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Chapter 1

Introduction to Digital Filter Theory

1.1. Introduction

1.1.1. What Is a Filter?

Musicians have been using filters for thousands of years to shape the sounds of their art in
various ways. For example, the evolution of the physical dimensions of the violin constitutes an
evolution in filter design. The choice of wood, the shape of the cutouts, the purfling, the geometry
of the bridge, and everything that affects resonance all have a bearing on how the violin body filters
the signal induced at the bridge by the vibrating strings. Once a sound is airborne there is yet more
filtering performed by the listening environment, the pinnae of the ear, and by idiosyncrasies of the
hearing process. )

Any medium through which the music signal passes, whatever its form, can be regarded as a
filter. However, we do not usually think of something as a filter unless it can modify the sound in
some way. For example, speaker wire is not considered a filter, but the speaker is (unfortunately).
The different vowel sounds in speech are produced primarily by changing the shape of the mouth
cavity, which changes the resonances and hence the filtering characteristics of the vocal tract. The
tone control circuit in an ordinary car radio is a filter, as are the bass, midrange, and treble boosts
in a stereo preamplifier. Graphic equalizers, reverberators, echo devices, phase shifters, and speaker
crossover networks are further examples of useful filters in audio. There are also examples of
undesirable filtering, such as the uneven reinforcement of certain frequencies in a room with “bad
acoustics.” A well-known signal processing wizard is said to have remarked, “When you think about
it, everything is a filter.”

A digital filter is just a filter that operates on digital signals, such as sound represented inside a
computer. It is a computation which takes one sequence of numbers (the input signal) and produces a
new sequence of numbers (the filtered output signal). The filters mentioned in the previous paragraph
are not digital only because they operate on signals that are not digital. It is important to realize
that a digital filter can do anything that a real-world filter can do. That is, all the filters alluded to
above can be simulated to an arbitrary degree of precision digitally. Again, a digital filter is only a
formula for going from one digital signal to another. It may exist as an equation on paper, as a small
loop in a computer subroutine, or as a handful of integrated circuit chips properly interconnected.
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1.1.2. Why Should a Musician Learn about Digital Filters?

Serious computer musicians generally use digital filters in every piece of music they create.
Without digital reverberation, for example, it is difficult to get rich, full-bodied sound from the
computer. However, reverberation is only one example of the capabilities of digital filters. A digital
filter can arbitrarily shape the spectrum of a sound. Yet very few musicians are prepared to design the
filter they need even when they know exactly what they want in the way of a spectral modification.
It is the goal of this paper to assist sound designers by listing the concepts and tools necessary for
doing custom filter design.

The reference, Programs for Digital Signal Processing [5] contains a collection of Fortran pro-
grams which design a wide variety of digital filters. In light of this available code, it is plausible
to imagine that only programming skills are required to use digital filters. This perhaps is true for
simple applications, but knowledge of how digital filters work will help at every phase of installing
and using such software. Also, you must understand a program before you can modify it or extract
pieces of it. Even in standard applications, effective use of a filter design program requires an
understanding of the design parameters, which in turn requires some understanding of filter theory.

Perhaps most important for composers who design their own sounds, a vast range of imaginative
filtering possibilities is available to those who understand how filters affect sounds. In my practical
experience, intimate knowledge of filter theory has proved to be a very valuable tool in the design of
musical instruments. Typically, a simple yet unusual filter is needed rather than one of the classical
designs obtainable by using published software.

1.1.3. Relevant Math

First, it is assumed that the reader has some familiarity with computer music and knows at least
conceptually how sound is stored and processed inside the computer. The architectural concepts
introduced in [9] still pervade the current practice in computer music synthesis, and there are several
introductory articles in the Computer Music Journal. An anthology of tutorial articles appears in
[17,20].

Next, it is important to know the mathematical representation of a signal (sound). We will need
only two types of signal representation: the {ime-waveform and the spectrum. These and related
concepts are discussed elsewhere in [10], and this paper assumes a working knowledge of Fourier and
2 transforms. A brief review of some basic quantities such as physical units and various notation is
given in appendix A, which should be consulted whenever an unfamiliar (or undefined) notational
construct appears in this paper.

If appendix A is ypeex to you, then the following references may help to fill in the gaps. A good
review of basic mathematics with lots of problems and a fair amount on complex numbers may be
found in [18]. Facts about Fourier transforms are derived in [13, 3], and the first three chapters of
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[4] give a good development of complex variables. Finally, an introduction to digital systems, on a
level comparable to this paper, is given in [19].

The only essential mathematical requirement which is beyond the scope of most highschool
curricula is that of complex variables. It is unfortunate that complex numbers are usually taught
so late in school, because we need them to represent both time-waveforms and spectra. On the
other hand, similarly advanced college math, such as calculus and linear algebra, can be sidestepped
entirely in an all-digital treatment of filter theory. As we will see, the central reason for using
complex numbers is the ease with which both time-waveforms and spectra may be represented.

1.1.4. The Simplest Lowpass Filter

This section gives a very basic example of the generic problem at hand: understanding the
effect of a digital filter on the spectrum of a digital signal. The purpose of this example is to provide
motivation for the general theory introduced in chapter 2.

Our example is the simplest possible lowpass filter. A lowpass. filter is one which does not
affect low frequencies and rejects high frequencies. The gain of the ideal lowpass filter is unity (1)
for frequencies between 0 Hz and the cutoff frequency f. Hz, and it is O for all higher frequencies.
This ideal gain versus frequency curve is shown in Figure 1.1. The output spectrum is obtained by
multiplying the input spectrum by the function shown.

o

(Passband) (Stopband)

0 f £/2

frequency (Hz) —»

Figure 1.1. Gain vs. frequency specification for the ideal lowpass filter.

1.1.5. Definition of the Filter

The simplest (and by no means ideal) lowpass filter is given by the following difference equation:

y(n) = z(n) + z(n — 1), n=0,12,... (1.1)
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where z(n) is the filter input amplitude at time (or sample) n, and y(n) is the output amplitude at
time n. The system diagram for this little filter is given in Figure 1.2. The symbol “2~!” means a
delay of one sample; i.e., 27 z(n) = z(n — 1).

x(n) »1 2z | y(n)

Figure 1.2. System diagram for the filter y(n) == z(n) + z(n — 1) (cf. (1).

It is important when working with spectra to be able to convert time from sample numbers, as
in (1.1) above, to seconds. Thus, another way of writing the filter equation is

y(nT) = z(nT) + 2((n = VT), n=0,12,... (1.1)

where T is the sampling interval. It is customary in digital signal processing to leave off T' (pretend
it equals 1), but anytime you see an n you can translate to seconds by thinking nT. Be careful with
integer expressions, however, such as (n — k), which would be (n — k)T seconds, not (nT — k).

To further our appreciation of this example, let's write a computer subroutine to implement
(1.1). In the computer, z(n} and y(n) are data arrays and n is an array index. Since sound files are
usually larger than what the computer can hold in memory all at once, we must process the data
in blocks of some reasonable size. Therefore, the complete filtering operation consists of two loops,
one within the other. The outer loop fills the input array z and empties the output array y, while
the inner loop does the actual filtering on the z array to produce y. Let M denote the block size
(i.e., the number of samples to be processed on each iteration of the outer loop). In Pascal, the inner
loop of the subroutine might appear as shown in Figure 1.3. The outer loop might read something
like “fll z[1..M] from the input file,” “call SIMPLP,” and “write out y[1..M].” However, there is
one more important statement whose absence will cause a “glitch” every M samples. Can you guess
what it is? After the call to SIMPLP, there must be the line “z[0] := z[M];” to make z|n — 1] valid
in the first iteration of the next call to SIMPLP. (For the very first call to SIMPLP, z[0] :=0.)




1.1 INTRODUCTION Page 5

procedure SINPLP(x,y:array[0..4] of real);
VAr a : integer;
for » := 1 to ¥ do
yla] := x{n] + x[a-1];
end.

Figure 1.3. Pascal implementation of the simple lowpass filter of (1.1).

You might suspect that since (1.1) is the simplest possible lowpass filter, that it is also somehow
the worst possible lowpass filter. How bad is it? In what sense is it bad? How do we even know
it is a lowpass at all? Can it blow up?* To answer these questions, we need to find the frequency
response of this filter. :

1.1.6. Finding the Frequency Response

x(n) ———p \\\\\7\>\?\\——> y(n)
=

Figure Fig. 1.4. “Black box” representation of an arbitrary filter.

Think of the filter expressed by (1.1) as a “black box” as shown in Fig. Fig. 1.4. We want to
know the effect of this black box on the spectrum of z(-), where z(-) represents the entire input signal
(see appendix A). Suppose we test its effect at each frequency separately. This is called sine-wave
analysis. Figure 1.5 shows an example of an input-output pair, for the filter of (1.1), at the frequency
J == f,/4 Hz, where [, is the signal sampling rate. (The continuous-time waveform has been drawn
through the samples for clarity.) Figure 1.5a shows the input, and Fig. 1.5b shows the output. The
ratio of the peak output amplitude to the peak input amplitude is the filter gain at this frequency.
From Fig. 1.5, we find that the gain is about 1.414 at the frequency f,/4. The phase of the output
minus the phase of the input is called the phase response of the filter. Figure 1.5 shows that the
filter of (1.1) has a phase response equal to —27/8 (minus one-eighth of a cycle) at the frequency
Js/4. Continuing in this way, we can input a sinusoid at each frequency (from 0 to f,/2), examine
the input and output waveforms as in Fig. 1.5, and record on a graph the peak-amplitude ratio
(gain) and phase shift for each frequency. The resultant pair of plots, shown in Figure 1.6, is called
the frequency response. Note that Fig. Fig. 1.5 specifies the middle point of each graph in Fig. 1.6.

Not every black box has a frequency response, however. What good is a pair of graphs such as
shown in Fig. 1.6 if for all input sinusoids, the output is 60 Hz hum!? What if the output is not even

* The author can assure you that some digital filters can “blow up.” This occurs when the amplitude of
a signal internal to the filter overflowes and causes a prolonged “overflow oscillation”. (1.1) cannot fail this
badly, but it can cause “clipping” which is momentary overflow.
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Figure Fig. 1.6. Input and output signals for the filter y(n) = z(n) + z(n - 1).

a) Input sinusoid 2(n) == A, sin(wnT + ¢1) at amplitude A, == 1, frequency w ==
27f./4, and phase ¢, == 0.

b) Output sinusoid y(n) == Azsin(wnT + ¢z} at amplitude Az = 1.414, frequency
w == 2nf,/4, and phase ¢o = —7/4.

a sinusoid? The output y(n) might be a cheeseburger for all we know. We will learn in chapter 2
that the sine-wave analysis procedure for measuring frequency response is guaranteed to work only
if the flter is linear and fime-invarignt. Linearity means that the output due to a sum of input
signals equals the sum of outputs due to each signal alone. Time-invariance means that the filter
does not change over time. (Whatever you did to get a cheeseburger out of it yesterday will work
today, now that you have witnesses assembled.) We will elaborate on these technical terms and their
implications later. For now, just remember that such filters are guaranteed to produce a sinusoid in
response to a sinusoid—and at the same frequency.

