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MODELING COMPENSATION FOR OPTICAL FIBER
COMMUNICATION SYSTEMS∗
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Abstract. Today the vast majority of telecommunication and Internet messages are sent along
fiber optic cables buried underground. Binary data (encoded as a sequence of pulses of light) may
travel thousands of kilometers to reach its final destination. The fibers that are used for this data
transfer necessarily contain manufacturing impurities that lead to fast and slow polarization states
for the propagating signal. This imperfection in the fiber results in a random distortion effect known
as polarization-mode dispersion (PMD). As binary data travels along these fibers, the pulses spread,
causing the ones to decrease in value and the zeros to increase. Thus, the received message may
contain errors. To decrease the likelihood of errors in the received signal, a device known as a
compensator can be placed at the receiver. Determining an optimal setting for the compensator
involves rotating the fiber in the compensator to best align its slow axis with the fast axis of the
transmission fiber. Such a rotation should cancel out some of the effects of PMD. Modeling this
system numerically requires that one generate fiber realizations with large amounts of PMD. To
measure rotation angle goodness of fit between compensation and transmission fiber requires that
one choose a feedback signal for the compensator. We compare the eye opening, spectral line, and
degree of polarization ellipsoid feedback signals. While the eye opening feedback mechanism is the
most accurate measure, it is difficult to optimize numerically. The degree of polarization and spectral
line feedback signals act as smooth surrogates for the eye.
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1. Introduction. The vast majority of long-distance telecommunications and
Internet traffic is carried by optical fiber communication systems [31]. In an optical
communication system binary data is encoded onto a sequence of pulses of light which
are then transmitted over long distances through optical fiber. A material property
of optical fiber called birefringence causes the pulses to spread and distort as they
propagate. This distortion of the optical signal is called polarization-mode disper-
sion (PMD) and is governed by the linear-PMD equation, which is a special case of
the Manakov-PMD equation. The Manakov-PMD equation models the propagation
of light through dispersive, nonlinear, birefringent optical fiber and is derived from
Maxwell’s equations [25], [43]. In the 1980s scientists realized that PMD in optical
fibers would have a significant impact on the performance of high-data rate systems
[18], [30]. By the time the signal reaches its destination it may not be possible to
correctly decode the transmitted binary message; i.e., bit errors may occur. The en-
gineering goal is to ensure that the bit-error ratio, which is the probability that a
bit error occurs, is as small as possible (typically 10−9–10−15). A major difficulty in
achieving this goal is that the birefringence of optical fiber, and hence the bit-error
ratio, varies randomly over time. To reduce the probability of a large bit-error ratio,
engineers have proposed using devices called optical PMD compensators.
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In birefringent fiber, the speed of the light depends on its polarization state. To
first approximation, a given optical fiber has two special principal states of polariza-
tion: fast and slow. The delay in the arrival times between light traveling in these two
states is called the differential group delay (DGD). If the DGD is too large, bit errors
will occur. A PMD compensator is a device that is placed after the transmission fiber
just prior to the receiver. It is designed to reduce the deleterious effect that PMD has
on the performance of a communication system. A simple PMD compensator consists
of a device called a polarization controller that is used to change the polarization state
of the light, followed by a piece of compensating fiber with a fixed DGD. The polar-
ization controller rotates the fast polarization state of the transmission fiber onto the
slow polarization state of the compensation fiber, thereby reducing the total DGD.
In this paper, we study the problem of how best to optimize the performance of a
simple PMD compensator. For each random realization of the birefringence of the
transmission fiber, the goal is to find the rotation of the polarization controller that
will minimize the bit-error ratio.

The physical and statistical properties of PMD, the equations that govern the
propagation of light through birefringent optical fiber, and Monte Carlo-based models
for the random variation in the birefringence of optical fiber have been widely studied
over the last 25 years, and several excellent review articles have recently appeared
[24], [31], [43].

Because the random fiber realizations that produce unacceptably large PMD are
extremely rare, it is very difficult to observe them experimentally. It is also not prac-
tical to simulate them using a standard Monte Carlo search of the state space of all
possible fiber realizations. However, it is precisely these rare, large-PMD fiber re-
alizations that are most important to consider when assessing the effectiveness of a
PMD compensator. Recently, Biondini and Kath [2], [3], [4] developed a multiple im-
portance sampling algorithm that uses biased Monte Carlo simulations to efficiently
generate realizations of the fiber which have large amounts of PMD. This advance
made it possible to perform simulation studies that more accurately assess the per-
formance of PMD compensators [35], [36], [38], [39], [64].

In recent years several different approaches have been proposed for reducing bit
errors due to PMD. Comprehensive reviews of these ideas can be found in [7], [26],
[52]. One approach is to install newly designed low-PMD fiber [45]. However, replacing
fiber is prohibitively expensive for existing systems. Another approach is to design the
shape of the transmitted light pulses to make the signal more resilient to PMD [52].
In addition to these passive methods, active PMD compensation methods have also
been proposed. Active compensation techniques can be applied to the optical signal
either just before it enters the receiver (optical compensation) or after the optical
signal has been converted back into an electrical signal in the receiver (electrical
compensation) [39].

We focus in this paper on optical PMD compensation only. Optical PMD com-
pensation is complicated by the fact that the DGD and principal states depend on the
frequency of the light. If the PMD in the transmission fiber were actually frequency-
independent, then a simple optical PMD compensator like that described above could
completely eliminate the effects of PMD. In the realistic case of frequency-dependent
PMD it is still theoretically possible (but not experimentally viable) to completely
eliminate the effects of PMD via solution of an inverse problem [52]. Compensators
that account for at least some frequency-dependent PMD have a relatively large
number of degrees of freedom; i.e., their objective functions are defined on a high-
dimensional space. However, such devices are costly to build and operate. Since low
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cost is desirable, we chose to study the simple optical PMD compensator described
above, which has only two degrees of freedom.

An obvious choice for the feedback mechanism to use for compensation is the
bit-error ratio. However, it is not actually possible to compute the bit-error ratio in
a real system. Instead, for a simple compensator, the most common feedback signals
are the power in a spectral line [27] and the degree of polarization (DOP) [33]. The
goal is to maximize these feedback signals since small values of the DGD usually
result in large values of the monitored signal. In addition, it has been shown that
the performance of a compensator can be improved by scrambling the polarization
state of the input signal [47]. Therefore, the monitor signals we chose to study for
this paper are the spectral line and polarization-scrambled DOP. We compare these
two feedback mechanisms to a third—the eye opening [8]—which is highly correlated
to the bit-error ratio. Unfortunately, the eye opening monitor is not very practical
since it is difficult to build and operate (requiring complex fast electronic circuitry).

Several simulation studies have compared the performance of different PMD com-
pensators. Sunnerud et al. [52], [53] and Buchali and Bülow [7] compared compen-
sators with a few (2–5) degrees of freedom. Their results show that compensators
with three or more degrees of freedom are somewhat more effective than the sim-
ple compensator. Although they used the spectral line and DOP monitors (without
polarization scrambling) they did not study the properties of these objective func-
tions or compare them to the eye opening monitor. Moreover, because they used
standard Monte Carlo simulations they were not able to access the rare large-PMD
fibers that are of real interest when quantifying the performance of a compensator.
I. Lima et al. [39] used multiple importance sampling to study the performance of
a simple compensator with a fixed DGD. They showed that the optimal value for
the fixed DGD in the compensator is about 2–3 times larger than the mean DGD of
the transmission line, averaged over fiber realizations. However, they only used the
eye opening objective function in their work. In addition, none of the papers just
cited carefully studies how the performance of a compensator depends on the choice
of algorithm used to optimize the objective function.

We compare the spectral line, polarization-scrambled DOP, and eye opening ob-
jective functions, both for a particular fiber realization and statistically over many
fiber realizations. In the special case that the PMD is frequency-independent, we de-
rive analytical formulae for the spectral line and polarization-scrambled DOP objec-
tive functions. Each objective function can be regarded as a doubly periodic function
on a two-dimensional plane that parametrizes a certain set of rotations of three-
dimensional space. Our formulae show that the polarization-scrambled DOP has a
single maximum, while the spectral line can have at least two maxima. However,
there may be more local maxima in the general case of frequency-dependent PMD.

We also systematically study the combined effect that the choice of feedback signal
and optimization algorithm have on the performance of a simple PMD compensator.
By using importance sampling with a large number of fiber realizations, we are able to
assess performance for the very rare large-PMD realizations of the fiber that are most
important to consider when studying PMD compensators. Because the eye opening
is so highly correlated to the bit-error ratio, it is very reasonable to assume that
the best performance is obtained when the rotation of the polarization controller is
given by the global maximum of the eye opening objective function. However, it is
difficult to locate the global maximum of the eye opening. On the other hand, we
will show that it is much easier to locate the global maxima for the spectral line and
polarization-scrambled DOP, which indicates that these two objective functions are
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smoother than the eye opening.
The main conclusion of our study is that the spectral line and polarization-

scrambled DOP act as smooth surrogates for the eye opening (or bit-error ratio)
objective function. This result is obtained by comparing the performance of the com-
pensators with different local and global optimization algorithms, and by statistical
studies that compare the location of local and global maxima of the three different
objective functions. We show that the best trade-off between computational cost
and performance is obtained using the polarization-scrambled DOP objective func-
tion with a multilevel optimization algorithm. This algorithm uses a global genetic
algorithm followed by a local conjugate gradient algorithm. Preliminary work [64]
compared the performance of the simple compensator with the three objective func-
tions but used only local optimization algorithms and did not compare the structure
of the objective functions.

In section 2, we review the basic mathematical models for optical fiber communi-
cations systems with PMD. In section 3, we describe the PMD compensator we study
in this work, and in section 4 we derive formulae for the polarization-scrambled DOP
and spectral line objective functions in the special case of only first-order PMD. In
section 5 we review the importance sampling algorithm and in section 6 we describe
the optimization algorithms we used. Finally, in section 7 we present the results of
our optimization case study.

2. Mathematical models for optical communication systems. In this sec-
tion, we review the linear-PMD equation and the coarse-step algorithm that is used
to generate random realizations of the fiber. We also explain how to calculate and
measure the performance of an optical communication system.

2.1. The governing equations. In this subsection, we review the Manakov-
PMD equation that describes the propagation of an optical signal through birefringent
optical fiber. The birefringence of optical fiber, which is the physical cause of PMD
in the signal, varies randomly along the fiber and over the course of time due to
temperature variations and mechanical vibrations.

Light in an optical fiber propagates in two eigenmodes which are distinguished
from each other by their polarization states. To model the propagation of light in
an optical fiber, we choose coordinates, (x, y, z), so that the positive z-axis is the
propagation direction along the fiber and the (x, y)-plane is orthogonal to the fiber.
The electric field of light propagating at a carrier frequency, ω0, is the real part of the
complex-valued vector field, E, which we express as [43]

E(x, y, z, τ) = κ [U1(z, τ)R1 + U2(z, τ)R2] exp[iβ(ω0, z)z − iω0τ ].(2.1)

Here τ denotes physical time, and the dispersion relation of the fiber is determined
by the frequency-dependence of the wavenumber, β(ω0, z). The vector fields R1 and
R2 are two eigenfunctions that describe the (x, y)-dependence of the electric field, E.
These vector fields are orthogonal to the propagation direction z, and to each other.
The functions U1 and U2 describe the slow variation of the envelope of the electric
field about the rapidly varying carrier wave given by the exponential factor in (2.1).
The column vector U(z, t) = (U1(z, t), U2(z, t))

T , which is called the Jones vector of
the light, models the polarization state of the light at (z, t). Here we have transformed
from physical time, τ , to retarded time, t = τ− ∂β

∂ω (ω0, z)z, which defines a coordinate

system that is moving with the group velocity [ ∂β∂ω (ω0, z)]
−1. The normalization con-

stant κ is chosen so that |U|2 = |U1|2 + |U2|2 corresponds to the optical power of the
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signal. The data is encoded onto the signal by allocating a time slot to each bit and
varying the power of the signal so that the power is large in the time slots allocated
to the ones and small in the time slots allocated to the zeros.

