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Abstract— Boltzmann selection is an important selection mech-
anism in evolutionary algorithms as it has theoretical properties
which help in theoretical analysis. However, Boltzmann selection
is not used in practice because a good annealing schedule for
the ‘inverse temperature’ parameter is lacking. In this paper we
propose a Cauchy annealing schedule for Boltzmann selection
scheme based on a hypothesis that selection-strength should
increase as evolutionary process goes on and distance between two
selection strengths should decrease for the process to converge.
To formalize these aspects, we develop formalism for selection
mechanisms using fitness distributions and give an appropriate
measure for selection-strength. In this paper, we prove an
important result, by which we derive an annealing schedule
called Cauchy annealing schedule. We demonstrate the novelty of
proposed annealing schedule using simulations in the framework
of genetic algorithms.

I. INTRODUCTION

Selection is a central concept in evolutionary algorithms.
There are several selection mechanisms in genetic algorithms,
like proportionate selection, ranking selection, tournament
selection, truncation selection and Boltzmann selection [1].
Among all these selection mechanisms, Boltzmann selection
has an important place because it has some nice theoretical
properties in some models of evolutionary algorithms [2]. For
example, Boltzmann selection is extensively used in statistical
mechanics theory of evolutionary algorithms [3]–[6].

Moreover, Boltzmann selection scheme is not used often
in solving practical problems because, similar to simulated
annealing, it needs an annealing schedule for perturbing the
value of inverse temperature parameter used in Boltzmann
selection, which is difficult to choose [2]. This problem is
well known from simulated annealing [7], an optimization
algorithm where noise is introduced by means of a formal
temperature. Lowering, or “annealing,” the temperature from
high to low values in the course of the optimization leads to
improved results compared to an optimization at fixed temper-
ature [8]. However, there remains the problem of choosing a
suitable annealing schedule for a given optimization problem.
The same problem occurs in population-based optimization al-
gorithms, and this paper address this problem for evolutionary
algorithms.

Usually, in evolutionary algorithms, probabilistic selection
mechanisms are characterized by selection probabilities [9].
For a population P = {ωi}

nP

i=1, selection probabilities {pi}
nP

i=1

are defined as,

pi = Prob(ωi ∈ selection(P )|ωi ∈ P ) ∀i = 1 . . . nP ,

and {pi}
nP

i=1 satisfies the condition:
∑nP

i=1 pi = 1.

Let {f(ωi)}
nP

i=1 be the corresponding fitness values. The
proportionate selection assigns selection probabilities accord-
ing to the relative fitness of individuals as [10]:

pi =
f(ωi)

∑nP

j=1 f(ωj)
. (1)

Similarly Boltzmann selection is represented as [11]:

pi =
eγf(ωi)

∑nP

j=1 eγf(ωj)
, (2)

where γ is called inverse temperature. The strength of selec-
tion is controlled by the parameter γ. A higher value of γ (low
temperature) gives a stronger selection, and a lower value of γ

gives a weaker selection. For details of representation of other
selection mechanisms refer [1], [9], [12].

Some properties of selection mechanisms that are desirable
in order to control the search process are [9]:

• The impact of the control parameters on selective pressure
should be simple and predictable.

• One single control parameter for selective pressure is
preferable.

• The range of selective pressure that can be realized
by varying the control parameter should be as large as
possible.

Boltzmann selection satisfies above properties. Boltzmann
selection gives faster convergence, but without good annealing
schedule for γ, it might lead to premature convergence.

In this paper we propose Cauchy criteria for choosing the
Boltzmann selection schedule. Based on this we derive an
annealing schedule for the inverse temperature parameter γ,
using a result we proved. Since selection depends only on the
fitnesses of candidate solutions of population, in this paper we



characterize the selection using normalized fitness distribution
(normalized fitness distribution is precisely normalization of
fitness distribution of population) instead of selection proba-
bilities which are defined for all the members of population.
We also give a new measure for selection-strength which is
suitable for the theoretical analysis presented in this paper.