The above method of finding the frequency response involves physically measuring the amplitude
and phase response for input sinusoids of every possible frequency. While this basic idea may be
practical for a real black box, it is hardly useful for filter design. Ideally, we wish to arrive at a
formula for the frequency response of the filter given by (1.1). There are several ways of doing this.
The first we consider is exactly analogous to the sine-wave analysis procedure given above.
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Figure 1.8, Frequency response for the filter y(n) = z(n) + z{n — 1).
a) Amplitude response.
b) Phase response.

Assuming (1.1) to be a linear time-invariant filter specification (which it is), let's take a few
points in the frequency response by analytically “plugging in” sinusoids at a few different frequencies.
Two graphs are required to fully represent the frequency response: gain versus frequency and phase
shift versus frequency.

The frequency 0 Hz (often called “DC” for “Direct Current”) is always comparatively easy to
handle when analyzing a filter. Since plugging in a sinusoid means setting z(n) = Acos(27/nT + ¢),
by setting / = O we obtain z(n) = Acos[27(0)nT + ¢] = Acos(g) for all n. The input signal is
then the same number (A cos ¢) over and over again for each sample. It should be clear that the
filter output will be y(n) = z(n) + z(n — 1) = Acos(#) + A cos(¢) = 2Acos(¢) for all n. Thus, the
gain at frequency [ = 0 is 2, which we get by dividing 24, the output amplitude, by A, the input
amplitude. Phase is arbitrary at f = 0 Hz, so the phase response can be arbitrarily defined at this
frequency. In all cases such as this, where the phase response may be arbitrarily defined, we choose
a value which preserves continuity. This means we must analyze at frequencies in 2 neighborhood of
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the arbitrary point and take a limit. We will compute the phase response at DC later using different
techniques. It is worth noting, however, that at 0 Hz, phase is almost always defined to be zero.

The next easiest frequency to look at is half the sampling rate, f = f,/2 = 1/(2T). In this
case, by using our basic signal processing math and highschool trigonometry®, the input z can be
simplified as follows:

z(n) = Acos(27r!21nT + ¢), n=20,12,...

= Acos(2n —211—_nT + ¢)

= Acos(nmn + ¢)

= Acos(rn)cos(¢) — Asin(rn)sin(9)

= Acos(7n)cos(¢)

= A(—1)" cos(9), n==0,1,2...

= {Acos(¢), —~Acos(p), Acos(p), —Acos(g),...},

where the beginning of time was arbitrarily set at n = 0. Now with this input, the output of (1.1)
is
yn)=1z(n)+z(n-1)
== (—=1)" Acos(p) + (=1)" "1 A cos(9)
= (—~1)" Acos(¢) — (—1)" A cos(¢)
=0,

The filter of (1.1) thus has a gain of 0 at / = f,/2. Again the phase is not measurable, since the
input signal has been snuffed out altogether, and we will have to extrapolate the phase response
from surrounding frequencies.

It we back off a bit, the above results for gain response are obvious without any trigonometry.
The filter of (1.1) is equivalent (except for a factor of 2) to a simple two-point average, y(n) =
|z{n) + z(n — 1)]/2. Averaging adjacent samples in a signal is intuitively a lowpass filter because at
low frequencies the sample amplitudes change slowly so that the average of two neighboring samples
is very close to either sample, while at high frequencies the adjacent samples tend to have opposite
sign and cancel out when added. The two extremes are frequency O Hz, at which the averaging has
no effect, and half the sampling rate f,/2, where the samples alternate in sign and exactly add to 0.
{This kind of reasoning is good to go through in any analysis in order to eliminate gross mistakes.
Sometimes we get two conflicting answers working a problem two different ways, and then we'’re
thankful not to be designing airplanes or bridges.)

We are beginning to see that (1.1) may be a lowpass filter after all, since we found a boost
of about 6 dB at the lowest frequency and a null at the highest frequency. (A gain of 2 may be
expressed in decibels as 20log,,(2) =~ 6 dB, and a null or notch is another term for a gain of 0 at a
single frequency.) Of course we tried only two out of an infinite number of possible frequencies.

Let’s go for broke and plug the general sinusoid into (1.1), confident that our savvy at trigonometry
will see us through (after all, this is the simplest filter there is, right?). We let z(n) = Acos(27/nT +

* All the trigonometric identities used in the following derivation as well as in the rest of this paper are
given in appendix B.
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¢), so that the output is given by
. y(n) = Acos(2nfnT + ¢)+ Acos [2nf(n — 1)T + ¢].

This input can be simplified as follows. Recall from the discussion surrounding Fig. 1.5 that only the
peak-amplitude ratio and and the phase difference between input and output sinusoids are needed
to measure the frequency response. The filter phase response does not depend on ¢ above (due to
time-invariance), and so we can set ¢ to 0. Also, the filter amplitude response does not depend on
A (due to linearity), so we can let A = 1. With these simplifications of z(-), the gain and phase
response of the fiiter appear directly as the amplitude and phase of the output y(-). Thus, we input
the signal
z(n) = cos (2n fnT)

= cos (wnT)

where w & 27, as discussed in appendix A. (The symbol “2” means “is defined as”.) With this
input, the output of the simple lowpass filter is given by

y(n) = cos (wnT') + cos [w(n — 1)T].

All that remains is to reduce the above expression to a single sinusoid with some frequency-dependent
amplitude and phase. (The sum of sinusoids at the same frequency, but different phase and
amplitude, can always be expressed as one sinusoid at that frequency with a new phase and amplitude
[10].) This will be done first by using standard trigonometric identities [1] in order to avoid
introducing complex numbers. Afterward, a much “easier” derivation using complex numbers will
be given. We have
y(n) = cos(wnT) + cos |w(n — 1)T]

= cos(wnT’) + cos(wnT)cos [~wT| — sin(wnT)sin [-wT]

a= cos{wnT) + cos(wnT) cos(wT) + sin(wnT)sin(wT)

= [1 + cos(wT)] cos(wnT) + sin{wT) sin(wnT)

= g(w) cos(wnT) + b(w)sin(wnT).

where a(w) A [1 + cos(wT)] and b(w) & sin(wT). We are looking for an answer of the form
y(n) = G(w)cos [wnT + 8(w)],
where G(w) is the filter gain response and 8(w) is the phase response. This may be exbanded as
¥(n) = G(w)cos [8(w)] cos(wnT) ~ G(w)sin [B(w)] sin(wnT).

Therefore,
a(w) = G(w)cos [0(w)]

b(w) = —G(w)sin [6(w)],
We can isolate the filter gain response G(w) by squaring and adding the above two equations:
a?(w) + ¥*(w) = G%(w)cos’® [B(w)] + G?*(w)sin® [B(w)]
= G*(w){cos® [O(w)] + sin®[B(w)]}
= G*w)
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This can then be simplified as follows:

G?(w) = a®*(w) + b*(w) = [1 + cos(wT))? + sin*(wT)
= 1+ 2cos(wT') + cos?(wT) + sin®(wT)
= 2+ 2cos(wT) = 4 cos®>(wT[2)

So we have made it to the amplitude response,
G(w) = 2 cos(wT[2)| = 2eos(xfT),  |f] < %

Since cos(nfT) is nonnegative for —f,/2 < f < [f+/2 (verify this), it is unnecessary to take the
absolute value as long as f is understood to lie in this range.

Now we isolate the filter phase response ©(w) by taking a ratio of the same two equations used
to isolate G(w) and noting that ©(w) appears trapped inside a tangent.

tan [B(w)] = —-ﬁ—t’l—;
__sin(wT) - 2sin(wT/2) cos(wT/2)
1+ cos(wT) 1+ cos?(wT [2) — sin(wT/2)
- 2sin(wT/2) cos(wT [2)
2cos?(wT'/2)
_sin(wT/2)
cos(wT[2)

—tan [wT/2] = tan |[-wT /2]

Thus, the filter phase response is

O(w) = —wT /2= —=/T.

We have completely solved for the frequency response of the simplest lowpass filter given in
(1.1) using only trigonometry. We found that an input sinusoid of the form

z(n) = Acos(2rfnT + ¢)

produces the output
y(n) = 2Acos(nfT)cos{2xfnT + ¢ — xfT].

Thus, the gain versus frequency is 2cos(7fT) and the change in phase at each frequency is given by
~nfT radians. These functions are shown in 1.6.
An Easier Way

Fortunately, there are much more effective (and less arduous) methods for finding the gain and
phase-shift as a function of frequency. The first step on the road to Utopia in signal analysis is to
understand Euler’s identity:

T = cos(wnT) + jsin(wnT), j= -1 (1.2)
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I shall refer to e/“"*T as the complez sinusoid. We will see that it is easier to manipulate both
sine and cosine simultaneously in this form than it is to deal with either sine or cosine separately.
One may take the point of view that ¢/’ is simpler and more fundamental than sin(d) or cos(8), as
evidenced by the following identities (which follow immediately from (1.2)):

o0 4 it

cosf = ——-’:Zf— (1.3 a)
10 _ —i10

sind = d_T;__. (1.3 b)

Thus, sine and cosine are each regarded as a combination of two complex sinusoids. Another reason
for the success of the complex sinusoid is that we will be concerned only with real linear operations
on signals. This means that j in (1.3) will never be multiplied by j or raised to a power by a linear
filter with real coefficients. Therefore, the real and imaginary parts of (1.3) are actually treated
independently. Thus, we can feed a complex sinusoid into a filter, and the real part of the output
will be the cosine response, and the imaginary part of the output will be the sine response. Some
of you may be thinking questions like “Why e¢? Where did the imaginary exponent come from? Are
imaginary exponents legal?” The interested reader is referred to [4] for the real answers (which can
be complex). Here, we will look only at some intuitive connections between complex sinusoids and
the more familiar real sinusoids.

