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ABSTRACT. This article describes a new grid for the mass—radius relation of three-layer exoplanets within the
mass range of 0.1-100 M4, The three layers are: Fe (e-phase of iron), MgSiOj (including both the perovskite phase,
post-perovskite phase, and its dissociation at ultrahigh pressures), and HyO (including Ices Ih, III, V, VI, VII, X, and
the superionic phase along the melting curve). We discuss the current state of knowledge about the equations of state
(EOS) that influence these calculations and the improvements used in the new grid. For the two-layer model, we
demonstrate the utility of contours on the mass—radius diagrams. Given the mass and radius input, these contours
can be used to quickly determine the important physical properties of a planet including its p0 (central pressure),
p1/p0 (core-mantle boundary pressure over central pressure), CMF (core mass fraction) or CRF (core radius frac-
tion). For the three-layer model, a curve segment on the ternary diagram represents all possible relative mass pro-
portions of the three layers for a given mass—radius input. These ternary diagrams are tabulated with the intent to
make comparison to observations easier. How the presence of Fe in the mantle affects the mass—radius relations is
also discussed in a separate section. A dynamic and interactive tool to characterize and illustrate the interior structure

of exoplanets built upon models in this article is available online.

Online material: color figures, extended table

1. INTRODUCTION

The transit method of exoplanet discovery has produced a
small but well-constrained, sample of exoplanets that are unam-
biguously solid in terms of interior bulk composition. We call
solid planets the ones that possess no H and He envelopes
and/or atmospheres, i.e., their bulk radius is determined by ele-
ments (and their mineral phases) heavier than H and He. Such
solid exoplanets are Kepler-10b (Batalha et al. 2011), CoRoT-7b
(Queloz et al. 2009; Hatzes et al. 2011), Kepler-36b (Carter et al.
2012) as well as—most likely—Kepler-20b, e, f; Kepler-18b,
and 55 Cnc e, in which the solid material could include high-
pressure water ice (see references in § 4.2).

There is an increased interest in comparing observed param-
eters to current models of interior planetary structure. The mod-
els, and their use of approximations and EOS, have evolved
since 2005 (Valencia et al. 2006; Fortney et al. 2007; Grasset
et al. 2009; Seager et al. 2007; Wagner et al. 2011; Swift et al.
2012), mainly because the more massive solid exoplanets
(called super-Earths) have interior pressures that are far in ex-
cess of Earth’s model, bringing about corresponding gaps in our
knowledge of mineral phases and their EOS (see a recent review
by Sotin et al. [2010]). Here, we compute a new grid of models
in order to aid current comparisons to observed exoplanets on
the mass—radius diagram. As in previous such grids, we assume
the main constituents inside the planets to be differentiated and
model them as layers in one dimension.
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The first part of this article aims to solve the two-layer exo-
planet model. The two-layer model reveals the underlying phys-
ics of planetary interior more intuitively, for which we consider
three scenarios: an Fe-MgSiO;, Fe-H,O, or MgSiO3-H,O
planet.

The current observations generally measure the radius of an
exoplanet through transits and the mass through Doppler shift
measurement of the host star. For each assumption of core and
mantle compositions, given the mass and radius input, the two-
layer exoplanet model can be solved uniquely. It is a unique
solution of radial dependence of interior pressure and density.
As a result, all the characteristic physical quantities, such as the
pressure at the center (p0), the pressure at core—mantle boundary
(p1), the core mass fraction (CMF), and the core radius fraction
(CRF) naturally fall out from this model. These quantities can
be quickly determined by invoking the mass—radius contours.

The next part of this article compares some known exopla-
nets to the mass—radius curves of six different two-layer exopla-
net models: pure Fe, 50% Fe and 50% MgSiO;, pure MgSiOs,
50% MgSiO; and 50% H,0, 25% MgSiO; and 75%H,0, and
pure H,O. These percentages are in mass fractions. The data of
these six curves are available in Table 1.

Up to now, a standard assumption has been that the planet
interior is fully differentiated into layers: all the Fe is in the core
and all the MgSiOs is in the mantle. In § 4.3, we will change this
assumption and discuss how the presence of Fe in the mantle
affects the mass—radius relation.
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The final part of this article calculates the three-layer differ-
entiated exoplanet model. Given the mass and radius input, the
solution for the three-layer model is non-unique (degenerate),
thus a curve on the ternary diagram is needed to represent
the set of all solutions. This curve can be obtained by solving
differential equations with iterative methods. The ensemble of
solutions is tabulated, from which users may interpolate to de-
termine planet composition in three-layer model. A dynamic
and interactive tool to characterize and illustrate the interior
structure of exoplanets built upon ternary diagrams and other
models in this article is available online.'

The methods described in this article can be used to rapidly
characterize the interior structure of exoplanets.

2. METHOD

Spherical symmetry is assumed in all the models. The inte-
rior of a planet is assumed to be fully differentiated into layers in
the first part of the paper. The two-layer model consists of a core
and a mantle. The three-layer model consists of a core, a mantle,
and another layer on top of the mantle. The interior structure is
determined by solving the following two differential equations:

dr 1

- - 1
dm  4mpr?’ M
dp Gm
— = 2
dm drt @

The two equations are similar to the ones in Zeng & Seager
(2008). However, contrary to the common choice of radius r as
the independent variable, the interior mass m is chosen, which
is the total mass inside shell radius r, as the independent vari-
able. So the solution is given as 7(m) (interior radius r as a
dependent function of interior mass m), p(m) (pressure as a
dependent function of interior mass m), and p(m) (density
as a dependent function of interior mass m).

