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A Cooperative Approach to
Particle Swarm Optimization

Frans van den Bergh and Andries P. Engelbrecht, Member, IEEE

Abstract—The particle swarm optimizer (PSO) is a stochastic,
population-based optimization technique that can be applied to a
wide range of problems, including neural network training. This
paper presents a variation on the traditional PSO algorithm, called
the cooperative particle swarm optimizer, or CPSO, employing co-
operative behavior to significantly improve the performance of the
original algorithm. This is achieved by using multiple swarms to
optimize different components of the solution vector cooperatively.
Application of the new PSO algorithm on several benchmark opti-
mization problems shows a marked improvement in performance
over the traditional PSO.

Index Terms—Convergence behavior, cooperative coevolu-
tionary genetic algorithm, cooperative learning, cooperative
swarms, particle swarm optimization.

1. INTRODUCTION

OST stochastic optimization algorithms [including
particle swarm optimizers (PSOs) and genetic algo-
rithms (GAs)] suffer from the “curse of dimensionality,” which
simply put, implies that their performance deteriorates as the
dimensionality of the search space increases. Consider a basic
stochastic global search algorithm (as defined by Solis and
Wets [1]) that generates a sample for a uniform distribution
that covers the entire search space. The algorithm stops when
it generates a solution that falls in the optimality region, a
small volume of the search space surrounding the global
optimum. The probability of generating a sample inside the
optimality region is simply the volume of the optimality region
divided by the volume of the search space. This probability
will decrease exponentially as the dimensionality of the search
space increases. Given this explanation, it is clear that it is
typically significantly harder to find the global optimum of a
high-dimensional problem, compared with a low-dimensional
problem with similar topology. One way to overcome this
exponential increase in difficulty is to partition the search space
into lower dimensional subspaces, as long as the optimization
algorithm can guarantee that it will be able to search every
possible region of the search space.
GAs [2] are part of the larger family of evolutionary algo-
rithms [3]. GAs maintain a population of potential solutions to
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some optimization problem, generating new solutions during
each iteration using a variety of recombination, selection, and
mutation operators. Due to their stochastic nature they are also
sensitive to an exponential increase in the volume of the search
space. Potter suggested that the search space should be parti-
tioned by splitting the solution vectors into smaller vectors [4].
Each of these smaller search spaces is then searched by a sep-
arate GA; the fitness function is evaluated by combining solu-
tions found by each of the GAs representing the smaller sub-
spaces. Potter found that this decomposition lead to a signifi-
cant improvement in performance over the basic GA. Potter did
not, however, investigate in detail the possibility that the parti-
tioning could lead to the introduction of pseudominima, that is,
minima that were created as a side effect of the partitioning of
the search space. It was also realized that the performance of the
cooperative coevolutionary genetic algorithm (CCGA) of Potter
deteriorates when there exists a dependence among parameters.
Ong et al. extended Potter’s CCGA to work with correlated pa-
rameters using surrogate models [5].

This paper applies Potter’s technique to the PSO, resulting
in two new cooperative PSO models, namely CPSO-Sg
and CPSO-Hg. The CPSO-Sx model is a direct applica-
tion of Potter’s CCGA model to the standard PSO, while
the CPSO-Hy model combines the standard PSO with the
CPSO-S g model. The performance of these new PSO variants
is compared with that of Potter’s CCGA, as well as the tradi-
tional PSO. A discussion of the existence of pseudominima is
presented here, as well as a proposed algorithm for avoiding
these pseudominima in a provably correct way.

Section II presents an overview of the PSO, as well as a dis-
cussion of previous attempts to improve its performance. This is
followed in Sections III and IV by new cooperative implemen-
tations of the PSO algorithm. Section V describes the problems
used to evaluate the new algorithms, of which the results can be
found in Section VI. Finally, some directions for future research
are discussed in Section VII.

II. PARTICLE SWARM OPTIMIZERS (PSOs)

The PSO, first introduced by Kennedy and Eberhart [6], [7], is
a stochastic optimization technique that can be likened to the be-
havior of a flock of birds or the sociological behavior of a group
of people. They have been used to solve a range of optimization
problems, including neural network training [8]-[10] and func-
tion minimization [11], [12]. Several attempts have been made
to improve the performance of the original PSO, some of which
are discussed in this section.

1089-778X/04$20.00 © 2004 IEEE
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A. PSO Operation

The PSO is a population based optimization technique, where
the population is called a swarm. A simple explanation of the
PSO’s operation is as follows. Each particle represents a pos-
sible solution to the optimization task at hand. For the remainder
of this paper, reference will be made to unconstrained minimiza-
tion problems. During each iteration each particle accelerates in
the direction of its own personal best solution found so far, as
well as in the direction of the global best position discovered so
far by any of the particles in the swarm. This means that if a par-
ticle discovers a promising new solution, all the other particles
will move closer to it, exploring the region more thoroughly in
the process.

Let s denote the swarm size. Each individual 1 < ¢ < s
has the following attributes. A current position in the search
space x;, a current velocity v;, and a personal best position in
the search space y;. During each iteration, each particle in the
swarm is updated using (1) and (2). Assuming that the function
f is to be minimized, that the swarm consists of n particles, and
thatry ~ U(0,1), 79 ~ U(0, 1) are elements from two uniform
random sequences in the range (0,1), then

0 j(t+ 1) = woi (1) + crri(t) [yi ;i (8) — i 5(1)]
teor2i(t) [9;(t) — i ;(3)] (1)

forall j € 1...n, thus, v; ; is the velocity of the jth dimension
of the ith particle, and ¢; and co denote the acceleration coeffi-
cients. The new position of a particle is calculated using

Xi(t—l—l) :xi(t)—l—vi(t—l—l). 2)
The personal best position of each particle is updated using

_ Jyit), if f(xi(t+1)) > f(yi(t)
yilt+1) = {Xi(t+ D), if f(xi(t+1)) < f(y:)(t)

and the global best position found by any particle during all
previous steps, ¥, is defined as

yt+1) =agminf(yi(t+1)), 1<i<s. 4

3)

The value of each component in every v; vector can be clamped
to the range [—¥max, Ymax] to reduce the likelihood of particles
leaving the search space. The value of vy,,x is usually chosen
to be k X Tmax, with 0.1 < k < 1.0 [7]. Note that this does
not restrict the values of x; to the range [—vmax, Vmax]; it only
limits the maximum distance that a particle will move during
one iteration.

The variable w in (1) is called the inertia weight; this value is
typically setup to vary linearly from 1 to near 0 during the course
of a training run. Note that this is reminiscent of the temperature
adjustment schedule found in Simulated Annealing algorithms.
The inertia weight is also similar to the momentum term in a
gradient descent neural network training algorithm.

Acceleration coefficients c¢; and ¢, also control how far a par-
ticle will move in a single iteration. Typically, these are both set
to a value of 2.0 [7], although assigning different values to c;
and cy sometimes leads to improved performance [13].

Recently, work by Clerc [14]-[16] indicated that a constric-
tion factor may help to ensure convergence. Application of the
constriction factor results in (5). Note that explicit reference

to the time step ¢ will be omitted from now on for notational
convenience

Vi = x[vij +ari(yi; — i) + cor2 (g5 — i )] (5)

where

2
- 6)
XT g /& 44 (

and ¢ = ¢1 + co, ¢ > 4.

B. Improved PSOs

Since the introduction of the PSO algorithm, several improve-
ments have been suggested, many of which have been incorpo-
rated into the equations shown in Section II-A. The original PSO
did not have an inertia weight; this improvement was introduced
by Shi and Eberhart [12]. The addition of the inertia weight re-
sults in faster convergence.

Although it was originally suggested that the constriction
factor, as shown in (5) and (6) above, should replace the
Umax clamping, Eberhart and Shi [17] have shown that the
constriction factor alone does not necessarily result in the best
performance. Combining the two approaches results in the
fastest convergence overall, according to Eberhart and Shi [17].
These improvements appear to be effective on a large collection
of problems.

An entirely different approach to improving PSO perfor-
mance was taken by Angeline [18]. The objective was to
introduce a form of selection so that the properties that make
some solutions superior are transferred directly to some of the
less effective particles. Angeline used a tournament selection
process based on the particles’ current fitness, copying the
current positions and velocities of the better half of the pop-
ulation onto the worse half, without changing the “personal
best” values of any of the particles in this step. This technique
improved the performance of the PSO in three of the four
functions tested (all but the Griewank function, see Section V
for a definition of this function).