If the refractive index is perfectly axially symmetric, then the two eigenmodes are
equal and the signal is not affected by PMD. However, in real fiber this degeneracy is
broken due to imperfections in the fiber. Consequently, real optical fiber has a small
birefringence: Light propagating in the two different eigenmodes travels at slightly
different group velocities. Therefore, if the power of an optical pulse is split between
the two polarization eigenmodes, R1 and R2, then as it propagates through the fiber,
the power will spread in the time domain and can become severely distorted. This
phenomenon is called polarization-mode dispersion (PMD). As a result, optical power
will be transferred between the time slots allocated to the different bits, potentially
resulting in bit errors at the receiver. PMD is particularly difficult to combat because
it is inherently stochastic in nature. As the distance, z, along the fiber increases,
the eigenfunctions R1 and R2 rotate rapidly and randomly in the (x, y)-plane but
are otherwise unchanged. At each fixed distance, they also rotate randomly over
time on a scale of minutes to hours due to temperature variations and mechanical
vibrations. Consequently, a PMD compensator must be continually optimized to
correct for PMD-induced distortions in the received optical signal.

The equation governing the z-evolution of U is the coupled nonlinear Schrödinger
equation (CNLS). The CNLS is derived from Maxwell’s equations by averaging over
the rapid variations of the carrier wave, exp[iβ(ω0, z)z − iω0τ ], and over the eigen-
functions, R1 and R2 [43]. The CNLS states that

∂U

∂z
= gU + iΔBU − ΔB′ ∂U

∂t
− i

2
β′′ ∂

2U

∂t2
+ iγ

[
|U|2U − 1

3
(U†σ2U)σ2U

]
.(2.2)

Here, the scalar coefficient g is the loss coefficient of the fiber. The factor ΔB =
ΔB(ω0, z) is the birefringence matrix, which is a 2× 2 Hermitian matrix that models
the anisotropy and asymmetry of the linear dielectric response tensor of the fiber,
averaged with respect to the eigenfunctions R1 and R2. The matrix ΔB′ is defined

by ΔB′ = ∂ΔB
∂ω (ω0, z), and the scalar β′′ = ∂2β

∂ω2 (ω0, z) is the chromatic (frequency-
dependent) dispersion. The scalar coefficient γ measures the strength of the Kerr
nonlinearity in the fiber. The Kerr nonlinearity arises from the fact that the refractive
index of optical fiber has a small dependence on the optical power |U|2 of the light.
Finally, † denotes conjugate transpose, and σ2 is the second of the three Pauli spin
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.(2.3)

Because of the polarization properties of glass [48], optical fiber is linearly bire-
fringent, which means that

ΔB = Δβ(cos θσ3 + sin θσ1),(2.4)

where Δβ is the magnitude of birefringence and θ is an orientation angle whose
significance will be explained later. Since θ is a very weak function of frequency, we
assume that ΔB′ = Δβ′(cos θσ3 + sin θσ1). Wai and Menyuk [58] proposed a model
for the random variation of the birefringence along the fiber in which Δβ′ cos θ and
Δβ′ sin θ are independent Gaussian random processes with mean zero and the same
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standard deviation [58]. Recently, Galtarossa et al. [19], [20] experimentally validated
this model.

The random variations in the fiber birefringence occur on a length scale of 1–100 m
and result in very rapid changes in the polarization state of the light as it propagates.
However, since optical communication systems are at least several hundred kilometers
long, it is not computationally feasible to simulate propagation through birefringent
fiber by using a numerical method that takes small enough steps along the fiber to
track these rapid changes in the polarization state of the light. This problem can be
overcome by transforming the rapid changes in the polarization state of the light at
the carrier frequency out of the CNLS to obtain the Manakov-PMD equation [42],
[43]:

∂W

∂z
= gW − Δβ′σ̄3

∂W

∂t
− i

2
β′′ ∂

2W

∂t2
+ iγ|W|2W.(2.5)

Here W(z, t) = Q(z)U(z, t), where Q(z) is a unitary transformation and σ̄3 =
T(z)−1σ3T(z) for a matrix T(z) that is determined by the birefringence parameters
Δβ and θ. To explain the rationale for making a transformation of the form Q(z), we
first note that the Fourier conjugate of the retarded time, t, is frequency, ω, measured
relative to the carrier frequency, ω0, of the optical signal. Even though the Fourier
transform, Û(z, ω), of U(z, t) varies rapidly with the propagation distance z, it only
has a very weak dependence on frequency, ω. Therefore, it makes sense to transform
U so that the new coordinates exactly follow the rapid changes of the polarization
state of the signal at the center frequency, ω0, i.e., so that Ŵ(z, 0) is constant in z.

In this new coordinate system, the Fourier transform, Ŵ(z, ω), of the solution of the
Manakov-PMD equation measures the slow variation of the polarization state of the
light at each frequency, ω, with respect to the polarization state of the light at the
carrier frequency, ω0.

2.2. The linear PMD equation. In this subsection we review the linear PMD
equation which is a special case of the Manakov-PMD equation. The linear PMD
equation is appropriate for studying the statistical behavior of PMD and PMD com-
pensators. We will use this equation to explain how PMD results in the spreading
and distortion of optical pulses.

The linear PMD equation is obtained by omitting all but the second term on the
right-hand side of (2.5). Another widely studied special case of the Manakov-PMD
equation is the scalar nonlinear Schrödinger equation, which is the equation obtained
when there is no birefringence (Δβ′ = 0) and the optical signal at the transmitter
is polarized [25], [43]. In many systems, the primary source of bit errors is not the
nonlinear effects that are modeled by the scalar nonlinear Schrödinger equation but
rather the effects of PMD that are modeled by the linear PMD equation. Moreover,
because PMD is a stochastic effect, and because bit errors are so rare, PMD must
be studied statistically using a large number of randomly chosen realizations of the
birefringence of the optical fiber. Simulations that do not include the Kerr nonlinearity
are computationally several orders of magnitude faster than those that do.

We now explain how PMD gives rise to the spreading and distortion of optical
pulses, and introduce the concept of differential group delay. The linear PMD equation
is most readily analyzed in the frequency domain, where

∂Ŵ

∂z
= iΔβ′ σ̄3(z)ω Ŵ.(2.6)
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The solution to this equation can be expressed in the form Ŵ(z, ω) = f̂(ω) Â(z, ω),

where f̂ is a real scalar-valued function, and |Â(z, ω)|2 = 1. As a function of time, the
power of the optical signal is given by |f |2, where f is the inverse Fourier transform

of f̂ . The vector Â is the polarization state of the signal. Suppose that F = F(z, ω)
is a matrix such that

∂Â

∂ω
= iFÂ.(2.7)

It can be shown that F is a Hermitian matrix that is determined by the quantities
Δβ′ and σ̄3 that characterize the birefringence of the optical fiber [43]. The absolute
difference of the two real eigenvalues of F is called the differential group delay (DGD),
and the eigenvectors of F are called the principal states of polarization. The DGD
and the principal states of polarization depend on both the propagation distance, z,
and the frequency, ω.

To see how the DGD is related to pulse spreading, suppose for simplicity that
the matrix F is ω-independent, at least over the frequency bandwidth of the signal,
Ŵ. In this case, we say that the fiber birefringence generates only first-order PMD.
Diagonalizing F, we see that

Â(z, ω) = PeiωD(z)P†Â(z, 0),(2.8)

where P = (v1,v2) is unitary, and D(z) = diag
(
− τ(z)

2 , τ(z)
2

)
. Here τ(z) is the DGD.

(By ignoring a common phase, we can assume that trace(F) = 0.) Therefore, the
optical signal is given by

W(z, t) = c1f
(
t + τ(z)

2

)
v1 + c2f

(
t− τ(z)

2

)
v2,(2.9)

where c1 and c2 are complex constants with |c1|2 + |c2|2 = 1. The DGD is therefore
the time delay between light that is launched in the two different principal states of
polarization. If the power of an optical pulse is split between the two principal states
(i.e., ck �= 0 for k = 1, 2) and the DGD is large, then the power of the pulse is spread
out and distorted as a function of time and bit errors are more likely to occur at the
receiver.

2.3. The Stokes representation. In our discussion so far, we have modeled
the polarization state of light using the Jones representation. In this subsection, we
review an alternate approach based on the Stokes representation [5], [24], [43], [44].
Using the Stokes representation, we can regard the propagation of the polarization
state of light through birefringent optical fiber as a random walk on a two-dimensional
sphere.

With the Jones representation, polarization states are represented as unit vectors
U ∈ C2, i.e., as points on the sphere S3 ⊂ C2, while with the Stokes representation
they are represented using unit Stokes vectors, S = (S1, S2, S3) ∈ S2 ⊂ R3. The
sphere of unit Stokes vectors is called the Poincaré sphere. The mapping ψ : S3 → S2

from Jones space to Stokes space is defined by S = ψ(U) = U†−→σ U, where −→σ =
(σ3, σ1,−σ2) is the Pauli spin vector. For each S, the inverse image ψ−1(S) is the
circle in S3 that consists of all Jones vectors of the form Uϕ = eiϕU, where ϕ ∈ S1

and ψ(U) = S. The angle ϕ is an overall phase that plays no role in the theory
of PMD. Since the matrix acting on the right-hand side of (2.6) is an element of
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the Lie algebra su(2) of trace-free skew-Hermitian matrices, the solution of the linear-

PMD equation is of the form Ŵ(z, ω) = T(z, ω)Ŵ(0, ω), where the PMD-transmission
matrix, T, is an element of the Lie group SU(2) of unitary matrices with determinant 1.
The action of an element T of SU(2) on S3 ⊂ C2 is equivalent to the action of an
element R of the special orthogonal group, SO(3), on S3, where T is mapped to R

by the 2-1 and onto map Ψ : SU(2) → SO(3) that is determined by R−→σ = T†−→σ T.
In particular, if R is a rotation by an angle θ about an axis r̂ ∈ S2 ⊂ R3, then
T = ±[cos(θ/2)I − i sin(θ/2)r̂ · −→σ ]. The Lie algebra so(3) of SO(3) consists of all
antisymmetric matrices. The induced map between Lie algebras, Ψ∗ : su(2) → so(3),

is defined by Ψ∗(i
−→
β · −→σ ) = β×. Here

−→
β = (β1, β2, β3) ∈ R3 and

β× =

⎛
⎝ 0 −β3 β2

β3 0 −β1

−β2 −β1 0

⎞
⎠(2.10)

determines an isomorphism between so(3) and R3. Therefore, if Ŝ is the Stokes vector

that is equivalent to the Jones vector Â defined below (2.6), then in Stokes space, the
linear PMD (2.6) is given by

∂Ŝ

∂z
=

−→
β × Ŝ,(2.11)

where
−→
β =

−→
β (ω, z) is the local birefringence vector of the fiber. If the local bire-

fringence vector is constant, then the polarization state Ŝ at a single frequency traces
a circle on the Poincaré sphere centered at

−→
β . However, in real linearly birefrin-

gent fibers, the local birefringence vector,
−→
β , moves randomly on the equator of the

sphere.1 Therefore, the polarization state of the light, Ŝ, moves randomly over the
entire sphere. More specifically, given a length of birefringent fiber and an optical
signal with a given input polarization state, consider the probability distribution of
output polarization states, Ŝ, on the Poincaré sphere, where the samples are gener-
ated from different realizations of the fiber birefringence. The length scale required
for the probability distribution of Ŝ to become uniform on the sphere is on the order
of a kilometer, which is short compared to the total length of a communication sys-
tem. These observations provide the primary motivation for the coarse-step method
for modeling PMD, which we will discuss in section 2.4 below.