Figure 1.7 shows Euler’s relation graphically as it applies to sinusoids. A point traveling with
uniform velocity around a circle with radius 1 may be represented by /¢ = ¢/27/¢ where ¢t is time
and [ is the number of revolutions per second. The projection of this motion onto the horizontal
(real) axis is cos(wt) and the projection onto the vertical (imaginary) axis is sin(wt). For discrete-time
circular motion, replace t by nT to get &/“"T = ¢27/nT = oi2x(//fe)n which may be interpreted
as a point which jumps an arc-length 277//, along the circle each sampling instant.

Euler’s identity says that circular motion ie the vector sum of two sinusoidal motions.

For circular motion to ensue, the sinusoidal motions must be at the same frequency, one-quarter
cycle out of phase, and along perpendicular lines. (With phase differences other than one-quarter
cycle, the motion is generally elliptical.)

The converse of this is also illuminating. Take the usual circular motion ¢/“t which spins
counterclockwise, and add to it a similar but clockwise circular motion, e=7“¢. This is shown in
Figure 1.8. Next apply Euler’s identity to get

et + ¢7IWt = cos(wt) + 7 sin(wt) + cos(—wt) + j sin(—wt)
= cos(wt) + j sin(w?) + cos(wt) — j sin(wt)
= 2cos(wt).

Thus,

a cosine i8 the vector sum of two circular motions with the same angular speed but opposite
direction.

This statement is a graphical or geometric interpretation of (1.3a). A similar derivation (subtracting
instead of adding) gives the sine identity (1.3b).
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!
‘g .
% sin(wt) ——

g

time ——=

Figure 1.7. Relation of uniform circular motion to sinusoidal motion via Euler’s identity,
&“! == cos(wt) + jsin(wt). The projection of e/“* onto the real axis is cos(wt), and the
projection onto the imaginary axis is sin(wt).

We call e/“nT a positive-frequency sinusoidal component when w > 0, and ¢=“"T s the
corresponding negative-frequency component. Note that both sine and cosine have equal-amplitude
positive- and negative-frequency components (cf. [10]). This happens to be true of every real signal.
To see this, recall that every signal can be represented as a sum of complex sinusoids at various
frequencies (the so-called Fourier ezpansion). For the signal to be real, every positive-frequency
complex sinusoid must be summed with a negative-frequency sinusoid of equal amplitude. In other
words, any counterclockwise circular motion must be matched by an equal and opposite clockwise
circular motion in order that the imaginary parts always cancel to yield a real signal (see Fig. 1.8).
Thus, a real signal always has a symmetric magnitude spectrum.
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imaginary —»
/

Figure 1.8. Illustration of the way in which opposite circular motions add to give real
sinusoidal motion, &“* + ¢™/** == 2 cos{w?). :

Now that we have a new tool, let’s apply it to the simplest lowpass filter given by (1.1). We
test the filter response at frequency f by letting z(n) = Ae/27/nT+6)  Again, because of time-
invariance, the frequency response will not depend on ¢, so let ¢ = 0. Similarly, due to linearity,
we may normalize A to 1. By virtue of Euler’s relation and the linearity of the filter, setting the
input to z(n) = ¢/“"T is physically equivalent to putting cos(wnT) into one copy of the filter, and
sin(wnT) into a separate copy of the same filter. The signal path where the cosine goes in is the real
part of the signal, and the other signal path is simply called the imaginary part. Thus, a complex
signal in real life is just two ordinary signals side by side, one-quarter cycle out of phase at each
frequency.

Using the normal rules for manipulating exponents, we find that the response of the simple
lowpass filter to the complex sinusoid at frequency w/27 Hz is given by

y(n) = z(n) + z(n - 1)
— ejwnT + ejw(n—l)T
= ejwnT + ejunTe—ij
= (1+ 7T )fonT (1.4)
= (1 + e"i"’T)z(n)
A H(¢T)a(n)
This derivation is clearly easier than the trigonometry approach which used tricky identities that

few people would think of without staring at the answer for a good while.

What is a little puzzling, however, is that the filter ends up looking like a frequency-dependent
complex multiply. What does this mean? Well the theory that we are blindly trusting at this point
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says it must somehow mean a gain scaling and a phase shift. This is true and easy to see once the
complex filter gain is expressed in polar form, H(e/“T) = G(w)e’®“). The gain versus frequency
is given by the absolute value of H (the absolute value is just the radius in polar coordinates),
and the phase shift in radians versus frequency is given by the complex angle of H (angle in polar
coordinates). In other words, we must find

Glw) & | H(T)|
which is the amplitude response, and
o(w) A ¢H(“T)

which is the phase response. There is a trick I call “balancing the exponents” which will work nicely
for the simple lowpass of (1.1).

H(ei“'r) = (l + e"j“'T)
- ( JuT/2 4 e—ij/z)e-—ij/z
= 2cos (wT/2)e~7¥T/?

It is now easy to see that
Glw) = | 2c08 (WT/2)e~T72|

= 2| cos (wT'/2)]
= 2cos(wT/2), |f]|< L;‘,

and P
Ow)=-wT/2, |/|< ?’

We have derived again the graph of 1.6 which shows the complete frequency response of (1.1).
The gain of the simplest lowpass filter varies, as cosine varies, from 1 to 0 as the frequency of an
input sinusoid goes from 0 to half the sampling rate. In other words, the amplitude response of (1.1)
goes sinusoidally from 1 to 0 as wT goes from O to 7. It does seem somewhat reasonable to consider
it a lowpass, and it i3 2 poor one in the sense that it is hard to see which frequency should be called
the cutoff frequency. We see that the spectral “rolloff” is very slow, as lowpass filters go, and this
is what we pay for the extreme simplicity of (1.1). The phase response ©(w) = —wT/2 is linear in
frequency, which gives rise to a constant time delay irrespective of the signal frequency (see problem
3).

It deserves to be emphasized that all a linear time-invariant filter can do to a sinusoid is scale
its amplitude and change its phase. Since a sinusoid is completely determined by its amplitude A,
frequency f, and phase ¢, the constraint on the filter is that the output must also be a sinusoid, and
furthermore it must be af the same frequency as the input sinusoid. More explicitly:

If a sinusoid A cos(wnT + ¢;) is input to a linear time-invariant filter, then the output
signal (after start-up transients have died away) will be a sinusoid at the same frequency
Ag cos(wnT + ¢2). The only possible differences between the input and output are in their
relative amplitude and relative phase. Any linear time-invariant filter may thus be completely
characterized by its gain Az [A; and phase ¢ — ¢ at each frequency.
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Mathematically, a sinusoid has no beginning and no end, so there really are no start-up
transients in the theoretical setting. However, in practice, we must approximate eternal sinusoids
with finite-time sinusoids whose starting time was so long ago that the filter output is essentially
the same as if the input had been applied forever.

Tying it all together, the general output of a linear time-invariant filter with a complex sinusoidal
input may be expressed as

y(n) = (Complez Filter Gain)times(Input Circular Motion with Radius A, Phase ¢)
= (Glw)eo@)(aei«nT+4)

. (G(W)A)e}{wnT + [¢ + G(w)]}
= Circular Motion with Radius G(w)A, Phase ¢ + 8(w)

In Summary

We have introduced many of the concepts associated with digital filters such as signal repre-
sentation, filter representation, and determination of frequency response. We used a simple filter
example to motivate the need for more advanced methods to analyze digital filters of arbitrary
complexity. We found even in the simple example of (1.1) that complex variables are much more
compact and convenient for representing signals and analyzing filters than trigonometric techniques.
We employ a complex-valued function of time Ae/(“"T+9) to represent the amplitude and phase of
a complex sinusoid, and we use a complex-valued function of frequency G(w)ej ©(w) to represent the
gain and phase response of a linear time-invariant filter,

In chapter 2, we will visit the basic facts necessary to understand the analysis of the general
linear time-invariant filter. Time-invariance is not overly restrictive because the static analysis holds
very well for filters that change slowly with time. Nor is linearity very restrictive, since, for example,
all the filters mentioned in the introduction are linear or nearly so. In other words, the techniques
to be discussed apply to the understanding and design of almost all useful audio filters.

1.2. Problems

1. General Amplitude and Phase in Deriving Frequency Response
Repeat the derivation of (1.4) without the simplifications A = 1, ¢ = 0. That is, let

z(n) - Aei(omT-Hb)

and find y(n) from (1.1). Verify that the frequency response is the same.
2. A Modification of the Simplest Lowpass Filter
Consider the filter

y(n) = z(n) - z(n — 1)

which is identical to (1.1) except that adjacent input samples are subiracted rather than added.
Derive the amplitude response and the phase response. How has the response changed? Would you
call this a lowpass filter, a highpass filter, or something else?

3. Linear Phase means Simple Waveform Delay
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Show that the phase response ©(w) = —wT /2 obtained for (1.1) corresponds to a waveform delay
of one-half sample (T'/2 sec) at all frequencies.

4. Complez Numbers and Trigonometry

Show how easy it is to derive the identities

cos(a + b) == cos(a) cos(b) — sin(a) sin(b)
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)

by using Euler’s identity and the formula

ej(a+b) = ejaeib .
How would you derive the cos(a + b) identity, say, if you did not know the answer and did not use
complex numbers?

5. Filters with Coefficients

The analysis for (1.1) will work for a larger class of filters. Try to get the frequency response for the
filter :
y(n) = az(n) — az(n — 2)

where 4 is a constant but arbitrary gain. Plot the amplitude response G(w). Would you call this
a lowpass filter, a highpass filter, or something else entirely? What is the eflect on G(w) when ¢ is
changed? How does the phase response ©(w) depend on a?




Chapter 2

Theoretical Foundations of Digital Filters

In this chapter we explore more fully the implications of linearity and time-invariance. Four
basic representations of digital filters are defined—the difference equation coefficients, impulse
response, transfer function, and frequency response. In addition, the concepts of phase delay, group
delay, poles and zeros, and filter stability are introduced.

2.1. Linearity and Time-Invariance

Almost all filters of interest are linear. Linearity is extremely important for several reasons.
From a system theory point of view, there is a lot of useful analysis and general design theory
for linear filters that can say nothing about nonlinear filters. From a sound processing point of
view, linearity is important because it means that no new spectral components are introduced by
the filter (unless the filter is rapidly time-varying, which causes spectral changes not considered
here). Nonlinear filters can (and probably will) produce new signal components at all the possible
sums and differences of the frequencies present in the input signal. This includes both harmonic and
intermodulation distortion. A truly linear filter can have neither type of distortion. All the ezamples
of filters mentioned in chapter 1 were linear, or approzimately linear. In addition, the z transform
and all variations of the Fourier transform are linear.