The two differential equations are solved with the EOS of the
constituent materials as inputs:

p=pp,T). (€)

The EOS is a material property, which describes the materi-
al’s density as a function of pressure and temperature. The EOS
could be obtained both theoretically and experimentally. Theo-
retically, the EOS could be calculated by quantum-mechanical
molecular dynamics ab initio simulation such as the VASP
(Vienna Ab initio Simulation Package) (Kresse & Hafner
1993, 1994; Kresse & Furthmiiller 1996; French et al. 2009).
Experimentally, the EOS could be determined by high-pressure
compression experiment such as the DAC (diamond anvil cell)

' See http://www.cfa.harvard.edu/~lzeng/.
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experiment, or shock wave experiment like the implosion exper-
iment by the Sandia Z-machine (Yu & Jacobsen 2011). The tem-
perature effect on density is secondary compared to the pressure
effect (Valencia et al. 2006, 2007b). Therefore, we can safely
ignore the temperature dependence of those higher density ma-
terials (Fe and MgSiO3) for which the temperature effect is
weaker, or we can implicitly include a preassumed pressure-
temperature (p-1') relation (for H,O it is the melting curve)
so as to reduce the EOS to a simpler single-variable form:

p = p(p). 4)

To solve the set of equations mentioned above, appropriate
boundaries conditions are given as:

p0: the pressure at the center of the planet

pl: the pressure at the first layer interface (the core—mantle
boundary)

p2: the pressure at the second layer interface (only needed for
three-layer model)

Dsurface:  the pressure at the surface of the planet (set to
1 bar [10° Pa])

3. EOS OF Fe, MgSiO; AND H,0

The three layers that we consider for the planet interior are
Fe, MgSiO;, and H,O. Their detailed EOS are described as
follows:

3.1. Fe

We model the core of a solid exoplanet after the Earth’s iron
core, except that in our model we ignore the presence of all other
elements such as nickel (Ni) and light elements such as sulfur
(S) and oxygen (O) in the core. As pointed out by Valencia et al.
(2010), above 100 GPa, the iron is mostly in the hexagonal
closed packed € phase. Therefore, we use the Fe-EOS by Seager
et al. (2007). Below 2.09 * 10* GPa, it is a Vinet (Vinet et al.
1987, 1989) formula fit to the experimental data of e-iron at p <
330 GPa by Anderson et al. (2001). Above 2.09 * 10* GPa, it
makes smooth transition to the Thomas—Fermi—Dirac (TFD)
EOS (Seager et al. 2007). A smooth transition is assumed be-
cause there is no experimental data available in this ultrahigh
pressure regime.

The central pressure could reach 250 TPa (terapascals, i.e.,
10'2 Pa) in the most massive planet considered in this article.
However, the EOS of Fe above ~1 TPa is beyond the current
reach of experiment and thus largely unknown (Swift et al.
2012). Therefore, our best approximation here is to extend
the currently available e-iron EOS to higher pressures and con-
nect it to the TFD EOS.

The EOS of Fe is shown in Figure 1 as the upper curve.
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along its melting curve, i.e., solid-liquid phase boundary) See the online edition
of the PASP for a color version of this figure.

3.2. MgSiO,

We model the silicate layer of a solid exoplanet using the
Earth’s mantle as a proxy. The FeO-free Earth’s mantle with
Mg/Si = 1.07 would consist of mainly enstatite (MgSiO;) or
its high-pressure polymorphs and, depending upon pressure,
small amounts of either forsterite and its high-pressure poly-
morphs (Mg,SiO,) or periclase (MgO) (e.g., Bina 2003).

The olivine polymorphs, as well as lower-pressure enstatite
and majorite (MgSiO5 with garnet structure), are not stable above
27 GPa. At higher pressures, the system would consist of
MgSiO;-perovskite (pv) and periclase or their higher-pressure
polymorphs (Stixrude & Lithgow-Bertelloni 2011; Bina 2003).
Given the high pressures at the HyO-silicate boundary usually
exceeding 27 GPa, we can safely ignore olivine and lower-
pressure pyroxene polymorphs. For the sake of simplicity, we
also ignore periclase, which would contribute only 7 at.% to
the silicate mantle mineralogical composition (Bina 2003). There
are also small amounts of other elements such as aluminum (Al),
calcium (Ca), and sodium (Na) present in Earth’s mantle (Sotin
et al. 2007). For simplicity, we neglect them and thus the phases

containing them are not included in our model. We also do not
consider SiC because carbon-rich planets might form under very
rare circumstances, and are probably not common.

Some fraction of Fe can be incorporated into the minerals of
the silicate mantle, which could then have the general formula as
(Mg, Fe)SiOs. For now, we simply assume all the Fe is in the
core and all the Mg is in the mantle in the form of MgSiO;-
perovskite and/or its high-pressure polymorphs; thus the planet
is fully differentiated. In a later section, we will discuss how the
addition of Fe to the mantle can affect mass—radius relation and
compare the differences between differentiated and undifferen-
tiated as well as reduced and oxidized planets in § 4.3.