To explain how the DGD evolves as a function of distance along the fiber, we
introduce the polarization dispersion vector,

−→
Ω =

−→
Ω (ω, z) = (Ω1,Ω2,Ω3), which is

defined in terms of the Hermitian matrix F in (2.7) by F = trace(F)I+ 1
2

−→
Ω ·−→σ . Then

the Stokes formulation of (2.7) is

∂Ŝ

∂ω
=

−→
Ω × Ŝ.(2.12)

Consequently, the unit vectors ±−→
Ω /|−→Ω | represent the two principal states of polar-

ization of the fiber on the Poincaré sphere, and the magnitude, |−→Ω |, is the DGD.
Finally, the dynamical PMD equation, which describes the evolution of the polariza-
tion dispersion vector, is given by [46]

∂
−→
Ω

∂z
=

∂
−→
β

∂ω
+

−→
β ×−→

Ω .(2.13)

1The angle θ in (2.4) is half the angle between
−→
β and the positive X-axis.
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This equation can be derived by differentiating (2.11) with respect to ω and (2.12)
with respect to z.

2.4. The probability space of fiber realizations. Each choice of a set of
random local birefringence vectors along the fiber is called a fiber realization. In this
subsection, we describe the coarse-step method that is used to generate different fiber
realizations.

When a PMD compensator is used, each time the fiber realization changes, the
compensator needs to be reset via optimization. In reality, the fiber realization can
both drift gradually over time due to temperature fluctuations and change abruptly
to an unrelated realization in response to large disturbances such as a truck passing
overhead [6], [32], [52], [57]. We assume that when the fiber realization changes,
there is no correlation between the old and new realizations. Statistically we model
PMD by defining an appropriate space of fiber realizations, imposing a probability
distribution on this space, and devising a method for randomly sampling the space of
fiber realizations. To do so, it is commonly assumed that optical fiber is homogeneous.

In other words, the statistical properties of the local birefringence vector
−→
β do not

depend on distance, z, along the fiber. We will consider a space of fiber realizations
consisting of fibers of a given length with a prescribed average DGD. In reality, such
a space of fiber realizations could correspond either to fibers that are fabricated using
the same manufacturing process, or to realizations of a single fiber whose birefringence
is randomly varying over time.

The most commonly used method for generating fiber realizations with a given
average DGD is the coarse-step method [13], [59] which we now describe using the
Stokes representation [44]. The coarse-step method can be regarded as a computa-
tionally efficient, statistically correct, numerical method for solving the linear-PMD
(or Manakov-PMD) equation. In the coarse-step method, the action of a birefringent

fiber on the Stokes vector, Ŝ, of the light is modeled as the concatenation of the ac-
tion of N segments of fixed-birefringence fiber, each of which is preceded by a random

rotation of Ŝ on the Poincaré sphere. If Ŝ
(n)

(ω) denotes the Stokes vector of light at
frequency ω after the nth fiber segment, then

Ŝ
(n)

(ω) = R(ω) QnŜ
(n−1)

(ω).(2.14)

Here, the matrix R(ω) is the element of SO(3) that is the rotation about the X-axis
through an angle Δβ′ωΔz. This rotation models the propagation of light through
each of the fixed-birefringence fiber segments. The quantity Δβ′ is the magnitude
of the frequency derivative of the local birefringence vector of each of the N fiber
segments, and is related to the average DGD by Δβ′ = (3πN/8)1/2 DGD/L, where
L is the length of the fiber [42]. The matrix Qn is a frequency-independent, random
rotation that is chosen using the canonical uniform probability distribution on SO(3).
Specifically, Qn can be expressed as an Euler-angle rotation matrix [23] of the form
Qn = RX(ψn) RY (θn) RX(φn). Here, RX(ψ) is a rotation about the X-axis through
an angle ψ. The angles ψn and φn are uniformly distributed in [0, 2π], and cos θn
is uniformly distributed in [−1, 1]. In the special case that N = 1, the coarse-step
method generates only first-order PMD. For a large enough number of fiber segments,
the coarse-step method produces the same statistical properties as are obtained using
Wai and Menyuk’s model for the randomly varying birefringence [42]. Moreover, the
coarse-step method is much more computationally efficient, since it takes steps on
the order of a kilometer rather than the meter-long steps required to track the rapid
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variations in the birefringence.
The dynamical PMD equation (2.13) can also be solved using a coarse-step ap-

proach. If
−→
Ω (n) =

−→
Ω (n)(z, ω) is the polarization dispersion vector after the nth fiber

segment, then

−→
Ω (n) = R(ω)

[
Qn

−→
Ω (n−1) + Δ

−→
Ω n

]
,(2.15)

where Δ
−→
Ω n = Δβ′Δz−→e X is the polarization dispersion vector of the nth segment.

Here −→e X = (1, 0, 0)T , and we regard
−→
Ω as a column vector. In section 3 below, we

will use (2.15) to explain the basic idea behind PMD compensation.
There is a large literature on the statistical properties of PMD. The most im-

portant result is that in the limit as N → ∞, the DGD is Maxwellian distributed

with distribution fDGD(x) = 2πx2

α3 exp(−x2/2α2), where α = (π/8)1/2 DGD [46]. In
particular, there is an extremely small probability that the DGD of a fiber realization
is significantly larger than the average DGD.

2.5. The receiver and performance evaluation metrics. To evaluate the
degree to which a PMD compensator reduces the probability of errors due to PMD,
we also need a model of the receiver. The purpose of the receiver is to convert the
transmitted optical signal into an electrical current, to determine a clock time that is
used to set the beginning and ending points of the time intervals for each of the bits
being transmitted [55], and finally to make a decision as to whether the voltage of
the received electrical current in each of these bit slots is to be received as a one or a
zero. This decision is based on a choice of decision voltage. If the received voltage is
larger than the decision voltage, the bit is declared to be a one. Otherwise a zero is
received.

A receiver model should include an algorithm to evaluate the performance of the
communication system. There are several ways to measure performance—the most
fundamental means is via the bit-error ratio, which is given by BER = 1

2 (p1|0 + p0|1).
Here p1|0 is the probability of receiving a one given that a zero was transmitted,
and p0|1 is the probability of receiving a zero given that a one was transmitted. In
a real system bit errors occur due to the combined effect of PMD and noise from
optical amplifiers. Since we did not include noise in our simulations, we measured the
performance using a quantity called the eye opening [62] rather than the BER. The
eye opening of a noise-free signal at the receiver is defined to be the difference between
the smallest electrical voltage of a one and the largest electrical voltage of a zero at
the clock time.2 There is a strong correlation between the BER and the eye opening
[41], [49], [63]. To study the degree to which PMD degrades the performance of the
system, we define the eye opening penalty for a particular fiber realization to be the
ratio between the eye opening for a version of the system that has just a transmitter
and receiver (i.e., no fiber and hence no PMD) and the eye opening for the system
with a transmitter, PMD due to the given fiber realization, and a receiver. The more
the PMD reduces the eye opening, the larger the eye opening penalty for that fiber
realization. System designers typically specify that a system outage occurs if the eye
opening penalty exceeds a specified threshold, such as 2 dB [52].3 They require that

2The term “eye opening” is used here because in Figure 3.2 the image of each signal under the
mapping t �→ t mod T looks like an eye, where T is the bit period.

3A linear factor of x corresponds to 10 log10 x decibels (dB). So, if the eye opening penalty for
a particular fiber realization is 2 dB, then the eye opening is 63% of the value one would see in a
system without PMD.
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the outage probability, which is the probability that such an outage occurs, be on the
order of 10−3 to 10−6, corresponding to a few minutes to hours of outage per year. A
major goal of this paper is to present a numerical model that can be used to assess
the degree to which a PMD compensator can reduce the outage probability due to
PMD.

3. Polarization-mode dispersion compensation. In this section, we discuss
the optical PMD compensator whose performance we study in this paper. As discussed
in section 2, imperfections in optical fibers result in two principal states of polarization
for the light. Light traveling in the fast principal state arrives at the receiver ahead
of the light traveling in the slow state. In practice the power in the optical signal is
split between these two principal states, so that the optical pulses used to encode the
binary data become spread out and distorted. Consequently, over long distances, the
message being transmitted will be corrupted by errors. To compensate for this spread
of information, physical devices called optical PMD compensators can be used.

A variety of designs have been proposed for optical PMD compensators [52],
[53]. We chose to study a simple compensator that is easy to build and operate. To
motivate the design of this compensator, we consider the important special case that
the transmission fiber has only first-order PMD, i.e., that the polarization dispersion
vector,

−→
Ω T , of the transmission line is frequency independent. Recall from (2.9) that

if the polarization state of the signal is not closely aligned with either of the principal
states of the transmission fiber, then the larger the DGD, |−→Ω T |, the more the signal
will be distorted due to PMD, and the greater the probability of a bit error. The
simple PMD compensator we study is a device that can at least partially cancel out
the DGD of the transmission fiber. The idea is to insert a segment of compensation
fiber between the transmission fiber and the receiver, and to rotate the polarization
state of the signal between the transmission and compensation fibers so as to align the
fast principal state

−→
Ω T of the transmission fiber with the slow principal state −−→

Ω C

of the compensation fiber. Then by (2.15), the total polarization dispersion vector,
−→
Ω R, at the receiver is given by

−→
Ω R = Q

−→
Ω T +

−→
Ω C ,(3.1)

where Q is the rotation between the transmission and compensation fibers. Conse-
quently, if the DGD of the compensation fiber were equal to that of the transmission
fiber, then the total DGD at the receiver would be zero; i.e., |−→Ω R| = 0.

Simple compensators based on this principle have been built, and a diagram of
one is shown in Figure 3.1. The optical signal generated in the transmitter propagates
through the transmission fiber. The compensator itself is located immediately prior
to the receiver and consists of a polarization controller that can be adjusted to trans-
form the polarization state of the fiber by any desired rotation, followed by a short
segment of compensation fiber. The compensation fiber is designed to be polarization
maintaining in that its principal states of polarization and its DGD are fixed. Notice
that since the transmission DGD, |−→Ω T |, of a fiber realization may not equal the fixed

DGD, |−→Ω C |, of the compensator, the total DGD, |−→Ω R|, in (3.1) may not be zero. In
addition, since this compensator consists of only one polarization controller and one
segment of polarization maintaining fiber, it can compensate only for the DGD at the
carrier frequency, and not for PMD distortions at all frequencies in the signal.

After passing through the compensation fiber, the optical signal is monitored and
a feedback loop is used to adjust the rotation performed by the polarization controller.
Given a realization of the birefringence in the transmission fiber, the feedback loop
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Fig. 3.1. An optical communication system with a simple PMD compensator.
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Fig. 3.2. Compensated versus uncompensated signals.

can be modeled by optimizing the function from the state space SO(3) of all possible
rotations of the polarization controller to R, which is given by the monitor.