In everyday terms, the fact that a filter is linear means simply that
Ll)' the amplitude of the output is proportional to the amplitude of the input,
and

L2) when two signals are added together and fed to the filter, the filter output is the same as if
one had put each signal through the filter separately and then added the outputs.

This second property of linear systems is known as superposition. The response of a linear
system to a sum of signals is the sum of the responses to each individual input signal. Another view
is that the individual signals which have been summed at the input are processed independently
inside the filter—i.e., they superimpose and do not interact. (The addition of two signals, sample
by sample, is like converting stereo to mono by equally mixing the two channels together.) Another
example of a linear signal medium is the Earth’s atmosphere. When two sounds are in the air
at once, the air pressure fluctuations that convey them simply add (unless they are very loud).
Since any finite continuous signal can be represented as a sum (or superposition) of sinusoids, we
can predict the filter response to any input signal just by knowing the response for all sinusoids.
Without superposition, we have no such general description, and it may be impossible to do any
better than to catalog the filter output for each possible input.

While the implications of linearity are far-reaching, the mathematical definition is simple. Let
us represent the general linear time-varying filter by

y(n) = Ln{z()} (2.1)

17
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where z{-) is the entire input signal, y(n) is the output at time n, and L, is the filter expressed as
a real-valued function of a signal for each n. Think of the subscript n on L, as selecting the nth
output sample of the filter. In general, each output sample can be a function of several or even all
input samples, and this is why we write z{-) as the filter input. Furthermore, the function L, can
be different for each n (in the time-varying case only). Now, if for any pair of signals z,(-), z2(-) and
for all constant gains g, we have

L) Lafgzi()} =oLa{z()} s
12)  La{zs()+22()} = La{z ()} + La{z2()}, (22)

for all n, then the filter is said to be linesr. These two restrictions simply restate, in mathematical
notation, the definition previously given in everyday language. Actually, for all practical purposes,
property 2) alone is enough to guarantee linearity (see problem 6).

In plain terms, a time-invariant filter is one which performs the same operation at all times.
It is awkward to express this mathematically by restrictions on (2.1] because of the use of z(-) as
the symbol for the filter input. What we want to say is that if the input signal is delayed by, say,
N samples, then the output waveform is the same, but also delayed by N samples. Thus, y(-), the
output waveform of a time-invariant filter, merely shifts forward or backward in time as the input
waveform z(-) is shifted forward or backward in time.

Imagine the formula L, as a big brain which reaches out to z(-) with long tentacles, one for
each sample. At each time n it utters the output y(n). Then for time-invariant filters the brain
is fixed while the tentacles shift. That is for each increase of n by 1, the tentacles shift over one
sample, and the brain repeats the same operation on the data it receives from the tentacles.

Another way of expressing time invariance is to say that a filter is time invariant if and only if
it commutes with any delay line.

For completeness, the condition on (2.1) which defines time-invariance is given by
La{z(- =N)} = La—n{z()} = y(n - N), (2.3)

where z( - —N) is understood to denote the waveform z(-) shifted right (or delayed) by N samples.

A simple example of a nonlinear filtering operation is compression in which the average output
energy is made nearly constant. Compression works by automatically turning up the volume
(increasing gain) when the signal level (average amplitude) is low, and turning it down when the
level is high, so as to keep the “loudness” almost constant.

Now, why is compression nonlinear? Multiplying a signal by a constant gain (“volume control”)
is a linear operation; i.e., for an arbitrary pair of signals z,,z5, and for arbitrary constants a, g, it
is true that

g-[a-z(n)+ 8 z(n)l =a-lg-za(n)] + 5 [g- 22(n)].

Thus, both L1) and L2) are satisfied. (We have used “- ” to explicitly indicate multiplication here,
50 as to avoid confusion between “A times (B + C)” and “A of (B + C).”) However, compression is
a nonlinear operation because the gain g, which multiplies the input, depends on the input signal
amplitude. This happens because the compressor must estimate the current signal level in order to
normalize it. Thus, compression is a filter of the form

y(n) = 9(z) - =(n),
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where g(z) denotes a gain that depends on the “current amplitude” of z.* In general,

9(z1 + z2) - [71(n) + z2(n)] # 9(21) - 21(n) + 9(22) - z2(n). .

That is, the compression of the sum of two signals is not generally the same as the addition of the
two signals compressed individually. Therefore, condition L2) of linearity fails. It is also clear that
condition L1) fails, since the output level is independent of the input level for an ideal compressor.

Generally, almost any signal operation that includes a multiplication in which both multi-
plicands depend on the input signal can be shown to be nonlinear. Note, bowever, that g may
vary with time independently of z to yield a linear time-varying filter. In this case, linearity is
demonstrated by writing

g(n) - [a - z1(n) + B - z2(n)] = @ [g(n) - z1(n)] + 8- [9(n) - 22(n)]

to show that both L1) and L2) are satisfied. A simple example of a linear time-varying filter is
a tremolo function which can be written as a time-varying gain, y(n) = g(n)z(n). For example,
g(n) = 1 + cos(27(4)nT) would give a maximally deep tremolo with four swells per second.

From now on, all filters discussed will be linear and time-invariant. For brevity, these will be
referred to as LTI fliters.

2.2. Representations of a Digital Filter

For linear time-invariant (LTI) filters, just as for signals, there are two fundamental domains of
representation: the {ime domain and the frequency domain. However, there are at least {wo time-
domain and {wo frequency-domain representations for a digital filter, and they can all be converted
into one another. The two time-domain representations we’'ll discuss are the difference equation
coefficients and the impulse responge, and the two principal frequency-domain forms are the transfer
Junction and the frequency response.

2.2.1. Difference Equation

The difference equation gives a time-domain representation because it tells how to calculate the
filter output samples, given the filter input samples. We may write the general case as follows.

y(n) = aoz(n) + a12(n — 1)+ - - - + aprz(n — M)

~biy(n=1) =+ = byy(n = N) (24

where z is the input signal, y is the output signal, and the constants {a;, i = 0,1,2,..., M}, {5;,
i=1,2,...,N} are called difference equation coefficients or, more simply, filter coefficients. When
the a and b coefficients are real numbers, the filter is said to be real. All filters discussed in this
paper are real.

For example, the difference equation

y(n) = 0.01z(n) + 0.002z(n — 1) + 0.99y(n — 1)

* Since many successive samples of z are needed to estimate current amplitude, we cannot correctly write
g[z(n)] for the gain function. The most accurate notation is ga[z(-)], which is too general and cumbersome
for present purposes.
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specifies a digital filtering operation, and the coefficient sets {0.01,0.002} and {0.99} represent the
filter. In this example, we have M = N = 1.

Equation (2.4) is not entirely general, for it represents only causal LTI filters. A filter is said to
be causal when the output does not depend on any “future” inputs. (In more colorful terms, a filter is
causal if it does not “laugh” before it is “tickled.”) For example, y(n) = z(n+1) is a noncausal filter
because the output anticipates the input one sample before it arrives. Restriction to causal filters
is quite natural in real-time situations. Many digital filters, on the other hand, are implemented on
a computer where time is artificially represented by an array index. Thus, noncausal filters present
no difficulty in an “off-line” situation. It happens that the analysis for noncausal filters is pretty
much the same as that for causal filters, so we haven't given up too much with this restriction.

The mazimum time span, in samples, used in creating each output sample is called the order
of the filter. In this case the order is the larger of M and NN in (2.4). For example, y(n) = z(n) —
z(n — 1) = 2y(n — 1) + y(n — 2) specifies a particular second-order filter.

It M and N in (2.4) are constrained to be finite (which is, of course, necessary in practice), then
(2.4) represents the class of finite order causal LTI filters.

Notice that a filter of the form (2.4) can use “past” output samples (such as y(n — 1)) in the
calculation of the “present” output y(r). This use of past output samples is called feedback. Any
filter having one or more feedback paths (N > 0) is called recursive. (By the way, the minus signs
for the feedback in (2.4) are supposed to be mysterious until we get to transfer functions.)

(2.4) may be expressed in different but entirely equivalent notation by

M N
y(n) = Z: a;z(n — i) — Z b;y(n— 7). (2.4)

famQ J=1

One possible system diagram of (2.4) is given in Figure 2.1a for the case M = 2, N = 3.
Hopefully it is easy to see how this diagram represents the difference equation. Soon, we will have
sufficient knowledge to see that the filter specified in Fig. 2.1b is exactly equivalent.

2.2.2. Impulse Response and Convolution

In addition to difference equation coefficients, any LTI filter may be represented in the time

domain by its response to a specific signal called the impulse. The impulse is denoted as §(n) and is
defined by
1, n=0

5(")9'{0, nF0’

A plot of §(-) is given in Figure 2.2a. In real life, an impulse may be approximated by a swift hammer
blow, for example.

We also have a special notation for the impulse response of a filter, namely,
h(n) & La{5()},
which, in words, is the response of the filter at time n to an impulse occurring at time 0. We assume

in this section that the impulse response 2(n) approaches zero as n goes to infinity. Such a filter is
said to be stable.
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x(n)

(@)

x(n) y(m)

)

Figure 2.1. System diagram for the filter y(n) = aoz(n) + a12(n — 1) + az2(n — 2) —
biy(n — 1) — bay(n — 2) - bay(n - 3).

a) Direct system diagram.

b) Equivalent system diagram using shared delays.

An example impulse response for the first-order recursive filter

y(n) = z(n) + 0.9y(n - 1)
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Figure 2.2. Input and output signals for the filter y(n) = z(n) + 0.9y(n ~ 1).

a) Input impulse §(n).

b) Output impulse response h(n).

¢) Input delayed-impulse §(n — 5).

d) Output delayed-impulse response h(n — 5).

is shown in 2.2b. The impulse response is a simple exponential decay, {1,0.9,0.81,0.73,

... } or, more
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formally,
(09)*, n2>0
0, n<0

bl = {

The reason no information is lost in representing an arbitrary LTI filter by its impulse response

lies in the fact that the impulse contains energy at all frequencies. To see this we simply observe that

the z transform of §(n) is 1 (verify). Consequently, the impulse response contains the superposition
of the response of the filter to every possible sinusoidal frequency from —f,/2 to f,/2 Hz.