The outline of the paper is as follows. In § II, we present
the formalization of selection methods. We present our main
results regarding Cauchy criteria for Boltzmann selection
schedule in § III. We present simulation results in § IV.

II. A FORMALIZATION OF SELECTION SCHEMES

A. Definitions

Let f : Ω → IR+∪{0} be a fitness function, where Ω is the
search space. Let P = {ωk}

nP

k=1 denote the population. Here
we assume that the size of population at any time is finite and
need not be a constant.

Fitness distribution is an important macroscopic property
of population. Formal definition of fitness distribution of a
population is given below [13].

Definition 2.1: Fitness distribution of a population P =
{ωk}

nP

k=1 is a function ρP : IR → ZZ+ ∪ {0} defined as

ρP (x) =

nP
∑

k=1

δ(x − f(ωk)) , (3)

where δ : IR → {0, 1} is the Kronecker delta function defined
as δ(x) = 1 if x = 0, δ(x) = 0 otherwise .
ρP assigns each x ∈ IR, the number of individuals in
a population P carrying x as the fitness value. The finite
set of values associated with the fitness distribution which
are mapped to non-zero values is called support of fitness
distribution of population.

Definition 2.2: Let ρP be the fitness distribution of popu-
lation P , then ‘support’ of ρP is defined as 1

supp(ρP ) = Eρ(orEP ) = {x : ρP (x) 6= 0} . (4)
For any population P , supp(ρP ) is finite set, since population
size is finite. We can write size of a population P in terms of
its fitness distribution ρP as,

nP =
∑

x∈EP

ρP (x) . (5)

We now define normalized fitness distribution (NFD).
Definition 2.3: Normalized fitness distribution (NFD) of a

population P = {ωk}
nP

k=1 with fitness distribution ρP is a
function ϕP : IR → [0, 1] defined as

ϕP (x) =
ρP (x)

nP

, ∀x ∈ IR . (6)

One can see that ϕP is well defined. From (5), we have
∑

x∈EP

ϕP (x) = 1 . (7)

Note that supp(ϕP ) = supp(ρP ). Support of a NFD ϕ of
population P is represented by Eϕ.

1The actual definition of support of ρ
P is {x : ρP (x) 6= 0}. The overline

denotes the closure of the set. Since {x : ρ
P (x) 6= 0} is finite {x : ρ

P (x) 6=

0} = {x : ρP (x) 6= 0}

B. Representation of Selection Schemes Via NFD

Instead of giving a mechanistic view of selection, we define
selection as an operator on fitness distribution (hence on NFD).
For that we need to specify the corresponding space.

Definition 2.3 gives the definition of “NFD of a population”.
To define space of all NFDs we give a generalized definition
of NFD, similar to the generalized definition of fitness distri-
bution given in [13].

Definition 2.4: ‘Normalized fitness distribution’ (NFD) is a
function ϕ : IR → [0, 1] which satisfies

]{x : ϕ(x) 6= 0} < ∞ (i.e., ]supp(ϕ) < ∞) , (8a)

∑

x∈supp(ϕ)

ϕ(x) = 1 , (8b)

where ] denotes the cardinality of a set.
From Definition 2.3, one can easily see that every “NFD of a
population” is indeed an “NFD”. Space of all NFDs is denoted
by O i.e.,

O = {ϕ : IR → [0, 1] : ]supp(ϕ) < ∞,
∑

x∈supp(ϕ)

ϕ(x) = 1} .

(9)
We define selection as an operator Γ on the space O i.e.,
Γ : O → O. At generation k, for a population Pk, with fitness
distribution ρk and population size Nk, Boltzmann selection
Γ can be represented in terms of fitness distribution as

ρk+1(x) = Γρk(x) = ρk(x)
eγx

∑

y∈E ρk(y)eγy
Nk+1 , (10)

where Nk+1 is the population size after the selection Γ and
E = supp(ρk). From Definition 2.3, we have

ϕk+1(x) =
Γρk(x)

Nk+1
= ρk(x)

eγx

∑

y∈E ρk(y)eγy

=
ϕk(x)

Nk

eγx

∑

y∈E
ϕk(y)

Nk
eγy

.

