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Preface

This book was motivated by our conviction that recursive methods
should be part of every economist’s set of analytical tools. Applications of
these methods appear in almost every substantive area of economics—
the theory of investment, the theory of the consumer, search theory,
public finance, growth theory, and so on—but neither the methods nor
the applications have ever been drawn together and presented in a sys-
tematic way. Our goal has been to do precisely this. We have attempted
to develop the basic tools of recursive analysis in"a systematic, rigorous
way, while at the same time stressing the wide applicability of recursive
methods and suggesting new areas where they might usefully be ex-
ploited.

Our first outlines for the book included a few chapters devoted to
mathematical preliminaries, followed by numerous chapters treating the
various substantive areas of economics to which recursive methods have
been applied. We hoped to keep the technical material to a minimum, by
simply citing the existing literature for most of the required mathemati-
cal results, and to focus on substantive issues. This plan failed rather
quickly, as it soon became apparent that the reader would be required
either to take most of the important results on faith or else to keep a
dozen mathematics books close at hand and refer to them constantly.
Neither approach seemed reasonable, and we were led to make major
alterations in the overall structure of the book.

The methods became the organizing principle, and we began to
focus on providing a fairly comprehensive, rigorous, and self-contained
treatment of the tools and techniques used in recursive analysis. We then
found it natural to group applications by the nature of the technical tools
involved rather than by their economic substance. Thus Parts II-1V of
the book deal with deterministic models, stochastic models, and equilib-
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rium theory, respectively, with substantive applications appearing in all
three places. Indeed, many of the applications appear more than once,
with different aspects of the same problem treated as the appropriate
tools are developed.

Once we had decided to write a book focused on analytical tools rather
than on economic substance, the choice of technical level became more
important than ever. We wanted the book to be rigorous enough to be
useful to researchers and at the same time to be accessible to as wide an
audience as possible. In pursuing these twin goals we have aimed for a
rigorous and fairly general treatment of the analytical tools, but one that
requires relatively little by way of mathematical background. The reader
should have had a course in advanced calculus or real analysis and
should be comfortable with delta-epsilon arguments. A little background
in. probability theory is also useful, although not at all essential. The
other mathematical topics that arise—and there are a wide variety—are
treated in a largely self-contained way. _

The most difficult decision we faced was choosing the appropriate
level at which to treat probability theory. Our first inclination was to
restrict attention to discrete probabilities and continuous densities, but
in the end we found that this approach caused more trouble than it
saved. We were pleased to find that a relatively small investment in
measure theory produced enormous returns. We provide a modest
number of definitions and basic results from the abstract theory of mea-
sure and integration in Chapter 7, and then draw on them repeatedly in
our treatment of stochastic models. The reader will find that this invest-
ment yields returns elsewhere as well: measure theory is rapidly becom-
ing the standard language of the economics of uncertainty.

The term recursive methods is broad enough to include a variety of
interesting topics that might have been included in the book but are not.
There is a large literature on linear-quadratic formulations of dynamic
problems that, except-for examples discussed briefly in Chapters 4 and
9, we ignore. There is also a growing body of expertise on methods for
the numerical solution of recursive models that we have not attempted
to incorporate in this volume. Although a wide variety of dynamic games
can be analyzed by recursive methods, our examples of equilibrium are
almost exclusively competitive. We have included a large collection of
applications, but we certainly have not exhausted the many applied liter-
atures where recursive methods are being used. Yet these omissions are
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not, we feel, cause for apology. The book is long enough as it is, and we
will certainly not be disappointed if one of the functions it serves is to
stimulate the reader to a more serious exploration of some of these
closely related areas.

We have tried to write this book in a-way that will make it useful for
several different types of readers. Those who are familiar with dynamic
economic models and have specific questions in mind are invited simply
to consult the table of contents and proceed to the particular topics that
interest them. We have tried to make chapters and sections sufficiently
self-contained so that the book can be used in this way. Primarily, how-
ever, the book is directed at the reader with little or no background in
dynamic models. The manuscript has, at a variety of stages, been used
for graduate-level courses at Chicagi), Minnesota, Northwestern, and
elsewhere, and we have been gratified with the response from students.
The book is about the right length and level for a year-long course for
second-year students but can easily be adapted for shorter courses as
well. After the introductory material in Chapters 1 and 2, it is probably
advisable to cover Chapter 3 in detail, skim Section 4.1, cover Section 4.2
in detail, and then choose a few applications from Chapter 5. For a one-
quarter course, there are then several possibilities. One could skip to
Chapters 15 and 16, and if time permits, go on to 17 and 18. Alterna-
tively, with measure theory as a prerequisite, one could proceed to Sec-
tion 8.1, then to Section 9.2, and then to applications from Chapter 10.
Covering the required measure theory, Sections 7.0-7.5, takes about
three weeks and could be done in a one-semester course.

A consequence of our decision to make the book technically self-con-
tained is that completing it involved a much higher ratio of exposition
to new results than any of us had anticipated. Ed Prescott found he did
not wish to spend so much of his time away from the research frontier,
and so proposed the reduced level of involvement reflected in the
phrase “with the collaboration of.” However, there is no part of the book
that has not benefited from his ideas and contributions.

We are grateful also to many friends and colleagues for their com-
inents and criticism. In particular we thank Andrew Caplin, V. V. Chari,
Lars Hansen, Hugo Hopenhayn, Larry Jones, Lars Ljungquist, Rodolfo
Manuelli, Masao Ogaki, José Victor Rios-Rull, and José Scheinkman for
fruitful discussions. Arthur Kupferman read large portions of the man-
uscript at an early stage, and his detailed comments enhanced both the
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content and the style of the final product. We are also indebted to Ricard
‘Torres, whose comments on the entire manuscript led to many improve-
ments and, in several places, to major revisions along lines he proposed.

We owe special thanks to Michael Aronson, whose patience and en-
thusiasm have supported this project from its beginning—more years
ago than any of us cares to remember. We are grateful too to Jodi Contents
Simpson, whose editing led to many refinements of style and logic; her
skillful work is much valued. June Nason began typing our early drafts
on an IBM Selectric and stayed to finish the job on a Laser]Jet printer.
We appreciate her cheerful assistance, and the tact she showed by never
asking how a job could remain urgent for six years. Finally, we would
like to thank Mary Ellen Geer for helping us see the book through to its Symbols Used
completion.
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1 Introduction

Research in economic dynamics has undergone a remarkable transfor-
mation in recent decades. A generation ago, empirical researchers were
typically obliged to add dynamic and stochastic elements as after-
thoughts to predictions about behavior derived from static, deterministic
economic models. Today, in every field of application, we have theories
that deal explicitly with rational economic agents operating through
time in stochastic environments. The idea of an economic equilibrium
has undergone a similar evolution: it no longer carries the connotation
of a system at rest. Powerful methods are now available for analyzing
theoretical models with equilibrium outcomes described by the same
kinds of complicated stochastic processes that we use to describe ob-
served economic behavior.

These theoretical developments are based on a wide variety of results
in economics, mathematics, and statistics: the contingent-claim view of
economic equilibria introduced by Arrow (1953) and Debreu (1959), the
economic applications of the calculus of variations pioneered long ago
by Ramsey (1928) and Hotelling (1931), the theory of dynamic program-
ming of Bellman (1957) and Blackwell (1965). Our goal in this book is to
provide self-contained treatments of these theoretical ideas that form
the basis of modern economic dynamics. Our approach is distinguished
by its systematic use of recursive methods, methods that make it possible
to treat a wide variety of dynamic economic problems—both determinis-
tic and stochastic—from a fairly unified point of view.

To illustrate what we mean by a recursive approach to economic dy-
namics, we begin with a list of concrete examples, drawn from the much
longer list of applications to be treated in detail in later chapters. These
examples also serve to illustrate the kinds of substantive economic ques-
tions that can be studied by the analytical methods in this book.
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First consider an economy that produces a single good that can be
either consumed or invested. The quantity consumed yields immediate
utility to the single decision-maker, a “social plannfer.” The quantity
invested augments the capital stock, thereby making 1flcreased prodl.xc-
tion possible in the future. What is the consumption—lnve.stmem. policy
that maximizes the sum of utilities over an infinite planning horizon?

Next consider an economy that is otherwise similar to the one just
described, but that is subject to random shocks affecting the amount of
output that can be produced with a given stock of cap.ltal.' ng shoul§
the consumption-investment decision be made if the objective is to maxi-
mize the expected sum of utilities? .

Suppose a worker wishes to maximize the present value of his earn-
ings. In any period he is presented with a wage offer at Wthl.l he can
work one unit of time or zero. If he works, he takes the earnings and
retains the same job next period. If he does not work, he se:flr'ches., an
activity that yields him a new wage offer from a known probablhty'dlstn-
bution. What decision rule should he adopt if his goal is to maximize the
expected present discounted value of his lifetime earpings? .

A store manager has in stock a given number of items of a specific
type. Demand is stochastic, so in any period he may either stocl? out and
forgo the sales he would have made with a larger inventory or incur the
costs of carrying over unsold items. At the beginning of e‘ach ‘perlod he
can place an order for more items. The cost of this action includes a
fixed delivery charge plus a charge per item ordered. The order must b.e

placed before the manager knows the current period demand. If his
goal is to maximize the expected discounted present value of profits,
when should he place an order; and when an order is placed, how large
should it be?

An economy is endowed with a fixed number of productive assets that
have exogenously given yields described by a stochastic process. These
assets are privately owned, and claims to all of them are tr'ftded on a
competitive equities market. How are the competitive equilibrium prices
in this market related to consumer preferences over consumption of
goods and to the current state of the yield process? How is the answer to
this question altered if assets can be produced? '

A monopolist faces a stochastically shifting demvandi curve for l.us
product. His current production capacity is determined by hlS. past in-
vestments, but he has the option to invest in additions to capacity, addi-
tions that will be available for production in the future. What investment
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strategy maximizes the expected discounted present value of profits?
Alternatively, suppose there are many firms in this industry. In competi-
tive equilibrium what are the investment strategies for all of these firms,
and what do they imply for the behavior of industry production and
prices?

These problems evidently have much in common. In each case a deci-
sion-maker—a social planner, a worker, a manager, an entire market, a
firm, or collection of firms—must choose a sequence of actions through
time. In the first example there is no uncertainty, so the entire sequence
may as well be chosen at the outset. In the other five examples the
environment is subject to unpredictable outside shocks, and it is clear
that the best future actions depend on the magnitudes of these shocks.
Consider how we might formulate each of these problems mathemati-
cally and what we might mean by a recursive approach to each.

The first example is the problem of optimal savings that Frank Ram-
sey formulated and solved in 1928. Ramsey viewed the problem as one
of maximizing a function (total utility) of an infinity of variables (con-
sumption and capital stock at each date) subject to the constraints im-
posed by the technology. He set up the problem in continuous time and
applied the calculus of variations to obtain a very sharp characterization
of the utility-maximizing dynamics: the capital stock should converge
monotonically to the level that, if sustained, maximizes consumption per
unit of time.

In the Ramsey problem the feature of the production possibility set
that changes over time is the current stock of capital. This observation
suggests that an alternative way to describe the optimal policy is in terms
of a function that gives the society’s optimal current investment as a
function of its current capital stock; and, in fact, Ramsey’s solution can
be expressed in this way. Thus an alternative mathematical strategy is to
seek the optimal savings function directly and then to use this function
to compute the optimal sequence of investments from any initial stock.
This way of looking at the problem—decide on the immediate action to
take as a function of the current situation—is called a recursive formula-
tion because it exploits the observation that a decision problem of the
same general structure recurs each period.

Since Ramsey completely solved his problem using variational meth-
ods, this example is better suited to defining a recursive approach than
to motivating it. Consider next the stochastic variation on this problem.
In this case it obviously makes no sense to choose a deterministic plan of



6 1 |/ Introduction

investments for all future dates: the best future choices will depend on
how much output is available at the time, and that in turn will depend on
as-yet-unrealized shocks to the productivity of capital. To carry out the
analogue to Ramsey’s strategy, one must follow the contingent-claim
formulation introduced by Kenneth Arrow (1953) and Gerard Debreu
(1959) and view an investment plan as a sequence of investments, each of
which is made contingent on the history of shocks that have been real-
ized up to the time the decision is actually implemented.

This contingent-claim formulation is an enormously useful point of
view for many purposes (and is, indeed, essential to the analysis in parts
of this book), but in the current context it leads to a maximization prob-
lem in a space that is much more difficult to work in than the space of
sequences Ramsey used. Yet a recursive formulation of the stochastic
Ramsey problem is hardly more complicated than the one for the deter-
ministic case. With random shocks the current state of the system is
described by two variables: capital and the current shock. We search, in
this case, for a savings function that expresses the optimal investment
decision as a function of these two variables only.

The optimal job-search problem can also be set up as one of choosing
a sequence of contingent actions, but it is awkward to do so. In this
problem the shocks the decision-maker observes depend on his actions:
if he takes a job, he never learns what wage offers he would have re-
ceived if he had kept looking. Formulated recursively, the problem be-
comes one of choosing a single number, the reservation wage. The
worker should then accept any job offering a wage above this level and
reject any offer below it. The inventory problem discussed next has a
similar structure, although in this case two numbers must be chosen: the

_inventory level that triggers an order and the order size.

The asset-pricing example does not have a single decision-maker, as
did the first four examples. The issue here is the determination of mar-
ket equilibrium prices. We can, for this economy, calculate the Arrow-
Debreu prices for dated claims to goods, contingent on the histories of
shocks up to the date at which the exchange is to occur. Alternatively
(and, one can show, equivalently), we can think of prices as being setin a
sequence of spot equity markets. From this second, recursive viewpoint
we seek an expression for equilibrium prices as functions of the system’s
state that is exactly analogous to expressing agents’ decisions as functions
of the state.