In Figure 3.2, we show the effect that PMD can have on a signal and how a
PMD compensator can decrease the signal distortion due to PMD. The results we
show are for a particular fiber realization. Different fiber realizations could have quite
different effects on the signal. We plot the received electrical current as a function of
time in three cases. The thin solid curve shows the case where there is no PMD in
the transmission line and hence no pulse distortion. (This signal is called the back-
to-back signal as the transmitter and receiver abut each other.) The data pattern
1001101011110000 can be easily recognized in the signal. Notice that the voltage in
the signal does not return to zero between two consecutive ones. Signals like this are
called non–return-to-zero and are commonly used in communication systems. The
thick solid curve shows the same signal after it has traveled through the transmission
fiber with PMD. The DGD was 75 ps at the carrier frequency, and there was a strong
frequency-dependence to the polarization dispersion vector. The signal has clearly
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been distorted due to PMD. The circle at 1100 ps shows the minimum-voltage one,
and the cross at 700 ps shows the maximum-voltage zero. The eye opening, which is
the difference between the height of the circle and the cross, is 0.02 mV. Therefore the
eye opening after the transmission fiber is very small compared to the back-to-back
eye opening, which is 0.98 mV. Finally, the thick dashed curve shows this same signal
after compensation. The circle at 600 ps shows the minimum-voltage one, and the
cross at 500 ps shows the maximum-voltage zero. The compensator has increased the
eye opening to 0.81 mV, which is a marked improvement over the uncompensated
case.

In this paper, we study the performance of this PMD compensator for three
choices of monitor. Different monitors and different random realizations of the bi-
refringence in the transmission fiber correspond to different choices of the objective
function to be optimized. Since our ultimate goal is to minimize the bit-error ratio,
the monitor should be chosen so that the monitored value is strongly correlated (or
anticorrelated) to the bit-error ratio, i.e., to the eye opening. The most obvious choice
of monitor is the bit-error ratio itself, or the eye opening. However, it is not possible
to measure the bit-error ratio in a real system, and it is often not feasible to measure
the eye opening in real time.

We will now briefly describe each of the monitors used in our numerical exper-
iments—the eye opening, spectral line, and the DOP ellipsoid. The eye opening
monitor measures the eye opening of the signal after propagation through the system,
relative to the eye opening of the back-to-back signal. Optical signals typically have
carrier frequencies of about 200 THz (or about 2×1012 Hz) and a bandwidth of about
20 GHz (or 2×1010 Hz). The optical signal is sent through a photodetector to convert
it from an optical to an electrical signal. The electric signal has a shifted frequency
spectrum (shifted relative to the optical signal) in the range [0, 10] GHz. The spectral
line monitoring technique requires that an electric filter be used to monitor the power
in a particular frequency (or tone). In our work we have used a filter to monitor
the power in the 5 GHz tone using a window of width 0.5 GHz. The spectral line
feedback mechanism attempts to maximize the power in this tone relative to the
reference back-to-back signal, which has gone straight from transmitter to receiver
without encountering the optical fiber (hence without being affected by PMD).

In the case of only first-order PMD, we will show in (4.17) that the power in
the 5 GHz spectral line decreases monotonically with increasing DGD between DGD
values of 0 and 100 ps (the width of each bit slot; see also Figure 1 in [51]). Thus
it would be hoped that for moderate amounts of DGD, an optimization algorithm
which maximizes the power in this spectral line (or frequency) will compensate for
the DGD present in the fiber. As has been discussed earlier, the eye opening is
correlated to the DGD, and we see now that for first-order PMD, the amount of DGD
is correlated to the power in the spectral line. Thus this feedback measure achieves
our aim of providing a real-valued function correlated to the eye opening. In the case
of higher-order PMD, this correlation becomes more complicated.

We now explain why the functions to be optimized can be regarded as being
defined on the 2-sphere, S2, rather than on the three-dimensional manifold, SO(3).
As in our discussion of the coarse-step method in section 2.4, the rotation Q in (3.1)
can be expressed in the form Q = RX(ψ) RY (θ) RX(φ), where ψ, θ, φ ∈ [0, 2π], and
RX(φ) is a rotation by an angle φ about the X-axis. We assume that the polarization

dispersion vector,
−→
Ω C , of the compensator is parallel to the X-axis. Consequently,

−→
Ω R = RX(ψ)

[
RY (θ) RX(φ)

−→
Ω T+

−→
Ω C

]
. Since the final rotation, RX(ψ), does not affect

the values of any of the objective functions, we can ignore it and regard Q = Q(φ, θ)
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as a function of (φ, θ) alone; i.e.,
−→
Ω R(φ, θ) = RY (θ) RX(φ)

−→
Ω T +

−→
Ω C .(3.2)

Since RX(π) = diag(1,−1,−1), RY (−θ)RX(π) = RX(π)RY (θ). Therefore, the rotation
Q(φ+π,−θ) has the same effect as the rotation Q(φ, θ). Consequently, we can regard
the objective functions as being defined on the rectangle R = {(φ, θ) ∈ [−π, π]×[0, π]}.
Moreover, ignoring a final rotation about the X-axis, Q(φ, 0) = I and Q(φ, π) = RY (π)
are constants, independent of φ. Therefore, the space of rotations performed by
the polarization controller is actually diffeomorphic to the sphere, S2: The rotation
Q(φ, θ) corresponds to the point on the sphere with spherical coordinates (φ, θ), where
φ = φ0 is a circle of longitude and θ = θ0 is a circle of latitude. Consequently, the
objective functions are actually defined on S2.

Next, we examine the structure of the objective function for the eye opening and
spectral line monitors. In Figure 3.3, we show a contour plot of the eye opening ob-
jective function for a particular fiber realization. In this figure, we have parametrized
the sphere in the space of rotations using spherical coordinates (φ, θ) so that the
horizontal lines θ = −π and θ = π map to the south and north poles, respectively,
and the vertical lines φ = ±π both map to the same great semicircle of longitude.
The eye opening objective function in Figure 3.3 has two local maxima located close
to (φ, θ) = (−π, π/2) and (φ, θ) = (0, π/2). The spectral line objective function in
Figure 3.4 has a similar structure, although it is smoother than the eye opening ob-
jective function. In particular we note that the steep ridge located between φ = 0 and
φ = −π/2 for the eye objective function has been considerably smoothed out in the
spectral line objective function diagram. Thus local optimization techniques would
be more effective at finding optima for the spectral line than for the eye in this case.

To motivate the degree of polarization ellipsoid monitor, we observe that when a
signal propagates through fiber with PMD there are two basic reasons why the eye
opening at the receiver can be large: Either the total DGD is small or the input state
of polarization of the signal is aligned with one of the principal states of the fiber [47].
In Figure 3.3, the eye opening is large near (−π, π/2) because the total DGD is small
there, and it is large near (0, π/2) because the rotation of the polarization controller

is such that the principal state of the entire length of fiber,
−→
Ω R, is parallel to the

input state of polarization of the signal. In a real system, the input polarization state
can drift over time. Consequently, it is better to operate a PMD compensator near
where the DGD is minimized rather than near where the input polarization state of
the signal is aligned with a principal state of the fiber [52]. The DOP ellipsoid is one
such monitor.

The DOP ellipsoid monitor is obtained by polarization scrambling the DOP of the
signal. The DOP is used to monitor PMD because polarized signals become depolar-
ized when they propagate through fiber with PMD. The degree to which the signal is
depolarized depends on the DGD and on the input state of polarization. Any optical
signal can be decomposed as the sum of polarized and unpolarized components [5].
The DOP is the ratio of the power in the polarized component to the total power. If
U(t) = f(t)U0 denotes the Jones vector of an input polarized signal, then the total

power is S0 =
∫∞
−∞ |f̂(ω)|2 dω, where f̂ is the Fourier transform of f . The power in

the polarized component of the signal is given by the length of the average Stokes
vector,

S =

∫ ∞

−∞
Ŝ(ω) |f̂(ω)|2 dω,(3.3)
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Fig. 3.3. Eye opening objective function for a typical fiber realization.
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Fig. 3.4. Spectral line objective function for a typical fiber realization. (Same fiber as is shown
in Figure 3.3.)

where Ŝ(ω) is the Stokes vector at frequency ω defined in section 2.3. The DOP is
given by DOP = |S|/S0.

To explain why a large DGD results in a low DOP, consider a fiber with only
first-order PMD for which the polarization dispersion vector is fixed at the north
pole. Then, as a function of frequency, ω, the Stokes vector Ŝ(ω) traces out an arc of

a circle of latitude on the sphere. By (2.12), the larger the DGD, |−→Ω |, the longer the
arc. Suppose, for example, that the input polarization state is such that the circle of



MODELING COMPENSATORS 753

  −π   −π/2   0   π  π/2  0

  π/2

  π

  φ

  θ

DOP Objective Function

0.55

0.65

0.75

Fig. 3.5. DOP ellipsoid objective function for a typical fiber realization. (Same fiber as is
shown in Figure 3.3.)

latitude is the equator, and the DGD is large enough so that Ŝ(ω) traces out the entire
equatorial circle as ω varies over the bandwidth of the signal. Then, by symmetry,
the integral in (3.3) is close to zero and so the DOP is small. More generally, since
(3.3) is a weighted average of vectors, the larger the DGD, the smaller the DOP.

The DOP ellipsoid is defined [9], [14], [15], [50], [54] so that for each unit vector
Sin, polarized light with Stokes vector Sin is sent in to a fiber with PMD, and the
average output Stokes vector, Sout, is measured. The set of all such vectors Sout forms
the DOP ellipsoid. The length of the shortest principal axis of the DOP ellipsoid is
approximately given by [14]

λmin ≈ 1 − 1
2 Δω2 |−→Ω |2.(3.4)

Here Δω2 = (1/S0)
∫∞
−∞ ω2|f̂(ω)|2 dω is a measure of the square of the bandwidth of

the signal, and |−→Ω | is the DGD at the carrier frequency. Therefore, with the DOP
ellipsoid feedback mechanism, we aim to maximize λmin and therefore to minimize
the DGD. To fit the ellipsoid we used a Euclidean invariant linear least-squares algo-
rithm that minimized the algebraic distance to 36 output Stokes vectors Sout [21]. In
Figure 3.5, we show a plot of the DOP ellipsoid objective function for the same fiber
realization as in Figures 3.3 and 3.4. This objective function has a single maximum
that is located near the maximum of the eye opening objective function (and which
corresponds to minimizing the DGD). However, unlike the case of the eye opening and
spectral line objective functions, it does not have a second local maximum correspond-
ing to the case that the input state of polarization is aligned with one of the principal
states of the fiber. The shortest axis of the ellipsoid corresponds to the worst possible
choice of input polarization state. The worst state is the one for which the power in
the signal is evenly split between the two principal states of polarization of the fiber,
rather than being aligned with one of them. Therefore the DOP ellipsoid objective
function depends on the DGD but not on the input polarization state of the signal.
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4. Analysis of the objective functions for first-order PMD. In section 3
we saw that for a particular fiber realization the eye opening and spectral line objective
functions had two local maxima, whereas the DOP ellipsoid objective function had
only one local maximum which corresponded to minimizing the DGD. In this section
we show that this behavior is typical by deriving formulae for the DOP ellipsoid and
spectral line objective functions in the special case of first-order PMD, i.e., in the
case that the PMD vector

−→
Ω T of the transmission fiber is frequency independent.