We first consider the perovskite (pv) and post-perovskite
(ppv) phases of pure MgSiO;. MgSiO; perovskite (pv) is be-
lieved to be the major constituent of the Earth mantle. It makes
transition into the post-perovskite (ppv) phase at roughly
120 GPa and 2500 K (corresponding to a depth of 2600 km
in Earth) (Hirose 2010). The ppv phase was discovered experi-
mentally in 2004 (Murakami et al. 2004) and was also theoreti-
cally predicted in the same year (Oganov & Ono 2004). The ppv
is about 1.5% denser than the pv phase (Caracas & Cohen 2008;
Hirose 2010). This 1.5% density jump resulting from the pv-to-
ppV phase transition can be clearly seen as the first density jump
of the MgSiO3 EOS curve shown in Figure 1. Both the MgSiO;
pv EOS and MgSiO; ppv EOS are taken from Caracas & Cohen
(2008). The transition pressure is determined to be 122 GPa for
pure MgSiO; according to Spera et al. (2006).

Beyond 0.90 TPa, MgSiO5 ppv undergoes a two-stage dis-
sociation process predicted from the first-principle calculations
by Umemoto & Wentzcovitch (2011). MgSiO; ppv first dissoci-
ates into CsCl-type MgO and P2;c-type MgSi, Oy at the pres-
sure of 0.90 TPa, and later into CsCl-type MgO and Fe, P-type
Si0O, at pressures higher than 2.10 TPa. The EOS of CsCl-type
MgO, P2ic-type MgSi,O5, and Fe,P-type SiO, are adopted
from Umemoto & Wentzcovitch (2011) and Wu et al. (2011).
Therefore, there are two density jumps at the dissociation pres-
sures of 0.90 and 2.10 TPa. The first one can be seen clearly in
Figure 1. The second one cannot be seen in Figure 1 since it is
too small, but it surely exists.

Since Umemoto & Wentzcovitch’s (2011) EOS calculation
applies only up to 4.90 TPa, beyond 4.90 TPa, a modified ver-
sion of the EOS by Seager et al. (2007) is used to smoothly
connect to the TFD EOS. TFD EOS assumes electrons in a
slowly varying potential with a density-dependent correlation
energy term that describes the interactions among electrons.
It is therefore insensitive to any crystal structure or arrange-
ments of atoms and it becomes asymptotically more accurate
at higher pressure. Thus, the TFD EOS of MgSiO; would be
no different from the TFD EOS of MgO plus SiO, as long
as the types and numbers of atoms in the calculation are the
same. So it is safe to use the TFD EOS of MgSiO; as an ap-
proximation of the EOS of MgO and SiO, mixture beyond
4.90 TPa here.
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Seager et al.’s (2007) EOS is calculated from the method of
Salpeter & Zapolsky (1967) above 1.35 % 10* GPa. Below
1.35 % 10* GPa, it is a smooth connection to TFD EOS from
the fourth-order Birch-Murbaghan Equation of State (BME)
(see Birch 1947; Poirier 2000) fit to the parameters of
MgSiO; pv obtained by ab initio lattice dynamics simulation
of Karki et al. (2000).

Seager et al.’s EOS is slightly modified to avoid any artificial
density jump when connected with Umemoto & Wentzcovitch’s
EOS at 4.90 TPa. At 4.90 TPa, the ratio of the density p be-
tween Umemoto & Wentzcovitch’s EOS and Seager et al.’s EOS
is 1.04437. This ratio is multiplied to the original Seager et al.’s
EOS density p to produce the actual EOS used in our calcula-
tion for p > 4.90 TPa. A smooth transition is assumed because
no experimental data is available in this ultrahigh-pressure re-
gime. This assumption does not affect our low or medium mass
planet models, since only the most massive planets in our model
could reach this ultrahigh pressure in their MgSiOj3 part.

The EOS of MgSiO; is shown in Figure 1 as the mid-
dle curve.

3.3. H,0

The top layer of a planet could consist of various phases of
H,0. Since H,O has a complex phase diagram, and it also
has a stronger temperature dependence, the temperature effect
cannot be ignored. Instead, we follow the solid phases along
the melting curve (solid-liquid phase boundary on the p-T plot
by Chaplin [2012]). Along the melting curve, the H,O undergoes
several phase transitions. Initially, itis Ice Ih at low pressure, then
subsequently transforms into Ice I, Ice V, Ice VI, Ice VII, Ice X,
and superionic phase (Chaplin 2012; Choukroun & Grasset
2007; Dunaeva et al. 2010; French et al. 2009).