Using the basic properties of linearity and time-invariance, we will derive the convolution
formula which gives an algorithm for implementing the filter directly in terms of the impulse
response. In other words, convolving the input signal with the filter impulse response gives the
filtered output. The convolution formula plays the role of the difference equation when the impulse
response is used in place of the difference equation coefficients as a filter representation.

An outline of the derivation of the convolution formula is as follows: Any signal z(n) may be
regarded as a superposition of impulses at various amplitudes and arrival times, i.e., each sample
of z(n) is regarded as an impulse with amplitude z(n) and delay n. By the superposition principle
for LTI filters, the filter output is simply the superposition of impulse responses, each having a scale
factor and time-shift given by the amplitude and time-shift of the corresponding input impulse.

Before we proceed to the general case, a simple example will serve to illustrate how these basic
mechanisms are expressed mathematically. If an impulse strikes at time n = 5 rather than at time
n == 0, this is represented by writing &(n — 5). A picture of this delayed impulse is given in 2.2c.
When §(n — 5) is fed to a time-invariant filter, the output will be the impulse response h(n) delayed
by 5 samples, or h(n — 5). 2.2d shows the response of the example filter of (2.5) to the delayed
impulse §(n — 5).

In the general case, for time-invariant filters we may write
La{8(- =N)} = Ln—n{8(-)} = h(n~ N),

where N is the number of samples delay. This equation states that right-shifting the input impulse
by N points merely right-shifts the output (impulse response) by IV points. Note that this is just a
special case of the definition of time-invariance, (2.3).

If two impulses arrive at the filter input, the first at time n = 0, say, and the second at time
n == 5, then this input may be expressed as §(n) + &(n — 5). If, in addition, the amplitude of the
first impulse is 2, while the second impulse has an amplitude of 1, then the input may be written as
26(n) + &(n — 5). In this case, using linearity as well as time-invariance, the response of the general
LTI filter to this input may be expressed as

Ln{26() + 6(- —5)} = La{28()} + Ln{8(- —5)}
= 2L, {6(:)} + Ln-s{6(")}
= 2h(n) + h(n - 5).

For the example filter of (2.5), given the input 25(n) + &(n — 5) (pictured in Figure 2.3a), the
output may be computed by scaling, shifting, and adding together copies of the impulse response
h{n). That is, taking the impulse response in 2.2b, multiplying it by 2, and adding it to the delayed
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impulse response in 2.2d, we obtain the output

20.9)" + (0.9)*%, n>5
2h(n) + h(n ~ 5) = 209, 0<n<5
0, n<0

as shown in Figure 2.3b. Thus, a weighted sum of impulses produces the same weighted sum of
impulse responses.

Convolution

We are now ready to derive the convolution formula in its complete generality. The first step
is to express an arbitrary signal z(-) as a linear function of shifted impulses, i.e.,

z(n) = z+6(n) & f: z(5)o(n — §). (2:6)

f==—00

where “*” stands for convolution.

If the above equation is not obvious, here is how it is built up intuitively. Imagine 5(-) as a 1 in
the midst of an infinite string of 0’s. Now think of §( - —¢) as the same pattern shifted over to the
right by i samples. Next multiply §( - —i) by z(-), which plucks out the sample z(¢) and surrounds
it on both sides by 0's. An example collection of waveforms z(i)( - —i) for the case z(:) =i, i =
-1,0,1,2, is shown in Figure 2.4a. Now, sum over all i, bringing together all the samples of z one
at a time, to obtain z(-). Figure 2.4b shows the result of this addition for the sequences in Fig. 2.4a.
Thus, any signal z(-) may be expressed as a weighted sum of shifted impulses.

Equation (2.6) expresses a signal as a linear combination (or weighted sum) of impulses. That
is, each sample may be viewed as an impulse at some amplitude and time. As we have already
seen, each impulse (sample) arriving at the filter’s input will cause the filter to produce an impulse
response. If another impulse arrives at the filter’s input before the first impulse response has died
away, then the impulse response for both impulses will superimpose (add together sample by sample).
More generally, since the input is a linear combination of impulses, the output is the same linear
combination of impulse responses. This is a direct consequence of the superposition principle which
holds for any LTI filter.

We repeat this in more precise terms. First linearity is used and then time-invariance is invoked.
Using the form of the general linear filter in (2.1), and the definition of linearity, (2.2), we can express
the output of any linear (and possibly time-varying) filter by

y(n) = La{z()} = La{z+8()} = L,.{_ > ai(- —»')}

" - (2.7
= Y #)La{6(- =} A 3 a(i)h(n.i)

fme—00 {00

where we have written A(n,{) & L,{6(- —i)} to denote the filter response at time n to an impulse
which occurred at time . If we are to be completely rigorous mathematically, certain “smoothness”
restrictions must be placed on the linear operator L, in order that it may be distributed inside
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Figure 10. Input impulse pair and corresponding output for the filter y(n) = z(n) +

0.9y(n —1).

a) Input: impulse of amplitude 2 plus delayed-impulse 26(n) + 6(n — 5).
b) Output: 2h(n) + h(n — 5).

the infinite summation [7]. However, all practically useful filters of the form of (2.4) satisfy these
restrictions. If in addition to being linear, the filter is time-invariant, then h(n, §) = h(n — i), which

allows us to write

00

yn)= Y z(i)h(n—i).

t=m—00

(2.8)
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Figure 2.4. Any signal may be considered a sum of impulses.
a) Family of impulses at various amplitudes and time shifts.
b) Addition of impulses in a), giving part of a ramp.

22

This states that the filter output y(n) is the convolution of the input z(n) with the filter impulse
response h(n). You may object to the infinite sums in (2.6) through (2.8) on the grounds that
your Pascal compiler complains when you say “for I := —oco to co do.” Well, there is a way to
circumnavigate such deficiencies in Pascal. By choosing time 0 as the beginning of the signal, we
may define z(n) to be O for n < 0 so that (—co) above might as well be replaced by 0. Also, if the
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filter is causal, then we'll have 2(n) = 0 for n < 0, so the upper summation limit can be written
as n. This gets us down to the ultimate impulse response representation of a linear, time-invariant,
causal digital filter, namely,

n

y(n) =Y z(i)h(n — i) A z+h(n).

fan0

It is easy to verify {(by making the change of variable ; = n — i) that convolution is commutative,
i.e., z#h(n) = hsz(n). Therefore, we can rewrite the impulse-response representation as

y(n) =Y h(j)z(n - j).

=0

This latter form looks more like the general difference equation presented in (2.4). In this form one
can see that h(j) may be interpreted as the a;'s in (2.4). It is also evident that the filter operates
by summing weighted echoes of the input signal together. At time n, the weight of the echo from j
samples ago [z(n — j)] is A(j).

We have shown that the output y of any LTI filter may be calculated by convolving the input
z with the impulse response A. It is instructive to compare this method of filter implementation to
the use of difference equations, (2.4). If there is no feedback, then the difference equation and the
convolution formula are identical; in this case, h(i) = ¢; and there are no b’s in (2.4). For recursive
filters, we can convert the diflerence equation into a convolution by calculating the filter impulse
response. However, this can be rather tedious, since with nonzero feedback coefficients the impulse
response generally lasts forever. Of course, for stable filters the response is infinite only in theory;
in practice, one may simply truncate the response after an appropriate length of time, such as after
it falls below the “noise” level. The difference equation is typically less expensive to implement than
the convolution formula when the filter is recursive.

It is natural to ask which of the two filter representations we have met thus far is the more useful
in representing physical systems. In the case of a reverberant room, the impulse response has an
approximately exponential envelope, and exponential decays are most easily simulated recursively.
Filtering associated with the resonant qualities of a musical instrument is typically due to elastic
deformations in the walls of a cavity, and the impulse responses of such systems tend to be sums
of exponentially decaying sinusoids. The impulse response of every recursive filter is also a sum of
exponentially decaying sinusoids (except in rare degenerate cases); hence, the difference equation is
more compact than the convolution formula in these cases. However, in most practical circumstances
it is not possible to directly measure the feedback coefficients (the b; in (2.4)), and the best that can
be done is to measure the filter response to a particular signal such as an impulse or a noise burst.

Consider, for example, the measurement of reverberation in a concert hall. We can record the
sound of a sharp “crack” made by a bursting balloon or spark-gap device, and this can be considered
an approximation to the impulse response of the hall between the impulse source and the receiving
microphone®*. If one desires to simulate the effect of this hall on a particular sound, the measured
impulse response can be convolved with the sound. However, this is an extremely expensive and
time-consuming computation. It is more efficient to first convert the impulse response into recursive
filter coefficients and then implement a difference equation to simulate the hall. Unfortunately, it is

* It is better in practice to use a long sample of digitally generated “white noise” than to approximate an
impulse.
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not easy to find the best recursive filter. The popular technique known as linear prediction [8] can be
used to find the feedback coefficients, but it assumes that there are no feedforward coefficients (i.e.,
standard linear prediction procedures assume that M == 0 in (2.4)). Fitting both feedforward and
feedback coefficients to a given response is a difficult problem that is still under active investigation.
Unfortunately, little attention has been paid to the quality of approximation in perceptual terms.

This concludes the discussion of time-domain filter descriptions. For the most part you need
them only when trying to implement a filter on a computer. For thinking about the effect that a
filter has on your sound, it is usually more appropriate to consider a frequency-domain picture, to
which we now turn.

2.2.3. Transfer Function

From the discussion in the preceding section, if y is the output of a linear time-invariant filter
with input z and impulse response A, then

y(n) = h2z(n), (2.9)

where, as before, " denotes convolution. We now wish to take the z transform of both sides of this
equation. The 2z transform is discussed in [11], and we only give its definition here. The z transform
of the discrete-time signal z(n) is defined to be

X(z)4 Z z(n)z"",

nax—00

where z is a complex variable. Since in this paper all signals are considered to begin at time n = 0,
and since all filters are assumed to be causal, the lower summation limit given above may be written
as 0 rather than —oco. We sometimes express the above relation by writing X(z) = Z{z(n)} or
X(2) « z(n).

The convolution theorem [13] states that
zry(n) « X(2)Y(2). (2.10)

(See also [11] for more on convolution.) In words, this says that convolution in the time domain is
multiplication in the frequency domain. Taking the 2 transform of both sides of (2.9) and applying
the convolution theorem gives

Y(z) = H(2)X(2) (2.11)

where H(z) is the z transform of the filter impulse response. This equation tells us that the z
transform of the filter output is the z transform of the input times the z transform of the impulse
response. We may divide (2.11) by X(2) to obtain

H(z)= .7—};%

This equation gives a new perspective on the impulse response of a filter. It states that the z
transform of the filter impulse response is the ratio of the filter output to filter input transforms.
That is, for any given input z(n), the output y(n) will be such that the z transform ratio is always
H(z) (a fixed function determined by the filter). Since multiplying the input transform by H(z)
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gives the output transform, H(z) gives us the {ransfer characteristics of the filter. Accordingly, we
make the following definition.