There exists another general form of particle swarm, referred
to as the LBEST method in [7]. This approach divides the swarm
into multiple “neighborhoods,” where each neighborhood main-
tains its own local best solution. This approach is less prone to
becoming trapped in local minima, but typically has slower con-
vergence. Kennedy has taken this LBEST version of the par-
ticle swarm and applied to it a technique referred to as “social
stereotyping” [19]. A clustering algorithm is used to group indi-
vidual particles into “stereotypical groups.” The cluster center
g, is computed for each group j and then substituted into (1),
yielding three strategies to calculate the new velocity

Vi i=wvi +c1r1(8j — Xi) + cara (Y — Xi) @)
v, =wv; + a1r1(yi — Xi) + cora (8 — Xi) ®)
vii=wv; + cri(g; — Xi) + cara(g; — Xi). 9)

The results presented in [19] indicate that only the method in
(7) performs better than the standard PSO. This improvement
comes at increased processing cost as the clustering algorithm
needs a nonnegligible amount of time to form the stereotypical
groups.
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More recently, Kennedy investigated other neighborhood
topologies, finding that the von Neumann topology resulted in
superior performance [20]. Suganthan investigated the use of
spatial topologies, as opposed to topologies based on particle
indices [13].

III. COOPERATIVE LEARNING

In a GA [2], [21] population, each individual aims to produce
the best solution by combining (hopefully) desirable genetic or
behavioral properties from other individuals. There is compe-
tition among the individual members of the population, as the
most fit individual is rewarded with more opportunities to re-
produce. In this scenario each individual represents a complete
solution vector, encoded in the appropriate format for the GA
operations.

It is also possible to view a GA as a cooperative learner [22].
Clearwater et al. [23] define cooperation as follows: “Cooper-
ation involves a collection of agents that interact by communi-
cating information to each other while solving a problem.” They
further state that “The information exchanged between agents
may be incorrect, and should sometimes alter the behavior of the
agent receiving it.” Clearly, by viewing the population members
of a GA as agents, and the crossover operation as information
exchange, the GA can be considered to be a cooperative system.

Another form of cooperation, as used by Clearwater et al.
[23], is the use of a “blackboard.” This device is a shared
memory where agents can post hints, or read hints from. An
agent can combine the hints read from the blackboard with its
own knowledge to produce a better partial solution, or hint, that
may lead to the solution more quickly than the agent would
have been able to discover on its own.

Although competition among individual humans usually im-
proves their performance, much greater improvements can be
obtained through cooperation. This idea has been implemented
in the context of GAs by Potter and De Jong [4]. Instead of using
a single GA to optimize the whole solution vector in one popu-
lation, the vector is split into its constituent components and as-
signed to multiple GA populations. In this configuration, each
population is then optimizing a single component (genetic or be-
havioral trait) of the solution vector—a one-dimensional (1-D)
optimization problem.

To produce a solution vector for the function being mini-
mized, all the populations have to cooperate, as a valid solu-
tion vector can only be formed by using information from all
the populations. This means that on top of the inherent coopera-
tion in the population itself, a new layer of cooperation between
populations has been added.

A. Cooperative Swarms

The same concept can easily be applied to PSOs, creating a
family of CPSOs. Instead of having one swarm (of s particles)
trying to find the optimal n-dimensional vector, the vector is
split into its components so that n swarms (of s particles each)
are optimizing a 1-D vector. Keep in mind that the function
being optimized still requires an n-dimensional vector to eval-
uate. This introduces the following problems.

Create and initialise an n-dimensional PSO : P
repeat:
for each particle i € [1..5] :
if f(Px;) < f(Pyi)

then Py; = Px;

if /(Py;) < /(PS)

then P.y =Py,
endfor

Perform PSO updates on P using eqns. (1-2)
until stopping criterion is met

Fig. 1. Pseudocode for the PSO algorithm.

 Selection: The solution vector is split into n parts, each
part being optimized by a swarm with m particles. This
allows for m X n combinations for constructing the com-
posite n-component vector. The simplest approach is to
select the best particle from each swarm (how to calculate
which particle is best will be discussed later). Note that
this might not be the optimal choice; it could lead to un-
dersampling and “greedy” behavior.

* Credit assignment: The solution to the credit assignment
problem is the answer to the question: “To what degree
is each individual component responsible for the overall
quality of the solution?” In terms of swarms, how much
credit should each swarm be awarded when the combined
vector (built from all the swarms) results in a better solu-
tion? One simple solution is to give all swarms an equal
amount of credit. If this problem is not addressed properly
by the optimization algorithm, then the algorithm could
spend too much time optimizing variables that have little
effect on the overall solution.

Possible solutions to these problems are presented in
Section III-C.

The main difference between the CPSO and the cooperative
GA of Potter and De Jong [4] is that the optimization process
of a PSO is driven by the social interaction [effected through
the use of both the cognitive and social terms in (1)] of the indi-
viduals within that swarm; no exchange of genetic information
takes place. In contrast, the cooperative GA is driven by changes
in genetic or behavioral traits within individuals of the popula-
tions.

B. Two Steps Forward, One Step Back

Before looking at cooperative swarms in depth, let us first
consider the weakness of the standard PSO. Fig. 1 lists the
pseudocode algorithm for the standard PSO. The following
naming convention applies to Fig. 1. For a particle 7 in a swarm
P : Px;, Pv;, Py, corresponds to the position, velocity,
and personal best position, respectively, as defined in (1)—(4).
The global best particle of the swarm is represented by the
symbol P.y. The objective function f remains unchanged. This
algorithm will be referred to as the standard PSO in this article.

As can be seen from Fig. 1, each particle represents a com-
plete vector that can be used as a potential solution. Each up-
date step is also performed on a full n-dimensional vector. This
allows for the possibility that some components in the vector
have moved closer to the solution, while others actually moved
away from the solution. As long as the effect of the improve-
ment outweighs the effect of the components that deteriorated,
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the standard PSO will consider the new vector an overall im-
provement, even though some components of the vector may
have moved further from the solution.

A simple example to illustrate this concept follows. Consider
a three-dimensional vector x, and the error function f(x) =
Ix — a||?, where a = (20, 20, 20). This implies that the global
minimizer of the function x*, is equal to a. Now, consider a
particle swarm containing, among others, a vector X2, and the
global best position y. If ¢ represents the current time step, then,
with a high probability

lIx2(t +1) =y (¢ + Dl < [lxa2(2) = (@)l

if it is assumed that § does not change during this specific iter-
ation. That is, in the next time step ¢ + 1, particle 2 (represented
by x2) will be drawn closer to y, as stipulated by the PSO up-
date equations.

Assume that the following holds:

y(t) =(17,2,17)
x2(t) = (5,20, 5).

Application of the function f to these points shows that
f(¥(t)) = 342 and f(x2(t)) = 450. In the next epoch, the
vector x5 will be drawn closer to ¥, so that the following
configuration may result:

y(t+1)=(17,2,17)
xo(t 4+ 1) =(15,5,15).

Note that the actual values of the components of x2(¢ 4 1) de-
pend on the stochastic influence present in the PSO update equa-
tions. The configuration above is certainly one possibility. This
implies that f(x2(t + 1)) = 275, even better than the func-
tion value of the global best position, which means that y will
be updated now. Although the fitness of the particle improved
considerably, note that the second component of the vector has
changed from the correct value of 20, to the rather poor value of
5; valuable information has, thus, been lost unknowingly. This
example can clearly be extended to a general case involving an
arbitrary number of components.

This undesirable behavior is a case of taking two steps for-
ward, and one step back. It is caused by the fact that the error
function is computed only after all the components in the vector
have been updated to their new values. This means an improve-
ment in two components (two steps forward) will overrule a po-
tentially good value for a single component (one step back).

One way to overcome this problem is to evaluate the error
function more frequently, for example, once for every time a
component in the vector has been updated, resulting in much
quicker feedback. A problem still remains with this approach:
evaluation of the error function is only possible using a complete
n-dimensional vector. Thus, after updating a specific compo-
nent, n — 1 values for the other components of the vector still
have to be chosen. A method for doing just this is presented in
the following section.