3.3.1. Chaplin’s EOS

The solid form of water has very complex phases in the
low-pressure and low-temperature regime. These phases are
well determined by experiments. Here we adopt the Chaplin’s
EOS for Ice Ih, Ice III, Ice V, and Ice VI below 2.216 GPa (see
Chaplin 2012; Choukroun & Grasset 2007; Dunaeva et al.
2010). Along the melting curve (the solid-liquid boundary on
the p-T' diagram), the solid form of water first exists as Ice
Ih (hexagonal ice) from ambient pressure up to 209.5 MPa
(Choukroun & Grasset 2007). At the triple point of 209.5 MPa
and 251.15 K (Choukroun & Grasset 2007; Robinson et al.
1996), it transforms into Ice III (Ice-three), whose unit cell
forms tetragonal crystals. Ice III exists up to 355.0 MPa and
transforms into a higher-pressure form Ice V (Ice-five) at the
triple point of 355.0 MPa and 256.43 K (Choukroun & Grasset
2007). Ice V’s unit cell forms monoclinic crystals. At the triple
point of 618.4 MPa and 272.73 K (Choukroun & Grasset 2007),
Ice V transforms into yet another higher-pressure form Ice VI
(Ice-six). Ice VI's unit cell forms tetragonal crystals. A single
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molecule in Ice VI crystal is bonded to four other water mole-
cules. Then at the triple point of 2.216 GPa and 355 K (Daucik
& Dooley 2011), Ice VI transforms into Ice VII (Ice-seven). Ice
VII has a cubic crystal structure. Ice VII eventually transforms
into Ice X (Ice-ten) at the triple point of 47 GPa and 1000 K
(Goncharov et al. 2005). In Ice X, the protons are equally spaced
and bonded between the oxygen atoms, where the oxygen atoms
are in a body-centered cubic lattice (Hirsch & Holzapfel 1984).
The EOS of Ice X and Ice VII are very similar. For Ice VII
(above 2.216 GPa), we switch to Frank, Fei, & Hu’s EOS (Frank
et al. [2004], hereafter FFH2004).

3.3.2. FFH2004’s EOS

We adopt FFH2004’s EOS of Ice VII for 2.216 GPa <
p < 37.4 GPa. This EOS is obtained using the Mao-Bell type
diamond anvil cell with an external Mo-wire resistance heater.
Gold and water are put into the sample chamber and com-
pressed. The diffraction pattern of both H,O and gold are mea-
sured by the energy-dispersive X-ray diffraction (EDXD)
technique at the Brookhaven National Synchrotron Light
Source. The gold here is used as an internal pressure calibrant.
The disappearance of the diffraction pattern of the crystal Ice
VIl is used as the indicator for the solid—liquid boundary (melt-
ing curve). The melting curve for Ice VII is determined accu-
rately from 3 to 60 GPa and fit to a Simon equation. The molar
density ( p in mol cm~3) of Ice VII as a function of pressure (p
in GPa) is given by the following formula in FFH2004:

p(mol em™3) = 0.0805 + 0.0229 * (1 — exp~0-0743+»)
+0.1573 * (1 — exp 00061, (5)

We use equation (5) to calculate p from 2.216 GPa up to
37.4 GPa. The upper limit 37.4 GPa is determined by the inter-
section between FFH2004’s EOS and French et al.’s EOS
(French et al. [2009], hereafter FMNR2009).

3.3.3. FMNR2009’s EOS

FMNR2009’s EOS is used for Ice VII, Ice X, and superionic
phase of H,O for 37.4 GPa < p < 8.893 TPa. This EOS is de-
termined by quantum-molecular dynamics simulations using
the Vienna Ab Initio Simulation Package (VASP). The simula-
tion is based on finite temperature density-functional theory
(DFT) for the electronic structure and treating the ions as clas-
sical particles. Most of French et al.’s simulations consider
54 H,0 molecules in a canonical ensemble, with the standard
VASP PAW potentials, the 900 eV plane-wave cutoff, and the
evaluation of the electronic states at the I" point considered, for
the three independent variables: temperature (7°), volume (V),
and particle number (V). The simulation results are the thermal
EOS p(T,V, N), and the caloric EOS U(T',V, N). The data are
tabulated in FMNR2009.
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In order to approximate density p along the melting curve,
from Table V in FMNR2009, we take one data point from Ice
VII phase at 1000 K and 2.5 g cm~3, four data points from Ice X
phase at 2000 K and 3.25 gcm™ to 4.00 gcm >, and the rest
of the data points from the superionic phase at 4000 K and
5.00 gem™3 up to 15 gecm™3. Since the temperature effect
on density becomes smaller towards higher pressure, all the iso-
thermal pressure—density curves converge on the isentropic
pressure—density curves as well as the pressure—density curve
along the melting curve.

The FMNR2009’s EOS has been confirmed experimentally
by Thomas Mattson et al. at the Sandia National Laboratories.
At 8.893 TPa, FMNR2009’s EOS is switched to the TFD EOS
in Seager et al. (2007) (hereafter SKHMM?2007).

3.3.4. SKHMM?2007’s EOS

At ultrahigh pressure, the effect of electron—electron interac-
tion can be safely ignored and electrons can be treated as a gas
of noninteracting particles that obey the Pauli exclusion princi-
ple subject to the Coulomb field of the nuclei. Assuming the
Coulomb potential is spatially slowly varying throughout the
electron gas that the electronic wave functions can be approxi-
mated locally as plane waves, the so-called TFD solution could
be derived so that the Pauli exclusion pressure balances out the
Coulomb forces (Eliezer et al. 2002; Macfarlane 1984).

In SKHMM2007, a modified TFD by Salpeter & Zapolsky
(1967) is used. It is modified in the sense that we have added in
a density-dependent correlation energy term which charac-
terizes electron interaction effects.