Our final example was a microeconomic problem involving invest-
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ment in a single industry with given consumer demand behavior. When
the industry is a monopoly, this problem has a single decision-maker and
thus is similar in structure to the social planner’s problem of choosing
optimal savings in a stochastic economy. If the industry is competitive
we would like to solve simultaneously for equilibrium prices and invést:
met:nt, levels, both as functions of the industry state. As Harold Hotelling
'conjectured in his 1931 paper on exhaustible resources, in this case the
industry as a whole solves a consumer surplus maximization problem
that has exactly the same mathematical structure as does the monopol

problem. !

As we hope these examples illustrate, a great variety of economic and
other decision problemsare quite naturally cast in a recursive frame-
work. A first purpose of this book, then, is to present in a unified waythe
theory of recursive decision-making—dynamic programming (in Ri-
chard Bellman’s terminology)—and to illustrate the application of this
theory to a. wide variety of economic problems.

.A second purpose is to show how the methods of dynamic program-
ming can be combined with those of modern general equilibriuni'theory
to )ileld tractable models of dynamic economic systems. This possibility is
easiest to see when the system as a whole itself solves a maximum prob-
lem, and some of our applications take this form. We will also consider
syst.er.ns the behavior of which cannot be mimicked by any individual
decision problem but to which recursive methods can still fruitfully be
applied. ‘

These examples give a sense of the kinds of economic issues we will
address and of the general point of view from which we intend to study
them. Because at this informal level it is not possible to discuss the
tc?chnical questions such problems raise, we cannot at this juncture pro-
vide a useful overview of the remainder of the book. Accordingly, in the
next chapter we study a concrete economic example that illustrates the
range of analytical methods we will be dealing with. At that point we will
be in a position to outline the rest of the book.



2 An Overview

In this chapter we preview the recursive methods of analysis to be devel-
oped in detail in the rest of the book. This material falls into three broad
parts, and the remainder of the book is structured accordingly. Part II
deals with methods for solving deterministic optimization problems, Part
[1I with the extension of these methods to problems that include sto-
chastic shocks, and Part IV with ways of using solutions of either type
within a competitive equilibrium framework.

To make this preview as concrete as possible, we examine these three
sets of issues by looking at a specific example, a one-sector model of
economic growth. Our goal is not to provide a substantive treatment of
growth theory but to illustrate the types of arguments and results that
are developed in the later chapters of the book—arguments that can be
applied to a wide variety of problems. A few of these problems were
mentioned in Chapter 1, and many more will be discussed in detail in
Chapters 5, 10, 13, 16, 17, and 18, all of which are devoted exclusively to
substantive applications. With that said, in this chapter we focus exclu-
sively on the example of economic growth.

In the next three sections we consider resource allocation in an econ-
omy composed of many identical, infinitely lived households. In each
period ¢ there is a single good, y, that is produced using two inputs:
capital, %, in place at the beginning of the period, and labor, n;. A
production function relates output to inputs, y, = F (k, n). In each pe-
riod current output must be divided between current consumption, ¢,
and gross investment, i

1) o+ =y = Fk,n)
This consumption-savings decision is the only allocation decision the

economy must make. Capital is assumed to depreciate at a constant rate

8

2.1 | Deterministic Growth
0 < & < 1, so capital is related to gross investment by
2) kivy = (1 - S)kz + i,

Labor is taken to be supplied inelastically, so n, = 1, all ¢. Finally, prefer

ences over consumption, common to all households, are taken to be ¢
the form

©

®  2pUE,
pis ,
where 0 < 8 < 1 is a discount factor.

In‘Sections 2.1 and 2.2 we study the problem of optimal growth
Spe.c1ﬁcally, in Section 2.1 we examine the problem of maximizing (3
sub‘]Cjct to (1) and (2), given an initial capital stock ko. In Section 2.2 wi
modify this planning problem to include exogenous random shocks tc
the. technology in (1), in this case taking the preferences of household
over .ram.iom consumption sequences to be the expected value of thi
funFtlon in (3). In Section 2.3 we return to the deterministic model. W
b'egm by characterizing the paths for consumption and capital accumula
tion that would arise in a competitive market economy composed o
many households, each with the preferences in (3), and many firms, eact
with the technology in (1) and (2). We then consider the relatio’nshi;
betwan the competitive equilibrium allocation and the solution to the
planpmg problem found earlier. We conclude in Section 2.4 with a more
detailed overview of the remainder of the book, discussing briefly the
content of each of the later chapters:

2.1 A Deterministic Model of Optimal Growth

In this chtion we study the problem of optimal growth when there is nc
unce2rtamty. Assume that the production function is y, = F (k,, n,), wher
F: R — Ry is continuously differentiable, strictly increasing, homoge
neous of degree one, and strictly quasi-concave, with

F(0,n) =0, Fyk,n)>0, Fuk,n)>0, allk,n>0;

EEI(}Fk(k: 1) = o, E_{EFk(k: 1) = 0.
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Assume that the size of the population is constant over time and nor-
malize the size of the available labor force to unity. Then actual labor
supply must satisfy

(la) 0=<n =1, allt

Assume that capital decays at the fixed rate 0 < & = 1. Then con-
sumption ¢; gross investment i, = ki1 — (1 — 8k, and output y; =
F (k, n;) must satisfy the feasibility constraint

(1b) ¢+ ko1 — (1 — Ok = F (k, ny), allt.

Assume that all of the households in this economy have identical pref-
erences over intertemporal consumption sequences. These common
preferences take the additively separable form

@) w(co, €1y - - -) = ;B‘U(ct),

where the discount factor is 0 < 8 < 1, and where the current-period
utility function U: R, — R is bounded, continuously differentiable,
strictly increasing, and strictly concave, with limeo U'(c) = ». House-
holds do not value leisure.

Now consider the problem faced by a benevolent social planner, one
whose objective is to maximize (2) by choosing sequences {(co, ke+1s M) Y05
subject to the feasibility constraints in (1), given ko > 0. Two features of
any optimum are apparent. First, it is clear that output will not be
wasted. That is, (1b) will hold with equality for all ¢, and we can use it to
eliminate ¢, from (2). Second, since leisure is not valued and the marginal
product of labor is always positive, it is clear that an optimum requires
n, = 1, all . Hence k, and jy represent both capital and output per
worker and capital and output in total. It is therefore convenient to
define f(k) = F(k, 1) + (1 — 8)kto be the total supply of goods available
per worker, including undepreciated capital, when beginning-of-period
capital is &.

Exercise 2.1 Show that the assumptions on F above imply that
f: Ry« = Ry is continuously differentiable, strictly increasing, and strictly
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concave, with
f© =0, f'() >0, Limf'(h) =, limf'k) =1-3.

The planning problem can then be written as

3) max D, BU[f(k) — ki1

(ks 1limo =0
(4) s.t. 0 = k¢+1 Sf(kt), t= 0, cee s

ko> 0 given.

Although ultimately we are interested in the case where the planning
horizon is infinite, it is instructive to begin with the (much easier!) prob-
lem of a finite horizon. If the horizon in (3) were a finite value T instead
of infinity, then (3)—(4) would be an entirely standard concave program-
ming problem. With a finite horizon, the set of sequences {k.+ Jeo satisfy-
ing (4) is a closed, bounded, and convex subset of RT*!, and the objective
function (3) is continuous and strictly concave. Hence there is exactly
one solution, and it is completely characterized by the Kuhn-Tucker
conditions.

To obtain these conditions note that since f(0) = 0 and U'(0) = », itis
clear that the inequality constraints in (4) do not bind except for kriy,
and it is also clear that kr+; = 0. Hence the solution satisfies the first-
order and boundary conditions

) Bf k)U'[f k) = keri] = U'[f k) — k), ¢=1,2,...,T;

6) kre1 =10, ko> 0 given.

Equation (5) is a second-order difference equation in %; hence it has a
two-parameter family of solutions. The unique optimum for the maxi-
mization problem of interest is the one solution in this family that in
addition satisfies the two boundary conditions in (6). The following exer-
cise illustrates how (5)—(6) can be used to solve for the optimum in a
particular example.
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Exercise 2.2 Let f(k) = k0 <a < 1, and let U(c) = In(c). (No,
this does not fit all of the assumptions we placed on fand U above, but go
anyway.
ah:.a (i'Vritye (5); )for this case and use the change of variable z, = k/kY to
convert the result into a first-order difference equation in z. Plot z41
against z, and plot the 45° line on the same diagram. ' . '
b. The boundary condition (6) implies that zr+1 = 0. Using this condi-
tion, show that the unique solution is

l_a)T—tH _
z,=aB-l—t%[%:ﬁ;+—2, t=1,2,..., T+ 1L

c. Check that the path for capital

1= (@@ .« ,_
(7 k"”l:aﬁT:_(_aW ¢, t=0,1,...,T,

given ko, satisfies (5)—(6).

Now consider the infinite-horizon version of the planning pro})lem in
Exercise 2.2. Note that if T is large, then the coefficient of k.?‘ in (7) is
essentially constant at o for a very long time. For tht? s?luuon to the
infinite-horizon problem, can we not simply take the ll.rmt of the solu-
tions in (7) as T approaches infinity? After all, we are dlscu531.ng h.ouse-
holds that discount the future at a geometric rate! Taking the limit in (7),

we find that
(8) kH.] = aﬁkf‘, t= 0, 1,....

In fact, this conjecture is correct: the limit of the sqlutio.ns for_ the
finite-horizon problems is the unique solution to the 1f1ﬁmte—hf)rlzon
problém. This is true both for the parametric exarr.lple. in Exercise 2.2
and for the more generally posed problem. But proving it m\if)lves”estab—
lishing the legitimacy of interchanging the operators “max and
“limy"; and doing this is more challenging than one fmght guess.

Instead we will pursue a different approach. Equatlorlx_j_:,(?S) suggests
another conjecture: that for the infinite-horizon problem in (3)-(4), for
any U and f, the solution takes the form

9) ki1 = g(kt), t=0,1,...,
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where g Ry — Ris a fixed savings function. Our intuition suggests that
this must be so: since the planning problem takes the same form every
period, with only the beginning-of-period capital stock changing from
one period to the next, what else but k, could influence the choice of k4,
and ¢;? Unfortunately, Exercise 2.2 does not offer any help in pursuing
this conjecture. The change of variable exploited there is obviously spe-
cific to the particular functional forms assumed, and a glance at (5)
confirms that no similar method is generally applicable.

The strategy we will use to pursue this idea involves ignoring (5) and
(6) altogether and starting afresh. Although we stated this problem as
one of choosing infinite sequences {(c; k:.+1)}izo for consumption and
capital, the problem that in fact faces the planner in period ¢ = 0 is that
of choosing today’s consumption, ¢y, and tomorrow’s beginning-of-
period capital, £;, and nothing else. The rest can wait until tomorrow. If
we knew the planner’s preferences over these two goods, we could sim-
ply maximize the appropriate function of (co, k)) over the opportunity
set defined by (1b), given ko. But what are the planner’s preferences over
current consumption and next period’s capital?

Suppose that (83)—(4) had already been solved for all possible values of
ko. Then we could define a function v: Ry — R by taking v(kg) to be the
value of the maximized objective function (3), for each &, = 0. A func-
tion of this sort is called a value function. With v so defined, v(k;) would
give the value of the utility from period 1 on that could be obtained with
a beginning-of-period capital stock ki, and Bu(k;) would be the value of
this utility discounted back to period 0. Then in terms of this value
function v, the planner’s problem in period 0 would be

(10) max [U(co) + Bu(ki)]

sit. co + ki = f(ko),

co, k1 =0, k>0 given.

If the function v were known, we could use (10) to define a function g:
R: — R, as follows: for each kg = 0, let k&, = g(ko) and co = f (ko) — glko)
be the values that attain the maximum in (10). With g so defined, (9)
would completely describe the dynamics of capital accumulation from
any given initial stock k.

We do not at this point “know” v, but we have defined it as the maxi-
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mized bbjective function for the problem in (3)—(4). Thus, if solving (IQ)
provides the solution for that problem, then v(ko) must be the maxi-
mized objective function for (10) as well. That is, v must satisfy

(ko) = max {U[f(ko) — kil + Bu(k)}

0=ky<f (ko)

where, as before, we have used the fact that goods will not be wasted.

Notice that when the problem is looked at in this recursive way, the
time subscripts have become a nuisance: we do not care what the date
is. We can rewrite the problem facing a planner with current capital
stock & as

an o) = max {U[f() =]+ BoO)-
O=y=<f(k

This one equation in the unknown function v is called a functional equa-
tion, and we will see later that it is a very tractable mathematical object.
The study of dynamic optimization problems through the analysis of
such functional equations is called dynamic programming.

If we knew that the function v was differentiable and that the maxi-
mizing value of y—call it g(k)—was interior, then the first-order and

envelope conditions for (11) would be
U'[f(k) — g(k)] = Bv'[g(k)), and
v'(k) = f'(RU'[f(R) — g(k)],

respectively. The first of these conditions equates the marg.inal.utility of
consuming current output to the marginal utility of allocating:it to capi-
tal and enjoying augmented consumption next period. The second con-
dition states that the marginal value of current capital, in terms of tatal
discounted utility, is given by the marginal utility of using the cap%tal in
current production and allocating its return to current consumption.

Exercise2.3 We conjectured that the path for capital given by (8)
was optimal for the infinite-horizon planning problq;xg,ﬁ for the func-
tional forms of Exercise 2.2. '

a. Use this conjecture to calculate v by evaluating (2) along the con-
sumption path associated with the path for capital given by (8).

[E—
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b. Verify that this function v satisfies (11).
c. Is this a proof that (8) gives the optimal policy for this case? What
would be needed to make it into one?