ϕk+1(x) =
ϕk(x)eγx

∑

y∈E ϕk(y)eγy
.

Hence Boltzmann selection operator Γ on O is defined as

Γϕ(x) =
ϕ(x)eγx

∑

y∈E ϕ(y)eγy
, ∀x ∈ IR , ∀ϕ ∈ O , (11)

where γ ∈ IR+ ∪ {0} corresponds to inverse temperature.
Similarly we can define proportionate selection using operator
Γprop as follows:

Γpropϕ(x) =
xϕ(x)

∑

y∈E yϕ(y)
, ∀x ∈ IR , ∀ϕ ∈ O . (12)

Through out this paper we represent Boltzmann selection by
Γ unless mentioned otherwise.



C. Metric on Space of NFDs

One can view NFD as a probability distribution and one can
use various distance measures on it. For example, one can use
Kullback-Leibler distance measure but it is not a metric [14].
We define a metric d : O ×O → IR according to

d(ϕ1, ϕ2) =
∑

x∈Eϕ1∪Eϕ2

|ϕ1(x) − ϕ2(x)| , ∀ϕ1, ϕ2 ∈ O .

(13)
It is easy to verity that d is indeed a metric on O.

D. Selection Strength

There have been several variants to measure selection
strength in evolutionary algorithms. The terminology “selec-
tion intensity” or “selection pressure” is often used to describe
this property of selection.

The concept of “take over time” quantifies selection pressure
by the number of generations required by repeated application
of selection, to fill the complete population with copies of
the single initially best individual [15]. There have been
some adaptations of definitions from population genetics for
selection intensity. The change in average fitness of the pop-
ulation due to selection is a reasonable measure of selection
intensity [16]. Also note that several of these measures depend
on fitness distribution at that instance. Details of selection
intensity measures can be found in [9], [15], [16].

We measure selection strength w.r.t an NFD using the metric
d as distance between the NFD before the selection and after
selection. Let Γ : O → O be the selection operator. The
selection strength can be measured as:

d(ϕ, Γϕ) =
∑

x∈Eϕ

|ϕ(x) − Γϕ(x)| . (14)

We give the formal definition of selection strength as
follows.

Definition 2.5: Selection strength of a selection scheme Γ
with respect to an NFD ϕ ∈ O is denoted by Sϕ(Γ) and is
defined as

Sϕ(Γ) = d(ϕ, Γϕ) . (15)
For example, for proportionate selection the NFD ϕ selection
strength can be measured as:

d(ϕ, Γpropϕ) =
∑

x∈Eϕ

∣

∣

∣

∣

∣

ϕ(x) −
xϕ(x)

∑

y∈Eϕ
yϕ(y)

∣

∣

∣

∣

∣

=
∑

x∈Eϕ

ϕ(x)

∣

∣

∣

∣

∣

∑

y∈Eϕ
yϕ(y) − x

∑

y∈Eϕ
yϕ(y)

∣

∣

∣

∣

∣

, (16)

d(ϕ, Γpropϕ) =

∑

x∈Eϕ
ϕ(x) |µϕ − x|

µϕ

. (17)

where µϕ =
∑

x∈Eϕ
xϕ(x) is expectation of ϕ. The numerator

is nothing but mean absolute error of ϕ. If one observes (17)
carefully, it justifies the definition of selection strength as
d(ϕ, Γϕ).

III. CAUCHY CRITERIA FOR BOLTZMANN SELECTION

SCHEME

A. Boltzmann Selection Scheme

Let {Pn} be the evolutionary process, where Pn is popula-
tion at generation n. We represent corresponding Boltzmann
selection scheme as {Γ(n)} where Γ(n) is an operator Γ(n) :
O → O and is defined as:

ϕn(x) = Γ(n)ϕn−1(x) =
ϕn−1(x)eγnx

∑

y∈Eϕn−1
ϕn−1(y)eγny

,

∀x ∈ IR , ∀n = 1, 2, . . . , (18)

where ϕn ∈ O. {γn} is annealing schedule for the Boltzmann
selection scheme {Γ(n)} and γn ≥ 0 ∀n = 1, 2 . . .. Also {γn}
is a non-decreasing sequence since γn represents the inverse
temperature [2].