In section 7 we will use numerical simulation to quantify the performance of a PMD
compensator, and we will use the analysis in this section to help explain those results.
In section 7 we also provide statistical evidence that for an arbitrary fiber realization,
we can regard the objective function as being a perturbation of an objective function
for a fiber with only first-order PMD. This statistical result is to be expected since
for many fiber realizations

−→
Ω T has only a weak dependence on frequency across the

bandwidth of the signal.
As we explained in section 3, the domain for the two-dimensional optimization

problem we wish to solve is the unit sphere, S2 ⊂ R3. In other words, we want to
solve the problem

max
p∈S2

J(p),(4.1)

where J : S2 → R is an objective function defined by one of the three feedback
mechanisms discussed earlier. In section 7, we will in fact solve an unconstrained
optimization problem of the form

max
(φ,θ)∈R2

J(φ, θ),(4.2)

where (φ, θ) are spherical coordinates and J is now regarded as a doubly periodic
function on R2. This unconstrained form of the problem is easier to solve computa-
tionally.

For our analysis of the DOP ellipsoid, we assume that the polarization dispersion
vector

−→
Ω R of the entire system from transmitter to receiver, including the compensa-

tion fiber, is frequency independent. Let τT and τC be the DGD of the transmission
and compensation fibers, respectively. We can assume that

−→
Ω C = τC−→e X . If we

let Ψ be the angle between
−→
Ω T and

−→
Ω C , then in spherical coordinates,

−→
Ω T =

τT (cos Ψ, cosβ sin Ψ, sinβ sin Ψ)T for some angle β. Substituting (3.2) into (3.4), we
find that the DOP ellipsoid objective function is given by

J(φ, θ) = 1 − 1
2 Δω2

[
τ2
C + τ2

T + 2τCτTH(φ, θ)
]
,(4.3)

where

H(φ, θ) = cos Ψ cos θ + sin Ψ sin θ sin(φ− β).(4.4)

If Ψ �= 0, π, then the optimization problem (4.2) has six critical points (φ, θ) in
[−π, π] × [0, π]. The global maximum of H has value 1 and is located at (φ, θ) =
(β + π/2,Ψ), and the global minimum is −1 at (φ, θ) = (β − π/2, π − Ψ). There
are saddle points at (β, 0), (β + π, 0), (β, π), and (β + π, π). These saddle points
lie on the singularity set {θ = 0} ∪ {θ = π} of the spherical coordinate mapping
from [−π, π] × [0, π] to S2, and are mapped to (0, 0,±1) ∈ S2. However, they do not
correspond to critical points for the optimization problem (4.1) on S2, since (0, 0,±1)
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Fig. 4.1. DOP ellipsoid objective function obtained using (4.3) for the first-order PMD approx-
imation of the fiber in Figure 3.5.

are not critical points of

max
(x,y,z)∈R3

H(x, y, z) = cos(Ψ)z + sin(Ψ)y subject to x2 + y2 + z2 = 1.(4.5)

If Ψ = 0 or π, then H(φ, θ) = ± cos θ has global optima at θ = 0, π, and these critical
points are also global optima for the problem (4.1) on the sphere. To summarize, in
the case of only first-order PMD, the DOP ellipsoid objective function on S2 has one
maximum and one minimum which is antipodal to the maximum.

Our analysis agrees well with the numerically computed objective function in
Figure 3.5. Given a fiber realization, we can obtain an associated fiber realization
with only first-order PMD by computing the polarization dispersion vector,

−→
Ω T ,

at the carrier frequency of the signal. For the fiber realization in Figure 3.5, the
parameters in the formula for

−→
Ω T are τC = 30 ps, τT = 2.68 τC , Ψ = 105◦, and

β = −65◦. We chose
√

Δω2 = 8.75 × 109 Hz, so as to fit the result in Figure 3.5,
as was done in [14]. In Figure 4.1, we show the DOP ellipsoid objective function
given by (4.3) with these parameters. The close agreement between the analytical
and numerical results is noteworthy since the PMD of the fiber realization used for
Figure 3.5 depends strongly on frequency. (In fact, the second-order PMD, |−→Ω ω|,
which is the length of the frequency derivative of the polarization dispersion vector,
is 3.1 times its mean value.)

For the analysis of the spectral line objective function, we work in Jones space with
matrices in SU(2) acting on C2, rather than in Stokes space. Suppose that the input
optical signal at the transmitter is of the form f(t)u0, where f is a real-valued scalar
function, and u0 ∈ C2 is constant. Let R be the element of SU(2) that corresponds to
the product

∏
n Qn of the random rotations used in the coarse-step method to model

a realization of the transmission fiber. If we approximate the transmission fiber by a
fiber with only first-order PMD, then by (2.8) the output optical signal v after the
PMD compensator is the C2-valued function whose Fourier transform is given by
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v̂(ω;φ, θ) = f̂(ω)BC(ω)Q(φ, θ)PeiωDP†Ru0,(4.6)

where P = (v1,v2) ∈ SU(2) is the matrix of principal states of the transmission fiber
and D = diag(−τT /2, τT /2). In addition,

Q(φ, θ) =

(
e−iφ/2 cos θ/2 −ieiφ/2 sin θ/2

−ie−iφ/2 sin θ/2 eiφ/2 cos θ/2

)
(4.7)

is the element of SU(2) that models the action of the polarization controller, and

BC(ω) =

(
e−iωτC/2 0

0 eiωτC/2

)
(4.8)

models the DGD in the compensation fiber. Let σ = τT +τC
2 and η = τT−τC

2 . Then

v(t;φ, θ) =

(
A11f(t + σ) + A12f(t− η)
A21f(t + η) + A22f(t− σ)

)
,(4.9)

where A = Q(φ, θ)(c1v1, c2v2). Here ck = v∗
kRu0 ∈ C is the projection onto the

principal state vk of the Jones vector of the signal at the central frequency after the
transmission fiber.

If we ignore the optical filter and model the electrical filter as a Dirac function
centered at frequency ωSL, then the spectral line objective function is given by

J(φ, θ) =
∣∣∣P̂ (ωSL;φ, θ)

∣∣∣2 , where P (t;φ, θ) = |v(t;φ, ω)|2(4.10)

is the received optical power.
To calculate an explicit formula for J we first express quadratic functions of A in

terms of the generalized Stokes vectors

Sjk = v†
j
−→σ vk, j, k ∈ {1, 2},(4.11)

where −→σ is the Pauli spin 3-vector defined in section 2.3 whose components are
elements of SU(2). Notice that S11 and S22 = −S11 ∈ R3 are the standard Stokes
vectors of v1 and v2, and that S21 = −S12 ∈ C3. If Qk denotes the kth row of Q(φ, θ),

then Q†
kQk = 1

2 (I + (−1)k−1r(φ, θ) · −→σ ) in SU(2), where

r(φ, θ) = (cos θ, sinφ sin θ,− cosφ sin θ)(4.12)

parametrizes a sphere. Then,

|A22|2 = 1
2 |c22|

2(1 − r · S22) and 	(A22A21) = − 1
2r · 	(c1c2S21),(4.13)

where 	 denotes the real part, with similar formulae for other quadratic functions of
A. Finally, let

ga,b(t) := f(t + a)f(t + b) and Ga,b := ĝa,b(ωSL) ∈ C.(4.14)

Combining (4.6)–(4.14), the objective function for the optimization problem (4.2)
on the plane is of the form

J(φ, θ) = 1
4 |α + r(φ, θ) · s|2,(4.15)
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Fig. 4.2. Spectral line objective function obtained using (4.15) for the first-order PMD approx-
imation of the fiber in Figure 3.4.

where α ∈ C and s ∈ C3 are defined by

α = |c1|2(Gσ,σ + Gη,η) + |c2|2(G−σ,−σ + G−η,−η),(4.16)

s =
{
|c1|2(Gσ,σ −Gη,η) + |c2|2(G−σ,−σ −G−η,−η)

}
S11

+ 2(Gσ,−η −G−σ,η)	(c1c2S21).

In the special case that there is no compensation (τC = 0, (φ, θ) = (0, 0)), we
obtain the well-known formula for the electrical power PSL in frequency ωSL as a
function of the DGD τ [28]:

PSL(τ) =
[
1 − 4γ(1 − γ) sin2(ωSLτ

2 )
]
PSL(0),(4.17)

where γ = |c1|2 is the power splitting factor and

PSL(0) =

∣∣∣∣
∫

|f(t)|2eiωSLtdt

∣∣∣∣2 .(4.18)

Notice the correlation between the power PSL and the DGD τ : For the 5 GHz spectral
line with γ = 1

2 , PSL(τ)/PSL(0) decreases from 1 to 0 as τ increases from 0 to 100 ps.
If we reformulate the optimization problem to be of the form (4.1) and make an

orthogonal change of coordinates, we obtain

max
x∈R3

J(x) = (x − x0)
TΛ(x − x0) subject to ||x|| = 1,(4.19)

where x0 ∈ R3 and Λ is a real diagonal matrix. Using the method of Lagrange
multipliers, we find that in the nondegenerate case there are no more than six critical
points on S2, including a global maximum and global minimum. However, it is not
possible to obtain explicit formulae for the critical points since they are the zeros of
a degree six polynomial.

In Figure 4.2 we plot the analytical objective function given by formula (4.15).
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This plot corresponds to an approximation of the fiber when only first-order PMD is
present, and it should be compared to the objective function shown in Figure 3.4. The
difference between the two objective functions is due to the large amount of second-
order PMD present in the fiber realization used for Figure 3.4. Note, however, that
the global maximum is in approximately the same location in both figures. There are
four critical points of the objective function on S2: two maxima, one minimum, and
a saddle point. As in the case of the DOP ellipsoid, the saddle points on {θ = 0} ∪
{θ = π} are not critical points of (4.19). Notice that the eye opening objective
function in Figure 3.3 has five critical points on S2.

5. Importance sampling for PMD. In this subsection, we review the impor-
tance sampling algorithm we used to accurately compute outage probabilities due to
PMD. Importance sampling increases the computational efficiency of Monte Carlo
sampling from the space of fiber realizations.

The problem of evaluating the performance of a PMD compensator is quite chal-
lenging because system designers require compensators to maintain a high degree of
integrity: The system should lose accuracy for no more than a few minutes per year.
It is too time consuming to gather enough samples to accurately measure such low
probabilities in a laboratory experiment. It is also not feasible to accurately eval-
uate the performance of a PMD compensator using numerical simulations based on
standard Monte Carlo sampling.