The transfer function H(z) of a linear time-invariant discrete-time filter is defined to be the
z transform of the impulse response A(n).

Since z transforming the convolution representation for digital filters was so profitable, we will
apply it also to the general difference equation, (2.4). To do this requires two more properties of the
2 transform, linearity and the shift theorem .

The shift theorem [13] for z transforms states that
z(n— k)~ 27X (2),

where, as always, z(n) « X(z) by definition. This means that a signal z(n — k), which is the
waveform z(n) delayed by k samples, has the z transform z~*%X(z), which is the z transform of z
multiplied by 2—*. Using these two properties we can write down the z transform of any difference
equation by inspection.

Repeating the general difference equation ((2.4)) for LTI filters, we have
y(n) = aoz(n) + a1z(n — 1)+ - - + appz(n — M)
~bhy(n=1)= = byy(n = N),

We now take the z transform of both sides, denoting the transform by Z{}. Because Z{} is a linear
operator, it may be distributed through the terms on the right-hand side as follows:

Z{y(n)} = Z{aoz(n) + arz(n— 1) +--- + apsz(n — M)

=by(n—1)—---=byy(n - N)}

= Z{aoz(n)} + Z{a1z(n — 1)} +--- + Z{aprz{n — M)}
- 2Z{bhyln—-1)} —--- = Z{byy(n — N)}

=¢9Z{z(n)} + a1 Z{z(n— 1)} +--- + aps Z{z(n — M)}
= b Z{y(n—1)} —---—bnZ{y(n - N)}

= aoZ{z(n)} + a1z Z{z(n)} + - + app =M Z {z(n)}
bz Z{y(n)} — - = b Z{y(n)},

where we used properties 2) and 1) of linearity given in (2.2), followed by use of the shift theorem,
in that order. Replacing Z{y(n)} by Y(z) and Z{z(n)} by X (z) results in

Y(2) = a0 X (2) +a127 X (2) + -+ ape 2~ M X (2)

2.12
~bz7Y(2) = = by NY(2), (2.12)
The terms in Y(z) may be grouped together on the left-hand side to get

Y(2)+ b 27 Y (2) 4 + by NY(2)
= aoX(2)+ay 27 X (2)+ - +ap s MX(2).
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Factoring out the common terms Y(z) and X(z) gives
Y(E)14+bz7 -+ sz"N] = X(z)[ao +agz 4 aMz‘M .

Finally, solving for Y(z)/X(z), which equals the transfer function H(z), yields

Y(z) _s0t+amz” +otapyz™
X(z)  14bzle4.--+byeN

H(z)= (2.13)

Thus, taking the z transform of the general difference equation led to a new formula for the transfer
function in terms of the difference equation coefficients. (Now the minus signs for the feedback
coefficients should no longer be mysterious.)

The primary benefit of representing a filter by its transfer function is the insight gleaned from
poles and zeros, which will be discussed shortly. First, however, we specialize the transfer function
to what is called the frequency response.

2.2.4. Frequency Response

Beginning with (2.11), we have
Y(z) = H(z)X(2),

where X(z) is the z transform of the filter input, Y'(2) is the z transform of the output signal, and
H(zT) is the filter transfer function. A most basic property of the z transform is that setting z to
&/“T gives us the spectrum [11]. In other words, the spectrum equals the z transform evaluated on
the unst circle. Applying this fact to the equation above gives

Y(e“T) = H(&“T)X (e/T). (2.14)

Thus, the spectrum of the filter output is just the input spectrum times H(ef"’T). This motivates
the following definition.

The frequency response of a linear time-invariant digital filter is defined to be the transfer
function, H(z), evaluated on the unit circle, that is, H(e/“T).

Since e, 7, and T are constants, the frequency response is really only a function of radian
frequency w; it is not essentially a function of a complex variable as is the transfer function. Thus,
the frequency response may be considered a complex-valued function of a real variable. The response
at frequency f Hz, for example, is H(e/2*/T), where T is the sampling period in seconds. It would
be more convenient to define new functions and write simply Y'(w) = H'(w)X'(w) instead of writing
e/“T 50 often, but doing so would add a lot of new functions to an already complicated scenario.
Furthermore, carrying ¢/“T along makes explicit the connection between the transfer function and
the frequency response.

Notice that the fundamental significance of &/“T in this context is to place the frequency “axis,”
as it were, on a circle. This way, adding multiples of the sampling frequency f, to w /27 corresponds
to traversing whole cycles around the circle. Since the spectrum of every discrete-time signal repeats
with “period” f, = 1/T, it may be considered to consist of one copy of the spectrum defined over
a circle.
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Because every complex number can be represented as a magnitude and angle, the frequency
response may be decomposed into two real-valued functions, the amplitude response and the phase
responge. Formally, we define them as follows:

G(w) & [H(eT)|
o(w) & ¢H(eT)

50 that . .

H(#*T) = G(w)e’® (2.15)
Thus, G(w) is the magnitude (or complex modulus) of H(e/“T), and ©(w) is the phase (or complex
angle) of H(e/¥T),

The real valued function G(w) is called the filter amplitude response, and it specifies the
amplitude gain that the filter provides at each frequency. The real function ©(w) is the phase
response, and it gives the phase shift in radians that each input component sinusoid will undergo.
These interpretations may be expressed mathematically by writing the terms of (2.14) in polar form
to get:

| Y(4T) |47 T) = Gu)| X (4T [+ 2X (T
which implies
| Y(e“T)| = 6w)| x(T) |
LY (9T) = e(w) + £X (¢“T).

Equation (2.15) gives the frequency response in polar form. For completeness, we give the

transformations between polar and rectangular forms (i.e. for converting real and imaginary parts

to magnitude and angle and vice versa). The real part of a complex number z is written as Re{z},
and the imaginary part of z is denoted by Im{z}.

Glw) A|H(#“T)| = \/Re* (H(&1“T)} + Im* {H(e/T)}

Im{H(ei“"T)} (2.16)

O() & LH(FT) = tan™ | proy

Going the other way from polar to rectangular (using Euler’s formula again),
Re{H(ei”T)} = G(w)cos [6(w)]
Im{H(e’“T)} = G(w)sin [B(w)].

The application of these formulae to some basic example filters will be covered in chapter 3.

From (2.13), we have that the transfer function of a recursive filter is a ratio of polynomials in
z. This may be expressed symbolically by writing

H(z)= :—((:—)).
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By elementary properties of complex numbers, we have
|a(e?T)|

[6(eT)|

O(w) = La(¢“T) - £H“T).

G(w) =

These relations often simplify calculations.

Consider again the sine-wave analysis method used in chapter 1 for the simplest lowpass filter.
We let the input signal be a complex sinusoid

z(n) = AefwonT+$

having amplitude A and phase ¢. Recall that for complex sinusoidal inputs, the amplitude response
is measurable as the amplitude of the output divided by the amplitude of the input, or G(wo) =
ly(n)l/)2(n)]. (This simple formula for G(wo) holds only for complex sinuscidal inputs, since only
a complex sinusoid has a constant instantaneous amplitude.) Also, the phase response is given by
the phase of the output sinusoid minus the phase of the input sinusoid, or O(wo) = Zy(n) — £Lz(n).
Thus, the output y(n) is :

y(n) = [G(wo) Alei(wonT+¢+6(wo))

= Glwo)e’™“e) geiwonT+4
= H(e/*T)AefwonT+4

As a special case of this example (in view of Euler’s identity), the response to
z{n) = Acos(wonT + ¢)

is

y(n) = AG(wo)cos [wonT + ¢ + O{wo)] .
Thus, as stated before, for a sinusoidal input at radian frequency wq, the amplitude is multiplied by
G(wo), and the phase is additively changed by ©(w,). By superposition, we may readily generalize
the above equation to the case in which z(n) is an arbitrary sum of input sinusoids. Doing this yields
the inverse DFT of (2.14):

o(n) = 3 Aslun)onnT

which implies
¥(n) = Y Gur)As(wy)ornT+ér+00wn)
k

Note that the specification of the ideal lowpass filter in 1.1 was actually only a specification
of G(w). Often, we only wish to modify the spectrum energy at certain frequencies to make them
either more or less audible. In these cases a particular G(w) is desired, and we do not care about
6(w) as long as it does not make any audible difference. More on ©(w) is given in the next section.

In contrast to the polar representation of frequency response, the real and imaginary parts
do not have such intuitively appealing individual interpretations. Consequently, the polar form is
usually more desirable for expressing filter response as a function of frequency.
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2.3. Alternate Representations in the Frequency Domain
This section discusses phase delay and group delay, and discusses their interpretation as filter

time delay. In addition, poles and zeros are defined, and a graphical method for evaluating the
amplitude and phase response directly from the poles and zeros is described.

2.3.1. Phase Delay and Group Delay

The phase response of a filter ©(w) gives the radian phase shifi experienced by each sinusoidal
component of the input signal. Sometimes it is more meaningful to consider phase delay [13] which
we define by

O(w
Pw) A - Ow)
w
The phase delay gives the ¢ime delay in seconds experienced by each sinusoidal component of the
input signal. For example, in the simple lowpass filter of (1.1), we found that the phase response
was O(w) = —wT[2, which corresponds to a phase delay P(w) = T'/2, or one-half sample.

More generally, if the input to a filter with frequency response H(e/“T) = G(w)e/®“) is
z(n) = cos (wnT),

then the output is
y(n) = G(w)cos [wnT + O(w)]
= G(w)cos {w[nT - P(w)]},

and it can be seen that the phase delay expresses phase response as time delay.

In working with phase delay, however, care must be taken to emsure that all appropriate
multiples of 27 have been included in ©(w). We defined ©(w) simply as the complex angle of the
frequency response H(e""T), and this is not sufficient for obtaining a phase response which can be
converted to true time delay. If multiples of 27 are discarded, as is done in the definition of complex
angle, the phase delay is modified by multiples of the sinusoidal period. Since LTI filter analysis
is based on sinusoids without beginning or end, one cannot in principle distinguish between “true”
phase delay and a phase delay with discarded sinusoidal periods. Nevertheless, it is convenient to
define the filter phase response as a continuous function of frequency with the property that 6(0) =
0 (for real filters). This specifies a means of “unwrapping” the phase response to get a consistent
phase delay curve.