In the next section, a new PSO algorithm will be described.
This algorithm can be mislead by a particular class of decep-
tive function (as shown below), however, Section IV presents
another algorithm that addresses this weakness.

define
b(j,z)=(P.§,P.§,....Pi-1.5.2,Pjx1.9,...,P..§)
Create and initialise » one-dimensional PSOs : P;, j € [1..n]
repeat:
for each swarm j € [1..x] :
for each particle i € [1..s] :
if f(b(j,P;.xi)) < f(b(j,P;.yi)
then Pjy, = R/.X,’
if f(b(j,P;.y) < f(b(j.P;9))
then P]y = Pj.y,'
endfor
Perform PSO updates on P; using equations (1-2)
endfor
until stopping condition is true

Fig. 2. Pseudocode for the CPSO-S algorithm.

C. CPSO-Sy Algorithm

The original PSO uses a population of n-dimensional vectors.
These vectors can be partitioned into n swarms of 1-D vectors,
each swarm representing a dimension of the original problem.
Each swarm attempts to optimize a single component of the so-
lution vector, essentially a 1-D optimization problem. This de-
composition is analogous to the decomposition used in the re-
laxation method [24], [25].

One complication to this configuration is the fact that the
function to be minimized, f, requires an n-dimensional vector
as input. If each swarm represents only a single dimension of
the search space, it is clearly not possible to directly compute
the fitness of the individuals of a single population considered
in isolation. A context vector is required to provide a suitable
context in which the individuals of a population can be evalu-
ated. The simplest scheme for constructing such a context vector
is to take the global best particle from each of the n swarms
and concatenating them to form such an n-dimensional vector.
To calculate the fitness for all particles in swarm j, the other
n — 1 components in the context vector are kept constant (with
their values set to the global best particles from the other n — 1
swarms), while the jth component of the context vector is re-
placed in turn by each particle from the jth swarm.

Fig. 2 presents the CPSO-S algorithm, first introduced by Van
den Bergh and Engelbrecht in [9], a PSO that splits the search
space into exactly n subspaces. Extending the convention intro-
duced in Fig. 1, P;.x; now refers to the position of particle ¢ of
swarm 7, which can therefore be substituted into the jth compo-
nent of the context vector when needed. Each of the n swarms
now has a global best particle P;.y. The function b(j, z) returns
an n-dimensional vector formed by concatenating all the global
best vectors across all swarms, except for the jth component,
which is replaced with z, where z represents the position of any
particle from swarm P;.

This algorithm has the advantage that the error function f
is evaluated after each component in the vector is updated,
resulting in much finer-grained credit assignment. The current
“best” context vector will be denoted b(1, P;.y). Note that
f(b(1,Py.y)) is a strictly nonincreasing function, since it
is composed of the global best particles P;.y of each of the
swarms, which themselves are only updated when their fitness
improves.
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define
b(j7z) = (Pl .5’,...7P/'_1.§’7Z7P/+1.§7,...,PK.i’)
K; =n mod K

K> = K— (n mod K)
Initialise K [n/K]-dimensional PSOs:
Py, je[1.K]
Initialise K> |n/K]-dimensional PSOs:
P, j€ [(K1+1)..K]
repeat:
for each swarm j € [1..K] :
for each particle i € [1..5] :
if f(b(j.P;.x:)) < f(b(j,P;.yi))
then Pj.y,‘ = Pj.X,’
if /(b(j, P;.yi) < f(b(j.P;.9))
then P;.§ = P;.y;
endfor
Perform PSO updates on P; using (1-2)
endfor
until stopping condition is true

Fig. 3. Pseudocode for the generic CPSO-S x algorithm.

Each swarm in the group only has information regarding a
specific component of the solution vector; the rest of the vector
is provided by the other n — 1 swarms. This promotes cooper-
ation between the different swarms, since they all contribute to
b, the context vector. Another interpretation of the cooperative
mechanism is possible. Each particle ¢ of swarm j represents
a different context in which the vector b(7, -) is evaluated, so
that the fitness of the context vector itself is measured in dif-
ferent contexts. The most successful context, corresponding to
the particle ¢ yielding the highest fitness, is retained for future
use. For example, a 30-dimensional search space results in a
CPSO-S algorithm with 30 1-D swarms. During one iteration of
the algorithm, 30 x 30 = 900 different combinations are formed,
compared with only 30 variations produced by the original PSO.
The advantage of the CPSO-S approach is that only one com-
ponent is modified at a time, yielding the desired fine-grained
search, effectively preventing the “two steps forward, one step
back” scenario. There is also a significant increase in the so-
lution diversity in the CPSO-S algorithm, because of the many
combinations that are formed using different members from dif-
ferent swarms.

Note that, should some of the components in the vector be
correlated, they should be grouped in the same swarm (by using
an arbitrarily configurable partitioning mechanism), since the
independent changes made by the different swarms will have a
detrimental effect on correlated variables. This results in some
swarms having 1-D vectors and others having c-dimensional
vectors (¢ < n), something which is easily allowed in the frame-
work presented above. Unfortunately, it is not always known in
advance how the components will be related. A simple approxi-
mation would be to blindly take the variables c at a time, hoping
that some correlated variables will end up in the same swarm.
Fig. 3 presents the CPSO-Sg algorithm, where a vector is split
into K parts. Note that the CPSO-S algorithm presented in Fig. 2
is really a special case of the CPSO-Sj algorithm with K = n.
The number of parts K is also called the split factor.

There is no explicit restriction on the type of PSO algorithm
that should be used in the CPSO-S algorithm. The guaranteed
convergence PSO (GCPSO) [26] is a PSO variant that offers

Ax2

(0,0)

Fig. 4. Diagram illustrating the constrained suboptimality problem.

guaranteed convergence onto local minima. A discussion of this
algorithm is outside of the scope of this article, but substituting
the GCPSO for the PSO in the CPSO-Sg algorithm allows for
the construction of a proof of guaranteed convergence for the
CPSO-Sk algorithm too. This article will focus on the use of
the standard PSO as preliminary approach to investigate the co-
operative approach.

D. Convergence Behavior of the CPSO-Sx Algorithm

The CPSO-Sk algorithm is typically able to solve any
problem that the standard PSO can solve. It is possible,
however, for the algorithm to become trapped in a state where
all the swarms are unable to discover better solutions, but the
algorithm has not yet reached a local minimum. This is an
example of stagnation, caused by the restriction that only one
swarm is updated at a time, i.e., only one subspace is searched
at a time.

An example function will now be presented to show a sce-
nario in which the CPSO-S algorithm stagnates. The example
will assume that a CPSO-S; algorithm is used to minimize the
function. Fig. 4 illustrates in two dimensions the nature of the
problem. The figure is a top-down view of the search space, with
the shaded triangular area representing a region that contains
f-values that are smaller than any other values in the search
space. This region has a slope that runs downward from the point
(0,0) to the point x*, the global minimizer. The symbol € denotes
the distance from the origin to the tip of the triangular region;
€ can be made arbitrarily small so that the triangle touches the
origin in the limit. To simplify the discussion, assume that the
function has the form f(x) = ||x||?, except for the shaded trian-
gular region, which contains points yielding negative f-values.

If the swarm P; (constrained to the subspace z; € R) reaches
the state where P;.y = 0, the context vector b will be of the
form b(27 PQ..Ti) = (07 P2..Ti), so that f(b) = ||(0/ PQ.ZUZ‘)H? =
(P>.z;)?. This function can easily be minimized by the second
swarm s, which is constrained to the subspace x2 € R. The
second swarm will find the minimum located at x5 = 0, so that
the algorithm will terminate with a proposed solution of (0,0),
which is clearly not the correct answer, since x* # (0, 0). Both
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P, and P; have converged onto the local minimum of their re-
spective subspaces. The problem is that the algorithm will find
that O is in fact the local minimizer when only one dimension
is considered at a time. The sequential nature of the algorithm,
coupled with the property that f(b(1, P;.§) is a strictly non-
increasing sequence, prevents the algorithm from temporarily
taking an “uphill” step, which is required to solve this particular
problem. Even if € is made arbitrarily small, the algorithm will
not be able to sample a point inside the shaded triangular area,
since that would require the other swarm to have a global best
position (i.e., P;.7) other than zero, which would require a step
that would increase f(b(1, P;.g)). What has happened here is
that a local optimization problem in R? has become a global op-
timization problem when considering the two subspaces x; and
To one at a time.