Suppose we have established the existence of an optimal savings policy
g either by analyzing conditions (5)—(6) or by analyzing the functional
equation (11). What can we do with this information? For the particular
parametric example in Exercises 2.2 and 2.3, we can solve for g with
pencil-and-paper methods. We can then use the resulting difference
equation (8) to compute the optimal sequence of capital stocks {k}. This
example is a carefully chosen exception: for most other parametric ex-
amples, it is not possible to obtain an explicit analytical solution for the
savings function g. In such cases a numerical approach can be used to
compute explicit solutions. When all parameters are specified numeri-
cally, it is possible to use an algorithm based on (11) to obtain an approxi-
mation to g. Then {k} can be computed using (9), given any initial
value k.

In addition, there are often qualitative features of the savings function
g, and hence of the capital paths generated by (9), that hold under a very
wide range of assumptions on f and U. Specifically, we can use either
(5)—(6) or the first-order and envelope conditions for (11), together with
assumptions on U and f, to characterize the optimal savings function g.
We can then, in turn, use the properties of g so established to character-
ize solutions {k} to (9). The following exercise illustrates the second of
these steps.

Exercise 2.4 a. Let fbe as specified in Exercise 2.1, and suppose
that the optimal savings function g is characterized by a constant savings
rate, g(k) = sf(k), all k, where s > 0. Plot g, and on the same diagram
plot the 45° line. The points at which g(k) = k are called the stationary
solutions, steady states, rest points, or fixed points of g. Prove that there is
exactly one positive stationary point k*.

b. Use the diagram to show that if kg > 0, then the sequence {k} given
by (9) converges to k* as t — . That is, let {k}i=o be a sequence satisfying
(9), given some ko = 0. Prove that lim,.« k, = k*, for any ko > 0. Show
that this convergence is monotonic. Can it occur in a finite number of
periods?

This exercise contains most of the information that can be established
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about the qualitative behavior of a sequence generated by a deterministic
dynamic model. The stationary points have been located and character-
ized, their stability properties established, and the motion of the system
has been described qualitatively for all possible initial positions. We take
this example as a kind of image of what one might hope to establish for
more complicated models, or as a source of reasonable conjectures. (In-
formation about the rate of convergence to the steady state k*, for k, near
k*, can be obtained by taking a linear approximation to g in a neighbor-
hood of k*. Alternatively, numerical simulations can be used to study the
rate of convergence over any range of interest.)

From the discussion above, we conclude that a fruitful way of analyz-
ing a stationary, infinite-horizon optimization problem like the one in
(3)—(4) is by examining the associated functional equation (11) for this
example—and the difference equation (9) involving the associated pol-
icy function. Several steps are involved in carrying out this analysis.

First we need to be sure that the solution(s) to a problem posed in
terms of infinite sequences are also the solution(s) to the related func-
tional equation. That is, we need to show that by using the functional
equation we have not changed the problem. Then we must develop tools
for studying equations like (11). We must establish the existence and
uniqueness of a value function v satisfying the functional equation and,
where possible, to develop qualitative properties of v. We also need to
establish properties of the associated policy function g. Finally we must
show how qualitative properties of g are translated into properties of the
sequences generated by g.

Since a wide variety of problems from very different substantive areas
of economics all have this same mathematical structure, we want to de-
velop these results in a way that is widely applicable. Doing this is the task
of Part IL.

2.2 A Stochastic Model of Optimal Growth

The deterministic model of optimal growth discussed above has a variety
of stochastic counterparts, corresponding to different assumptions
about the nature of the uncertainty. In this section we consider a model
in which the uncertainty affects the technology only, and does so in a
specific way.

Assume that output is given by y, = zf (k) where {z} is a sequence of
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independently and identically distributed (i.i.d.) random variables, and f
is defined as it was in the last section. The shocks may be thought of as
arising from crop failures, technological breakthroughs, and so on. The
feasibility constraints for the economy are then

1) kv + o = zf(k), ¢, ke =0, ally, all {z}.

Assume that the households in this economy rank stochastic consump-
tion sequences according to the expected utility they deliver, where their
underlying (common) utility function takes the same additively separa-
ble form as before:

2) E[ulco, c1, -.. )] = E [2 B‘U(c,)].

t=0

Here E(-) denotes expected value with respect to the probability distribu-
tion of the random variables {c/}ro.

Now consider the problem facing a benevolent social planner in this
stochastic environment. As before, his objective is to maximize the objec-
tive function in (2) subject to the constraints in (1). Before proceeding,
we need to be clear about the timing of information, actions, and deci-
sions, about the objects of choice for the planner, and about the distribu-
tion of the random variables {c,}/=o-

Assume that the timing of information and actions in each period is as
follows. At the beginning of period ¢ the current value z of the exoge-
nous shock is realized. Thus, the pair (k, z), and hence the value of total
output zf (k;), are known when consumption ¢, takes place and end-of-
period capital k4 is accumulated: The pair (k, z) is called the state of the
economy at date .

As we did in the deterministic case, we can think of the planner in
period 0 as choosing, in addition to the pair (co, £1), an infinite sequence
{(cy, k+1)¥e1 describing all future consumption and capital pairs. In the
stochastic case, however, this is not a sequence of numbers but a se-
quence of contingency plans, one for each period. Specifically, consump-
tion ¢, and end-of-period capital %+ in each period t =1, 2, ... are
contingent on the realizations of the shocks zj, z, . . . , z. This sequence
of realizations is information that is available when the decision is being
carried out but is unknown in period 0 when the decision is being made.
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Technically, then, the planner chooses among sequences of functions,
where the #th function in the sequence has as its arguments the history
(21, . . . , z) of shocks realized between the time the plan is drawn up and
‘the time the decision is carried out. The feasible set for the planner is the
set of pairs (co, k1) and sequences of functions {[c("), kw+1(-)]}i=1 that satisfy
(1) for all periods and all realizations of the shocks.

For any element of this set of feasible contingency plans, the exoge-
nously given probability distribution of the shocks determines the distri-
bution of future consumptions, so the expectation in (2) is well defined.
The next exercise indicates the issues involved when one views the prob-
lem directly as one of choosing a sequence of contingency plans.

Exercise 2.5 Consider the finite-horizon version of the planning
problem, with the objective function in (2), the constraints in (1), and the
horizon T. Assume that the shocks {z}io take on only the finite list of
values ay, . . . , a,; and assume that the probabilities of these outcomes
are my, .. . , T, respectively in each period. State the first-order condi-
tions for this problem. (This is mainly bookkeeping, but working out the
details is instructive. Begin by making a list of all decision variables. In
what Euclidean space does the planner’s feasible set lie?)

This is one way of setting out the problem of optimal growth under
uncertainty. There is another way, the analogue of the recursive formu-
lation for the deterministic case. Here we let v(k, z) be the value of the
maximized objective (2) when the initial state is (, z). Thena choice (¢, y)
of current consumption ¢ and end-of-period capital y yields current
utility U(c) and implies that the system next period will be in the state
(y, 2'), where 2’ will be chosen by “nature” according to the fixed distri-
bution governing the exogenous shocks. The maximum expected utility
that can be obtained from this position is v(y, z'); so its discounted value
as viewed in the current period, with z' unknown, is BE[v(y, z')]. These
considerations motivate the functional equation

3) v(k, z) = max {U[zf (k) — y] + BE[v(y, z")]}-
0=y=f(h)

The study of (3) yields the optimal choice of capital y*'=g(k 2) as a
function of the state (k, z) at the time the decision is taken. From this
recursive point of view, then, the stochastic optimal growth problem is
formally very similar to the deterministic one.
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The methods used to characterize the optimal policy in the stochastic
case are completely analogous to those used for the deterministic case. If
we assume differentiability and an interior optimum, the first-order con-
dition for (3) is

U'lzf (k) — gk, 2)] = BE{vi[g(k, 2), 2'1}.

This condition implicitly defines a policy function g that has as its argu-
ments the two state variables £ and z. Then the optimal capital path is
given by the stochastic difference equation

“4) ki1 = g (kt, Zt.),

where {2} is an i.i.d. sequence of random shocks. The following exercise
looks at (3)—(4) for the special case of log utility and Cobb-Douglas
technology studied in the last section.

Exercise 2.6 Let U(c) = In(c) and f(k) = k*, 0 < a < 1, as we did
in Exercises 2.2—2.4. Conjecture that an optimal policy is, as before,

G) ka1 = afuk?, allt, all {z}.

Calculate the value of the objective function (2) under this policy, given
ko = kand zy = z, and call this value v (%, z). Verify that the function v so
defined satisfies (3).

Working out the dynamics of the state variable %, that are implied by
the policy function g is quite different in the stochastic case. Equation (4)
and its specialization (5) are called (first-order) stochastic difference equa-
tions, and the random variables {k} generated by such equations are
called a (first-order) Markov process. It is useful to recall the results ob-
tained for the deterministic difference equation in Exercise 2.4 and to
think about possible analogues for the stochastic case. Clearly, the se-
quence {k} described by (5) is not going to converge to any single value in
the presence of the recurring shocks z. Can anything be said about its
behavior?

Taking logs in (5), we obtain

In(k+1) = In(eB) + aln(k) + In(z).
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Since the shocks {z} are i.i.d. random variables, so are the logs {In(z)}.
Now suppose that the latter are normally distributed, with common
mean g and variance o2

Exercise 2.7 Given kg, {In(k)}i=1 is a sequence of norma211y dlStI“lb-
uted random variables with means {uJiz; and variances {o";};=;. Find
these means and variances and calculate their limiting values as ¢t — .

In this example, then, the sequence of probability distributions for the
random variables {k} converges as ¢ increases without bound. Mor.eover,
the combination of linearity and normality permits ex.plicit pencil-and-
paper calculation of the distributions of all the &/s. This type of calt.:ula}—
tion is not possible in general, but convergence of th? sequence of dl'Strl-
bution functions for the ks to a limiting distribution can be verified
under much broader assumptions. The basic idea is as follows. .

Let the sequence {k} be described by (5) but drop the assumption that
the z’s are log-normally distributed. Instead let G be the. (c.o'mmorf)
cumulative distribution function for the z’s. Then given the initial capi-
tal stock ko > 0, next period’s stock %, is a random variable whose cumu-
lative distribution function—call it y;—is determined by G. In particu-
lar, for any a > 0,

$1(a) = Pr{ks = a} = Pr{apBzik§ =< a}
= Pr{z = a/apkg} = G(a/apkj).
Thus kg and G determine the distribution function‘ P of kl:
Since the same logic holds for any successive pair of periods, we can
define the function

(6) H(a, b) = Priks) =< alk, = b} = G(a/afb®), alla,b>0.

H is called a transition function. With H so defined, .the.sequence of distri-
bution functions {{i}z, for the ks is given inductively by

D i@ = Prike = o} = [ H@ Ddp®), t=0.1,..,

where the distribution yy is simply a mass point at the given initial
value ko.
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More generally, given a stochastic difference equation of the form in
(4) and given a distribution function G for the exogenous shocks, we can
define a transition function H as we did in (6). Then for any initial value
ko > 0, the sequence {ys} of distribution functions for the k/s is given by
(7). Exercise 2.7 suggests that if g and G are in some suitable families,
then H is such that this sequence converges (in some sense) to a limiting

_ distribution function ¥ satisfying

®) W) = [ H, B dyh.

A distribution function satisfying (8)-is called an invariant distribution
for the transition function H. The idea is that if the distribution ¢ gives a
probabilistic description of the capital stock £, in any period ¢, then s also
describes the distribution of the capital stock in periods ¢ + 1, ¢ + 2,....
An invariant distribution is thus a stochastic analogue to a stationary
point of a deterministic system.

Now suppose that g and G are given and that the associated transition
function H has a unique stationary distribution . Suppose further that
for any &y > 0, the sequence {{,} defined by (7) converges to . Let ¢ be a
continuous function and consider the sample average (1/T)SL p(k,) for
this function, along some sample path. One might expect that this sam-
ple average is, for long time horizons, approximately equal to the mathe-
matical expectation of ¢ taken with respect to the limiting distribution .
That is, one might expect that

.
O limz 3 k) = [ s,

at least along most sample paths. A statement of this sort is called a law of
large numbers. Later we will specify precisely what is meant by “most
sample paths” and will develop conditions under which (9) holds.

When (9) does hold, we can calculate the sample average on the left in
(9) from observed time series, calculate the integral on the right in (9)
from the theory, and use a comparison of the two as a test of the theory.
The first calculation is easy. Much of this book is concerned with meth-
ods for carrying out the second.

As the discussion above suggests, the techniques of dynamic program-
ming are, if anything, even more useful for analyzing stochastic models
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than they are for looking at deterministic problems. Exercise 2.5 illus-
trates the complexity of looking at stochastic, dynamic problems in terms
of sequences, even when the horizon is finite. On the other hand, we will
see later that functional equations like (3) are no more difficult to handle
than their deterministic counterparts. The main ingredients are a con-
venient language for talking about distributions for stochastic §hocks
and a few basic results about expectation operators like the one in (3).

The solution to a functional equation like (3) involves an optimal
policy function g like the one in (4), and hence we are ir‘xterested i.n
studying the properties of time series produced by systems like (4). Th¥s
analysis is significantly harder than the analysis of solutions to deter‘rfn-
nistic difference equations, but it is not unmanageable. Clearly a stability
theory for stochastic systems requires several things. First we must Fie-
fine precisely what convergence means for a sequence of dlStl‘lbl{thn
functions. Then we need to develop sufficient conditions on transition
functions, like the function H above, to ensure that H has a unique
invariant distribution and that the sequence of distribution functions
given by (7) converges, in the desired sense, to that in.variant distribu-
tion. Finally, to connect the theory to observed behavior, we must de-
velop conditions under which a law of large numbers holds. .

The reader should not be surprised that carrying out this agenda
requires laying some preliminary groundwork. Some definitions, nota-
tion, and basic results from modern probability theory are needed, as
well as some basic information about Markov processes. This prelimi-
nary material, as well as the analysis of stochastic recursive models, is the
content of Part III.