A more commonly encountered representation of filter phase response is called the group delay,
and it is defined by

d
D(w) é - Ew—e(W)

For linear phase responses the group delay and the phase delay are identical, and each may be
interpreted as time delay.

For any phase function the group delay D(w) may be interpreted as the time delay of the
amplitude envelope of a sinusoid at frequency w [13]. The bandwidth of the amplitude envelope
in this interpretation must be restricted to a frequency interval over which the phase response is
approximately linear. While the proof will not be given here, it should seem reasonable when the
process of amplitude envelope detection is considered. The narrow “bundle” of frequencies centered
at the carrier frequency w is translated to 0 Hz. At this point it is evident that the group delay at
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the carrier frequency gives the slope of the linear phase of the translated spectrum. But this is a
constant phase delay, and therefore it has the interpretation of true time delay for the amplitude
envelope.

For example, consider the phase vocoder [14] which provides a bank of bandpass filters which
decomposes the input signal into narrow spectral “slices”. This is the analysis step. For syn-
thesis (often called additive synthesis), a bank of sinusoidal oscillators is provided, with amplitude
and frequency control inputs. The oscillator frequencies are tuned to the analysis filter center-
frequencies, and the amplitude controls are driven by the amplitude envelopes measured in the
analysis. (Typically, some data reduction or envelope modification has taken place in the amplitude
envelope set.) With these oscillators, the band-slices are independently regenerated and summed
together to form the original (or facsimile) input signal. Suppose we excite only channel & of the
phase vocoder with the input

A(nT) cos(wgnT),

where wy is the center-frequency of the channel and the bandwidth of A(nT') is smaller than half
the channel bandwidth. If the phase of the channel filter is linear within the passband, then the
filter output will be

y(n) = A[nT — D(w;)] cos {wg[nT ~ P(wi)]}.

Thus, for the phase vocoder the phase delay gives the time delay of the sinusoidal “carrier,” and the
group delay gives the time delay of the amplitude envelope.

Phase responses which are linear in frequency correspond to constant phase delay and group
delay. If the phase response is nonlinear, then the relative phase of the sinusoidal signal components
is generally altered by the filter. This may cause a smearing of attack transients such as in percussive
sounds. Another term for the effects of nonlinear phase response is phase dispersion.

When one wishes to modify only the spectral energy distribution of a signal and not the spectral
phase, then a linear-phase filter is desirable.* Linear-phase filters are characterized by a symmetrical
impulse response [15], i.e., k(n) == h(—n) (symmetric) or h(n) = —h(—n) (antisymmetric).

In computer music applications it is often possible to store the entire signal to be filtered on
disk or magnetic tape. In these cases the effects of nonlinear phase can removed entirely by filtering
the data first forward then backward in time. The resultant phase response is 0, and the amplitude
response becomes G*(w) (see problem 10).

For many applications (such as lowpass, bandpass, or highpass filtering), the frequency region
where most of the phase dispersion occurs is at the extreme edge of the desired range or “passband,”
i.e., in the vicinity of the cutoff frequencies. Only filters with no feedback can have exactly linear
phase, and such filters generally need many more multiplies for a given specification on the amplitude
response G(w) [15].

Linear phase filters are far from minimum phase. Minimum-phase filters give the smallest
amount of phase shift (delay) for a specified amplitude response. Consequently, linear phase filters
introduce excess time delay. (The extra time delay can be considered that needed to delay all
frequencies equally.)

Phase dispersion due to nonlinear phase near the cut-off frequency of a lowpass filter usually
appears as “ringing” in the time domain. This ringing can sometimes be heard as little “chirps” in
the impulse response, if the cut-off is in the audio band. To be conservative, the filter roli-off (slope

* The name linear-phase reeponse filter would be more precise in this context. Note, however, that the
phase response of a filter equals the phase of the spectrum of its impulse response. It is therefore reasonable
to use the term filter phase interchangeably with filter phaee response.
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of log [G(w)]) should be limited so that the phase dispersion is inaudible whether or not the filter
is linear phase or delay equalized. Linearizing the phase with a delay equalizer does not eliminate
“ringing,” it merely shifts it in time. A good rule-of-thumb is to keep the total impulse-response
duration below the time-discrimination threshold of hearing.

For musical purposes, G(w) is usually of primary interest. Notable exceptions are echo and
reverberation, in which delay characteristics are at least as important. As a rule of thumb, filter
delays less than two or three cycles at any given frequency are not important in music applications.

2.3.2. Poles and Zeros

We can write the general transfer function for the recursive LTI digital filter as

14+ ez 4o+ apyz~™™
14+bz2 4.+ byz=N "’

H(z)=g

which is the same as (2.13) except that we have factored out the leading coefficient gy in the
numerator (assumed to be nonzero) and called it g. (Here o; = 4;/ay.) In the same way that
2% 4+ 3z + 2 can be factored into (z + 1)(z + 2), we can factor the numerator and denominator to
obtain

(1-@z")1—gez™!) (1 - gp27")
(1=p1z7t)(1 = pgz™1)- (1 =pNn2T1)

Assume, for simplicity, that none of the factors cancel out. The (possibly complex) numbers
{a1,--.,qm} are the roots of the numerator polynomial. When z equals any of these values, the
transfer function evaluates to 0. For this reason, the roots of the numerator polynomial of the
filter transfer function are called the zeros of the filter. Similarly, when z approaches any root
of the denominator polynomial, the magnitude of the transfer function becomes larger and larger,
approaching infinity. Consequently, the denominator roots {p;,...,pv} are called the poles of the
filter. '

The term pole really makes sense when you plot the magnitude of H(z) as a function of z. Since
z is complex, it may be taken to lie in a plane (the z piene). The magnitude of H(z) is real and
therefore can be represented by distance above the z-plane. The plot appears as an infinitely thin
surface spanning in all directions over the z-plane. The zeros are the points where the surface dips
down to touch the 2-plane. At high altitude, the poles look like thin rods that go straight up forever,
getting thinner the higher they go.

H(z)=g

(2.17)

One can visualize the magnitude transfer function of any filter as follows. Let the z-plane be
represented by the floor. Place a tall thin rod upright at the location of each pole. Now cover the
rods with a thin flexible rubber membrane and stretch it taut. Pin the material down wherever
there is a zero and you have the “heuristic magnitude transfer function” whose value is given by
the height of the membrane above the floor. We can find the frequency response by drawing a line
with a crayon on the rubber membrane above the circle of radius 1 on the floor. Keeping the crayon
exactly above the circle on the floor will make your hand follow the membrane up and down. This
rising and falling motion is tracing out the filter’s amplitude response; i.e., the height of the marked
line from the floor gives the gain of the filter at each frequency. Of course, it is much more accurate
(and perhaps even easier) to write a program which plots the magnitude of H(z) over an arbitrary
set of z values.

Notice that the M feedforward coefficients from the general difference equation, (2.4), give rise
to M zeros. Similarly, the N feedback coefficients in (2.4) give rise to NV poles. This illustrates the
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general fact that zeros are caused by adding a finite number of input samples together and poles
are caused by feedback. Recall that the filter order is the maximum of N and M. If ay 54 0 in
(2.13), it then follows that the filter order is determined by the number of poles or zeros, whichever
is greater.

Now consider what happens when we take the factored form of the general transfer function,
(2.17), and set z to e/“T to get the frequency response.

(1= @ eHTY1 = o7 - (1 = gage=9oT)
(1 -n e—ij)(l — ch—j“’T)' . .(1 - N e—ij)

H(@“T)=g

As usual, we prefer the polar form for this expression. First let’s consider the amplitude response
G(w) & |H(eT).

Il -q e"i«lT"l - qze"jUTI, . |l - oM e—-in'

Gw) = - - -
@) gll -n C—J“'T“]. - pze-Jle. . .‘1 - pNe-—JwT'
T T s L N
|e;NwT| |1 -m e—""Tlll — pze—""T|- . .Il — pNe—Jle .

_ 64T — |69 — gg|- - |efT — qu|
[e79T — py|e/wT — po|- - |e/T — p|

In the complex plane, every number may be treated as a vector. A term of the form u — v, where
u and v are complex, is simply a vector from the tip of v to the tip of u, as shown in Figure 2.5.
Thus, the term &/«T — g¢; may be drawn as an arrow from the i*» zero to the point &/“T on the unit
circle, and e/“T — p; is an arrow from the i*# pole. Therefore, each term in (2.18) is the length of a
vector drawn from 2 pole or zero to a single point on the unit circle, as shown in Figure 2.6 for two
poles and two zeros.

The frequency response magnitude (amplitude response) is given by the product of the lengths
of vectors drawn from the zeros divided by the product of lengths of vectors drawn from the
poles.
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imaginary —»-

real ——w

z plane

Figure 2.5. Treatment of complex numbers as vectors in a plane. In the complex plane,
the number z == £ + jy may be plotted using the coordinates (z,y). The difference of two
vectors u == 23 + jy1 and v == T2 + Jyz is 4 — v == (23 — 22) + j(y1 — y2). Translating the
origin of the vector 4 — v to the tip of v shows that 4 —v is an arrow drawn from the tip of
v to the tip of u. The length of a vector is unaffected by translation away from the origin.
However, the angle of a translated vector must be measured relative to a translated copy
of the real axis shown above as a dashed line.
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\
\ z plane

Figure 2.8. Measurement of amplitude response from a pole-zero diagram. A pole
is represented in the complex plane by a small cross; a zero, by a small circle. Arrows
are drawn from the poles and zeros to the point of the unit circle corresponding to the
frequency at which the response is desired. To obtain the amplitude response, the product
of the lengths of the arrows from the zeros (d1dz) is divided by the product of the lengths
of the arrows from the poles (dzds). Thus, at the frequency w where the arrows join (which
is slightly less than one-eighth the sampling rate) the gain of this two-pole two-zero filter

is G(w) = (3345

For example, the DC gain is obtained by multiplying the lengths of the lines drawn from all
poles and zeros to the point z = 1. The filter gain at half the sampling rate is the product of the
lengths of these lines when drawn to the point z = —1. For an arbitrary frequency f in Hz, we
draw the arrows from the poles and zeros to the point z = e/27/T_ 2.6 is drawn for a frequency in
the vicinity of one-eighth the sampling rate. Figure 2.7 gives the complete amplitude response for
the poles and zeros in 2.6.
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Figure 2.7. Amplitude response obtained from Fig. 2.6 by traversing the entire upper
semicircle with &“T. The single point of the amplitude obtained in Fig. 2.6 is marked
by a heavy dot. For real filters, precisely the same curve is obtained if the lower half of
the unit circle is traversed, i.e., G(w) == G(~w). Thus, plotting the response over positive
frequencies only is sufficient.