Here, Seager et al.’s EOS is slightly modified to connect to
the FMNR2009’s EOS. At 8.893 TPa, the ratio of the density p
between the FMNR2009’s EOS and Seager et al.’s EOS is
1.04464. This ratio is multiplied to the original Seager et al.’s
EOS density p to produce the actual EOS used in our calcula-
tion for p > 8.893 TPa. Only the most massive planets in our
model could reach this pressure in the H,O layer, so this choice
of EOS for p > 8.893 TPa has small effect on the overall mass—
radius relation to be discussed in the next section.

The EOS of H,O is shown in Figure 1 as the lower curve.

4. RESULTS
4.1. Mass—-Radius Contours

Given mass and radius input, various sets of mass—radius
contours can be used to quickly determine the characteristic in-
terior structure quantities of a two-layer planet including its p0
(central pressure), pl/p0 (ratio of core-mantle boundary pres-
sure over central pressure), CMF (core mass fraction), and CRF
(core radius fraction).

The two-layer model is uniquely solved and represented as a
point on the mass—radius diagram given any pair of two param-
eters from the following list: M (mass), R (radius), p0, p1/p0,
CMEF, CREF, etc. The contours of constant M or R are trivial on

the mass—radius diagram, which are simply vertical or horizon-
tal lines. The contours of constant p0, pl/p0, CMF, or CRF are
more useful.

Within a pair of parameters, fixing one and continuously
varying the other, the point on the mass—radius diagram moves
to form a curve. Multiple values of the fixed parameter give mul-
tiple parallel curves forming a set of contours. The other set of
contours can be obtained by exchanging the fixed parameter for
the varying parameter. The two sets of contours crisscross each
other to form a mesh, which is a natural coordinate system (see
Fig. 2) of this pair of parameters, superimposed onto the exist-
ing Cartesian (M, R) coordinates of the mass—radius diagram.
This mesh can be used to determine the two parameters given
the mass and radius input or vice versa.

4.1.1. Fe-MgSiO; Planet

As an example, the mesh of p0 with p1/p0 for an Fe-core
MgSiO5-mantle planet is illustrated in the first subplot (upper
left) of Figure 2. The mesh is formed by p0O-contours and p1/p0-
contours crisscrossing each other. The more vertical set of
curves represents the pO-contours. The ratio of adjacent p0-
contours is 10! (see Table 1). The more horizontal set of curves
represents the pl/pO-contours. From bottom up, the pl/p0
values vary from O to 1 with step size 0.1.

Given a pair of p0 and pl input, users may interpolate
from the mesh to find the mass and radius. On the other hand,
given the mass and radius of a planet, users may also interpolate
from the mesh to find the corresponding p0 and pl of a two-
layer, Fe-core MgSiOs-mantle planet.

Similarly, the contour mesh of p0 with CMF for the Fe-
MgSiO; planet is shown as the middle panel in the top row
of Figure 2. As a reference point, for a pure-Fe planet with
p0 = 10" Pa, M = 0.1254 Mg, R = 0.417 Ry,

The contour mesh of p0 with CRF for the Fe-MgSiO; planet
is shown as the right panel of the top row of Figure 2.

4.1.2. MgSiO4-H,O Planet

For two-layer MgSiO3-H5O planet, the three diagrams (p0
contours pair with p1/p0 contours, CMF contours, or CRF con-
tours) are the subplots of the middle row of Figure 2.

As a reference point, for a pure-MgSiO; planet with
p0 = 10105 Pa, M = 0.122 Mg, R = 0.5396 Rg,.

4.1.3. Fe-H,O Planet

For two-layer Fe-H,O planet, the three diagrams (pO con-
tours pair with p1/p0 contours, CMF contours, or CRF con-
tours) are the subplots of the bottom row of Figure 2.

As areference point, for a pure-Fe planet with p0 = 10! Pa,
M =0.1254 Mg, R= 0417 Rg.
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FIG. 2.—Mass-radius contours of two-layer planet. Top: Fe-MgSiO; planet. Middle row: MgSiO;3-H, O planet. Bottom: Fe-H,O planet. Left: contour mesh of p1/p0
with p0. Middle column: contour mesh of CMF with p0. Right: contour mesh of CRF with p0. To find out what p0 value each p0O-contour corresponds to, please refer to
Table 1. See the online edition of the PASP for a color version of this figure.
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4.2. Mass—-Radius Curves

For observers’ interest, six characteristic mass—radius curves
are plotted (Fig. 3) and tabulated (Table 1), representing the pure-
Fe planet, half-Fe half-MgSiO; planet, pure MgSiO; planet, half-
MgSiO; half-H,O planet, 75%H,0-25%MgSiO; planet, and
pure H,O planet. These fractions are mass fractions. Figure 3 also
shows some recently discovered exoplanets within the relevant
mass—radius regime for comparison. These planets include
Kepler-10b (Batalha et al. 2011), Kepler-11b (Lissauer et al.
2011), Kepler-11f (Lissauer et al. 2011), Kepler-18b (Cochran
et al. 2011), Kepler-36b (Carter et al. 2012), and Kepler-
20b, c, d (Gautier et al. 2012). They also include Kepler-20e
(R = 0.868") ¢ Rg [Fressin etal. 2012], the mass range is de-
termined by pure-silicate mass—radius curve and the maximum
collisional stripping curve [Marcus et al. 2010]), Kepler-
20f (R = 1.03410199 Rg [Fressin et al. 2012], the mass range
is determined by 75% water-ice and 25% silicate mass—radius
curves and the maximum collisional stripping curve [Marcus
et al. 2010]), Kepler-21b (R = 1.64 £ 0.04 R4 [Howell et al.