2.3 Competitive Equilibrium Growth

In the last two sections we were concerned exclusively with the allocation
problem faced by a hypothetical social planner. In this section we shoYv
that the solutions to planning problems of this type can, under appropri-
ate conditions, be interpreted as predictions about the behavior of mar-
ket economies. The argument establishing this is based, of course, on the
classical connection between competitive equilibria and Pareto. optima.
These connections hold under fairly broad assumptions, and in later
chapters we will establish them in a very general setting. At that time we
will also show that in situations where the connection between competi-

2.3 | Equilibrium Growth 2.

tive equilibria and Pareto optima breaks down, as it does in the presence
of taxes or other distortions, the study of competitive equilibria can be
carried out by a direct analysis of the appropriate first-order conditions.

Recall that in the models discussed above there were many identical
households, and we took the (common) preferences of these households
to be the preferences attributed to the social planner. In addition, there
were many identical firms, all with the same constant-returns-to-scale
technology, so the technology available to the economy was the same as
that available to each firm. Thus, the planning problems considered in
Sections 2.1 and 2.2 were Pareto problems for economies with many
agents. That is, they can be viewed as problems of maximizing a
weighted average of households’ utilities, specialized to a case where all
households had identical tastes and were given equal weight, and hence
received identical allocations. Thus the solutions to planning problems
of the type we considered were Pareto-optimal allocations. In this section
we show that these allocations are exactly the ones that correspond to
competitive equilibria. For simplicity we restrict attention here to the
case of certainty and of a finite time horizon. :

Suppose that we have solved the finite-horizon optimal growth prob-
lem of Section 2.1 and that {(¢f, k% 1)}/ is the solution. Our goal is to
find prices that support these quantities as a competitive equilibrium.
However, we must first specify the ownership rights of households and
firms, as well as the structure of markets. It is crucial to be specific on
these matters.

Assume that households own all factors of production and all shares in
firms and that these endowments are equally distributed across house-
holds. Each period households sell factor services to firms and buy the
goods produced by firms, consuming some and accumulating the rest as
capital. Assume that firms own nothing; they simply hire capital and
labor on a rental basis to produce output each period, sell the output
produced back to households, and return any profits that result to share-
holders. Finally, assume that all transactions take place in a single once-
and-for-all market that meets in period 0. All trading takes place at that
time, so all prices and quantities are determined simultaneously. No
further trades are negotiated later. After this market has closed, in peri-
odst=0,1,..., T, agents simply deliver the quantities of factors and
goods they have contracted to sell and receive those they have contracted
to buy.

Assume that the convention for prices in this one big market is as
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follows. Let p, be the price of a unit of output delivered in period ¢, for
t=0,1,..., T, expressed in abstract units-of-account. Let w, be the
price of a unit of labor delivered in period ¢, expressed in units of goods
in period ¢, so that w, is the real wage. Similarly let r, be the real rental
price of capital in period ¢.

Given the prices {(p:, 71, w)}=o, the problem faced by the representa-
tive firm is to choose input demands and output supplies {(k,, n, y)H=0
that maximize net discounted profits. Thus its decision problem is

T
(1) max T = E(’Pt[)'t = 1k — winy]
1=

2) st. y=F(k,n), t=0,1,...,T.

Given the same price sequence, the typical household must choose
demand for consumption and investment, and supplies of current capi-
tal and labor, {(c;, &, %+1, ki, n,)}=0, given initial capital holdings xo. In
making these choices the household faces several constraints. First, the
total value of goods purchased cannot exceed the total value of wages
plus rental income plus profits the household receives. Second, the
household’s holdings of real capital in each period ¢ + 1 are equal to its
holdings in period ¢, net of depreciation, plus any new investment.
Third, the quantity of each factor supplied by the household in each
period must be nonnegative but cannot exceed the quantity available to
it in that period. Finally, consumption and capital holdings must be
nonnegative. Thus its decision problem is

T
) max ZO BU(c)

T T
) st. O pla + il = ZO plrik + wn +
=0 t=

5) S =( - 8w +i, t=01,..., T, givenxo;
6) 0=n=<10=<k=x, t=0,1,...,T;

@) ¢=0,%,=0 t=0,1,...,T.
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Note that capital stocks owned, x,+;, and capital supplied to firms, k.,
are required to be nonnegative. However, gross investment, i,, may be
negative. This assumption is the one that was made, implicitly, in Sec:
tion 2.1.

A competitive equilibrium is a set of prices {(p,, 7, w)}H=o, an allocatior.
{(k¢, n?, y,)},T=0 for the typical firm, and an allocation {(c;, %, X¢+1, &i, e
for the typical household, such that

a. {(kf, n?, 9:)} solves (1)—(2) at the stated prices;

b. {(ci, &, %1, ki, ni)} solves (3)—(7) at the stated prices;

c. all markets clear: k¢ = E, n = nl, ¢, + i, = 5, all ¢.

To find a competitive equilibrium, we begin by conjecturing that it has
certain features. Later we will verify that these conjectures are correct.
First, since the representative household’s preferences are strictly mono-
tone, we conjecture that goods prices are strictly positive for each pe-
riod: p, > 0, all ¢. Also, since both factors have strictly positive marginal
products, we conjecture that both factor prices are strictly positive for all
periods: w; > 0 and r, > 0, all ¢. Finally, since in equilibrium markets
clear, we let k, = & = k! and n, = n{ = nf, all ¢, denote the quantities of
capital and labor traded.

Now consider the typical firm. If the price of goods is strictly positive
in each period, then the firm supplies to the market all of the output that
it produces each period. That is, (2) holds with equality, for all ¢. Also,
note that since the firm simply rents capital and hires labor for each
period, its problem is equivalent to a series of one-period maximization
problems. Hence its input demands solve

®) n;llax Pt[F(kt: n) — rk,—wmn], t=0,1,...,T.
£, .

It then follows that (real) factor prices must be equal to marginal prod-
ucts: -

9) r,= Fylk,n), t=0,1,...,T;

(10 w, = Fulk,m), t=0,1,...,T.

Since F is homogeneous of degree one, when we substitute from (9) and
(10) into (8), we find that 7 = 0. Note, too, that kr+; = 0.

Next consider the typical household. Since supplying available factors
causes no disutility to the household, in every period it supplies all that is
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available. That is, n, = 1 and k, = x,, all ¢. Using these facts and substitut-
ing from (5) to eliminate #, we can write the household’s problem as

T
(11) max Z,) B (c)

T
(12) st Spla+ hka—(n+t 11—k —w]=0,
t=0

(13) ¢=0,ka=0, t=0,1,...,T;
given ko = xo.

Since lim,o U'(c) = %, the nonnegativity constraints on the ¢/s in (13) are
never binding. Hence the first-order conditions for the household are

(14) BU () — Ape =0,
(15) M(rsr + 1 = 8)pr1 — p1 =0,
with equality if k1 >0, ¢=0,1,...,T;

where X is the multiplier associated with the budget constraint (12).

Therefore a competitive equilibrium is characterized by quantities and
prices {(¢{, kis1, pi, 75, w wi)o, with all goods and factor prices strictly
positive, such that {(k{, n, = 1)}, solves (8) at the given prices,
{(c¢, ktr1)=o solves (11)—(13) at the given prices, ko = %o, kr+1 = 0, and in
addition

(16)  F(k, 1) = ¢ + kiyy — (1 — 8)k;, alls.

Now that we have defined and partially characterized a competitive
equilibrium for the economy of Section 2.1, we can be more specific
about the connections between equilibrium and optimal allocations that
we referred to earlier. First note that if {(ci, i+, pi, wi, )}, is an
equilibrium, then {(ci, kf1)}=o is a solution to the pIannmg problem
discussed in Section 2.1. To prove this we need only show that {(ct, kie)}
is Pareto optimal. Suppose to the contrary that {(c!, ki+1)} is a feasible
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allocation and that {c¢;} yields higher total utility in the objective function
(11). Then this allocation must violate (12), or the household would have
chosen it. But if (12) is violated, then (16) implies that

T

= > pilF(k, 1) — riki — wi] > 0 = e,
t=0

co’ntradicting the hypothesis that {(kf, n, = 1)}, was a profit-maximizing
choice of inputs. This result is a version of the first fundamental theo-
rem of welfare economics.

Conversely, suppose that {(c, k,+1)},=o is a solution to the planner’s
problem in Section 2.1. Then {k} 1}, is the unique sequence satisfying
the first-order and boundary conditions

A7y BIIRHU'Lf(kF) — Kai] = U'[f(RE) — B, t=1,2,...,T;

(18) ko1 =0, k§ = xo;

and {c}} is given by

(19) o =f(k*) — k1, t=0,1,...,T;

where the function f(k) = F(k, 1) + (1 — 8)k is as defined in Section 2.1.
To construct a competitive equlhbrlum with these quantities, we must
find supporting prices {(p¥, 7¥, wi)}i=o-

To do this, note that (9) and (15) together suggest that goods prices
must satisfy

20)  pF=pEfE), t=1,2,...,T;

where po > 0 is arbitrary, and (9) and (10) imply that real wage and
rental rates must satisfy

(21) r=fk-1-9), t=1,2,...,T;
(22) wf =fk¥) — KGR, t=1,2,...,T

It is not difficult to verify that these prices together with the quantities in
(17)—(19) constitute a competitive equilibrium, and we leave the proof as
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an exercise. This result is a version of the second fundamental theorem
of welfare economics.

Exercise 2.8 Show that at the prices given in (20)—(22), the allo-
cation {(c}, k¥ 1)}~ defined in (17)—(19) is utility maximizing for the
household [solves (11)—(13)]; that the allocation {(kF, nff = 1)}% is profit
maximizing for the firm [solves (8)]; and that {(c¥, k¥ 1)}o satisfies (16).

We also leave it as an exercise to show that the same quantities and
prices constitute a competitive equilibrium if firms instead of households

are the owners of capital.

Exercise 2.9 Suppose that households are prohibited from own-
ing capital directly. Instead, firms own all of the initial capital stock ko
and also make all future investments in capital. Households own all
shares in firms, and returns to the latter now include returns to capital.
Modify the statements of the firm’s and the household’s problems to fit
these arrangements and show that the quantities in (17)—(19) together
with the prices in (20)—(22) still constitute a competitive equilibrium.

We have interpreted these equilibrium prices and quantities as being
determined in a single market-clearing operation. But there is another
way to think of an economy as arriving at the quantities and prices
calculated above. Suppose that the agents meet in a market at the begin-
ning of every period, not just in period 0. In the market held in period ¢,
agents trade current-period labor, rental services of existing capital, and
final output. In addition, one security is traded: a claim to one unit of
final output in the subsequent period. In each period, factor and bond
prices are expressed in terms of current-period goods.

Notice that with a sequence of markets the household must form
expectations about future prices in order to arrive at its decisions in the
market in period ¢. In particular, its expectations about future consump-
tion goods prices and future rental rates on capital affect its current
consumption-savings decision. Thus some assumption is needed about
how these expectations are formed. Suppose, for example, that the
household has perfect foresight about all future prices. (This assump-
tion is the specialization for a deterministic context of‘the more general
notion of rational expectations.) Although we do not carry out the proof
here, it is not hard to show that, under the assumption of perfect fore-

v
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sight, this set of markets is equivalent to the one above in the sense that
the competitive equilibrium allocation is the same for the two settings
and the prices are closely related.

Exercise 2.10 Suppose that the market structure is as described
above. Modify the statements of the firm’s and the household’s problems
to fit these arrangements. Show that under perfect foresight the quanti-
ties in (17)—(19), the factor prices in (21)-(22), and the bond prices

g = BU'(EN/U' () = Uf'(kEy), t=0,1,...,T— L
constitute a competitive equilibrium.

' (In fact, for the representative household economy here, the sequen-
tl.a.l market structure can be even further simplified by eliminating secu-
rities markets. Since the net supply of such securities is zero, in equilib-
rium each household has a net demand of zero for each of the securities.
Hence, if these markets are simply shut down, the remaining prices and
the real allocation are unaltered. This conclusion does not hold, how-
ever, in an economy with heterogeneous households.)

We have, then, two examples of market economies: one with complete
markets in the Arrow-Debreu sense, the other with markets limited to
spot transactions in factors of production, goods, and one-period securi-
ties. Both economies reproduce the optimal path of capital accumulation
discussed in Section 2.1, provided agents in the sequence economy have
perfect foresight about future prices.

There is yet a third way in which the solution to the optimal growth
model of Section 2.1 can be interpreted as a competitive equilibrium,
one that is closely related to the dynamic programming approach of
Section 2.1 and to the sequence of markets interpretation of equilibrium
above. The general idea is to characterize equilibrium prices as functions
of the single state variable %, the economy-wide capital stock, and to view
individual households as dynamic programmers.

To develop this idea, first note that since firms in the sequence econ-
omy solve the sequence of one-period problems in (8), factor prices can
be expressed as functions of the state:

(23) R(k) = Fk, 1) and (k) = Fu(k, 1), allk> 0.
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At these prices, which in each period are taken by the firms as fixed
numbers, the quantities (k, 1) are profit maximizing and lead to zero
profits.

Next we must develop a dynamic program representing the decision
problem faced by a typical household. To do so we need a notation that
distinguishes between the economy-wide capital stock, &, over which the
household has no control, and its own capital stock, K, over which it has
complete control. Looking ahead, we know that in equilibrium it must be
the case that K = k, but it is important to keep in mind that the represen-
tative household does not behave as it does out of a sense of social
responsibility: it must be induced by prices to do so.

Let the individual household’s state variable be the pair (K, &), let
V(K, k) denote its optimum value function, and suppose that it expects
the economy-wide capital stock next period to be &' = h(k). Then the
household’s decision problem is represented by the functional equation

(24) V(K, k) = max {U(C) + BVIY, h(k)1}

st. C+[Y — (1 — 8K] = KR(k) + w(k).

Let H(K, k) be the optimal policy function for this problem.