PMD-induced outages occur when the eye opening is small. In a system without
a PMD compensator, small eye openings are correlated to large DGD values, which
occur very rarely since large DGD values correspond to sampling from the tail of a
Maxwellian distribution. As we discussed in section 3, in systems with PMD compen-
sators, the DGD in the transmission line can be at least partially canceled out by the
DGD of the compensator at the carrier frequency. Therefore, after the compensator,
large DGD values at that frequency are exceedingly rare. In general, however, the po-
larization dispersion vector, and hence the DGD, depends on frequency. It is useful to
quantify the strength of this dependence using second-order PMD (SOPMD), which is

defined to be the length, |−→Ω ω|, of the partial derivative of the polarization dispersion
vector with respect to frequency. After the signal has traversed the compensation
fiber, the DGD may be small at the carrier frequency, but the SOPMD may still be
large enough that the eye opening will be small. To summarize, outages tend to occur
only in the very rare case that either the DGD or the SOPMD is large relative to its
average value. Recently, variance reduction techniques have been developed to greatly
increase the computational efficiency of Monte Carlo simulations of PMD. Variance
reduction techniques, which have been successfully applied in many contexts [16], [29],
[34], simulate low probability events of interest by concentrating Monte Carlo simula-
tions in those regions of the probability state space that are most likely to give rise to
these events. More specifically, in the context of PMD [4], let θ denote a particular
fiber realization in the space Θ of all possible fiber realizations, and let pθ be the
probability density function (pdf) on Θ. Let X : Θ → RK be a random variable

on Θ, such as the eye opening or the two-dimensional quantity, (|−→Ω |, |−→Ω ω|). Let
I : RK → {0, 1} be the indicator function for a prescribed range of values R ⊂ RK ,
i.e., I(x) = 1 if x ∈ R and I(x) = 0 otherwise. In practice, R could be a bin in the
histogram of X. Our goal is compute the probability, P , that X(θ) lies in R,

P =

∫
Θ

I(X(θ)) pθ(θ) dθ.(5.1)
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Using a standard Monte Carlo simulation, an estimator, P̂ , for P is given by

P̂ =
1

M

M∑
m=1

I(X(θm)),(5.2)

where we have drawn M samples θm according to pθ. If the events that lie in the
region R are very rare, i.e., P 
 1, then the relative variance of the Monte Carlo
estimator P̂ is σP̂ /P̂ ∼ (MP )−1/2. So, for example, if P = 10−6, as is typically the
case for an outage probability, then about M = 108 samples are required to ensure
that the relative variance of P̂ is on the order of 10%.

If a variance reduction technique is used, instead of drawing samples according
to pθ, we draw them according to a biasing distribution, p∗θ, chosen so that p∗θ(θ) is
relatively large when X(θ) ∈ R. Then the probability P can be expressed in the form

P =

∫
Θ

I(X(θ))L(θ) p∗θ(θ) dθ,(5.3)

where L = pθ/p
∗
θ is called the likelihood ratio. If we now use a Monte Carlo simulation

to draw samples θ∗
m from Θ according to the biasing distribution p∗θ, then an estimator

P̂ ∗ for P is given by

P̂ ∗ =
1

M

M∑
m=1

I(X(θ∗
m))L(θ∗

m).(5.4)

If the biasing distribution p∗θ is chosen appropriately, many more of the samples θm

will fall into the region R and contribute to the sum in (5.4). To ensure that P̂ ∗ is
computed correctly, each sample is weighted by its likelihood ratio, which is small
where p∗θ is large relative to pθ. If the biasing distribution is chosen appropriately,
then the relative variance of P can be much smaller than for an unbiased Monte Carlo
simulation.

One important question to address is how the biasing distribution should be
determined. When using importance sampling, the researcher must use a combina-
tion of physical intuition and mathematical analysis to determine appropriate biasing
distributions. Recently, two different variance reduction techniques—an importance
sampling algorithm and a multicanonical Monte Carlo method—have been developed
for simulations of PMD. These two methods take different approaches to solving the
problem of finding an appropriate biasing distribution. The multicanonical Monte
Carlo method of Berg and Neuhaus [1] is an iterative method that was adapted for
simulations of PMD by Yevick [60], [61] and later by A. Lima [37]. At the nth it-
eration of the method, samples are drawn from a biasing distribution p∗,nθ , and at
the end of each iteration, p∗,nθ is updated in such a way that as n increases there is
approximately an equal number of hits in each bin of the histogram of the eye open-
ing for that iteration. Consequently, after sufficiently many iterations, the relative
variance between the bins of the eye opening histogram will be small (even for the
low-probability, small eye opening bins).

The second technique (importance sampling) was developed by Biondini and Kath
[2], [3], [4], [17] to generate large values of first- and second-order PMD. Building on
the work of I. Lima [38], [39] and A. Lima [35], we used this algorithm to generate
the results in this paper. To accurately compute outage probabilities for a PMD
compensator, it is necessary to sample a large region in the (|−→Ω |, |−→Ω ω|)-plane. Since
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this cannot be done efficiently using a single choice of biasing distribution [39], several
biasing distributions, p∗j , are used, each of which targets a different region of the

(|−→Ω |, |−→Ω ω|)-plane. To compute the probability P in (5.3), we associate a weight
function wj : Θ → R to the distribution p∗j and define a multiple importance sampling

Monte Carlo estimator, P̂ , for P by

P̂ =

J∑
j=1

1

Mj

Mj∑
m=1

wj(θj,m) I(X(θj,m))L(θj,m),(5.5)

where Mj samples are drawn using the jth distribution, and θj,m is the mth such

sample. A formula for the relative variance of P̂ which was used for the results in this
paper is given in [4].

The choices of the biasing distributions and the weights can have a large effect on
the relative variance of the estimator P̂ in (5.5). For this paper, we used the simple
and efficient choice of weights that is given by the balance heuristic [56]. With this
heuristic,

wj(θ) =
Mjp

∗
j (θ)

J∑
j′=1

Mj′p∗j′(θ)

;(5.6)

i.e., the weight wj(θ) is the probability of realizing the sample θ using p∗j , relative to
the probability of realizing this sample using all J biasing distributions. Therefore,
the distribution p∗j is weighted most heavily in those regions of the sample space Θ
where it is largest.

To define a biasing distribution that targets a region of the (|−→Ω |, |−→Ω ω|)-plane,
Fogal, Biondini, and Kath [17] first determined fiber realizations that maximize a

specified linear combination of |−→Ω | and |−→Ω ω|. Consider, for example, the simplest case
of maximizing the DGD. From (2.15) we see that to maximize the DGD, the rotation

matrices Qn should be chosen so that the vector Qn
−→
Ω (n−1) is aligned with Δ

−→
Ω n.

This set of rotations, {Qn}Nn=1, defines a particular fiber realization. Once this fiber
realization has been determined, a biasing distribution is chosen that preferentially
selects nearby fiber realizations. In this way, a family of biasing distributions can

be chosen, each of which targets a different region of the (|−→Ω |, |−→Ω ω|)-plane. For the
results in this paper, we used the ten biasing distributions described in [39]. This
multiple importance sampling algorithm has been successfully used to simulate low-

probability regions in the (|−→Ω |, |−→Ω ω|)-plane. For example, the joint pdf of (|−→Ω |, |−→Ω ω|)
has been calculated down to probability levels of 10−8 or less with a relative variance
of less than 10% using a total of only 6 × 105 samples [39].

To evaluate the performance of a PMD compensator, we actually need to gener-
ate fiber realizations that produce low-probability, small values of the eye opening.
Although the importance sampling algorithm is not explicitly designed to generate
small eye opening values, A. Lima [36] demonstrated that there is a strong correlation

between small eye openings and large values of (|−→Ω |, |−→Ω ω|). She reached this conclu-
sion in a study of PMD compensators by comparing results obtained using importance
sampling with those obtained using the multicanonical Monte Carlo algorithm. The
multiple importance sampling algorithm has several advantages over the multicanon-
ical Monte Carlo algorithm, at least for simulations of PMD: The relative variance
is easier to calculate, the algorithm is more computationally efficient, and it can be
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easily parallelized by using different processors to draw samples from the different
biasing distributions.

6. Optimization. The original optimization studies we performed were carried
out using an object-oriented package that performed local optimization only. The
Hilbert Class Library (HCL) code was developed at Rice University [22], and pre-
liminary results obtained using this optimization software are discussed in [64]. As
described in that paper, we used HCL’s limited-memory BFGS (LMBFGS) [40] algo-
rithm with line search [10] to determine an appropriate rotation for the polarization
controller. While these early results were intriguing and allowed us to compare the
performance of the optimization algorithm with the spectral line and DOP ellip-
soid feedback mechanisms, the engineering problem is to find the “best” rotation for
the polarization controller, i.e., to find the global optimum. While LMBFGS is a
fast (Newton-based) technique that has been “globalized” to accommodate arbitrary
initial guesses via the line search feature of HCL, the technique is not guaranteed
to find the global optimum. Therefore, after completing the previous study, we de-
cided to incorporate into our optics simulator an object-oriented optimization package
that contains a variety of optimization tools (including some global techniques). The
Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) is the
optimization package we used to obtain the results presented in this paper. The pack-
age was developed at Sandia National Labs to allow users to optimize their (generally
PDE-based) simulation models for purposes of engineering design.

Our optimization problem is an unconstrained problem of the form (4.2) (although
simple bound constraints may be placed on the rotation angles from periodicity), and
our goal is to find the global optimum given reasonable computer time limitations.
The design variables are continuous, and no analytic gradient information is available.

The experiments described in this paper fall into three categories of optimiza-
tion jobs—local optimization, multistart jobs which use local optimization repeatedly
on the same problem, and global hybrid optimization runs. The local optimization
was performed using DAKOTA’s OPT++ library [11]. The OPT++ library contains
mostly gradient-based nonlinear programming algorithms for constrained or uncon-
strained optimization. In this paper we chose OPT++’s conjugate gradient (CG)
method, which is appropriate for unconstrained optimization. The optimization in all
these experiments is performed over two rotation angles (φ and θ). Numerical (finite
difference) gradients are used in the CG algorithm with a relative finite difference step
size of 0.0001. The gradient stopping tolerance is also set to the default value of 10−4.

The second set of numerical experiments invokes DAKOTA’s multistart capabil-
ities. In each multistart job, a series of local optimization runs are completed, each
using a different starting point. The multistart jobs also use OPT++’s CG routine.
Numerical finite difference gradients are used with the same tolerances as in the single
starting point local optimization experiments. These multistart jobs were run using
either two, four, or nine equally spaced starting points. Since the φ values range over
the interval [−π, π], and θ takes values over the interval from [0, π], the nine start-
ing points were chosen to be the equally spaced points (φ, θ) = {(−π, 0), (−π/3, 0),
(π/3, 0), (−π, π/3), (−π/3, π/3), (π/3, π/3), (−π, 2π/3), (−π/3, 2π/3), (π/3, 2π/3)}.
Note that periodicity implies that these equally spaced points cover the (φ, θ)-domain
uniformly. (The edges of the domain wrap.) For the four-point runs, the initial
guesses are (φ, θ) = {(−π, 0), (−π, π/2), (0, 0), (0, π/2)}. Finally, the two-point runs
use {(−π, 0), (0, π/2)} as starting guesses.

The third type of optimization jobs are hybrid multilevel optimization schemes
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which use a global optimization method initially and then switch to a local Newton-
based scheme once the optimization is close enough to the solution to ensure fast
convergence to the optimum. In our case we chose a genetic algorithm (GA) for
the global method. GAs are based on Darwin’s theory of survival of the fittest [12].
The GA starts with a random selection of points called a “population.” The values
of the parameters being optimized over form a string of mathematical “DNA” (a
conglomeration of values for the parameters being optimized) which then is adapted
to a best fit (or optimal configuration) by a process of natural selection, breeding,
and mutation [12]. GAs are convenient when there are multiple local optima or when
gradients cannot be computed easily. In those cases, GAs can be used to determine
regions of the solution space where the global optimum may be located [12]. Global
methods such as GAs, however, are slow to complete convergence to a minimizer and
are best used in conjunction with a fast local method. Typical GA behavior shows a
rapid decrease in the objective function initially, but then a steady slowing of progress
towards the minimum. Often only a few initial GA iterations suffice to move the focus
of the optimization to the region of interest.

In our GA runs, we chose a population size of five points (representing five (φ, θ)
pairs) and ran the GA for a maximum of 25 function evaluations. The stopping
tolerance for convergence was chosen to be (a loose) 5 × 10−2. Once the GA run
is finished, control is passed to a local method (in our case we chose the Fletcher–
Reeves conjugate gradient algorithm from the CONMIN package in DAKOTA). The
CONMIN package contains both constrained and unconstrained minimization algo-
rithms similar to OPT++. The same default stopping tolerances were used for the
local optimization part of the multilevel jobs as for the purely local OPT++ jobs.