Kepler-20c 10

3.0

-

(SRt N P e et
Kepler-11f - < gt
- of
7 0%
7 Z0Ye ]
-
-

25}

55Cnce

20t

Kepler—20b

P
-

R (Earth Radius)

1.5¢

1.0

0.5

0 5 10 15 20
M (Earth Mass)

F1G. 3.—Currently known transiting exoplanets are shown with their mea-
sured mass and radius with observation uncertainties. Earth and Venus are
shown for comparison. The curves are calculated for planets composed of pure
Fe, 50% Fe-50% MgSiOs, pure MgSiO3, 50% H,0-50% MgSiO3, 75% H,O0-
25% MgSiOs, and pure H,O. The red dashed curve is the maximum collisional
stripping curve calculated by Marcus et al. (2010). See the online edition of the
PASP for a color version of this figure.

2012]; the upper limit for mass is 10.4 Mg : the 2- o upper limit
preferred in the paper; the lower limit is 4 Mg, which is in
between the “Earth” and “50%H,0-50%MgSiO;” model
curves—the planet is very hot and is unlikely to have much
water content, if any at all.), Kepler-22b (R = 2.38 £ 0.13 Ry
[Borucki et al. 2012]; the 1- o upper limit for mass is 36 Mg, for
an eccentric orbit, or 27 Mg, for circular orbit), CoRoT-7b
(M=742+121 Mg, R=158+0.1 Ry [Hatzes et al.
2011; Leger et al. 2009; Queloz et al. 2009]), 55 Cancri e
(M =863£0.35 Mg, R=200£0.14 Rg [Winn et al
2011]), and GJ 1214b (Charbonneau et al. 2009).

4.3. Levels of Planet Differentiation: The Effect of Fe
Partitioning Between Mantle and Core

All models of planets discussed so far assume that all Fe is in
the core, while all Mg, Si and O are in the mantle, i.e., that a
planet is fully differentiated. However, we know that in terres-
trial planets some Fe is incorporated into the mantle. There are
two separate processes which affect the Fe content of the man-
tle: (1) mechanical segregation of Fe-rich metal from the mantle
to the core, and (2) different redox conditions resulting in a dif-
ferent Fe/Mg ratio within the mantle, which in turn affects the
relative size of the core and mantle. In this section we show the
effects of (1) undifferentiated versus fully-differentiated, and
(2) versus oxidized planetary structure on the mass—radius re-
lation for a planet with the same Fe/Si and Mg/Si ratios.

For simplicity, here we ignore the H,O and gaseous content of
the planet and only consider the planet as made of Fe, Mg, Si, O.
To facilitate comparison between different cases, we fix the
global atomic ratios of Fe/Mg = 1 and Mg/Si = 1; these fit
well within the range of local stellar abundances (Grasset
et al. 2009).

In particular, we consider a double-layer planet with a core
and a mantle in two scenarios. One follows the incomplete me-
chanical separation of the Fe-rich metal during planet formation,
and results in addition of Fe to the mantle as metal particles. It
does not change EOS of the silicate components, but requires
adding an Fe-EOS to the mantle mixture. Thus, the planet gen-
erally consists of a Fe metal core and a partially differentiated
mantle consisting of the mixture of metallic Fe and MgSiO;
silicates. While the distribution of metallic Fe may have a radial
gradient, for simplicity we assume that it is uniformly distrib-
uted in the silicate mantle. Within scenario 1, we calculate three
cases to represent different levels of differentiation:

Case 1: complete differentiation—Metallic Fe core and
MgSiO; silicate mantle. For Fe/Mg = 1, CMF = 0.3574.

Case 2: partial differentiation—Half the Fe forms a smaller
metallic Fe core, with the other half of metal being mixed with
MgSiOj silicates in the mantle. CMF = 0.1787.

Case 3: no differentiation—All the metallic Fe is mixed with
MgSiOj; in the mantle. CMF = 0 (no core).

The other scenario assumes different redox conditions,
resulting in different Fe/Mg ratios in mantle minerals, and
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therefore requiring different EOS for the Fe?*-bearing silicates
and oxides. More oxidized mantle means adding more Fe in the
form of FeO to the MgSiOj silicates to form (Mg, Fe)SiOs sil-
icates and (Mg,Fe)O magnesiowiistite (mv), thus reducing the
amount of Fe in the core. The exact amounts of (Mg, Fe)SiO;
and (Mg,Fe)O in the mantle are determined by the following
mass balance equation:

2FeO + MgSiO; — (Mgﬁ, Fe . )SiO3 + x(Mgﬁ, Fe

I+x

)0,
©)

1
Tz

wherex denotes the relative amount of FeO added to the silicate
mantle, x = 0 being the most reduced state with no Fe in the
mantle, and © = 1 being the most oxidized state with all Fe ex-
isting as oxides in the mantle. This oxidization process con-
serves the global Fe/Mg and Mg/Si ratios, but increases O
content and thus the O/Si ratio of the planet since Fe is added
to the mantle in the form of FeO. Because in stellar environ-
ments O is excessively abundant relative to Mg, Si, and Fe
(e.g., the solar elemental abundances [Asplund et al. 2009]),
it is not a limiting factor in our models of oxidized planets.
We calculate the following three cases to represent the full range
of redox conditions:

Case 4: no oxidization of Fe—z = 0. Metal Fe core and
MgSiO;  silicate mantle. For Fe/Mg=1, O/Si=3,
CMF = 0.3574.