Note that the point (0,0) is not a local minimizer of the search
space, although it is the concatenation of the individual mini-
mizers of the subspaces z; and x5. The fact that (0,0) is not
a local minimizer can easily be verified by examining a small
region around the point (0,0), which clearly contains points be-
longing to the shaded region as € approaches zero. The term
pseudominimizer will be used to describe a point in search space
that is a local minimizer in all the predefined subspaces of R",
but not a local minimizer in R™ considered as a whole. This
shows that the CPSO-S algorithm is not guaranteed to con-
verge on the local minimizer, because there exists states from
which it can become trapped in the pseudominimizer located at
(0,0). Due to the stochastic components in the PSO algorithm,
it is unlikely that the CPSO-S g algorithm will become trapped
in the pseudominimizer every time. The existence of a state that
prevents the algorithm from reaching the minimizer destroys the
guaranteed convergence property, though.

This type of function can be said to exhibit deceptive behavior
[27], where good solutions, or even good directions of search,
must be abandoned since they lead to suboptimal solutions. De-
ceptive functions have been studied extensively in the GA field,
although it has been shown that many deceptive functions can be
solved without difficulty with only minor changes to the basic
GA [28].

In contrast to the CPSO-S ¢ algorithm, the normal PSO would
not have the same problem. If the global best particle of the
PSO algorithm is located at this pseudominimum position, i.e.,
¥ = (0,0), then the sample space from which the other par-
ticles could choose their next position could include a square
with nonzero side lengths p, centred at (0,0). Since p > 0 per
definition,! this square would always include points from the
triangular shaded region in Fig. 4. This implies that the PSO
will be able to move away from the point (0,0) toward the local
minimizer in R? located at x*.

There are several ways to augment the CPSO-S g algorithm
to prevent it from becoming trapped in such pseudominima. The
original CCGA-1 algorithm, due to Potter [4], [29], suffers from
the same problem, although Potter did not identify the problem
as such. Potter suggested that each element of the population
P; should be evaluated in two contexts. He called this approach

IThis is only guaranteed for the GCPSO, as discussed at the end of Sec-
tion III-C.

the CCGA-2 algorithm. One context is constructed using the
best element from the other populations, similar to the CCGA-1
and CPSO-Sg algorithms. The second context is constructed
using a randomly chosen element from each of the other pop-
ulations. The individual under consideration receives the better
of the two fitness values obtained in the two contexts. This ap-
proach is a compromise between the CCGA-1 approach and an
exhaustive evaluation, where each element is evaluated against
all other possible contexts that can be constructed from the cur-
rent collection of populations. The exhaustive approach would
require s®~1 function evaluations to determine the fitness of
a single individual, where s is the population size, and K the
number of populations. This rather large increase in the number
of function evaluations would outweigh the advantage of using
a cooperative approach.

The CCGA-2 approach has the disadvantage that the fitness
of an individual is still only evaluated against a sample of pos-
sible values obtained from a search restricted to a subspace of
the complete search space. In other words, it could still become
trapped in a pseudominimizer, although this event is signifi-
cantly less likely than for the CCGA-1 algorithm. The next sec-
tion introduces a different solution that allows the CPSO-S g
algorithm to escape from pseudominima.

IV. HYBRID CPSOs

In the previous sectionn it was shown that the CPSO-Sx al-
gorithm can become trapped in suboptimal locations in search
space. This section introduces an algorithm that combines the
CPSO-Sk algorithm with the PSO in an attempt to retain the
best properties of both algorithms. The term “hybrid” has been
used to describe at least three different PSO-based algorithms
[9], [30], [31]. The algorithm presented here will be called the
CPSO-H algorithm to resolve any ambiguities.

A. CPSO-Hxk Algorithm

Given that the PSO has the ability to escape from pseudo-
minimizers, and that the CPSO-S i algorithm has faster conver-
gence on certain functions (see Section VI), it would be ideal
to have an algorithm that could exploit both of these properties.
In principle, one could construct an algorithm that attempts to
use a CPSO-Sg algorithm, but switches over to a PSO algo-
rithm when it appears that the CPSO-S i algorithm has become
trapped. While this approach is a sound idea, it is difficult to de-
sign robust, general heuristics to decide when to switch between
algorithms.

An alternative is to interleave the two algorithms, so that the
CPSO-S i algorithm is executed for one iteration, followed by
one iteration of the PSO algorithm. Even more powerful algo-
rithms can be constructed by exchanging information regarding
the best solutions discovered so far by either component at the
end of each iteration. This information exchange is then a form
of cooperation between the CPSO-S i component and the PSO
component. Note that this is a form of “blackboard” coopera-
tion, similar to the type described by Clearwater et al. [23].

A simple mechanism for implementing this information ex-
change is to replace some of the particles in one half of the algo-
rithm with the best solution discovered so far by the other half of
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define
b(j,l) = (PI‘SI7“'ﬂP/-]‘S’vZ7R/—l~$’7“'sPK~§7)
Ky =n mod K

K> = K—(n mod K)
Initialise K; [n/K]-dimensional PSOs:
Py, je(l.K]
Initialise K, |n/K |-dimensional PSOs:
Py, j€[(Ki+1).K]
Initialise an n-dimensional PSO : Q
repeat:
for each swarm j € [1..K] :
for each particle i € [1..s] :
if f(b(j,P;-x1)) < f(b(j,P;.¥1))
then P;.y; = P;.x;
if /(b(j.P,.v0)) < /(b().P;.9)
then P;.§ = Pj.yi
endfor
Perform PSO updates on P; using (1-2)
endfor
Select random k ~ U(1,s/2) | Q.yx # O.§

Q-Xk = b(].P[S’)
for each particle j € [1..5] :
if 7(0.x)) < £(0.y))
then Q.y; = 0.x;
if £(0.y) < £(09)
then 0. =Q.y;
endfor
Perform PSO updates on Q using (1-2)
for swarm j € [1..K] :
Select random k~ U(1,s/2) | P;.yy # P;.§
Ppxi= 0.3,
endfor
until stopping condition is true

Fig. 5. Pseudocode for the generic CPSO-H i algorithm.

the algorithm. Specifically, after one iteration of the CPSO-S
half (the P; swarms in Fig. 5) of the algorithm, the context
vector b(1, P;.y) is used to overwrite a randomly chosen par-
ticle in the PSO half (the (Q swarm in Fig. 5) of the algorithm.
This is followed by one iteration of the () swarm component of
the algorithm, which yields a new global best particle, ).y . This
vector is then split into subvectors of the right dimensions and
used to overwrite the positions of randomly chosen particles in
the P; swarms.

Although the particles that are overwritten during the infor-
mation exchange process are randomly chosen, the algorithm
does not overwrite the position of the global best position of any
of the swarms, since this could potentially have a detrimental ef-
fect on the performance of the affected swarm. Empirical studies
also indicated that too much information exchange using this
mechanism can actually impede the progress of the algorithm.
By selecting a particle (targeted for replacement) using a uni-
form random distribution it is highly likely that a swarm of s
particles will have had all its particles overwritten in, say 2s, in-
formation exchange events, except for the global best particle,
which is explicitly protected. If the P; swarms are lagging be-
hind the () swarm in terms of performance, this means that the
P; swarms could overwrite all the particles in the () swarm with
inferior solutions in only a few iterations. On the other hand, the
@ swarm would overwrite particles in the P; swarms at the same
rate, so the overall best solution in the algorithm will always be
preserved. The diversity of the particles will decrease signifi-
cantly because of too-frequent information exchange, though.

A simple mechanism to prevent the swarms from accidentally
reducing the diversity is implemented by limiting the number
of particles that can actively participate in the information ex-
change. For example, if only half of the particles are possible
targets for being overwritten, then at most half of the diversity of
the swarm can be jeopardised. This does not significantly affect
the positive influence of the information exchange process. For
example, if the () swarm overwrites an inferior particle P;.x;
with a superior value (from (Q), then that particle ¢ will become
the global best particle of swarm j. During subsequent itera-
tions more particles will be drawn to this new global best par-
ticle, possibly discovering better solutions along the way, thus,
the normal operation of the swarm is not disturbed.

V. EXPERIMENTAL SETUP

In order to compare the different algorithms, a fair time mea-
sure must be selected. The split and hybrid CPSO algorithms
have lower overheads due to the fact that they deal with smaller
vectors. Therefore, using processor time as a time measure
would give them an unfair advantage. The number of iterations
cannot be used as a time measure, as the algorithms do differing
amounts of work in their inner loops. It was, therefore, decided
to use the number of function evaluations (FEs) as a time
measure. All the functions presented here have the value 0 in
their global minima.

The advantage of measuring complexity by counting the
function evaluations is that there is a strong relationship
between this measure and processor time as the function
complexity increases. This measure, thus, provides a good
indication of the relative ranking of the algorithms when using
PSOs to train neural networks [8], [9], where the cost of a
single function evaluation is large with respect to the overhead
of the PSO algorithm itself.