7. Numerical results. We now describe a suite of numerical experiments that
we ran to investigate the relative performance of the three compensation feedback
mechanisms (DOP ellipsoid, spectral line, and eye opening). The experiments used
the local and global optimization routines from DAKOTA discussed in section 6.
Specifically, for each of the three feedback mechanisms we ran five optimization jobs
involving 200,000 fiber realizations (or Monte Carlo simulations) each. For each feed-
back mechanism we optimized the compensator using local optimization (conjugate
gradients), multilevel global optimization, and a multistart global routine involving
varying numbers of starting guesses. The aim in all cases was to compensate for the
transmission fiber DGD. As discussed in section 6, the multilevel strategy starts with
a small number of GA iterations. After narrowing the optimization search area via the
GA, the algorithm passes control to a fast local gradient-based optimization routine
(CG in our case) to find the (hopefully) global optima. For the multistart runs, local
optimization is “globalized” by running the local optimization to completion from a
few different starting points. We ran three sets of multistart jobs for each feedback
mechanism. In the first multistart job we used two initial points. In the second we
used four starting guesses, and in the last simulation we used nine points. The multi-
start algorithm is an ad hoc globalization of local methods but suffers from the fact
that the starting points are chosen at random. No prior (or current) knowledge of the
objective function surface is used.

The goal is to drive the outage probability down to a small acceptable level.
System designers typically require a probability of no more than 10−3–10−6 that the
eye is 40% closed relative to its original back-to-back value (i.e., 2 dB down from the
ideal case of no PMD). Note that an eye corresponding to a 1 dB decrease from the
back-to-back signal is 79% open. An eye that is 2 dB down is 63% open, and 3 dB
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down corresponds to an eye that is only 50% open. Values of 1–2 dB reduction are of
greatest interest. A value of 3 dB down corresponds to an eye that is so closed as to
indicate system failure.

Parameters in the optical communications simulator which were fixed in these
simulations include specifications about the transmitted signal, transmission fiber,
and receiver. We modeled the transmitted signal by allocating a time interval of
duration 100 ps to each binary digit (corresponding to a data rate of 10 Gb/s). We
used the 16-bit data pattern 1001101011110000, and we encoded the binary data onto
the amplitude of the signal by setting U(0, t) = (χ1(t), 0)T . Here χ1(t) = 1 when
t is in the time interval of a one, and χ1(t) = 0 when t is in the time interval of a
zero. The signal was polarized since U2(0, t) = 0. We then applied a Gaussian filter
to U to produce a smooth signal. The width of the filter was chosen so that the
time required for the signal power to increase from 10% to 90% of its maximum value
of 1 milliWatt was 30 ps. The transmission fiber was modeled using the coarse-step
method (described in section 2.4) with 80 fiber segments. The average DGD of the
transmission fiber was set at 30 ps, and the DGD of the compensation fiber was fixed
at 30 ps. We modeled the receiver using a 60 GHz Gaussian-shaped optical filter, a
photodetector that converts the optical power to electrical voltage, and a fifth-order
electrical Bessel filter with half-width of 8 GHz.

Our first conclusion from these numerical experiments is that the shape of the
objective function depends strongly on the feedback mechanism. The eye opening
feedback signal is highly correlated to the bit-error ratio, which ultimately is the
quantity to optimize. Unfortunately the eye feedback mechanism results in a fairly
rough objective function. On the other hand, both the spectral line and DOP feedback
mechanisms are smoother than the eye and so are easier to optimize. Figures 3.3, 3.4,
and 3.5 are plots of the objective functions for the eye, spectral line, and DOP feedback
mechanisms for a typical fiber realization. We see that for this example, the eye
objective function has a steep ridge. Features such as this can hinder the progress of
local methods towards the maximum. The DOP and spectral line objective functions
are considerably smoother.

In Figure 7.1 we show results for the eye opening feedback mechanism. We plot
outage probability as a function of the eye opening penalty (in dB down from the
back-to-back signal) for six cases: (1) uncompensated signal, (2) compensated case
using local optimization, (3) compensated using the global multilevel strategy, and
(4–6) compensated using the global multistart strategy with varying numbers of ini-
tial guesses. We note that for the majority of fiber realizations, the eye diagram is
mostly open and so the eye opening penalty is small. In other words, there is a large
probability of a small eye opening penalty. In Figure 7.1, the outage probability is
the probability that the eye opening penalty exceeds the value on the horizontal axis.
The eye opening penalty will exceed 0 dB, whenever the eye is more closed with PMD
than without it, which occurs almost all the time. Consequently, in Figure 7.1 the
outage probability is approximately 1.0 when the eye opening penalty is 0 dB. It is
only for the very rare fiber realizations with large DGD that the eye opening penalty
is large, i.e., that the eye is mostly closed. Therefore, there is a very small outage
probability that the eye opening penalty exceeds 2 dB. Clearly, if the typical case
resulted in a partially or fully closed eye, the state of optical communications would
be considerably more dire. The need for importance sampling to bias the Monte Carlo
simulations towards the “bad cases” reflects that in most cases, the DGD of the fiber
is small. As expected, the local CG method does compensate for the DGD by reduc-
ing the outage probability from 10−2 to about 5 × 10−4 at an eye opening penalty
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Fig. 7.1. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the eye opening feedback mechanism. The curves shown include the no com-
pensation case (thick solid line), local (CG) optimization (dot-dash line), the multilevel hybrid opti-
mization scheme (thick dashed line), and three curves for the multistart method (thin dotted line for
multistart with two starting guesses; thin line with circles for multistart with four initial guesses;
and thin line with crosses for multistart with nine starting points for the local optimization runs).
Note that there is no difference in optimization results for the multistart scheme using four and nine
starting points in the case of the eye opening feedback mechanism.

Table 7.1

Average number of function evaluations per optimization routine and specified feedback mech-
anism. The average is taken over 200,000 MC simulations.

Average number of function evaluations
CG Multilevel Multistart 2 pts Multistart 4 pts Multistart 9 pts

SL 53 64 95 191 454
DOP 52 65 99 199 458
Eye 52 68 99 194 459

of 2 dB. However, the best global method in this case (multistart with four points)
further decreases the outage probability to about 10−5. We believe that multistart
with four points is finding the global optimum for the eye feedback signal since the
multistart algorithm with nine points is unable to reduce the outage probability fur-
ther. Consequently, this result represents the best possible performance for this fixed
DGD compensator.

As Table 7.1 indicates, the cost of the multistart jobs is high. Multistart four- and
nine-point schemes require 3–7 times as many function evaluations as the multilevel
technique (200 or 450 iterations, respectively, versus about 65). In the case of the
eye feedback mechanism, multilevel optimization reduces the outage probability to
about 4 × 10−5 at 2 dB. In general the number of function evaluations required (for
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Fig. 7.2. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the DOP feedback mechanism. The curves shown include the no compensation
case (thick solid line), local (CG) optimization (also a thick solid line) starting from the initial
guess (φ, θ) = (0, π/2), and local optimization (CG) (dot-dashed line) starting from the initial
guess (φ, θ) = (0, 0). The curves for the multilevel hybrid optimization scheme (thick dashed line),
multistart method with two starting guesses (thin dotted line), multistart with four initial guesses
(thin line with circles), and multistart with nine initial guesses (thin line with crosses) lie on top of
each other.

all feedback mechanisms and all levels of DGD) increases from least expensive to
most costly in the following order: local conjugate gradient method, the multilevel
technique, and, finally, multistart. The multistart job cost increases approximately
linearly with the number of starting points used. Table 7.1 shows the number of
function evaluations for all the algorithms and feedback mechanisms at a fixed eye
opening penalty (2 dB).

In Figures 7.2 and 7.3 we show the outage probability versus eye opening penalty
for the local and global optimization methods and the DOP and spectral line feed-
back mechanisms, respectively. These figures include curves for two different CG
simulations. The first run (CG IC1) used a starting point of (φ, θ) = (0, π

2 ), and the
second (CG IC2) started from (0, 0). For the DOP ellipsoid, the local CG algorithm
(CG IC1) took an average of 50 function evaluations and resulted in an outage prob-
ability of 7 × 10−5 at 2 dB. The multilevel scheme took 65 function evaluations to
arrive at an outage probability of 3× 10−5. Multistart takes considerably more func-
tion evaluations to arrive at the same outage probability value (see Table 7.1). The
lack of model-based knowledge built into the multistart scheme is clearly to blame for
this dramatic increase in the number of function evaluations without a corresponding
outage probability reduction.

In sections 3 and 4 we saw that the DOP ellipsoid is very smooth and usually has
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Fig. 7.3. Outage probability as a function of eye opening penalty for different optimization
algorithms applied to the spectral line feedback mechanism. The curves shown include the no com-
pensation case (thick solid line), local (CG) optimization (also a thick solid line) starting from the
initial guess (φ, θ) = (0, π/2), and local optimization (CG) (dot-dashed line) starting from the ini-
tial guess (φ, θ) = (0, 0). The curve for the multilevel hybrid optimization scheme is denoted by a
thick dashed line, and the multistart method with two starting guesses is indicated by a thin dotted
line. The multistart method with four initial guesses (thin line with circles) and multistart with nine
initial guesses (thin line with crosses) coincide for this feedback mechanism.

only one maximum whereas the spectral line can have at least two maxima. Starting
from the south pole (IC2), there is a small probability that the CG algorithm will stall
near a saddle point since the objective function can be very flat due to distortions
inherent in the spherical coordinate mapping. For the DOP ellipsoid, starting from
the equator (IC1), the CG algorithm will usually head straight to the top of the only
hill. Since this maximum is between the equator and the saddle points at the south
pole, there is very little chance that the algorithm will go via these saddle points and
hence very little chance that it will get stuck there. Therefore, the outage probability
is lower with IC1 than with IC2. Different initial conditions lead to outage probability
curves which lie between the curves for IC1 and IC2.

Figure 7.4 compares the best local and best global schemes for the three feed-
back mechanisms. For each of the pdfs used to determine the curves in this figure,
importance sampling produces a relative variation in each bin of the histogram of less
than 10%. One can surmise the relative smoothness of the objective functions for
the three feedback mechanisms by noting the distance between the local and global
curves in the figure. For the eye feedback signal, the local method is least effective at
reducing outage probability. Yet the global scheme is more effective for this objective
function than it is for either DOP or spectral line. In other words, for the eye feedback
mechanism, the outage probability for the best global optimization algorithm is over
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Fig. 7.4. A comparison of the local and best global optimization results for the three feedback
mechanisms. For local optimization of the spectral line and DOP ellipsoid we show the results for
the starting point IC1 (φ, θ) = (0, π/2).

an order of magnitude smaller than for local optimization. A much smaller decrease
occurs for the spectral line feedback signal. (All these comparisons were made at the
2 dB point in the plots.)

The DOP and spectral line feedback signals act as smooth surrogate approxi-
mations to the more realistic but bumpier eye signal. The DAKOTA reference man-
ual [11] describes surrogate-based optimization as an iterative process that periodically
recalibrates an approximate model via data from a true model. The DOP and spectral
line functions are not true surrogates, as in this work we fix the objective functions
used throughout a particular optimization run. No updates to the shape of objective
function occur during the course of the optimization. Finally, we note (Table 7.1) that
for the spectral line, the multilevel scheme does a better job of reducing the objective
function than the two-point multistart scheme, but at 50% less cost. Our conclusions
are that the simpler smooth DOP and spectral line feedback mechanisms do a good
job of approximating the realistic (but bumpy) eye. Moreover, multilevel appears to
do the best job of minimizing the number of function evaluations while still reducing
the outage probability.