Under the assumption of perfect foresight, the fact that all households
are identical implies that in equilibrium it must be the case that h(k) =
H(k, k). Thus we define a recursive competitive equilibrium to be a value
function V: R% — R, a policy function H: R} — R, for the representa-
tive household, an economy-wide law of motion k: R, — R for capital,
and factor price functions R: Ry = R and w: R+ — Ry, such that V
satisfies (24), given k; H is the optimal policy function for (24); H (k, k) =
h(k), all k; and R and o satisfy (23).

From this recursive point of view, the statement that competitive equi-
librium allocations are Pareto optimal means that if (V, H, h, R, ») is an
equilibrium, then the function v(k) = V(%, k) is the value function for the
planner’s problem, and g = h is the planner’s optimal policy function.
Conversely, the fact that Pareto-optimal allocations can be supported as
competitive equilibria means the following. If v is the value function for
the planner’s problem and g is the planner’s optimal policy function,
then the value and policy function for the individual household, the pair
(V, H) satisfying (24), have the property that V(k, k) = v(k) and H(k, k) =
g(k), all k. *

2.3 | Equilibrium Growth 31
The sense in which these statements are economically reasonable con-

Jectures can be spelled out by a comparison of the first-order and enve-

lope conditions for the two dynamic programs. For the planner’s prob-
lem these are

@5) UL — g = Bo'lglh)];

@) B = UL — SR,

For the lllrousehold’s problem, the analogous conditions are
U'LF®) + f' (K = k) = H(K, K] = BVi[H(K, k), h(k)] and
VK, k) = U'Lf (k) + f' (K = k) — H(K, B]f" (k).

In.equilibrium, K = k; since H(k, k) = h(k), these conditions can then be
written as

@71 U'lf(k) = h(k)] = BVi[A(k), h(k)] and
@8)  Vilk k) = U'Lf(k) — h(k)]f" (k).

Thus, if v'(k) = V (%, k), then the equilibrium conditions (27)—(28) match
the conditions (25)—(26) for the planner’s problem.

) We will repeatedly exploit these classic connections between competi-
tive equilibria and Pareto optima as a device for proving the existence of
equilibria in market economies and for characterizing them. That is, we
will solve planning problems, not for the normative purpose of prescrib-

. Ing outcomes, but for the positive purpose of predicting market out-

comes from a given set of preferences and technology.

This device is useful in situations where the two fundamental theo-
rems of welfare economics apply, but these theorems fail in the presence
of increasing returns to scale, externalities, distorting taxes, and so on.
Suppose that we want to consider the competitive equilibrium in an
economy in which there is, say, a flat-rate tax on labor income. We know
fhat in the presence of such a tax the competitive equilibrium allocation
is not, in general, Pareto optimal. That is, in general we cannot describe
the competitive equilibrium of such an economy by describing an associ-
ated social planning problem.
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In such cases, establishing the existence and qualitative properties of a
competitive equilibrium requires looking directly at the equilibrium con-
ditions. In the recursive context above this approach means that we must
establish the existence of functions (V, H, k) such that V and H are the
value and policy functions for the household’s dynamic program.ming
problem, given the economy-wide law of motion A for the state variable;
and H(k, k) = h(k), all k. These considerations lead us to look direcqy. at
the analogues of (27)—(28). Establishing the existence of a competitive
equilibrium involves establishing directly the existence of functions
&(k) = Vi(k, k) and h(k) satisfying those equations. Given h, the functions
V and H can then be found by solving (24).

In this section, we have illustrated that the methods for studying re-
cursive optimization problems developed in Parts IT and III can be used
in two ways in the analysis of competitive equilibria. In situations where
the connections between competitive equilibria and Pareto optima hold,
equilibria can be studied by analyzing the associated Pareto probl.em. In
situations where those connections fail, the methods of dynamic pro-
gramming can still be used to study the problems facing individ\'ml
agents in the economy. However, new arguments are needed to establish
the existence of equilibria. These two approaches to the study of com-
petitive equilibria are the subject of Part IV.

2.4 Conclusions and Plans

We began this chapter with a deterministic model of optimal growtl‘x and
then explored a number of variations on it. In the course of the discus-
sion, we have raised a wide variety of substantive and technical issues,
passing over questions in both categories lightly with promises of bett?r
treatments to come. It is time to spell out these promises in more detail.
We will do this by describing briefly the plan for the rest of the book.
Deterministic systems like those discussed in Section 2.1 are t‘he' sub-
ject of Part II (Chapters 3—6). Chapter 3 contains some prt?hmmary
mathematical material needed to study functional equations like those
discussed earlier. This background allows us to develop the needed
results for deterministic models and also lays the foundation for the
study of stochastic problems. o
Chapter 4 then deals with dynamic programming in a deterministic
context. The optimal growth model of Section 2.1 is a typical example
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and illustrates the necessary ingredients of such a treatment. First we
must show that for stationary, infinite-horizon optimization problems
like the social planner’s problem, the problem stated as one of choosing
an optimal sequence of decisions is equivalent (in some sense) to the
problem stated in the form of a functional equation. With this estab-
lished, we can then study functional equations for bounded, constant-

- returns-to-scale, and unbounded problems.

In Chapter 5 we turn to substantive economic models that are amena-
ble to analysis using these tools. These applications, which are drawn
from a variety of substantive areas of economics, are intended to give
some idea of the broad applicability of these methods.

Chapter 6 treats methods for characterizing the behavior of determi-
nistic, recursive systems over time: the theory of stability for autono-
mous difference equations. We first review results on global stability and
then treat local stability. We conclude with several economic applications
of these methods and with some examples that illustrate the types of
behavior possible in unstable systems.

Stochastic systems, like those we saw in Section 2.2, are treated in Part
III (Chapters 7—14). In generalizing the analysis of Chapters 4—6 to
include stochastic shocks, a variety of approaches are possible. We have
chosen to take a modern attack, one that allows us to deal with very
general classes of stochastic shocks when looking at dynamic program-
ming problems, and that yields additional benefits later when we study
the stochastic counterpart of stability theory. To take this approach, we
must first develop some of the basic tools of the theory of measure and
integration. S

This background is presented in Chapters 7 and 8. Chapter 7 is a self-
contained treatment of the definitions and results from measure theory
that are needed in later chapters; and Chapter 8 contains an introduc-
tion to Markov processes, the natural generalization of the stochastic
difference equations discussed above.

With these mathematical preliminaries in place, Chapter 9 deals with
stochastic dynamic programming, paralleling Chapter 4 as closely as
possible. The rewards from Chapters 7 and 8 are apparent here (we
hope!). With the appropriate notation and results in hand, the argu-
ments used in Chapter 9 to study stochastic models are fairly simple
extensions of those in Chapter 4.

Chapter 10 then provides a variety of economic applications, drawn
from a number of different substantive areas. Some of these are stochas-
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tic analogues to models discussed in Chapter 5; others are entirely new.

Chapters 11 and 12 survey results on convergence, in various senses,
for Markov processes: extensions of the ideas sketched in Section 2.2 toa
much wider variety of problems. This material is the body of theory
suited to characterizing the dynamics for state variables generated by
optimal policy functions for stochastic dynamic programs. Substantive
economic applications of these methods are discussed in Chapter 13.
Some of these applications are continuations of those discussed in Chap-
ter 10, others are new. Chapter 14 provides a law of large numbers for
Markov processes.

The use of recursive systems within a general equilibrium framework,
as illustrated in Section 2.3 above, is the subject of Part IV (Chapters 15—
18). Chapter 15 returns at a more abstract level to the connections be-
tween Pareto-optimal and competitive equilibrium allocations. In partic-
ular, we there review the two fundamental theorems of welfare
economics in a way that applies to the kinds of infinite dimensional
commodity spaces that arise in dynamic applications. We also treat the
issue of constructing prices for problems involving infinite time horizons
and/or uncertainty. Chapter 16 then contains a number of applications,
designed to illustrate how a variety of planning problems can be inter-
preted as market equilibria.

When a market equilibrium is also the solution to a benevolent social
planner’s problem, this fact vastly simplifies the analysis. However, there
are many market situations of great interest—situations in which mar-
kets are subject to distortions due to taxes, external effects, or various
kinds of market imperfections—that cannot be analyzed in this way. In
many such cases it is still possible to construct recursive equilibria di-
rectly, using the line of argument discussed briefly in Section 2.3. Chap-
ter 17 presents several mathematical results, fixed-point theorems, that
have proved useful in such cases, and illustrates their application. In
Chapter 18 we conclude with further illustrations of these methods.

2.5 Bibliographic Notes

Modern growth theory began with Frank Ramsey’s (1928) classic paper
and then lay dormant for almost 30 years. (Although a substantial body
of literature on growth developed during the 1930s and 1940s, this work
is quite different from the neoclassical theory of growth both in moti-
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vation and in terms of the specific models used: its goal was to show that
high, persistent rates of unemployment are a necessary feature of long-
run growth, and the models used generally featured fixed-proportions
technologies.) The field was reawakened by the work of Solow (1956)
and Swan (1956) and has been active ever since. The work by Solow and
Swan, and much that followed immediately, relied on the assumption
that households save a fixed proportion of their income. These models
were meant to be descriptive rather than prescriptive, and no attempt
was made to model households’ preferences and expectations.

Households’ preferences finally reentered the discussion when econo-
mists looked at the issue of growth from a normative point of view. The
deterministic theory of optimal growth, of which the one-sector model
discussed in Section 2.1 is the simplest case, was developed indepen-
dently and simultaneously by Cass (1965) and Koopmans (1965). A sto-
chastic model that incorporated shocks to production, like the one dis-
cussed in Section 2.2, was first studied by Brock and Mirman (1972) and
by Mirman and Zilcha (1975).

The first modern treatment of the connections between Pareto optima
and competitive equilibria was provided by Arrow (1951) for the case
where the commodity space is a finite-dimensional Euclidean space. This
treatment applies, for example, to the finite-horizon optimal growth
problem discussed in Section 2.3. Debreu (1954) showed that the same
line of argument holds in certain infinite-dimensional spaces, and his is
the treatment that we will need later to deal with infinite-horizon
models.

The interpretation of a competitive equilibrium in terms of a sequence
of markets can also be made for stochastic models. To make this inter-
pretation, it must be assumed that agents have rational expectations in the
sense of Muth (1961). See Radner (1972) for a pioneering general equi-
librium application of this idea.
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3 Mathematical Preliminaries

In Chapter 2 the optimal growth problem

©

max D, BU(c)

(e kyy Pl =0
s.t. ¢ + kH-] Sf(kt),
k1 =0, t=0,1,...,

given ko,

was seen to lead to the functional equation

) u(k) = max [Ue) + Br(y)]

st c+y=f(h),
¢, y=0.

The purpose of this chapter and the next is to show precisely the rela-
tionship between these two problems and others like them and to de-
velop the mathematical methods that have proved useful in studying the
latter. In Section 2.1 we argued in an informal way that the solutions to
the two problems should be closely connected, and this argument will be
made rigorous later. In the rest of this introduction we consider alterna-
tive methods for finding solutions to (1), outline the one to be pursued,
and describe the mathematical issues it raises. In the remaining sections
of the chapter we deal with these issues in turn. We draw upon this

39
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material extensively in Chapter 4, where functional equations like (1) are
analyzed.

In (1) the functions U and f are given—they take specific forms
known to us—and the value function v is unknown. Our task is to
prove the existence and uniqueness of a function v satisfying (1) and to
deduce its properties, given those of U and f. The classical (nineteenth-
century) approach to this problem was the method of successive ap-
proximations, and it works in the following very commonsensical way.
Begin by taking an initial guess that a specific function, call it v,
satisfies (1). Then define a new function, v;, by

2) vi(k) = [max {ULf k) — 3] + Boo(y)}-

If it should happen that v (k) = vo(k), for all £ = 0, then clearly v is a
solution to (1). Lucky guessing (cf. Exercise 2.3) is one way to establish
the existence of a function satisfying (1), but it is notoriously unreliable.
The method of successive approximations proceeds in a more systematic
way.

Suppose, as is usually the case, that v, # vy. Then use v; as a new
guess and define the sequence of functions {v,} recursively by

3) Une1(k) = max {U[f(k) —y] + Bu(p)}, n=0,1,2,....
0=y=f(k)

The hope behind this iterative process is that as n increases, the succes-
sive approximations v, get closer to a function v that actually satisfies (1).
That is, the hope is that the limit of the sequence {v,} is a solution v.
Moreover; if it can be shown that lim, .« v, is the same for any initial
guess vo, then it will follow that this limit is the only function satisfying
(1). (Why?)

Is there any reason to hope for success in- this analytical strategy?
Recall that our reason for being interested in (1) is to use it to locate the
optimal capital accumulation policy for a one-sector economy. Suppose
we begin by choosing any feasible capital accumulation policy, that is,
any function go satisfying 0 = go(k) = f(k), all k = 0. [An example is the
policy of saving a constant fraction of income: go(k) = 6f (k), where 0 <
6 < 1.] The lifetime utility yielded by this policy, as a function of the
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initial capital stock kg, is

wolko) = 20 BULf (k) — golk)],

where
kir = gotk),t=0,1,2,....
The following exercise develops a result about (g, wo) that is used later.

Exercise 3.1 Show that
wo(k) = U[f (k) — go(R)] + Bwolgo(k)], all k = 0.

If t.he utility from the policy g is used as the initial guess for a value
function—that is, if vp = wy—then (2) is the problem facing a planner
who can choose capital accumulation optimally for one period but must
f.ollow the policy gy in all subsequent periods. Thus v,(k) is the level of
lifetime utility attained, and the maximizing value of y—call it gy(k)—is
the optimal level for end-of-period capital. Both v; and g, are functions
of beginning-of-period capital &.

Notice that since go(k) is a feasible choice in the first period, the plan-
ner will do no worse than he would by following the policy g from the
beginning, and in general he will be able to do better. That is, for any
feasible policy go and associated initial value function vy,

“) v(k) = max ULfR) — 3] + Bro(y)}

= {U[f (k) — go(k)] + Buolgo(k)]}
= Uo(k)r

where the last line follows from Exercise 3.1.