Case 5: partial oxidization of Fe—x = 0.5. Half the Fe forms
smaller metal core, the other half is added as FeO to the mantle.
0O/Si = 3.5, CMF = 0.1700.

Case 6: complete oxidization of Fe—x = 1. All Fe is added
as FeO to the mantle, resulting in no metal core at all.
0O/Si =4, CMF = 0.

Notice that Case 4 looks identical to Case 1. However, the
silicate EOS used to calculate Case 4 is different from Case 1 at
ultrahigh pressures (beyond 0.90 TPa). For Cases 4, 5, and 6,
the (Mg, Fe)SiO3; EOS is adopted from Caracas & Cohen
(2008) and Spera et al. (2006) which only consider perovskite
(pv) and post-perovskite (ppv) phases without including further
dissociation beyond 0.90 TPa, since the F62+—beaﬁng silicate
EOS at ultrahigh pressures is hardly available. On the other
hand, comparison between Case 1 and Case 4 also shows
the uncertainty on mass—radius relation resulting from the dif-
ferent choice of EOS (see Table 2). Fe?*-bearing pv and ppv
have the general formula: (Mg, , Fe,_,)SiO3, where y denotes
the relative atomic number fraction of Mg and Fe in the silicate
mineral. The (Mg,,Fe,_,)SiO; silicate is therefore a binary
component equilibrium solid solution. It could either be pv
or ppv or both depending on the pressure (Spera et al.
2006). We can safely approximate the narrow pressure region
where pv and ppv co-exist as a single transition pressure from
pv to ppv. This pressure is calculated as the arithmetic mean of
the initial transition pressure of pv — pv + ppv mixture and the
final transition pressure of pv + ppv mixture — ppv (Spera
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et al. 2006). The pv EOS and ppv EOS are connected at this
transition pressure to form a consistent EOS for all pressures.

Addition of FeO to MgSiO; results in the appearance of a
second phase, magnesiowiistite, in the mantle according to
equation 6. The (Mg,Fe)O EOS for Cases 4, 5, and 6 is adopted
from Fei et al. (2007), which includes the electronic spin tran-
sition of high-spin to low-spin in Fe?*. For simplicity, we as-
sume that pv/ppv and mw have the same Mg/Fe ratio.

Figure 4 shows fractional differences (7) in radius of Cases 2
and 3 compared to Case 1 as well as Cases 5 and 6 compared to
Case 4 (r, is radius of the reference case, which is that of Case 1
for Cases 2 and 3 and is that of Case 4 for Cases 5 and 6):

r—T7

n=-—— )

To

Oxidization of Fe (partitioning Fe as Fe-oxides from the core
into the mantle) makes the planet appear larger. The complete
oxidization of Fe makes the radius 3% larger for small planets
around 1 Mg, then the difference decreases with increasing
mass within the mass range of 1 to 20 M. Undifferentiated
planets (partitioning of metallic Fe from the core into the man-
tle) appear smaller than fully differentiated planets. The com-
pletely undifferentiated planet is practically indistinguishable
in radius for small planets around 1 Mg, then the difference
increases to 1%-level around 20 M 4. The mass, radius, CRF
and pl/p0 data of Cases 1 through 6 are listed in Table 2.

4.4. Tabulating the Ternary Diagram

For the three-layer model of solid exoplanet, points of a
curve segment on the ternary diagram represent all the solutions
for a given mass—radius input. These ternary diagrams are tabu-
lated (Table 3) with the intent to make comparison to observa-
tions easier.

Usually, there are infinite combinations (solutions) of Fe,
MgSiO3, and HyO mass fractions which can give the same
mass—radius pair. All the combinations together form a curve
segment on the ternary diagram of Fe, MgSiO3, and H,O mass
fractions (Zeng & Seager 2008; Valencia et al. 2007a). This
curve segment can be approximated by three points on it:
two endpoints where one or more out of the three layers are
absent and one point in between where all three layers are pres-
ent to give the same mass and radius. The two endpoints corre-
spond to the minimum central pressure (p0,,;,) and maximum
central pressure (p0,,,,) allowed for the given mass—radius pair.
The middle point is chosen to have the central pres-
sure POmia = v/POmax * POmin-

Table 3 contains eight columns:

1. Mass. The masses range from 0.1 to 100 Mg with 41
points in total. The range between 0.1 and 1 My is equally di-
vided into 10 sections in logarithmic scale. The range between 1
and 10 My is equally divided into 20 sections in logarithmic
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FIG. 4.—Fractional differences in radius resulting from Fe partitioning be-
tween mantle and core. Case 1 and Case 4 (complete differentiation and no oxi-
dization of Fe, black); Case 2 (partial [50%] differentiation: 50% metallic Fe
mixed with the mantle, solid brown); Case 3 (no differentiation: all metallic
Fe mixed with the mantle, pink); Case 5 (partial [50%] oxidization of Fe, dashed
brown); Case 6 (complete oxidization of Fe, dashed pink). See the online edition
of the PASP for a color version of this figure.

scale. And the range between 10 and 100 M4 is equally divided
into 10 sections in logarithmic scale.

