0K = . 
The two initial value problems are: 

 ( ) ( )0 0 0 0 0R y x y x′ = − + + =  

with ( )0 0 0R =  and  

 ( ) ( ) 0y x xy x R Kε ′ − + =  

with ( )1 1.y − =  
Step 3: In the interval [0,1] we have a right layer the 
problem is  

 ( ) ( ) ( ) [ ]0; 0,1y x xy x y x xε ′′ ′− − = ∈  

with ( )0 0y =  and ( )1 2.y =  

The solution of the reduced problem is ( )0 0y x =  with 
0.K =  

The two initial value problems are  

 ( ) ( ) ( )0 0 0 00 0 0 0R y x y x with R′ = − + + = =  

and ( ) ( ) ( )0 1 2.y x xy x R K with yε ′ − + = =  
We solve the above equations using Runge Kutta 

method. The numerical results are presented in Table 2(a) 
and 2(b) for 3 410 10andε − −=  respectively. 

Table 2. (a): Computational results for Example 7.1 with 210ε −=  
and 0.01h =  

x  ( )y x  
-1.000 1.0000000 

-0.980 0.1421960 

-0.960 0.0209600 

-0.940 0.0032039 

-0.920 0.0005080 

-0.900 0.0000836 

-0.700 0.0000000 

-0.300 0.0000000 

0.300 0.0000000 

0.900 0.0001729 

0.920 0.0010439 

0.940 0.0065387 

0.960 0.0424885 

0.980 0.2863122 

1.000 2.0000000 

8. Discussion and Conclusions 
We have extended the new initial value method for 

solving general singularly perturbed two-point boundary 

value problems with internal layer and two layers. In 
general the numerical solution of a boundary value 
problem will be more difficult than the numerical solution 
of the corresponding initial value problem. Hence we 
prefer to convert the given second order problem into first 
order problems. The solution of given singularly perturbed 
two-point boundary value problem is computed 
numerically by solving two initial value problems. We 
used classical fourth order Runge Kutta method. 
Numerical results are presented in tables. It is observed 
that the present method approximates the exact solution 
very well. 

Table 2. (b): Computational results for Example 7.1 with 310ε −=  
and 0.01h =  

x  ( )y x  

-1.000 1.0000000 
-0.980 0.0000000 
-0.960 0.0000000 
-0.940 0.0000000 
-0.920 0.0000000 
-0.900 0.0000000 
-0.700 0.0000000 
-0.300 0.0000000 
0.300 0.0000000 
0.900 0.0000000 
0.920 0.0000000 
0.940 0.0000000 
0.960 0.0000000 
0.980 0.0000000 
1.000 2.0000000 
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