B. Cauchy Criteria

Our Hypothesis for Boltzmann selection schedule is:

The difference between successive selection pres-
sures should decrease as the evolutionary process
proceeds.

We formalize above hypothesis as Cauchy criteria for Boltz-
mann selection schedule as follows:

Definition 3.1: A Boltzmann selection schedule {Γ(n)} is
said to satisfy Cauchy criteria if {Γ(n)ϕ} ⊂ O is Cauchy
with respect to metric d, ∀ϕ ∈ O.
We justify the fact that Cauchy criteria for Boltzmann selection
schedule captures the hypothesis by the following lemma.

Lemma 3.2: Let Γ1 and Γ2 be two Boltzmann selection
operators. Then for any ϕ ∈ O, difference between these
selection strengths satisfies

|Sϕ(Γ1) − Sϕ(Γ2)| ≤ d(Γ1ϕ, Γ2ϕ) . (19)
Proof: From Definition 2.5 we have

|Sϕ(Γ1) − Sϕ(Γ2)| = |d(ϕ, Γ1ϕ) − d(ϕ, Γ2ϕ)| .

From triangular inequality we have

d(ϕ, Γ1ϕ) ≤ d(ϕ, Γ2ϕ) + d(Γ1ϕ, Γ2ϕ) ,

which gives

d(Γ1ϕ, Γ2ϕ) ≥ d(ϕ, Γ1ϕ) − d(ϕ, Γ2ϕ) . (20a)

Similarly we have

d(Γ1ϕ, Γ2ϕ) ≥ d(ϕ, Γ2ϕ) − d(ϕ, Γ1ϕ) . (20b)

From (20a) and (20b) we get

d(Γ1ϕ, Γ2ϕ) ≥ |d(ϕ, Γ1ϕ) − d(ϕ, Γ2ϕ)| .

Hence decrement in d(Γ1ϕ, Γ2ϕ) results in decrement in the
difference between selection strengths. From the definition of
Cauchy sequence justification is clear.

Note that above criteria is stated in terms of the selection
operator. Based on this we derive an annealing schedule for
inverse temperature parameter γn in the next section.



C. Derivation of Cauchy Annealing Schedule

We summarize Cauchy criteria for Boltzmann selection
schedule {Γ(n)} as:

(CB1) {γn} is non-decreasing sequence
(CB2) {Γ(n)ϕ} ⊂ O is Cauchy ∀ϕ ∈ O

For {Γ(n)} to satisfy (CB1) we define

γn =
n
∑

k=1

gk , where{gk} ⊂ IR+∪0, ∀n = 1, 2, . . . . (21)

Clearly {γn} is non decreasing sequence. Then Boltzmann
selection schedule {Γ(n)} defined as

Γ(n)ϕ(x) =
ϕ(x) exp(x

∑n

k=1 gk)
∑

y∈Eϕ
ϕ(y) exp(y

∑n

k=1 gk)
, ∀x ∈ IR , (22)

for arbitrary {gk} ⊂ IR+∪{0} satisfies (CB1). Now we derive
annealing schedule for {γn =

∑n
k=1 gk}n

for the selection
schedule {Γ(n)} to satisfy (CB2). First we prove following
inequality.

Lemma 3.3: Let {Γ(n)} be a sequence of Boltzmann selec-
tion operators defined as in (22), then for any NFD ϕ ∈ O,
we have

d(Γ(n)(ϕ), Γ(m)(ϕ)) ≤
∑

x∈Eϕ

(

exp(x
n
∑

k=m+1

gk) − 1

)

whenever n > m and n, m ∈ ZZ+.
Proof: Denote

Cn(x) = ϕ(x) exp(x

n
∑

k=1

gk) ∀x ∈ Eϕ .