The following functions were selected for testing, largely
based on their popularity in the PSO community, allowing for
easier comparison.

The Rosenbrock (or banana-valley) function (unimodal)

3

fo(x) = Z (100 (z2; — x%i—l)z +(1- 3721:—1)2) . (10)
i=1
The Quadric function (unimodal)
] 2
A=D1 (11)

i=1 \j=1

Ackley’s function (multimodal)

fa(x) =—20exp | —0.2

n
1 2
52T
n ]
=1

1 n
— exp (5 > cos(2m:i)) +20+e  (12)
i=1

The generalized Rastrigin function (multimodal)

fa(x) = Z (:IJL2 — 10 cos(2mz;) + 10) )

i=1

13)
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TABLE 1
PARAMETERS USED FOR EXPERIMENTS
Function | n domain | threshold

fo 30 | 2.048 100
N 30 | 100 0.01
f 30 | 30 5.00
A 30 | 5.12 100
14 30 | 600 0.1

The generalized Griewank function (multimodal)

4000Z HCOS( >+1

Table I lists the parameters used for the experiments. The
values listed in the “domain” column are used to specify the
magnitude to which the initial random particles are scaled. The
“threshold” column lists the function value threshold which is
used as a stopping criterion in some tests (as specified below).

Most of these functions, with the exception of fo and f3,
have some interaction between their variables. This should
make them more difficult to solve using simple approaches like
the relaxation method. Thus, these functions were specifically
chosen because it was expected that they would be more
difficult to solve using the CPSO algorithms. To make sure that
there was sufficient correlation between the variables, making
it even harder for the CPSO algorithms, all the functions
were further tested under coordinate rotation using Salomon’s
algorithm [32]. Before each individual run a new rotation was
computed, thus, no bias was introduced because of a specific
rotation.

(14)

A. PSO Configuration

All experiments were run for 2 x 10° error function evalua-
tions (in Section VI-A), or until the error dropped below a stop-
ping threshold (in Section VI-B), depending on the type of ex-
periment being performed. The number of iterations was chosen
to correspond to 10* iterations of the plain PSO (with 20 par-
ticles), following [17]. All experiments were run 50 times; the
results reported are the averages (of the best value in the swarm)
calculated from all 50 runs. The experiments were repeated for
each type of swarm using 10, 15, and 20 particles per swarm.
The following types of PSO were tested:

* PSO: “plain” swarm using ¢; = 1.49, co = 1.49, w =
0.72, and vy, is clamped to the domain, following Eber-
hart and Shi [17].

e CPSO-S: A maximally “split” swarm using ¢; = 1.49,
co = 1.49, w decreases linearly over time, and vyax 1S
clamped to the domain (refer to Table I).

e CPSO-Sg: A “split” swarm using ¢; = 1.49, c; = 1.49,
w decreases linearly over time, and v,y is clamped to
the domain (refer to Table I). The difference between this
swarm type and the split CPSO (above) is that the search-
space vector for CPSO-Sg is split into only six parts (of
five components each), instead of 30 parts.

e CPSO-H: A hybrid swarm, consisting of a maximally
split swarm, coupled with a plain swarm, described in

Section ITI-A. Both components use the values ¢c; = 1.49,
co = 1.49, w decreasing linearly over time, and vy ax
clamped to the domain (refer to Table I).

* CPSO-Hg: A hybrid swarm, consisting of a CPSO-Sg
swarm, coupled with a plain swarm, described in
Section I'V. Both components use the values ¢; = 1.49,
co = 1.49, w decreasing linearly over time, and vy ax
clamped to the domain (refer to Table I).

The above values for the parameters cj, co, and w were
selected based on suggestions in other literature where these
values have been found, empirically, to provide good perfor-
mance [17], [26]. For a more detailed study of convergence
characteristics for different values of these parameters, please
refer to [26].

B. GA Configuration

In order to put the PSO (and, thus, the CPSO) performance
into perspective the experiments were repeated using a GA.
Results obtained using an implementation of the cooperative
GA, as introduced by Potter and De Jong [4], are also provided
for comparison. The two GA algorithms have been labeled as
follows.

* GA: A standard genetic algorithm, with parameters spec-
ified below.

* CCGA: A cooperative genetic algorithm [4], where the
search-space vector is maximally split so that each com-
ponent belongs to its own swarm. For the functions tested
here, this implies that 30 populations were employed in a
cooperative fashion.

The parameters for both types of GA are as follows.

* Chromosome type: binary coded.

» Chromosome length: 48 bits per function variable.

* Crossover probability: 0.6.

* Crossover strategy: Two-point.

* Mutation probability: 1/(48 x 30), assuming 30 variables
per function.

* Fitness scaling: Scaling window of length 5.

* Reproduction strategy: Fitness-proportionate with a 1-el-
ement elitist strategy.

* Population size: 100.

Note that the CCGA places each parameter of the function
under consideration in its own population, corresponding to
the split CPSO. The choice of 48 bits per variable is to make
the comparison between the PSO and the GA more fair, as the
PSO uses double-precision floating point variables with 52-bit
mantissas.

VI. RESULTS
A. Fixed-Iteration Results

This section presents results gathered by allowing all of the
methods tested to run for a fixed number of function evaluations,
ie., 2 x 10°. The following format applies to Tables II-IV. The
second column lists the number of particles per swarm s, or the
population size for the GAs. The third and fourth columns list
the mean error and 95% confidence interval after the 2 x 10°
function evaluations, for the unrotated and rotated versions of
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TABLE 1I
ROSENBROCK ( fo) AFTER 2 X 10° FUNCTION EVALUATIONS
Algorithm| s Mean(Unrotated) Mean(Rotated)
PSO 10 1.30e—01 + 1.45e—01 | 3.32e—01 £+ 9.50e—02
15 | 5.53¢—03 £ 6.19¢—03 | 2.84¢—01 £+ 5.17e—02
20 | 9.65e—03 £ 7.28¢—03 | 3.16e—01 + 3.41e—02
CPSO-S 10 | 7.58e—01 £ 1.16e—01 | 3.23e+00 £ 7.78e—01
15 | 7.36e—01 £ 3.04e—02 | 2.58e+00 £ 5.36e—01
20 | 9.06e-01 £3.56e-02 | 4.37e100 £ 851e-01
CPSO-H 10 | 2.92e—01 £ 2.19¢—02 | 4.26e—01 + 3.83e—02
15 | 3.14e—01 £ 1.74e—02 | 4.96e—01 + 4.53e—02
20 | 4.35¢e—01 £ 2.48e—02 | 1.06e+00 £ 2.96e—01
CPSO-S¢ | 10 1.41e+00 + 4.73¢—01 | 2.65¢4+00 + 6.69¢—01
15 | 2.47e+00 £ 7.00e—01 | 3.84e+00 + 9.81e—01
20 1.59¢+00 £ 5.03¢—01 | 4.27¢4+00 = 7.73¢—01
CPSO-Hg | 10 1.94e—01 + 2.63e—01 | 1.77e—01 + 3.62e—02
15 | 2.59¢—01 £ 2.47¢—01 | 3.73e—01 £ 2.07e—01
20 | 421e—01 £3.21e—01 | 4.73e—01 + 1.35¢—01
GA 100 | 6.32e+01 £ 1.19¢+01 | 6.15e+01 £ 1.42e+4-01
CCGA 100 | 3.80e+00 + 1.93e—01 | 1.32e+01 + 2.19¢+00
TABLE III
QUADRIC ( f1) AFTER 2 X 10° FUNCTION EVALUATIONS
Algorithm | s Mean(Unrotated) Mean(Rotated)
PSO 10 1.08¢+00 £ 1.41e+00 | 6.02¢+03 £ 2.17e+03
15 2.85e—72 + 5.41e—72 | 3.35¢4+02 £ 1.35¢4+02
20 2.17¢—98 +4.20e—98 | 1.12¢+02 + 4.91¢+01
CPSO-S 10 | 2.55¢—128 +4.98¢—128 | 1.47¢+03 + 4.77¢+02
15 7.26¢—89 £ 1.14¢—88 | 1.28¢+03 + 3.88¢+02
20 3.17e—67 +£2.21e—67 | 1.72¢+03 + 5.91e+02
CPSO-H 10 541e—95 £ 1.05¢—94 | 2.15¢+02 £ 8.75¢+01
15 6.74e—81 £+ 8.92e—81 | 3.45¢+02 £ 9.92e+01
20 1.45e—63 4+ 1.98e—63 | 4.10e+02 £ 1.32e402
CPSO-S¢ 10 4.63e—07 £ 6.14e—07 | 2.89¢+03 £ 1.07e+03
15 1.36e—05 + 1.76e—05 | 2.99¢403 £ 1.07¢403
20 1.20e—04 + 8.99¢e—05 | 4.64e+03 £ 1.55¢4+03
CPSO-Hg | 10 2.63¢—66 £ 5.08c—66 | 2.40e+02 £ 1.04¢402
15 9.00e—46 + 1.09¢—45 | 7.06e+02 + 3.24e+02
20 1.40e—29 + 1.15¢—29 | 1.03¢403 + 5.24¢402
GA 100 1.68e+06 + 2.56e+05 | 1.07e+06 + 2.09e+05
CCGA 100 1.38¢402 £ 9.20e+01 | 6.53¢403 £ 2.38¢403
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TABLE 1V
ACKLEY (f2) AFTER 2 X 10° FUNCTION EVALUATIONS
Algorithm | s Mean(Unrotated) Mean(Rotated)
PSO 10 | 7.33¢+00 £ 6.23¢—01 | 7.54¢+00 + 5.82¢—01
15 | 4.92¢+00 £ 5.81e—01 | 5.09¢+00 £ 5.11e—01
20 | 3.57e+00 £ 4.58¢—01 | 3.42¢+00 £ 3.74e—01
CPSO-S 10 | 2.90e—14 £ 1.60e—15 | 1.73e+01 £ 1.45¢+00
15 3.0le—14 + 1.42e—15 | 1.81e+01 + 1.09e+00
20 | 3.05¢—14 + 1.84¢—15 | 1.85¢+01 + 7.76e—01
CPSO-H 10 | 2.78e—14 £+ 1.71e—15 | 1.43e+01 £ 1.57¢+00
15 | 2.92e—14 & 1.67e—15 | 1.43e+01 4 1.48e+00
20 | 2.98e—14 &+ 1.56e—15 | 1.60e+01 4 1.42e+00
CPSO-S¢ 10 1.12¢—06 + 4.01e—07 | 7.98¢—01 + 1.06e+00
15 1.11e—05 +4.35¢—06 | 1.14e+00 = 1.26e+00
20 | 5.42¢—05 + 1.66e—05 | 1.54¢+00 + 1.46¢+00
CPSO-Hg 10 | 9.42e—11 £ 7.58¢—11 | 8.23¢—01 =+ 1.04e+00
15 | 9.57e—12 £ 7.96e—12 | 8.12¢—01 + 1.05¢+00
20 | 2.73e—12 £2.03e—12 | 1.51e—12 £ 6.83e—13
GA 100 | 1.38¢+01 + 4.04¢—01 | 1.27¢+01 + 1.55¢+00
CCGA 100 | 9.51e—02 £ 3.39¢—02 | 1.57e+01 £ 1.87¢+00
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the functions, respectively. Keep in mind that all the functions
used here have a minimum function value of 0.