In Figure 7.5 we assess the statistical effect that higher-order PMD has on the
performance of the spectral line and DOP ellipsoid feedback mechanisms. For each
fiber realization we chose the setting of the polarization controller by optimizing the
analytical objective functions given by (4.3) and (4.15) that we obtained using the
first-order PMD approximation of the fiber. Given the solution to this surrogate
optimization problem, we then computed the performance of the compensator using
the original all-order PMD fiber realization. For the DOP ellipsoid we calculated
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Fig. 7.5. A comparison of outage probability for the first-order PMD approximation of the
objective functions coming from the DOP ellipsoid (thin line with pluses) and the spectral line (thin
line) versus the all-order PMD objective functions for the DOP ellipsoid (thick dashed line) and
the spectral line (thin line with circles). These results were obtained using global optimization. The
result without compensation is shown as a thick line.

the global maximum analytically using the formula given above (4.5), while for the
spectral line we optimized the analytical objective function numerically using the
multistart strategy with four starting points. In Figure 7.5, for the DOP ellipsoid, we
compare the “analytical” outage probability curve (thin line with pluses) to the one
we obtained numerically using the all-order PMD objective functions (thick dashed
line). We also compare the analytic and numerical outage probability curves for the
spectral line, which we show with a thin line and a thin line with circles, respectively.
For both the DOP ellipsoid and the spectral line, the fairly close agreement between
the analytic and numerical curves confirms that we can regard the all-order PMD
objective functions as being perturbations of objective functions for fibers with only
first-order PMD.

Next, we explain the relative performance of the different methods in Figure 7.4
by comparing the relative location of the local and global maxima of the different
objective functions. This discussion will also quantify the degree to which the spec-
tral line and DOP ellipsoid objective functions act as smooth surrogates of the eye
opening. We begin by discussing the three feedback mechanisms optimized via global
methods. First, we observe that across the entire range of eye opening penalty values
in Figure 7.4, the outage probability is always larger for the DOP ellipsoid than for
the spectral line, and that the eye opening feedback mechanism has the lowest outage
probability. The primary reason for the poorer performance with the DOP ellipsoid is
that the distance between the global maxima of the DOP ellipsoid and eye objective
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Fig. 7.6. The pdf of the angle between the global maximum of the eye objective function and
the maximum obtained for the spectral line using multistart with four starting points (thick dashed
curve) and for the DOP ellipsoid using the multilevel algorithm (thick solid curve).

functions tends to be larger than between the global maxima of the spectral line and
eye objective functions.

To verify this observation, we gathered statistics of the distances between the
global maxima for the different feedback mechanisms. To define a physically mean-
ingful notion of distance between two rotations of the polarization controller in a
compensator, we begin by recalling that any rotation of S2 can be expressed as a
rotation R−→r (Ψ) by an angle Ψ ∈ [0, π] about an axis −→r ∈ S2. Given two rotations
R1 and R2, consider the rotation E0 such that R2 = E0R1, and let Ψ0 be the angle
such that E0 = R−→r 0(Ψ0). In our compensator model the rotations R1 and RX(π)R1

have the same effect on the signal. Therefore, we also consider the rotation Eπ defined
by R2 = EπRX(π)R1 and let Ψπ be the angle such that Eπ = E0RX(π) = R−→r π (Ψπ).
Finally, we define an angle Ψ ∈ [0, π] by Ψ = min{Ψ0,Ψπ}. The angle Ψ is our
measure of distance between two rotations R1 and R2 performed by the polarization
controller. (Note though that the distance function given by Ψ does not satisfy the
triangle inequality.) In the case of only first-order PMD, the angle between global
maximum and global minimum of the DOP ellipsoid objective function given by (4.3)
is 180◦.

In Figure 7.6 we plot the pdf of the angle between the numerically computed global
maxima of the spectral line and the eye opening (thick dashed curve) and between the
global maxima of the DOP ellipsoid and eye opening (thick solid curve). The most
likely angle is 7◦ for the spectral line and 14◦ for the DOP ellipsoid. We observe that
the probability that the angle is between 30◦ and 90◦ degrees is significantly greater
for the DOP ellipsoid than for the spectral line. Therefore the global maximum
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of the spectral line objective function is usually closer to that of the eye opening
than is the global maximum of the DOP ellipsoid. Consequently, the eye opening
tends to be somewhat larger for the spectral line than for the DOP ellipsoid. This
observation explains why the outage probability is smaller for the spectral line than
for the DOP ellipsoid when global optimization is used. One of the physical reasons
for this performance difference is that the DOP ellipsoid objective function is defined
by minimizing the output DOP over all possible input polarization states. However,
when we computed the eye opening penalties for the outage probability curves, we
chose the input polarization state to be (S1, S2, S3) = (1, 0, 0) rather than choosing
it to be the state which resulted in the smallest DOP at the receiver. If we maximize
the DOP for the input polarization state with the smallest output DOP, we do not
obtain the same global maximum as we would if we maximized the DOP (or spectral
line) when the input polarization state is (1, 0, 0).

We also observe in Figure 7.6 that the probability that the angle is between
130◦ and 170◦ is much larger for the spectral line than for the DOP ellipsoid. The
physical reason for this feature can be explained using the formulae for the objective
functions we derived in section 4: In the case of only first-order PMD the DOP
ellipsoid has only one maximum, whereas the spectral line objective function can have
at least two maxima. Therefore, in a small proportion of cases the global maximum
of the spectral line can be far from that of the eye opening. For example, suppose as
in Figures 3.3 and 3.4 that the eye opening has local maxima at (φ1, θ1) and (φ2, θ2),
and that the spectral line also has local maxima located near these two points. It
could happen that the global maximum for the eye opening is at (φ1, θ1) whereas the
global maximum for the spectral line is located near (φ2, θ2).

We also found that if we gather statistics over only those fiber realizations for
which the second-order PMD is large relative to the DGD, then the most likely an-
gle between the global maxima of the DOP ellipsoid and the eye opening feedback
increases markedly. In contrast, the most likely angle between the global maxima of
the spectral line and the eye opening is unchanged. (We do not show these results.)
These results suggest that when higher-order PMD is introduced, the global maxima
of the DOP ellipsoid and the eye opening tend to move apart from each other, whereas
the global maximum of the spectral line remains closer to that of the eye opening.
This difference in behavior with higher-order PMD provides a second explanation for
why the outage probability is smaller for the spectral line than for the DOP ellipsoid
when global optimization is used.

To summarize, when global optimization is used, it is important to choose an
objective function with the property that the global maximum is close to that of
the eye opening. Therefore, with global optimization, the spectral line is a better
surrogate for the eye opening than is the DOP ellipsoid.

Finally, we explain the relative performance with the three feedback signals when
local optimization is used. Looking again at Figure 7.4, when the eye opening penalty
is larger than 2 dB, the eye opening feedback does not perform as well as the spectral
line with local optimization. The performance with the DOP ellipsoid is comparable
to that with the spectral line, but as we saw in Figure 7.2, it can depend significantly
on the choice of starting point for the local optimization. To explain the poorer
performance with the eye opening feedback, for each feedback mechanism we plot
the pdf of the angle, Ψ, between the local maxima reached with conjugate gradients
and the global maximum (see Figure 7.7). First, we observe that the DOP ellipsoid
and the spectral line have slightly higher probabilities of a very small angle (Ψ ≈ 0)
between the local and global maxima than is the case for the eye opening feedback



MODELING COMPENSATORS 771

0 45 90 135 180
10

–4

10
–3

10
–2

10
–1

Angle

P
ro

ba
bi

lit
y 

D
en

si
ty

Angle between local and global optima

Eye
SL
DOP

Fig. 7.7. The pdf of the angle between the local and global maxima for the eye opening (thin
solid curve), spectral line (dashed curve), and DOP ellipsoid (thick solid curve). The local and global
optimization algorithms are the ones shown in Figure 7.4.

mechanism. However, there is a significantly higher probability that the angle is
between 10◦ and 50◦ for the eye opening. This high probability is not seen for the
DOP or spectral line objective functions. These observations provide further evidence
of the roughness of the eye opening objective function and help to explain why the eye
objective function is the worst feedback mechanism for local optimization when the
eye opening penalties are large. The other significant feature in Figure 7.7 is that the
probability that the angle exceeds 100◦ is extremely small for the DOP ellipsoid, but
it is relatively large for the other two objective functions. This feature is also present
in the pdfs if we gather statistics over only those rare fiber realizations for which the
eye opening penalty for the DOP ellipsoid (or spectral line) is larger than 1 dB.

We found that the curves in Figure 7.7 have approximately the same shape when
we gather statistics over fibers with large second-order PMD. Consequently, even with
higher-order PMD, the DOP ellipsoid objective function tends to be very smooth and
to have only one maximum, just as the analysis in section 4 showed for fibers with only
first-order PMD. Why then for the DOP ellipsoid is the outage probability at 3 dB
smaller with global than with local optimization in Figure 7.4? One possible reason is
that for some fiber realizations we observed that the DOP ellipsoid objective function
has suboptimal, wide flat regions. Also, when second-order PMD is large enough,
there can be small bumps in the bottom of the valleys which may present a problem
for a local algorithm.

8. Conclusions. In an optical fiber communication system, binary data is trans-
mitted through optical fiber using a sequence of pulses of light. The birefringence of
the fiber causes the pulses to spread and distort as they propagate and increases the
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probability that bit errors will occur. A simple optical PMD compensator can be
used to reduce these distortions and errors. Since the birefringence varies randomly
over time, the compensator must be continually optimized with the aid of a feed-
back signal. To evaluate the performance of a compensator, an optimization problem
must be solved for a large number of random realizations of the birefringence. In
each case, the goal is to locate the operating point at which the bit-error ratio is
smallest. Since it is not possible to measure the bit-error ratio in a real system, we
studied three commonly used feedback signals: the eye opening, spectral line, and
DOP ellipsoid. To adequately sample the very rare fiber realizations that result in
a large uncompensated bit-error ratio, we performed Monte Carlo simulations with
multiple importance sampling. We quantified the degree to which the performance of
a compensator depends on the choice of feedback signal and optimization algorithm
by computing the probability that the eye opening penalty exceeds a given threshold,
i.e., that the bit-error ratio is large.

Although the eye opening is highly correlated to the bit-error ratio, its objective
function is quite rough and is therefore hard to optimize. Our results show that the
spectral line and DOP objective functions act as smooth surrogate approximations to
the rougher eye opening. In the special case of first-order PMD, we proved that the
spectral line objective function can have as many as six critical points on the sphere,
whereas the DOP ellipsoid has only one maximum and one minimum. We verified
that these conclusions also hold statistically over a wide range of fiber realizations
with higher order PMD. Since the spectral line objective function is similar to the
eye opening, the performance is somewhat better with the spectral line than with the
DOP ellipsoid when global optimization is used. However, the DOP ellipsoid objective
function is smoother and easier to optimize than the spectral line. In conclusion, since
it is most desirable to have a low outage probability for large eye opening penalties,
we suggest that multilevel optimization with the DOP ellipsoid feedback gives a good
trade-off between the requirements of high performance, computational cost, and
complexity of the feedback mechanism.
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