Then,

d(Γ(n)(ϕ), Γ(m)(ϕ)) =

∑

x∈EΓ(n)(ϕ)∪EΓ(m)(ϕ)

∣

∣

∣

∣

∣

Cn(x)
∑

y∈Eϕ
Cn(y)

−
Cm(x)

∑

y∈Eϕ
Cm(y)

∣

∣

∣

∣

∣

.

Since supp(ϕ) ⊇ supp(Γn(ϕ)) ∪ supp(Γm(ϕ)) and
supp(Cn) = supp(ϕ) ∀n we can write

d(Γ(n)(ϕ), Γ(m)(ϕ)) =

∑

x∈Eϕ

∣

∣

∣

∣

∣

Cn(x)
∑

y∈Eϕ
Cn(y)

−
Cm(x)

∑

y∈Eϕ
Cm(y)

∣

∣

∣

∣

∣

≤

(

1
∑

x∈Eϕ
Cm(x)

)





∑

x∈Eϕ

|Cn(x) − Cm(x)|



 , (23)

since for n > m, Cn(x) ≥ Cm(x), ∀x > 0.

We have,

Cn(x) = ϕ(x) exp(x

n
∑

k=1

gk)

= ϕ(x) exp(x

m
∑

k=1

gk) exp(x

n
∑

k=m+1

gk)

= Cm(x) exp(x

n
∑

k=m+1

gk) , ∀x ∈ Eϕ . (24)

Hence we can write (23) as

d(Γ(n)(ϕ), Γ(m)(ϕ)) =

(

1
∑

x∈Eϕ
Cm(x)

)





∑

x∈Eϕ

∣

∣

∣

∣

∣

Cm(x)

(

exp(x

n
∑

k=m+1

gk) − 1

)∣

∣

∣

∣

∣





≤

(

1
∑

x∈Eϕ
Cm(x)

)

√

√

√

√

√

∑

x∈Eϕ

{Cm(x)}
2
∑

x∈Eϕ

{

exp(x

n
∑

k=m+1

gk) − 1

}2

,

by Cauchy-Schwartz-Bunyakovsky inequality.
Since Cm(x) and exp(x

∑n

k=m+1 gk)−1 are positive, we have

d(Γ(n)(ϕ), Γ(m)(ϕ)) ≤

(

1
∑

x∈Eϕ
Cm(x)

)

√

√

√

√

√







∑

x∈Eϕ

Cm(x)







2





∑

x∈Eϕ

exp(x

n
∑

k=m+1

gk) − 1







2

,

d(Γ(n)(ϕ), Γ(m)(ϕ)) ≤
∑

x∈Eϕ

(

exp(x
n
∑

k=m+1

gk) − 1

)

.

(25)

We now give our main result which gives condition on
annealing schedule {γn} for Boltzmann selection to satisfy
Cauchy criteria.

Theorem 3.4: Let {Γ(n)} be a sequence of Boltzmann
selection operators defined as in (22). Then,

{

n
∑

k=1

gk

}

(n)

is Cauchy =⇒ {Γ(n)ϕ} is Cauchy

∀ϕ ∈ O and for any {gk} ⊂ IR+ ∪ {0}.
Proof: {Γ(n)ϕ} is Cauchy for any ϕ ∈ O if

∀ε > 0, ∃N = N(ε) ∈ ZZ+ 3

n, m ≥ N ⇒ d(Γ(n)(ϕ), Γ(m)(ϕ)) < ε .



Now consider d(Γ(n)(ϕ), Γ(m)(ϕ)). With out loss of general-
ity assume that n > m. From Lemma 3.3 we have

d(Γ(n)(ϕ), Γ(m)(ϕ)) ≤
∑

x∈Eϕ

(

exp(x

n
∑

k=m+1

gk) − 1

)

.