Table II shows that the Rosenbrock function in its unro-
tated form is easily optimized by the standard PSO, with the
CPSO-Hg performing better (relative to the others) on the
rotated version. Fig. 6 shows a plot of the performance of the
various algorithms over time. Note that in the rotated case,
there is little difference between the performance of the PSO,
CPSO-H, and CPSO-Hg algorithms.

The Quadric function presents some interesting results, as
can be seen in Table III. There is a very large difference in
performance between the rotated and unrotated cases. The
PSO, CPSO-S, CPSO-H, and CPSO-Hg algorithms all perform
well on the unrotated case, as can be seen in Fig. 7. When
the search space is rotated, however, only the PSO, CPSO-H,
and CPSO-Hg algorithms belong to the cluster of performance
leaders.

Ackley’s function is a multimodal function with many local
minima positioned on a regular grid. In the unrotated case, the
CPSO-S, CPSO-H and CPSO-Hg algorithms take the lead, as
can be seen in Table IV. In the rotated case, the standard PSO

log(f(x))
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Fig. 6. Rosenbrock (fo) mean best function value profile. (a) Rosenbrock
mean best function value profile. (b) Rotated Rosenbrock mean best function
value profile.

algorithm becomes trapped in a local minimum early on, as
can be seen from the flat line in Fig. 8. The CPSO-Hg algo-
rithm is able to continue improving its solution, regardless of
rotation. A comment on the performance of the CPSO-S and
CPSO-H algorithms in the rotated case is in order. Ackley’s
function is covered by sinusoidal minima arranged in a regular
grid. If the function is unrotated, these “dents” are uncorrelated,
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Fig. 7. Quadric (f1) mean best function value profile. (a) Quadric mean best
function value profile. (b) Rotated Quadric mean best function value profile.

so that each dimension can be searched independently. After ro-
tation the dents no longer form a grid aligned with the coordinate
axes. This makes the problem significantly harder for the coop-
erative swarms; however, the CPSO-Hg algorithm manages to
overcome this difficulty. Note that the CCGA algorithm is also
negatively affected by the search space rotation.

Rastrigin’s function exhibits a pattern similar to that ob-
served with Ackley’s function. In the unrotated experiment,
the CPSO-S and CPSO-H algorithms perform very well, but
their performance rapidly deteriorates when the search space is
rotated. The best performer in the rotated case is the CPSO-Sg
algorithm, followed closely by the CPSO-Hg algorithm, as can
be seen in Table V. Given that the CPSO-Hg algorithm has to
devote some of its function evaluations to the standard PSO
component it contains, it is conceivable that it may converge
more slowly than the CPSO-Sg algorithm on some problems on
which the CPSO-Sg excels, since the CPSO-Sg does not have
that overhead. Fig. 9 shows a familiar pattern: the standard
PSO quickly becomes trapped in a local minimum, while some
of the cooperative swarms manage to continue improving.

Table VI shows that the cooperative PSO algorithms per-
formed better than the standard PSO algorithm in all the exper-
iments on Griewank’s function. Fig. 10 shows the same trend,
however, note how all the algorithms, even the cooperative ones,
tend to stagnate after the first 10° function evaluations.
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Fig. 8. Ackley (f2) mean best function value profile. (a) Ackley mean best

function value profile. (b) Rotated Ackley mean best function value profile.

TABLE V

RASTRIGIN ( f3) AFTER 2 X 10° FUNCTION EVALUATIONS

Algorithm | s Mean(Unrotated) Mean(Rotated)
PSO 10 | 8.27¢+01 % 5.64¢+00 | 9.76e+01 £ 5.90e+00
15 | 7.44e+01 £ 5.66e+00 | 8.48e+01 £ 5.42e+00
20 | 6.79¢+01 + 4.84e+00 | 7.87e+01 + 6.79e+00
CPSO-S 10 | 0.00e+00 £ 0.00e+00 | 7.55¢4+01 £ 7.53e+00
15 | 0.00e+00 £ 0.00e+00 | 8.15¢+01 = 6.26e+00
20 | 0.00e+00 £ 0.00e+00 | 7.89¢+01 £ 6.41e+00
CPSO-H 10 | 0.00e4+00 £ 0.00e+00 | 7.91e4+01 = 6.97¢+00
15 | 0.00e+00 £ 0.00e+00 | 8.21e+01 £ 6.49e+00
20 | 0.00e+00 £ 0.00e+00 | 8.12¢401 £ 5.92e+00
CPSO-Sq 10 | 1.39e—01 + 1.12e—01 | 5.41e+01 + 5.18e+00
15 | 6.00e—02 £ 6.62¢—02 | 4.66¢+01 £ 3.84¢+00
20 | 1.46e—01 L 1.03e—01 | 5.04e+01 L 5.50e+00
CPSO-Hg 10 | 1.47e4+00 &+ 3.16e—01 | 6.16e+01 =+ 5.08e+00
15 | 8.77e—01 £ 2.20e—01 | 5.94e+01 £ 5.04e+00
20 | 7.78e—01 + 1.87e—01 | 5.41e+01 £ 4.63e+00
GA 100 | 1.29¢+02 + 7.00e+00 | 1.37e+02 + 1.78e+01
CCGA 100 | 1.22e+00 + 2.35¢—01 | 6.93e+01 + 1.02e+01

The results show that the PSO-based algorithms performed
better than the GA algorithms in general. The cooperative algo-
rithms collectively performed better than the standard PSO in
80% of the test cases. In particular, the CPSO-Hg algorithm was
able improve on the performance offered by the standard PSO
on the rotated multimodal problems, which were the hardest
problems to solve among those tested.