' Now suppose the planner has the option of choosing capital accumula-
tion optimally for two periods but must follow the policy g, thereafter. If
9 is his choice for end-of-period capital in the first period, then from the
second period on the best he can do is to choose g;(y) for end-of-period
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capital and enjoy total utility vi(y). His problem ir‘1 the first period .is t.hus
max'[U(c) + Bui(y)], subject to the constraints in (1). The max1mlzef1
value of this objective function was defined, in (3), as vq(k). Hence it

follows from (4) that

va(k) = max {ULf(®) — 3] + Bu(y)}
= max {ULf (k) — y]1 + Buo(y)}

OSyS

1

'Ul(k).

Continuing in this way, one establi§hes by im‘iucti'on that v,,:,:l ‘gk) 32)
va(k), allk,n=0,1,2,... . The successive approxxmz}tlons de'ﬁfllf: in (
are improvements, reflecting the fact that plflnnlng flexibi 11(ty over
longer and longer finite horizons offers new options without taking a;ln);
other options away. Consequently it seems réasonable to suppos;e t a
the sequence of functions {v,} defined in 3) mlght.com'/erge to a solu b1on
v to (1). That is, the method of successive apprgmmauons seems to be a
reasonable way to locate and characterize solutions. .

This method can be described in a somewhat (i'lfferffnt and much
more convenient language. As we showed in the ‘dlSCUSSIOI’? abo?/e, for
any function w: Ry — R, we can define a new function—call it Tw: Ry —

R—by

= -y + :
6 (k) = max {ULfE) =]+ Buly)

When we use this notation, the method of successive approximations
amounts to choosing a function v and studying the‘ sequence {v,} dt?-
fined by vp41 = Tvn, 0 = 0,1,2,....The gqal then'1§ to show thlat this
sequence converges and that the limit function v s‘ansﬁes (1. A tertzaé
tively, we can simply view the operator T as a mapping Ifrom some se :
of functions into itself: T: C — C. In this notation s‘olvmg (N is equiva

lent to locating a fixed point of the mapping T, that is, f\{ncthn v € g
satisfying v = Tv, and the metl;od qf successive approxxmaétil._o;ﬁns is viewe

nstruct this fixed point. -

K ';(;N :t)llx(;(; ((:)(;)erators T like ther;ne defined in (5), we need to draw‘ on
several basic mathematical results. To show that T maps an appropriate
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space C of functions into itself, we must decide what spaces of functions
are suitable for carrying out our analysis. In general we want to limit
attention to continuous functions. This choice raises the issue of
whether, given a continuous function w, the function Tw defined by (5) is
also continuous. Finally, we need a fixed-point theorem that applies to
operators like T on the space C we have selected. The rest of the chapter

. deals with these issues.

In Section 3.1 we review the basic facts about metric spaces and
normed vector spaces and define the space C that will be used repeatedly
later. In Section 3.2 we prove the Contraction Mapping Theorem, a fixed-
point theorem of vast usefulness. In Section 3.3 we review the main facts
we will need about functions, like Tw above, that are defined by maximi-
zation problems.

3.1 Metric Spaces and Normed Vector Spaces

The preceding section motivates the study of certain functional equa-
tions as a means of finding solutions to problems posed in terms of
infinite sequences. To pursue the study of these problems, as we will in
Chapter 4, we need to talk about infinite sequences {x}, of states, about
candidates for the value function v, and about the convergence of se-
quences of various sorts. To do this, we will find it convenient to think of
both infinite sequences and certain classes of functions as elements of
infinite-dimensional normed vector spaces. Accordingly, we begin here
with the definitions of vector spaces, metric spaces, and normed vector
spaces. We then discuss the notions of convergence and Cauchy conver-
gence, and define the notion of completeness for a metric space. Theo-
rem 3.1 then establishes that the space of bounded, continuous, real-
valued functions on a set X C R is complete.
We begin with the definition of a vector space.

DEFINITION A (real) vector space X is a set of elements (vectors) together
with two operations, addition and scalar multiplication. For any two vectors
x,y € X, addition gives a vector x + y € X; and for any vector x € X and any
real number a € R, scalar multiplication gives a vector ax € X. These opera-
tions obey the usual algebraic laws; that is, forallx, y,2€ X, and o, B8 € R:
a x+ty=y+ux;
b. (x+y) +z=x+(y+ 2),
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c. a(x+y) =axt ay;

d. (a + B)x = ax + Bx; and

e. (aB)x = o(Bx). . .
Moreover, there is a zero vector 6 € X that has the following properties:

fox+0=x and

g Ox=206.
Finally,
h. Ix = x.

The adjective “real” simply indicates that scalar multiplication is defined
taking the real numbers, not elements of the cor{lple)f plane or some
other set, as scalars. All of the vector spaces used in this book are real,
and the adjective will not be repeated. Impo?ta'mt features of a vector
space are that it has a “zero” element and that it is closed }1nder addition
and scalar multiplication. Vector spaces are also called linear spaces.

Exercise 3.2 Show that the following are vector spaces:
a. any finite-dimensional Euclidean space RY ,
b. the set X = {x € R% x = az, some a € R}, where z € R%;
c. the set X consisting of all infinite sequences (%o, %1, X2, - - ), where
x; € R, all ¢;
d. the set of all continuous functions on the interval [a, b].
Show that the following are not vector spaces:
e. the unit circle in R?;
f. the set of all integers, I = {..., =1, 0,+1,...}5
g. the set of all nonnegative functions on [a, b].

To discuss convergence in a vector space or in any othfer space, we
need to have the notion of distance. The notion of distance in Euclidean
space is generalized in the abstract notion of 'a metric, a .funcuon dejﬁned
on any two elements in a set the value of which has an interpretation as

the distance between them.

DEFINITION A metric space is a set S, together with a metric (distance
function) p: S X S — R, such that for all %, ) 2 € S:

a. p(x, y) = 0, with equality if and only ifx=y;

b. p(x, y) = p(y, x); and

c. p(x, 2) = p(x,y) + p(y; 2
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The definition of a metric thus abstracts the four basic properties of
Euclidean distance: the distance between distinct points is strictly posi-
tive; the distance from a point to itself is zero; distance is symmetric; and
the triangle inequality holds.

Exercise 3.3 Show that the following are metric spaces.
“a. Let S be the set of integers, with p(x, y) = |x — y).
b. Let S be the set of integers, with p(x, y) = 0 if x =y, 1 if x # 9.
c. Let § be the set of all continuous, strictly increasing functions on
[a, 8], with p(x, 5) = maxemss [¥(t) — 5(0).
d. Let S be the set of all continuous, strictly increasing functions on
la, b], with p(x, y) = [%|x(t) — y(9)|dt.
e. Let § be the set of all rational numbers, with p(x, y) = |x — y|.
f. LetS = R, with p(x, y) = f(|x — y|), where f: R, — R, is continuous,
strictly increasing, and strictly concave, with f(0) = 0.

For vector spaces, metrics are usually defined in such a way that the
distance between any two points is equal to the distance of their differ-
ence from the zero point. That is, since for any points x and y in a vector
space S, the point x — y is also in S, the metric on a vector space is usually

defined in such a way that p(x, y) = p(x — y, 9). To define such a metric,
we need the concept of a norm.

DEFINITION A normed vector space is a vector space S, together with a
norm ||: § — R, such that for all x, y € S and a € R:

a. |lx|| = 0, with equality if and only if x = 6;

b. |l = la] - |lx]; and

c. |lx + yll < llxl| + [ly]| (the triangle inequality).
Exercise 3.4 Show that the following are normed vector spaces.
a. Let § = R}, with [lx]| = [ 411”2 (Euclidean space).
b. Let S = R/, with ||x|| = max; |x].
c. Let § = R), with [x| = L, |xi.
d. Let S be the set of all bounded infinite sequences (x;, xo, . . .), x; €

R, all &, with ||x|| = sup; |x|. (This space is called .)

e. Let S be the set of all continuous functions on [a, b], with ||x|| =
SUPasi=s |%(?)]. (This space is called C[a, b].)

f. Let S be the set of all continuous functions on [a, 5], with ||x]| =
J% |x(0)|dt.
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It is standard to view any normed vector space (S, [}) as a metric space,
where the metric is taken to be p(x, y) = [lx — 3], allx, y € S. '
The notion of convergence of a sequence of real numbers carries over

without change to any metric space.

DEFINITION A sequence {x}n-o in S converges to x € S, if for each € > 0,
there exists N such that

1) plxn, x) <&, aln=N,.

Thus a sequence {x,} in a metric space (S, p) converges to x € S if and
only if the sequence of distances {p(x, %)}, 2 sequence in R, converges
to zero. In this case we write x, —> X.

Verifying convergence directly involves having a “candidate” for the
limit point x so that the inequality (1) can be checked. When a cafxdldate
is not immediately available, the following alternative criterion is often
useful.

DEFINITION A sequence {x.}n=0 in S is a Cauchy sequence (satisfies the
Cauchy criterion) if for each & > 0, there exists N, such that

@ PG, xn) < &, alln, m=N,.

Thus a sequence is Cauchy if the points get closer and closer to each
other. The following exercise illustrates some basic facts about conver-
gence and the Cauchy criterion.

Exercise 3.5 a. Show thatif x,— x and x,— y, thenx = y. Thatis,
if {x,} has a limit, then that limit is unique. . .
b. Show that if a sequence {x,} is convergent, then it satisfies the

Cauchy criterion. o N
c. Show that if a sequence {x,} satisfies the Cauchy criterion, then it is

bounded.
d. Show that x, — x if and only if every subsequence of {x,.} converges

to x.

The advantage of the Cauchy criterion is that, in contrast to (1), (2) can -

be checked with knowledge of {x.} only. For the Cauchy criterion to be
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useful, however, we must work with spaces where it implies the existence
of a limit point.

DEFINITION A metric space (S, p) is complete if every Cauchy sequence in S
converges to an element in S. :

In complete metric spaces, then, verifying that a sequence satisfies the
Cauchy criterion is a way of verifying the existence of a limit point in S.

Verifying the completeness of particular spaces can take some work.
We take as given the following

FACT The set of real numbers R with the metric p(x, y) = |x — y| is a complete
melric space.

Exercise 3.6 a. Show that the metric spaces in Exercises 3.3a,b
and 3.4a—e are complete and that those in Exercises 3.3c—e and 3.4f are
not. Show that the space in 3.3c is complete if “strictly increasing” is
replaced with “nondecreasing.”

b. Show that if (S, p) is a complete metric space and S’ is a closed
subset of S, then (S’, p) is a complete metric space.

A complete normed vector space is called a Banach space.

The next example is no more difficult than some of those in Exercise
3.6, but since it is important in what follows and illustrates clearly each of
the steps involved in verifying completeness, we present the proof here.

THEOREM 3.1 Let X C R, and let C(X) be the set of bounded continuous
functions f: X — R with the sup norm, || f|| = sup.ex | f(x)|. Then C(X) is a
complete normed vector space. (Note that if X is compact then every continuous

function is bounded. Otherwise the restriction to bounded functions must be
added.)

Proof. That C(X) is a normed vector space follows from Exercise 3.4e.
Hence it suffices to show that if { f,,} is a Cauchy sequence, there exists f €
C(X) such that

for any £ > 0 there exists N, such that ||, — fl <&, alln=N,.
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Three steps are involved: to find a “candidate” function f; to show that
{f.} converges to f in the sup norm; and to show that f € C(X) (that f'is
bounded and continuous). Each step involves its own entirely distinct
logic.

Fix x € X; then the sequence of real numbers {f.(x)} satisfies

| fulx) = ful0)l = sup L) = fa)] = I fe = full:

Therefore it satisfies the Cauchy criterion; and by the completeness of
the real numbers, it converges to a limit point-—call it f (x). The limiting
values define a function f: X — R that we take to be our candidate.

Next we must show that ||f, — f]| = 0 as n — . Let £ > 0 be given and
choose N, so that n, m = N, implies | f, — full = &/2. Since { f.} satisfies the
Cauchy criterion, this can be done. Now for any fixed x € X and all
m=mn=N,,

‘fn(x) —f(x)l = |fn(x) _fm(x)l + lfm(x) '_f(x)i
= |fa = full + | ful®) — f]
= &/2 + | fulx) — fix)].

Since { f(x)} converges to f(x), we can choose m separately for each fixed
x € X so that | f(x) — f(x)| = &/2. Since the choice of x was arbitrary, it
follows that ||f, — f|| = &, all n = N,. Since ¢ > 0 was arbitrary, the
desired result then follows.

Finally, we must show that f is bounded and continuous. Boundednegs
is obvious. To prove that f is continuous, we must show that for every
& > 0 and every x € X, there exists & > 0 such that

Ife) — Ol < e if |« =3l <3,
where |||z is the Euclidean norm on R'. Let & and x be given. Choose k so

that ||f — fil < &/3; since f, — f (in the sup norm), such a choice is
possible. Then choose & so that e

llx = 3lle < & implies |fiulx) — fily)| < /3.
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Since f} is continuous, such a choice is possible. Then
1fe) = fON = 1f () = filo) + 1 fitx) = LGN + 1) = FO)
=2llf = fll + 1fitx) = fiiyl

<eg =

Although we have organized these component arguments into a theo-
rem about a function space, each should be familiar to students of calcu-
lus. Convergence in the sup norm is simply uniform convergence. The
proof above is then just an amalgam of the standard proofs that a se-
quence of functions that satisfies the Cauchy criterion uniformly con-
verges uniformly and that uniform convergence “preserves continuity.”