Let ε > 0 arbitrary. So,

∑

x∈Eϕ

(

exp(x

n
∑

k=m+1

gk) − 1

)

< ε =⇒

d(Γ(n)(ϕ), Γ(m)(ϕ)) < ε . (26)

Hence it is enough to prove that

∃N = N(ε) ∈ ZZ+ 3 n, m ≥ N ⇒

∑

x∈Eϕ

(

exp(x
n
∑

k=m+1

gk) − 1

)

< ε . (27)

Now let Eϕ = {xi}
r
i=1. r < ∞ since Eϕ is finite. We thus

have to prove that

∃N = N(ε) ∈ ZZ+ 3 n, m ≥ N =⇒
r
∑

i=1

(

exp(xi

n
∑

k=m+1

gk) − 1

)

< ε . (28)

Now it is enough if we show that

∃Ni = Ni(
ε

r
) ∈ ZZ+ 3 n, m ≥ Ni =⇒ (29)

exp(xi

n
∑

k=m+1

gk) − 1 ≤
ε

r
, ∀i = 1 . . . r .

For N = max{Ni : i = 1 . . . r}

n, m ≥ N ⇒ exp(xi

n
∑

k=m+1

gk) − 1 ≤
ε

r
, ∀i = 1 . . . r ,

(30)
which gives us

n, m ≥ N ⇒

r
∑

i=1

exp(xi

n
∑

k=m+1

gk) − 1 ≤

r
∑

i=1

ε

r
= ε . (31)

Now to assert (29) it is enough, for a fixed x ∈ Eϕ, if we
have following

∀ε′ > 0, ∃N ′ = N ′(ε′) ∈ ZZ+ 3 n, m ≥ N ′ =⇒

exp

(

x

n
∑

k=m+1

gk

)

− 1 ≤ ε′ .

Note that ε′ can be chosen as ε′ = ε
r

, and ε′ is arbitrary since
ε arbitrary. Since

exp(x

n
∑

k=m+1

gk) − 1 ≤ ε′ =⇒

n
∑

k=m+1

gk ≤
ln (ε′ + 1)

x

it is enough if

∀ε′′ > 0, ∃N ′′ = N ′′(ε′′) ∈ ZZ+ 3 n, m ≥ N ′′ =⇒
n
∑

k=m+1

gk ≤ ε′′ . (32)

Note that ε′′ can be chosen as ε′′ =
ln(ε′+1)

x
for a fixed x ∈ E

and ε′′ is arbitrary since ε′ is arbitrary.
Since ε′′ is arbitrary (32) can be asserted if the sequence

{

n
∑

k=1

gk

}

(n)

is Cauchy by the definition of Cauchy sequence.

IV. SIMULATION RESULTS

A. Choice of {gk}

As a specific case, for {gk} to satisfy (21), we choose

gk = g0
1

kα
, (33)

where g0 is any constant and α > 1. Since
{
∑n

k=1
1

kα

}

n
is a

Cauchy sequence for any α > 1 [17],
{

g0

∑n

k=1
1

kα

}

n
is also

a Cauchy sequence. In this specific choice of sequence, α plays
an important role in the annealing schedule (see Figure 1).

γ

ααα 123

α 1 < α 2 < α 3

n(generations)

Fig. 1. Cauchy Annealing Schedules for Different Values of α where γ is
defined according to (34)

Here we give simulation results using the annealing sched-
ule {γn} defined as

γn =

n
∑

k=1

gk = g0

n
∑

k=1

1

kα
. (34)



B. Results

We discuss the simulations conducted to study the annealing
schedule for Boltzmann selection proposed in this paper.
We compare three selection mechanisms viz., proportion-
ate selection (proportionate), Boltzmann selection with con-
stant γ (Boltzmann) and Boltzmann selection with proposed
Cauchy annealing schedule {γn} (Cauchy-Boltzmann). We
study multi-variable function optimization in the framework
of genetic algorithms. Specifically, we use the following
functions [16]:

• Rastrigin’s function:
f6(~x) = lA +

∑l

i=1 x2
i − A cos(2πxi),

where A = 10 ; −5.12 ≤ xi ≤ 5.12
• Griewangk’s function:

f8(~x) =
∑l

i=1
xi

2

4000 −
∏l

i=1 cos( xi√
i
) + 1,

where −600 ≤ xi ≤ 600
• Ackley’s function:

f9(~x) = −20 exp(−0.2
√

1
l

∑l

i=1 xi
2)

− exp( 1
l

∑l
i=1 cos(2πxi)) + 20 + e,

where −30 ≤ xi ≤ 30
• Schwefel’s function:

f7(~x) =
∑l

i=1 −xi sin(
√

|xi|),
where −500 ≤ xi ≤ 500

The following parameter values have been used in all the
experiments:

• Each xi is encoded with 5 bits and l = 15 i.e search
space is of size 275

• Population size nP = 150
• For Boltzmann selection the inverse temperature γ = 300.