VAN DEN BERGH AND ENGELBRECHT: A COOPERATIVE APPROACH TO PARTICLE SWARM OPTIMIZATION 235

log(f(x))

-10

-15

|
i
;
°© +

T
50000

T
100000

Function Evaluations

(@)

T T
150000 200000

log(f(x))

Fig.9. Rastrigin (f3) mean best function value profile. (a) Rastrigin mean best

100000

Function Evaluations

®)

150000 200000

function value profile. (b) Rotated Rastrigen mean best function value profile.

TABLE VI
GRIEWANK (f4) AFTER 2 X 10° FUNCTION EVALUATIONS
Algorithm | s Mean(Unrotated) Mean(Rotated)
PSO 9.65¢—01 % 7.58¢—01 | 3.45¢—01 = 1.64c—01
15 | 2.62¢—01 £ 1.61e—01 | 1.17¢—01 £ 4.62¢—02
20 | 6.51e—02+ 2.17e—02 | 9.64e—02 + 4.95¢—02
CPSO-S 10 | 2.79¢—02+ 8.36¢—03 | 5.10e—02 + 9.77¢—03
15 | 221e—02+ 6.28¢—03 | 5.77e—02+ 1.26e—02
20 | 2.25e—02+ 6.10e—03 | 6.11e—02+ 1.17e—02
CPSO-H 10 | 2.45¢—02+£ 5.38e—03 | 5.19e—02 + 1.34e—02
15 | 2.38e—02+ 9.81e—03 | 540e—02% 1.51e—02
20 | 1.86e—02+ 5.46e—03 | 4.42e—02+ 1.08e—02
CPSO-S¢ 10 | 7.29e—02 £ 1.49¢e—02 | 6.4le—02£ 1.18e—02
15 | 6.90e—02+ 1.56e—02 | 7.40e—02 £ 1.39¢e—02
20 | 8.95e—02+ 1.68e—02 | 5.51e—02+ 1.38¢—02
CPSO-Hg | 10 | 6.75¢—02% 1.40e—02 | 4.67e—02 £ 1.32e—02
15 | 5.54e—02+ 1.27e—02 | 3.86e—02 % 1.05e—02
20 | 5.24e—02+ 1.19e—02 | 4.06e—02+ 1.03e—02
GA 100 | 5.94e+01 £ 6.92e+00 | 4.98e+01 + 8.06e+00
CCGA 100 | 2.20e—01 + 6.57e—02 | 1.93e—01 + 4.82¢e—02

B. Robustness

This section compares the various algorithms to determine
their relative rankings using both robustness and convergence
speed as criteria. The term “robustness” is used here to mean that
the algorithm succeeded in reducing the function value below
a specified threshold using fewer than the maximum allocated
number of function evaluations. A “robust” algorithm is one that
manages to reach the threshold consistently (during all runs)
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Fig. 10. Griewank ( f4) mean best function value profile. (a) Griewank mean
best function value profile. (b) Rotated Griewank mean best function value
profile.

TABLE VII
ROSENBROCK ( f) ROBUSTNESS ANALYSIS

Unrotated Rotated
Algorithm s | Succeeded | Fn Evals. | Succeeded | Fn Evals.
PSO 10 50 609 50 661
15 50 820 50 790
20 50 861 50 855
CPSO-S 10 50 320 50 420
15 50 424 50 532
20 50 562 50 672
CPSO-H 10 50 332 50 411
15 50 426 50 525
20 50 556 50 653
CPSO-S¢ 10 50 436 50 516
15 50 453 50 581
20 50 521 50 660
CPSO-Hg 10 50 582 50 617
15 50 655 50 721
20 50 716 50 845
GA 100 49 16643 48 21234
CCGA 100 50 2652 50 2679

in the experiments performed here. Robustness should not be
confused here with sensitivity analysis, which is a study of the
influence of parameter changes on performance.

Tables VII-XI present the following information: The
“succeeded” column lists the number of runs (out of 50) that
managed to attain a function value below the threshold in less
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TABLE VIII
QUADRIC ( f1) ROBUSTNESS ANALYSIS

TABLE X
RASTRIGIN ( f3) ROBUSTNESS ANALYSIS

Unrotated Rotated Unrotated Rotated
Algorithm s | Succeeded | Fn Evals. | Succeeded | Fn Evals. Algorithm s | Succeeded | Fn Evals. | Succeeded | Fn Evals.
PSO 10 38 34838 0 N/A PSO 10 45 2112 41 2403
15 50 16735 1 26161 15 43 2525 39 2912
20 50 14574 2 175788 20 49 3341 41 3142
CPSO-S 10 50 70215 0 N/A CPSO-S 10 50 375 40 3516
15 50 77265 0 N/A 15 50 436 37 5187
20 50 83168 0 N/A 20 50 546 41 4817
CPSO-H 10 50 40056 0 N/A CPSO-H 10 50 388 40 4484
15 50 53341 0 N/A 15 50 430 39 5366
20 50 61430 0 N/A 20 50 545 37 5658
CPSO-S¢ 10 50 77818 0 N/A CPSO-S¢ 10 50 2226 48 7562
15 50 101565 0 N/A 15 50 2750 50 7517
20 50 115687 0 N/A 20 50 3029 50 9874
CPSO-Hg 10 50 22200 1 126271 CPSO-Hg 10 50 2386 48 16212
15 50 31503 0 N/A 15 50 2748 50 12133
20 50 43918 0 N/A 20 50 3499 50 11964
GA 100 0 N/A 0 N/A GA 100 27 75341 1 59100
CCGA 100 0 N/A 0 N/A CCGA 100 50 2339 50 2659
TABLE IX TABLE XI
ACKLEY ( f,) ROBUSTNESS ANALYSIS GRIEWANK ( f4 ) ROBUSTNESS ANALYSIS
Unrotated Rotated Unrotated Rotated
Algorithm s [ Succeeded | Fn Evals. | Succeeded | Fn Evals. Algorithm | s | Succeeded | Fn Evals. | Succeeded | Fn Evals.
PSO 10 11 2099 6 1988 PSO 10 19 17521 18 24081
15 32 3019 32 3385 15 30 8066 35 9095
20 37 2986 41 3200 20 34 8405 34 8620
CPSO-S 10 50 935 5 6240 CPSO-S 10 50 46963 45 55532
15 50 1053 2 11644 15 50 47174 40 59911
20 50 1227 2 43314 20 50 46679 42 59389
CPSO-H 10 50 1068 4 24420 CPSO-H 10 47 20170 40 24374
15 50 1154 2 5836 15 49 24183 46 30257
20 50 1245 2 2401 20 50 27121 43 35715
CPSO-S; 10 50 3264 50 6670 CPSO-8¢ 10 40 85580 44 64311
15 50 4136 47 4533 15 33 98075 40 72844
20 50 4994 46 5686 20 34 105770 40 77259
CPSO-Hg 10 50 3105 49 3494 CPSO-Hg 10 40 24445 44 19478
15 50 3924 46 5355 15 44 21063 39 21282
20 50 4947 49 5657 20 40 28577 43 28099
GA 100 50 100 50 100 GA 100 0 N/A 0 N/A
CCGA 100 50 100 50 100 CCGA 100 26 134056 5 128545

than 2 x 10° FEs, while the “Fn Evals.” column presents the
number of function evaluations needed on average to reach the
threshold, calculated only for the runs that “succeeded.” Note
that no confidence intervals or standard deviations are reported
for the number of function evaluations required to reach the
threshold. One reason for this omission is that the number of
times that the algorithm succeeded in reaching the threshold
already provides information regarding the variability of the
result, meaning that a robust algorithm will typically have a
small standard deviation. Keep in mind that the less robust
algorithms sometimes have as few as four runs that succeeded
in reaching the threshold, so that the sample standard deviation
would be quite inaccurate. The distributions of the results
were also tested for normality (a requirement for sensible
interpretation of the standard deviation). Although not reported
individually here, most of these results had highly nonnormal
distributions, usually a distribution that appeared one-sided,
with the reported mean being close to the minimum value.

None of the algorithms, with the exception of the standard
GA, had any difficulty reaching the threshold of the Rosenbrock
function during any of the runs. Table VII further shows that all
the PSO-based algorithm solved the problem in fewer than 1000
function evaluations, with the CPOS-S algorithm requiring the
fewest function evaluations overall.