Exercise 3.7 a. Let C'[a, b] be the set of all continuously dif-
ferentiable functions on [4,b] = X C R, with the norm ||f] =

sup:ex{|f®)| + |f'()[}. Show that C'[a, b] is a Banach space. [Hint. Notice
that

ggxplf(x)l + ggxplf ‘Il =1l = max{sg}glf @)l sgxplf "(x)[}]

b. Show:that this set of functions with the norm ||f]| = sup,ex|f(x)| is
not complete. That is, give an example of a sequence of functions that is
Cauchy in the given norm that does not converge to a function in the set.
Is this sequence Cauchy in the norm of part (a)? ’

c. Let C¥a, b] be the set of all % times continuously differentiable
functions. on [a, b] = X C R, with the norm ||f|| = =&, a; max.ex|fi(x)],
where f* = dif (x)/dx’. Show that this space is complete if and only if o; >
0,:=0,1,...,k

3.2 The Contraction Mapping Theorem

In this section we prove two main results. The first is the Contrac-
tion Mapping Theorem, an extremely simple and powerful fixed point
theorem. The second is a set of sufficient conditions, due to Blackwell,
for establishing that certain operators are contraction mappings. The
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Jatter are useful in a wide variety of economic applications and will be
drawn upon extensively in the next chapter.
We begin with the following definition.

DEFINITION Let (S, p) be a metric space and T: S — S be a function map-
ping S into itself. T is a contraction mapping (with modulus B) if for some
B € (0, 1), p(Tx, Ty) =< Bp(x, 3), for all x,y € S.

Perhaps the most familiar examples of contraction mappings are those
on a closed interval § = [a, b], with p(x, y) = |x — j|. Then T: S — Sisa
contraction if for some 8 € (0, 1).

IT: _T|SB<1, allx, y € S withx # y.
I =l

Thatis, T is 2 contraction mapping if it is a function with slope uniformly
less than one in absolute value.

Exercise 3.8 Show that if T is a contraction on S, then T is uni-
formly continuous on S.

The fixed points of T, the elements of S satisfying Tx = x, are the
intersections of Tx with the 45° line, as shown in Figure 3.1. Hence it is
clear that any contraction on this space has a unique fixed point. This
conclusion is much more general.

THEOREM 3.2 (Contraction Mapping Theorem) I, I (S, p) is a complete metric
space and T: S — S is a coniraction mapping with modulus B, then

a. T has exactly one fixed point v in S, and

b. for any vg € S, p(T"vo, v) = Bro(vp, v),n=0,1,2,....

Proof. To prove (a), we must find a candidate for v, show that it
satisfies Tv = v, and show that no other element 7 € S does.

Define the iterates of T, the mappings {T"}, by T% = x, and T"x =
T(T*x),n=1,2,....Choose vy € S, and define {v,}a=0 by vn+1 = Tn,
so that v, = T™v,. By the contraction property of T,

p(vs, v1) = p(Tvy, Tug) = Bp(vi, vo)-
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Continuing by induction, we get
() P(Uns+1, V) = B0y, v0), n=1,2,....
Hence, for any m > n,
P(Wms Vn) = p(Um, Un-1) + **+ + P(Vnta, Vnt1) + P(Un+1, V)
< (Bl e+ B+ B p(or, v0)

- Bn[ﬁm—-n——l + -0+ B + ﬂp(vl) UO)

n

@ =755 o),

where the ﬁl:st line uses the triangle inequality and the second follows
from (1). It is clear from (2) that {v,} is a Cauchy sequence. Since § is

complete, it follows that v, — v € §.
To show that Tv = v, note that for all n and all vy € S,
p(T'v, v) = p(Tv, T™vg) + p(T" vy, v)

= Bp(v, T" vg) + p(T"vo, v).
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We have demonstrated that both terms in the last expression converge to
zero as n — ; hence p(Tv, v) = 0, or Tv = v.

Finally, we must show that there is no other function # € § satisfying
T = 9. Suppose to the contrary that 9 # v is another solution. Then

0 < a = p(d,v) = p(Tt, Tv) = Bp(d, v) = Ba,

which cannot hold, since 8 < 1. This proves part (a).
To prove part (b), observe that for any n = 1

p(T™o, v) = p[T(T" 'vy), Tv] = Bp(T" 0o, ),
so that (b) follows by induction. =

Recall from Exercise 3.6b that if (S, p) is a complete metric space and
S'is a closed subset of S, then (S', p) is also a complete metric space. Now
suppose that T: § — § is a contraction mapping, and suppose further
that T maps S into itself, T(§') C § ' (where T(S') denotes the image of
S’ under T). Then T is also a contraction mapping on §'. Hence the
unique fixed point of T on § lies in §". This observation is often useful
for establishing qualitative properties of a fixed point. Specifically, in
some situations we will want to apply the Contraction Mapping Theorem
twice: once on a large space to establish uniqueness, and again on a
smaller space to characterize the fixed point more precisely.

The following corollary formalizes this argument.

COROLLARY 1 Let (S, p) be a complete metric space, and let T: S — S bea
contraction mapping with fixed point v € S. If S' is a closed subset of S and
T(S") C S', thenv € §'. If in addition T(S'YCS"CS', thenv € §".

Proof. Choose vp € S', and note that {T™vo} is a sequence in S’

converging to v.-Since S' is closed, it follows that v € §'. If in addition ~

T(S') CS", then it follows that v = Tv € S, =

Part (b) of the Contraction Mapping Theorem bounds the distance
p(T"v,, v) between the nth approximation and the fixed point in terms
of the distance p(vo, v) between the initial approximation and the fixed
point. However, if v is not known (as is the case if one is computing v),
then neither is the magnitude of the bound. Exercise 3.9 gives a compu-
‘tationally useful inequality.
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Exercise 3.9 * Let (S, p), T, and v be as given abo
,P), T, . ve, let B b .
modulus of T, and let v, € S. Show that ¢ ? fbe the

) 1
p(T™vy, v) = m p(Tnvo, Tn+11!0).

. The following result is a useful generalization of the Contraction Map-
ping Theorem. g’

cogo LLARY 2 (N-Stage Contraction Theorem) Let (S, p) be a complete
metric sp.ace, let T: S — S, and suppose that for some integer N, TN: S — S is a
contraction mapping with modulus B. Then

a. T has exactly one fixed point in S, and

b. for any vy € S, p(T™v,, v) < Bo(ve, v), k=0, 1,2, . ...

I'Jroof. We will show that the unique fixed point v of TV is also the
unique fixed point of 7. We have )

p(Tv, v) = p[T(TVv), TVv] = p[TN(Tv), TNv] =< Bp(T, v).

Since B8 6 (O, l),. this implies that p(Tv, v) = 0, so v'is a fixed point of T.
To establish uniqueness, note that any fixed point of T is also a fixed

point of TV. Part (b) is established using the sa i
proof of Theorem 3.2. = s e argument asin the

The next exercise shows how the Contraction Mapping Theorem is

used to prove existence and uniqueness of a solution to a differential
equation. '

. errcise 3.10 Consider the differential equation and boundary
condition dx(s)/ds = f[x(s)], all s = 0, with x(0) = ¢ € R. Assume that
f R — Ris continuous, and for some B > 0 satisfies the Lipschitz condi-
tion |f(a) — f(b)| = Bla — b|, all a, b € R. For any ¢ > 0, consider C[0, ]
the space of bounded continuous functions on [0, ¢, with the éup nor’m’
Recall from Theorem 3.1 that this space is complete. ‘

a. Show that the operator T defined by

(To)(s) = ¢ + fo flo@ldz, 0=s=1t,
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maps C[0, t] into itself. That is, show that if v is bounded and continuous

on [0, t], then so is Tv.

b. Show that for some = > 0, T is a contraction on C[0, 7].

c. Show that the unique fixed point of T on C[0,7]is a differemigble
function, and hence that it is the unique solution on [0, 7] to the given

differential equation.

Another useful route to verifying that certain operators are contrac-
tions is due to Blackwell.

THEOREM 3.3 (Blackwell’s sufficient conditions for a contraction) Let
X C R, and let B(X) be a space of bounded functions f: X — R, with the
sup norm. Let T: B(X) = B(X) be an operator satisfying o
a. (monotonicity) f, g € B(X) and f(x) = g(x), for all x € X, implies
(Tf)(x) = (Tg)(x), for all x € X;
b. (discounting) there exists some B € (0, 1) such that

[T(f + a)l(x) = (Tf)(x) + Ba, allf€EB(X),a=0,x€ X.

[Here (f + a)(x) is the function defined by (f + a)(x) = f(x) + a.] Then T isa
contraction with modulus 3.

Proof. Iff(x) = g(x) for allx € X, we write f = g. For any f, g € B(X),
f=g+|f - gl Then properties (a) and (b) imply that

Tf = T(g + IIf - g = Tg + Blf — &l
Reversing the roles of f and g gives by the same logic
Tg = Tf + Blf — gl

Combining these two inequalities, we find that ITf = Tgl = BIf — gll. as
was to be shown. ®

In many economic applications the two hypotheses of Blackwell’s .the-
orem can be verified at a glance. For example, in the one-sector optimal
growth problem, an operator T was defined by B

(To)(k) = max {ULf(®R) — 31 + BrO)}-

=<y=f(k)

3.3 | Theorem of the Maximum 55

If u(y) = w(y) for all values of y, then the objective function for which Tw
is the maximized value is uniformly higher than the function for which
Tv is the maximized value; so the monotonicity hypothesis (a) is obvious.
The discounting hypothesis (b) is equally easy, since

T(v + a)(k) = max {U[f() — y] + Blu(y) + al}
0sy<fty -

max {U[f(k) — y] + Bu(y)} + Ba

0=y=f(k)

I

(Tv)(k) + Ba.

Blackwell’s result will play a key role in our analysis of dynamic pro-
grams.

3.3 The Theorem of the Maximum

We will want to apply the Contraction Mapping Theorem to analyze
dynamic programming problems that are much more general than the
examples that have been discussed to this point. If x is the beginning-of-
period state variable, an element of X C R/, and y € X is the end-of-
period state to be chosen, we would like to let the current period return
F (x, y) and the set of feasible y values, given x, be specified as generally as
possible. On the other hand, we want the operator T defined by

(Tv)(x) = sup [F (x, y) + Bu(y)]
¥

s.t. y feasible given.x,

to take the space C(X) of bounded continuous functions of the state into
itself. We would also like to be able to characterize the set of maximizing
values of y, given x.

To describe the feasible set, we use the idea of a correspondence from a
set X into a set Y a relation that assigns a set I'(x) C Y to each x € X. In
the case of interest here, ¥ = X. Hence we seek restrictions on the corre-
spondence I': X — X describing the feasibility constraints and on the
return function F, which together ensure that if v € C(X) and (Tv)(x) =
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supyerel F (x, y) + Bu(y)] then Tv € C(X). Moreover, we wish to deter-
mine the implied properties of the correspondence G(x) containing the
maximizing values of y for each x. The main result in this section is the
Theorem of the Maximum, which accomplishes both tasks.

LetX C RsletY C R letf: X X Y — R be a (single-valued) function;
and let T: X — Y be a (nonempty, possibly- multivalued) correspondence.
Our interest is in problems of the form: supyerwf (, y)- If for each x,
flx, -) is continuous in y and the set I'(x) is nonempty and compact, then
for each x the maximum is attained. In this case the function

1) h(x) = max f(x, y)
yEr' )

is well defined, as is the nonempty set
(2) Gix) = {y € T(x): flx,9) = h(x)} .

of y values that attain the maximum. In this section further restrictions
on fand I' will be added, to ensure that the function & and the set G vary
in a continuous way with x.

There are several notions of continuity for correspondences, and each
can be characterized in a variety of ways. For our purposes it is conven-
ient to use definitions stated in terms of sequences.

DEFINITION A correspondence': X — Y'is lower hemi-continuous (L.h.c.)
at x if T'(x) is nonempty and if, for every y € I'(x) and every sequence X, —> X,
there exists N = 1 and a sequence {yn}n=n such that yn =y and y, € T(x,), all
n = N. [If T(x') is nonempty for all x' € X, then it is always possible to take
N=1]

DEFINITION A compact-valued correspondence [: X — Y is upper hemi-
continuous (u.h.c.) at x if T'(x) is nonempty and if, for every sequence X, —> % and
every sequence {yn} such that y, € T'(x,), all n, there exists a convergent subse-
quence of {yn} whose limit point y is in I'(x).

Figure 3.2 displays a correspondence that is Lh.c. but not u.h.c. at xi; is
w.h.c. but not Lh.c. at x; and is both u.h.c. and Lh.c. at all othiér points.
Note that our definition of u.h.c. applies only to correspondences that
are compact-valued. Since all of the correspondences we will be dealing
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w.1[.h satisfy this requirement, the restriction will not be binding. (A defi-
nition of ‘u.h.c. for all correspondences is available, but it is stated in

;erms of images of open sets. For our purposes this definition is much
ess convenient, and its wider scope is never useful.)

DEFINITION -A correspondence I': X — Y i i o
. s continuous at x € ]
both w.h.c. and Lh.c. at x. X af at is

A correspondence I': X — Y is called Lh.c., u.h.c., or continuous if it has
that property at every point x € X. The following exercises highlight
some important facts about upper and lower hemi-continuity. Note that

if [':: X — Y, then for any set X C X, we define
I'X) = {y € Y: y € I'(x), for some x € X}.
Exercise 3.11 a. Show thatif I' is single- : i
 conereis s single-valued and u.h.c., then it

b. Let T: R*— R¥" and défine ¢: Rt — R' by

o(x) = {y1 € R: (31, y2) € I'(x) for some y, € R}
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Show that if T is compact-valued and u.h.c., then so is ¢.
c. Let ¢: X—>Y and ¢: X—> Y be compact-valued and u.h.c., and

defineI' = ¢ U ¢ by
Tx) ={y EY:y € d(x) U Y(x)}, allxEX.

Show that I is compact-valued and u.h.c.
d. Let ¢: X— Y and ¢: X — Y be compact-valued and u.h.c., and

suppose that
Tx)={y € Y:y € o(x) N Y(x)} # 4, allx EX.