2. Radius: For each mass M in Table 3 there are
12 radius values, 11 of which are equally spaced within the
allowed range: Rp.(M) + (Ru,0(M) — Rg(M)) % i, where
i=0,0.1,0.2,...,0.9, 1.0. The 12th radius value (Rwmgsio, (M))

TABLE 3
TABLE FOR TERNARY DIAGRAM

M(Mg) R(Rg) logy(p0) pl/p0  p2/pl Fe MgSiO;  H,O
0.1 ..... 0.3888 10.9212 0 0 1 0 0
0.1 ..... 0.3888 10.9212 0 0 1 0 0
0.1 ..... 0.3888 10.9212 0 0 1 0 0
0.1 ..... 0.4226 10.9066  0.133 0 0.759 0.241 0
0.1 ..... 0.4226 109126  0.102 0.046 0.818 0.172 0.01
0.1 ..... 0.4226 109186  0.024 1 0.953 0 0.047
100 4.102 13.0979 1 1 0 0 1

Note.—Table is shown in its entirety in the electronic edition of the PASP.
A portion is shown here regarding its form and content.
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is inserted into the list corresponding to the pure-MgSiO;3 planet
radius (see Table 1) for mass M. Here Rp.(M), Rygsio, (M),
and Ry, (M) are the radii for planets with mass M composed
of pure-Fe, pure-MgSiO;, and pure-H,O correspondingly.

Overall, there are 41 * 12 = 492 different mass—radius pairs
in Table 3. For each (M, R), three cases: pOpin, POmid> and pO,gax
are listed.

3. Central pressure p0 (Pascal) in logarithmic base-10 scale.

4. p1/p0, the ratio of pl (the first boundary pressure, i.e., the
pressure at the Fe-MgSiO3 boundary) over p0.

5. p2/pl, the ratio of p2 (the second boundary pressure, i.e.,
the pressure at the MgSiO3-H,O boundary) over pl.

6. Fe mass fraction (the ratio of the Fe-layer mass over the
total mass of the planet).

7. MgSiO5 mass fraction (the ratio of the MgSiO;-layer mass
over the total mass of the planet).

8. HyO mass fraction (the ratio of the H,O-layer mass of over
the total mass of the planet).

The sixth, seventh and eighth columns always add up to one.

A dynamic and interactive tool to characterize and illustrate
the interior structure of exoplanets built upon Table 3 and other
models in this article is available online (see ).

Mass:'lM@ Radius:1.0281 R@

100

H,0

Fig. 5.—The vred, orange and purple points correspond to
log;(p0 (in Pa)) = 11.4391, 11.5863, and 11.7336. The mass fractions are
(1) FeMF = 0.083, MgSiO3MF = 0.917,H,OMF = 0 (red); (2) FeMF = 0.244,
MgSiO3MF = 0.711, H,OMF = 0.046  (orange); (3) FeMF = 0.728,
MgSiO3MF = 0, HyOMF = 0.272 (purple). MF here stands for mass fraction.
The blue curve is the parabolic fit. The red dashed curve is the maximum collisional
stripping curve by Marcus et al. (2010). See the online edition of the PASP for a
color version of this figure.

This content downloaded from 128.103.149.52 on Fri, 5 Apr 2013 22:35:51 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

238 ZENG & SASSELOV

4.5. Generate Curve Segment on Ternary Diagram Using
Table 3

One utility of Table 3 is to generate the curve segment on the
three-layer ternary diagram for a given mass—radius pair. As an
example, for M =1 Mg and R = 1.0281 Ry, the table pro-
vides three p0Os. For each p0, the mass fractions of Fe,
MgSiOs, and H,O are given to determine a point on the ternary
diagram. Then, a parabolic fit (see Fig. 5) through the three
points is a good approximation to the actual curve segment. This
parabola may intersect the maximum collisional stripping curve
by Marcus et al. (2010), indicating that the portion of parabola
beneath the intersection point may be ruled out by planet for-
mation theory.

S. CONCLUSION

The two-layer and three-layer models for solid exoplanets
composed of Fe, MgSiO;, and H,O are the focus of this article.
The mass—radius contours (Fig. 2) are provided for the two-
layer model, useful for readers to quickly calculate the interior
structure of a solid exoplanet. The two-parameter contour mesh
may also help one build physical insights into the solid exopla-
net interior structure.

The complete three-layer mass—fraction ternary diagram is
tabulated (Table 3), useful for readers to interpolate and calcu-
late all solutions as the mass fractions of the three layers for a
given mass—radius input. The details of the EOS of Fe, MgSiO3,
and H,O and how they are calculated and used in this article are
discussed in § 3 and shown in Figure 1.

A dynamic and interactive tool to characterize and illustrate
the interior structure of exoplanets built upon Table 3 and other
models in this article is available online (see ).

The effect of Fe partitioning between mantle and core on
mass—radius relation is explored in § 4.3, and the result is shown
in Figure 4 and Table 2.

With the ongoing Kepler Mission and many other exoplanet
searching projects, we hope this article could provide a handy
tool for observers to fast characterize the interior structure of
exoplanets already discovered or to be discovered, and further
our understanding of those worlds beyond our own.
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