The Quadric function shows how much more difficult it can
become to minimize the rotated version of a function. The co-
operative algorithms reached the threshold during all the runs in
the unrotated case, but failed completely on the rotated problem.
The standard PSO and the GAs had some difficulty solving the
unrotated case, with the GAs consistently failing on all the runs.
Looking at the number of function evaluations, the standard
PSO was in the lead, followed by the CPSO-Hg algorithm, as
shown in Table VIII.

The standard PSO had some difficulty with Ackley’s func-
tion, as can be seen in Table IX. Note that both the CPOS-S
and CPOS-H algorithms failed almost completely on the rotated
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function, but that the CPSO-Sg and CPSO-Hg algorithms man-
aged to solve the rotated problem consistently. This function
represents a very important result regarding the nature of the
cooperative algorithms: on uncorrelated functions, the CPSO-S
and CPSO-H algorithms have the speed advantage, but they fail
on highly correlated multimodal functions. The CPSO-S g and
CPSO-H algorithms may have somewhat slower rates of con-
vergence compared with the CPSO-S and CPSO-H algorithms,
but they are significantly more robust—in many cases, more ro-
bust than the original PSO algorithm. Note that the GAs were
very consistent in solving this problem.

Table X shows a similar, but less pronounced scenario. The
cooperative algorithms again perform admirably on the unro-
tated Rastrigin function, but the CPSO-S and CPSO-H algo-
rithms are less robust on the rotated problem. Note that the
CCGA algorithm is doing very well on this problem, delivering
the best overall performance for the rotated case.

Griewank’s function proves to be hard to solve for all the
algorithms, as can be seen in Table XI. Only the CPSO-S
and CPSO-H algorithms consistently reached the threshold
during some runs on the unrotated problem. No algorithm
could achieve a perfect score on the rotated problem, but the
cooperative algorithms appear to have performed better than
the standard PSO and the GAs.

Overall, as far as robustness is concerned, the CPSO-Hg al-
gorithm appears to be the winner, since it achieved a perfect
score in seven of the ten test cases. The CPSO-S, CPSO-H, and
CPSO-Sg algorithms were slightly less robust, followed closely
by the CCGA. The standard PSO and the GA were fairly unre-
liable on this set of problems.

When looking at the number of function evaluations, the
CPSO-S algorithm was usually the fastest, followed by the
standard PSO and the CCGA. These results indicate that there
is a tradeoff between the convergence speed and the robustness
of the algorithm.

C. Discussion of Results

The results presented in Sections VI-A and VI-B can be sum-
marized as follows.

* On unimodal functions, the standard PSO and CPSOs per-
formed very well in the unrotated case.

* On functions containing lattice-based local minima, the
CPSOs perform very well when the lattice is aligned with
the coordinate axes. When the coordinate axes are rotated,
CPSO-S and CPSO-H performance degrades (to a degree
depending on the specific function), while the CPSO-S i
and CPSO-Hy algorithms handle these cases better. The
standard PSO quickly becomes trapped in local minima
on some of these problems.

 All the PSO-based algorithms are highly competitive with
the GA-based algorithms on all of the problems, usually
surpassing their performance.

* The CPSO-Hg algorithm is very robust, even when
dealing with multimodal rotated functions.

* The standard PSO performs best when using 20 particles
per swarm.

* The CPSO-S and CPSO-H algorithms perform better
when ten particles per swarm are used.

¢ The CPSO-Sgi and CPSO-Hf algorithms are somewhat
faster when using 10 particles per swarm, but more ro-
bust using 20 particles per swarm. The speed improvement
using 10 particles is sufficient to warrant the small loss in
robustness.

From this summary, it can be hypothesized that the PSO per-
forms best when the size of the search space is constrained. Con-
sider that the initialization step of the PSO scatters the particles
uniformly through the search space. If the number of particles is
finite, the probability of having a particle’s position initialized
close to a minimum (or any specific small volume in the search
space) tends to zero as the dimensionality of the search space
approaches infinity. In fact, the probability of finding a particle
in a specific region (of small, specified volume) decreases ex-
ponentially as the number of dimensions increases. Each iter-
ation of the PSO algorithm takes another random sample from
a subspace specified by the relative positions of the particles at
that time, so the probability of a particle landing in a specific
region is again influenced exponentially by the dimensionality
of the search space. This argument illustrates that the PSO (like
most other stochastic algorithms) is expected to perform better
in low-dimensional search spaces.

The various CPSO algorithms aim to exploit this property by
utilising multiple PSOs in an attempt to keep the dimensionality
of the search space assigned to each PSO small, at the same
time providing a mechanism for these swarms to cooperate to-
ward the goal of solving the original high-dimensional problem.
This offers some explanation as to the better performance of the
CPSO algorithms on the unrotated problems, since the dimen-
sions of the unrotated problems are relatively independent (for
many of the functions tested). The rotated problems increase the
correlation between the subspaces assigned to the different PSO
subalgorithms used in the CPSO, thus reducing the effective-
ness of the decomposition. For some problems, however, this
reduction in efficacy is less significant than the performance
gained by reducing the dimensionality of the problem through
the decomposition.

Another benefit of the decomposition is that the overall diver-
sity of solutions generated by the CPSO exceeds that of the stan-
dard PSO. This ensures that the search space is sampled more
thoroughly, thus improving the algorithm’s chances of finding
a good solution.

A CPSO-S g variant has been used to train product unit neural
networks with promising results in [33]. There it was deter-
mined that around five function variables per swarm (corre-
sponding to the CPSO-Sg¢ architecture presented here) offered
the best performance. This would suggest that the error func-
tion of the network represents a problem like rotated Ackley,
Griewank, or Rastrigin, that is, a function with local minima
and interdependency between the variables.

Overall, the cooperative PSO algorithms offer improved
performance over the standard PSO, especially in terms of
robustness.

VII. CONCLUSION

This paper presented a method of casting particle swarm op-
timization into a cooperative framework. This resulted in a sig-
nificant improvement in performance, especially in terms of
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solution quality and robustness. One hypothesis is that the in-
creased diversity of the cooperative swarms is responsible for
the improved robustness on multimodal problems.

The cooperative approach introduced here performs better
and better as the dimensionality of the problem increases (borne
out by the results presented in [33]), compared with the tradi-
tional PSO. A likely explanation for this effect is that the PSO
(like most other stochastic search algorithms) performs better in
lower dimensional search spaces. This is mostly due to the expo-
nential increase in the volume of the search space as the dimen-
sionality increases, while the number of particles has to be kept
fixed (and small) to keep the algorithm efficient. Large swarms
tend to have numerous particles that do not contribute to the so-
lution, especially during later iterations, so it would be imprac-
tical to increase the number of particles to match the increase
in volume. Since the CPSO algorithms decompose the larger
search space into several smaller spaces, the rate at which each
of these subswarms converge onto solutions contained in their
subspaces is significantly faster than the rate of convergence of
the standard PSO on the original, n-dimensional search space.

The price paid for the increased performance is the chance
that the CPSO algorithm may converge onto pseudominima that
were called into existence by the decomposition of the search
space. The efficacy of the decomposition is also affected by
the degree of correlation between the subproblems created by
the decomposition. It was found that in spite of these potential
difficulties, the CPSO algorithms exhibited significantly better
performance on many of the problems tested. The hybrid CPSO
variants were found to exhibit emergent behavior, that is, they
performed differently from their constituent parts, usually
better. This phenomenon warrants more study.

The new algorithms presented here also lend themselves to
distributed architectures, as the swarms can be processed on dif-
ferent machines concurrently. The CPSO-Si and CPSO-Hg
techniques require some form of shared memory to build the
context vector, but it is hypothesized that this vector does not
have to be updated during every cycle (to reduce bandwidth
usage) for the algorithm to work well. This will be investigated
at a later stage.

Several important properties of the split swarm technique still
remain to be investigated. It is not yet clear whether the same
parameters that work well for the plain swarm are optimal for
the CPSOs. Although the cooperative swarms typically outper-
formed the traditional PSO on the functions evaluated in this
paper, it should not be taken as proof that these new approaches
will be better for all problems, especially in the light of the
no free lunch theorem [34]. A theoretical analysis of the new
technique is currently under development to further investigate
the type of function for which the cooperative algorithms offer
better performance. A study is also currently being done to in-
vestigate the performance of using the GCPSO instead of stan-
dard PSO within the cooperative version of the PSO.
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