Show that I is compact-valued and u.h.c.
e. Show thatif ¢: X — Yand §: Y — Z are compact-valued and u.h.c.,

then the correspondence yo¢ = I': X — Z defined by
T(x) = {z € Z: z € Y(y), for some y € $(x)}

is also compact-valued and u.h.c.
f. Let I“;:pX —Y,i=1,...,k be compact-valued and u.h.c. Show

thatT: X = Y = Y, X ... X Y, defined by
IFxy={yEY:y=0On---Mm where y; € Ti(x), ¢ = 1,...,k},

is also compact-valued and u.h.c.

g. Show that if [ X — Y is compact-valued and u.h..c., then for any
compact set K C X, the set I'(K) C Y is also compact. [IjImt‘ To show that
I'(K) is bounded, suppose the contrary. Let {y.} be a divergent sequence
in T(K), and choose {x,} such that y, € I'(x.), all n.]

Exercise 3.12 a. Show that if T is single-valued and Lh.c., then it
is continuous.
b. Let I': R — R*™, and define ¢: R* — R' by
o(x) = {y1 € R: (91, 92) € I'(x), for some y; € R"}.

Show that if T is Lh.c., then so is ¢. .
c. Let ¢: X — Y and ¢: X — ¥ be Lh.c., and define I' = ¢:4J ¢ by

I'x) ={yEY:y E d(x) U Yx)}, allx €X.
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Show that I' is Lh.c.
d. Let ¢: X — Y and ¢: X — Y be Lh.c., and suppose that

IFx)={yEY:yE d(x) N Y(x)} # 9, allx € X.

Show by example that I need not be Lh.c. Show that if ¢ and  are both
convex-valued, and if int ¢(x) N int Y(x) # @, then T is Lh.c. at x.

e. Show thatif ¢: X — Y and §: Y — Z are Lh.c., then the correspon-
dence Yo d = I': X — Z defined by

I(x) = {z € Z: 2 € Y(y), for some y € ¢(x)}

is also Lh.c.

f.LetT':X—Y,i=1,...,k belhc ShowthatT: X — Y = Y X
... X Y} defined by

Fx) ={yE€Y:y=(y,...,3m), wherey, ETix),i = 1, ..., k}

is Lh.c.

The next two exercises show some of the relationships between con-
straints stated in terms of inequalities involving continuous functions
and those stated in terms of continuous correspondences. These rela-
tionships are extremely important for many problems in economics,

where constraints are often stated in terms of production functions,
budget constraints, and so on. :

Exercise 3.13 a. Let I': R, — R, be defined by I'(x) = [0, x].
Show that I' is continuous.
b. Let f: R} — R, be a continuous function, and define the corre-
spondence I': R} — R by I'(x) = [0, f(x)]. Show that I' is continuous.
c. Let fi: Ry XR*">R,, i=1,..., {, be continuous functions.
Define I': R}, x R™— R} by

l
I(x, z) = {yeR{":OSyisﬁ(xi:z):i=ly--.,l,‘ande"Sx}‘

i=1

Show that I is continuous.
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Exercise. 3:14 a. Let H(xy): Ry x RE— R be continuous,
strictly increasing in its first [ arguments, strictly decreasing in its last
m arguments, with H(0,0) = 0. Define T: RE— R™ by I'tx) ={y €
R™: H(x, y) = 0}. Show that if I'(x) is compact-valued, then I' is continu-
ous at x.

b. Let H(x, y): R! X R™ — R be continuous and concave, and define I’
as in part (a). Show that if I'(x) is compact-valued and there exists some
$ € I'(x) such that H (x, §) > 0, then T is continuous at x.

c. Define H:R X R—> R by H(x,y) = 1 — max{jx], [y}, and define
I'(x) as in part (a). Where does I' fail to be Lh.c.?

When trying to establish properties of a correspondence I': X — Y, itis
sometimes useful to deal with its graph, the set

A={xy EXxY:y€ETM}

The next two results provide conditions on A that are sufficient to
ensure the upper and lower hemi-continuity respectively of T

THEOREM 3.4 Let I: X — Y be a nonempty-valued correspondence, and let
A be the graph of T. Suppose that A is closed, and that for any bounded set X C
X, the set I'(X) is bounded. Then T is compact-valued and u.h.c.

Proof. Foreachx € X, T'(x) is closed (since A is closed) and is bounded
(by hypothesis). Hence I' is compact-valued.

Let £ € X, and let {x,} C X with x, — £. Since I' is nonempty-valued,
we can choose y,, € I'(x,), all n. Since x, — %, there is a bounded setXCX
containing {x,} and £. Then by hypothesis ['(X) is bounded. Hence {y.} C
I'X) has a convergent subsequence, call it {y»}; let § be the limit point of
this subsequence. Then {(xn, yx)} is a sequence in A converging to (%, 9);
since A is closed, it follows that (%, §).€ A. Hencej € I'®), so isu.h.c. at
#. Since # was arbitrary, this establishes the desired result. =

To see why the hypothesis of boundedness is required in Theorem
3.4, consider the correspondence I': R+ — R+ defined by

I©) = 0, and TI'(x) = {0, 1/x}, allx>0.

The graph of T is closed, but I' is not wh.c atx = 0.
-The next exercise is a kind of converse to Theorem 3.4.
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Exerci.f‘e 3.15 LetT: X— Y be a compact-valued u.h.c. corre-
spondence with graph A. Show that if X is compact then A is compact.

The next theorem deals with lower hemi-continuity. For any x € R!

and any & > 0, let B(x, &) denote the clos .
’ 4 ed ball of
% B(x, &) = &' € X: |x — x'|| = 8). of radius & about

; }Z E 2 REM 3.5 LetI': X — Y.be a nonempty-valued correspondence, and let
¢ the graph of T. Suppose that A is convex; that for any bounded set X C X,
there is a bounded set Y C Y such that T(x) N Y # 0, all x € X; and tha? fo;

every x € X, there exists some € > 0 such that the set .
convex. Then T is Lh.c. ‘ e Bl ) 0 X closed and

5rgof. Choose £ € X; § € I'®); and {x,} C X with x,— & Choose
;:O sucl;v thatlthe set X = B(#, £) N X is closed and convex. Note that
r some N = s Wi i
o , X, € X, all n = N; without loss of generality we take
LetD dex}ote the boundary of the set X. Every point x, has at least one
representation as a convex combination of £ and a point in D. For each n
choose a, € [0, 1] and d, € D such that ’

Xy = Qudy + (1 = )i

Since D is a bounded set and_' %, = %, it follows that @, — 0. Choose ¥

such that T'(x) N ¥ # @, all x € X. Then f. g
B n vor each n, choose §, € I'(d,) N

Yn = anﬁn + (1 - a”)f, all n.

Since (d,, §.) € 4, all n, (%, §) € A, and A is convex, it follows thaﬁ
(%n, y2) € A, alAl n Moreover, since a, — 0 and all of the J.'s lie in the
bounded s:st Y, it follows that'y, — §. Hence {(x,, )} lies in A and con-
verges to (%, §), as was to be shown. =

We. are now ready to answer the questions we posed at the beginning
of this section: Under what conditions do the function A(x) defined by
the maximization problem in (1) and the associated set of maximizing

" y values G(x) defined in (2) vary continuously with x? An answer is pro-

vided in the following theorem, which will repeatedly be applied later. -
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THEOREM 3.6 (Theorem of the Maximum) Let X C R and Y C R™, let
fiXXY—>Rbea continuous function, and let [': X — Y be a compact-valued
and continuous correspondence. Then the function h: X = R defined in (1) is
continuous, and the correspondence G: X — Y defined in (2) is nonempty, com-

pact-valued, and u.h.c.

Proof. Fix x € X. The set I'(x) is nonempty and compact, and f(x, -) is
continuous; hence the maximum in (1) is attained, and the set G(x) of
maximizers is nonempty. Moreover, since G(x) C I'(x) and I'(x) is com-
pact, it follows that G (x) is bounded. Suppose y, — 3, and y, € G(x), all n.
Since I'(x) is closed, y € I'(x). Also, since h(x) = f(x, y.), all », and f is
continuous, it follows that f(x, y) = h(x). Hence y € G(x); so G(x) is
closed. Thus G(x) is nonempty and compact, for each x.

Next we will show that G(x) is u.h.c. Fix x, and let {x,} be any sequence
converging to x. Choose y, € G (%), all n. Since I' is u.h.c., there exists a
subsequence {y,} converging to y € I'(x). Let z € I'(x). Since I is Lh.c,
there exists a sequence z, — 2, with z, € T'(x,,), all k. Since f(xn, yn) =
f(n,, za), all k, and f is continuous, it follows that f(x, y) = f(x, 2). Since
this holds for any z € T'(x), it follows thaty € G(x). Hence G is u.h.c.

Finally, we will show that h is continuous. Fix x, and let {x,} be any
sequence converging to x. Choose y, € G(x,), all n. Let & = lim sup h(xx)
and h = lim inf h(x,). Then there exists a subsequence {x,} such that
ki = lim f (%, y»). But since G is u.h.c., there exists a subsequence of {y,},
call it {y}, converging to y € G(x). Hence h = lim f(x; y) = flx,y) =
h(x). An analogous argument establishes that h(x) = k. Hence {k(x,)} con-
verges, and its limit is h(x). ®

The following exercise illustrates through concrete examples what this
theorem does and does not say.

Exercise 3.16 a. Let X =R, and let I'(x) =Y =[], +1], all
x € X. Define f: X X Y = Rby f(x,y) = »* Graph G(x); show that G(x)
is w.h.c. but not Lh.c. at x = 0.
b. Let x = R, and let I'(x) = [0, 4], all x € X. Define

fley) = max(2 = (y = Dx+ 1= (=27

Graph G(x) and show that it is u.h.c. Exactly where does it fail to be
Lh.c.?
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c LetX=RTx)={yER:—x <y =
T) = :—x =<y =< x},and f(x, y) = cos(y). Graph
G(x) and show that it is u.h.c. Exactly where does it fail to be )l).h.c.? ’

Sl{ppose that in addition to the hypotheses of the Theorem of the
ngxmum the correspondence I is convex-valued and the function fis
strlcl.:ly concave in y. Then G is single-valued, and by Exercise 3.11a it is a
continuous function—call it g. The next two results establish properties
of g. Lemma 3.7 shows that if f(x, y) is close to the maximized value
flx, g(x)], then y is close to g(x). Theorem 3.8 draws on this result to show
.that if {f,} is.a sequence of continuous functions, each strictly concave
In y, converging uniformly to f, then the sequence of maximizing func-

tions {g,} converges pointwi
se to g. The latter convergence i i
. . S
if X is compact. \ ¥ uniform

; fZMMA 3..7 Let X C R and Y C R™ Assume that the correspondence
: X — Y is nonempty, compact- and convex-valued, and continuous, and let A
be the graph of I'. Assume that the function f: A — R is continuou’s and that
f (@, ) is strictly concave, for each x € X. Define the function g: X — Y by

g(x) = argmax f(x, y).
yEl()

Then for each & > 0 and x € X, there exists 8, > 0 such that

y € I'(x) and |f[x, g(*)] — f(x, y)| < &, implies [|g(x) — 5] < e.

If X is compact, then 8 > 0 can be chosen independently of x.

Pr.oof. Nott.e that under the stated assumptions g is a well-defined
continuous (single-valued) function. We first prove the claim for the case’

where X is compact. Note that in this case A i
: e A is a com .
8.15. For each & > 0, define pact set by Exercise

A. = {(x,y) € A: |lg(x) — y]| = &}
If A, =9, all >0, then T is single-valued and the result is trivial.

f)therwise thgre exists & > 0 sufficiently small such that for all 0 < & <
&, the set A, is nonempty and compact. For any such &, let

= (:Eg: [f[x, g@)] = f(x, 9)-
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Since the function being minimized is continuous and A, is com.pact, the
minimum is attained. Moreover, since [x, g(x)] € A, all x € X, it follows
that 8 > 0. Then

y € T() and [lg(x) — yll = & implies |f[x, g@] = [ )| =3,
as was to be shown. .
If X is not compact, the argument above can be applied separately for
each fixedx € X. ®
THEOREM 3.8 LetX,Y, T, and A be as defined in Lemma 3.7. Let {fu} be a
sequence of continuous (real-valued) functions on A; assume that for each n and
each x € X, fu(x, ) is strictly concave in its second argument. Assume that f has

the same properties and that f, — f uniformly (in the sup norm). Define the
functions g, and g by

ga(x) = argmax fu(x, y), n = 1,2,...,and
yEL(x)

g(x) = argmax f (x, y).
YED()

Then g, — g pointwise. If X is compact, gn —=> & uniformly.

Proof. First note that since gu(x) is the unique maximiz.er of fu(x, -) on
I'(x), and g(x) is the unique maximizer of f(x, ) on I'(x), it follows that

0 = f[x, g&)] — flx, gu(x)]
= flx, g1 — fulx, g®)] + fulx, gu@)] — flx; gn(®)]
=2f - full, allx €X.

Since f, — f uniformly, it follows immediately that for any 8 > 0, there
exists Ms = 1 such that

&) 0 < flx, g)] — flx, g1 = 2lf = full <8,

allx € X, all n = M.

e
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To show that g, — g pointwise, we must establish that for each ¢ > 0
and x € X, there exists N, = 1 such that ‘

©) lgx) — gux)| <&, alln=N,.

By Lemma 3.7, it suffices to show that for any &, > 0 and x € X there

. exists N, = 1 such that

(5) lf[x: g(x)] ~f[x’ gn(x)]l < 6,;, alln = N,.

From (3), it follows that any N, = M;_has the required property.

Suppose X is compact. To establish that g, — g uniformly, we must
show that for each &£ > 0 there exists N = 1 such that (4) holds for all
x € X. By Lemma 3.7, it suffices to show that for any & > 0, there exists
N = 1, such that (5) holds for all x € X. From (3) it follows that any N =
M; has the required property. =

3.4 Bibliographic Notes
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