For Boltzmann selection with annealing, we vary α =
1.0001, 1.1, 1.5, 2 and we chose g0 for each value of α

in such a way that, γ100 = 300 where 100 is the total
number of generations for each process. Figure 2 shows
the plots of values of γn for α = 1.0001, 1.1, 1.5, 2.

• For all the experiments probability of uniform crossover
is 0.8 and probability of mutation is below 0.1

• Each simulation is performed 17 times to get the average
behavior of the process
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Fig. 2. γn for α = 1.0001, 1.1, 1.5, 2 where γn is defined according to (34)

From various simulations we observed that when the prob-
lem size is small (for example smaller values of l) all the
selection mechanisms perform equally well. Boltzmann selec-
tion is effective when we increase the problem size. In the case
of Boltzmann selection with constant γ, one has to increase the
value of γ when the problem size is large. Note that choice of
parameter α is very important for Cauchy annealing schedule
and it depends on the specific problem. Here we have given
results corresponding to the best values of α. Figures 3, 4, 5, 6,
show the plots for behavior of the process when averaged over
multiple runs. Figures 7 and 8 show plots for single run. Our
simulations showed that Boltzmann selection with the Cauchy
annealing schedule performs better than other mechanisms.

V. CONCLUSIONS

In this paper we derived an annealing schedule for inverse
temperature parameter in the Boltzmann selection scheme,
which is based on Cauchy criteria for Boltzmann selection
schedule. Usage of Cauchy criteria for Boltzmann selection
schedule is justified by the hypothesis: as process goes on

• selection strength should increase,
• difference between the selection strengths should de-

crease.

We have given alternative formalism for selection mecha-
nisms based on the fitness distributions. We have also given
a new measure for selection strength which is suitable for
theoretical analysis.

Using the above formalism, we presented an important
mathematical result for Boltzmann selection schedule; using
which we derived the annealing schedule. Cauchy annealing
schedule is a generalized mechanism from which one can
choose different specific sequences for annealing based on the
problem at hand.

Our simulation results justify the hypothesis we presented
and the utility of techniques we used; they also support
usage of the mathematical results we presented, in practice.
We conducted experiments using specific annealing schedule,
where one can choose the speed of (inverse) annealing. We
compared our results with algorithms with proportionate se-
lection, Boltzmann selection without annealing schedule and
Boltzmann selection with the proposed annealing schedule. We
found that with an appropriate choice of speed of annealing,
algorithms with annealing schedule outperform other methods.

This analysis does not consider any of the genetic operators.
Our future work would involve comprehensive analysis which
leads to more generalized selection schedules based on the
techniques presented in this paper.

One important consequence of techniques we developed in
this paper would be proving convergence of the process. If
one can show that the underlying space, for example spaces
of NFDs, is complete (see Appendix for the definition of
complete metric space), one can conclude the convergence of
evolutionary process, based on the Cauchy criteria.
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APPENDIX

METRIC SPACES

Here we present some basic concepts of metric spaces used
in this paper.

Let X be any set. A function d : X × X → IR is said to
be metric on X if

1) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y , ∀x, y ∈ X

2) d(x, y) = d(y, x) , ∀x, y ∈ X

3) d(x, y) ≤ d(x, z) + d(z, y) , ∀x, y, z ∈ X (Triangular
inequality)

Example of metric space is IR with | . | as a metric.
A sequence {xn} is said to be Cauchy sequence if

∀ε > 0, ∃N = N(ε) ∈ ZZ+ 3

n, m ≥ N ⇒ d(xn, xm) < ε .

We say metric space (X, d) is complete if every Cauchy
sequence in X converges.
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