The phase response is just as easy to evaluate graphically as is the amplitude response.
(l -q e—juT)(l - qze—ij), . (1 - qu—ij)
(1= pre3vT)(1 — pze=3vT)-- (1 - pye—3eT)

. jwT _ oJwT _ )---(ei‘”T— )
Lo N=Mur (& — ) — g ¢ —am
Q 4 (e,wT -m )(e:wT - pz)' . .(e](dT - PN)
= (N = MwT + £(e/“T — 1) + £(¢“T = @) + - - + £(¢“T ~ qp1)
= 4T = p1) = LT = pa) = - = LT~ py)

ew) & £y

Since ¢/“T — 7 is a vector drawn from the point z to the point e/“T, the angle of &/“T — 7 is the
angle of the constructed vector (where a vector pointing horizontally to the right has an angle of
0). Therefore, the phase response at frequency f Hz is again obtained by drawing lines from all
the poles and zeros to the point e/2%/T a5 shown in Figure 2.8. The angles of the lines from the
zeros are added, and the angles of the lines from the poles are subtracted. Finally, (N — M)2x /T
appears when the number of poles and zeros is not equal. This factor comes from writing the transfer
function as
Hz) = g:N-M 2= 0)(z - g2)-- (2 = qm)
(z=p)z=p2) (2= pN)
and may be thought of as arising from N — M additional zeros at z =0 when N > M,or M— N
poles at z = 0 for M > N.* Figure 2.9 gives the phase response for this two-pole two-zero example.

* One can take the point of view that every digital filter has an equal number of poles and zeros by
counting those at z == 0 and z == oco. It is customary, however, when discussing the number of poles and
zeros a filter has, to neglect these since they correspond to pure delay and do not affect the amplitude
response.
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0,

\ z plane

Figure 2.8. Measurement of phase response from a pole-zero diagram. Arrows are drawn
from the poles and zeros to the point of the unit circle at which the response is desired.
To obtain the phase response, the sum of the angles of the arrows from the poles (0344) is
subtracted from the sum of the angles of the arrows from the zeros (¢, +82). Thus, at the
frequency w the phase response of the two-pole two-zero filter is O(w) == 8, + 8, — 05 — 0,.

2.3
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FNE]
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!

phase response (rad) ——u
=)

f
FSEY
T

frequency (Hz) —

Figure 2.9. Phase response obtained from Fig. 2.8 for positive frequencies. The point of
the phase response corresponding to the arrows in Fig. 2.8 is marked by a heavy dot. For
real filters, ©(—w) == —O(w), so that the above curve is reflected about zero for negative

frequencies.




Page 42 THEORETICAL FOUNDATIONS OF DIGITAL FILTERS 2.3

Stability

A filter is said to be stgble if its impulse response h(n) decays to 0 as n goes to infinity. Unstable
filters are to be avoided because they lead to overflow of the computer word, which, in turn, can
make pom-pom’s out of your speakers. The physical counterpart of an unstable filter is something
that will never stop quivering after you hit it with a hammer (or, worse, will begin to shake more
and more violently, like a washing machine with boots in it).

In terms of poles and zeros, a filter is stable if and only if all the poles are inside the unit circle
in the z-plane. This is because the transfer function is the z transform of the impulse response, and
if there is a pole outside the unit circle, then there is an exponentially increasing component of the
impulse response. To see this, consider an impulse response of the form

" RrdunT, n>0
(n) = 0, n<O0’

This signal is a damped complex sinusoid when 0 < R < 1. It oscillates with frequency w and
has an exponentially decaying amplitude envelope. If R > 1, the amplitude envelope increases
exponentially as R™. The signal k(n) has the z transform

00
H(z) = E RngwnT ;—n

n==0
= - jwT 21 )"
..z-:o (re
1

1 - RefuwT ;=1

where the last step holds for |[Re/“T 21| < 1 which is true whenever R < |z|. Thus, the transfer
function consists of a single pole at z = Re/“T. Now consider what happens when we let R become
greater than 1. The pole of H(z) moves outsnde the unit circle, and the impulse response has an
exponentially increasing amplitude. (Note |k(n)| = R™.) Thus, the definition of stability is violated.
Since the z transform exists only for |z| > R, we see that R > 1 implies that the z transform no
longer exists on the unit circle, and hence the frequency response becomes undefined.

The argument given so far shows that a one-pole filter is stable if and only if its pole is inside
the unit circle. In the case of an arbitrary transfer function, the behavior near any pole approaches
that of a one-pole filter consisting of only that pole. Therefore, all poles must be inside the unit
circle for stability. It is also the case that having all poles inside the unit circle is sufficient for
ensuring the stability of any finite-order LTI filter (because any such filter can be expressed as a sum
of complex one-pole filters).




Chapter 3

Examples and Important Special Cases

As a review of the analysis techniques discussed above, we will find the frequency response of
four basic filters. These examples are the one-zero, one-pole, two-pole, and two-zero filters. They
are important because every finite-order LTI filter expressible as difference equation such as (2.4)
may be factored into a cascade of such sections. (This follows directly -from the fact that every
polynomial with real coefficients can be factored into first- and second-order polynomials with real
coefficients.)

3.1. One-Zero Fllter

x(m) ! )
a,

Figure 3.1. System diagram for the general one-zero filter y(n) = aoz(n) + a12(n — 1).

Figure 3.1 gives the system diagram for the general one-zero filter. The frequency response for the
one-zero filter may be found by the following steps:

Difference equation: y(n) = aoz(n) + a,2(n — 1)
Z transform: Y(2) = aoX(2) + 01271 X(2)
Transfer function: H(z) = }}é{% = g9+ ay27!
Frequency response: H(e/“T) = aq + a,e794T

By factoring out ¢~39T/2 from the frequency response, to balance the exponents of ¢, we can

get this closer to polar form as follows:

H(¢“T) = ao + 0,797
=(ag—a,)+e; +a; g=IwT
= (ao - al) + e’jw—ar’(alej% + ale_’.g)
= (20— a1) + €T 20, cos(%z)

= (a0 — 1)+ ¢ 7™ T 24, cos(r/T).

43
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The term ao — a; may be interpreted as an order 0 filter section (“volume knob”) with gain (ao —a;).
This gain control is in parallel (i.e. summed) with a first-order section ¢; (14+27!) having an amplitude
response that varies sinusoidally from 1 to 0 as frequency goes from 0 to half the sampling rate
(which is precisely the behavior of our simplest lowpass filter example, (1.1)). Figure 3.2 illustrates
this interpretation of the general one-zero filter. Thus, the general one-zero filter can be interpreted
as a a digital volume knob in parallel with the series combination of another gain control and the
simplest lowpass filter of (1.1).

G — &
N
L
x(n) ——e y(n)
L—p_ » !
ay

Figure 3.2. System diagram for the general one-zero filter written as y(n) == (ap —
a1)z(n) + a1[z(n) + z(n — 1)]. This is precisely the same filter as in Fig. 3.1.

Representing the general one-zero filter as a volume control in parallel with a scaled two-point
average is useful for visualizing the possible range of frequency responses. For completeness, however,
we now apply the general equations given in (2.16), for filter gain G(w) and filter phase O(w) as a
function of frequency:

H(e“T) = ag + a;e77¢T

= gg + ¢, cos{wT) — ja, sin(wT)

Gw) = \/ [a0 + @y cos(wT)|? + |~a, sin(wT)]?

= \/ag + a? + 24904 cos(wT)

— —a; sin(wT)
Q(w) = tan™"} (m) .

A plot of G(w) and 8(w) for ap = 1 and various values of g, is given in Fig. 3.3. The filter
has a zero at z = —ag, a9 = —a, in the z-plane, which is always on the real axis. When a point
on the unit circle comes close to the zero of the transfer function, the filter gain at that frequency
is low. Notice that one zero can basically make either a highpass (a;/ay > 0) or a lowpass filter
(e1/20 < 0). (This answers problem 2 at the end of chapter 1.) For the phase response calculation
using the graphical method, it is necessary to include the pole at z = 0.
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Figure 3.3. Family of frequency responses of the one-zero filter y(n) = z(n)+a12(n~1)
for various values of a;.
a) Amplitude response.
b) Phase response.
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3.2. One-Pole Filter

x(n) ——> y(n)

Figure 3.4. System diagram for the general one-pole filter y(n) == aoz(n) = b1y(n - 1).

Figure 3.4 gives the system diagram for the general one-pole filter. The road to the frequency
response goes as follows:

Difference equation: y(n) = apz(n) - byy{n —1)
Z transform: Y(2) = ag X (2) — by 271Y(2)
- Y(z) %o
Transfer function: H{z) = X}E% =3t
Fr $ H ei“T == .__ao___
equency response ( ) T4 et

The one-pole filter has a transfer function (hence frequency response) which is the inverse of that
of a one-zero. The analysis is therefore quite analogous. A plot of the frequency response in polar
form,

Gw) = %o
\/[1 + by cos(wT)J? + [~by sin(wT)}?
- ao
V1 + 6% +2b cos(wT)
o —bisinwT)
O(w) = —tan™" (1 + b cos(wT))

for go = 1 and various values of b, is given in Figure 3.5.
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10.0
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5.0

amplitude response —s-

25

(2)

frequency (Hz) ——»

(b)

Figure 3.5. Family of frequency responses of the one-pole filter y(n) = z(n) — biy(n —1)
for various values of b;.

a) Amplitude response.

b) Phase response.

The filter has a pole, which is always real, at z = —b; in the z-plane (and 2 zero at z = 0).
Notice that the one-pole exhibits either a lowpass or a highpass frequency response, like the one-zero.
The lowpass character occurs when the pole is near the point z = 1 (low-frequency), which happens
when b, approaches —1. Conversely, the highpass nature occurs when &, is positive.

The one-pole filter section can achieve much more drastic differences between the gain at high
frequencies and the gain at low frequencies than can the one-zero filter. This difference is achieved
in the one-pole by gain boost in the passband rather than attenuation in the stopband; thus, it is
usually desirable when using a one-pole filter to set ao to a small value, such as 1 — |4, |, so that
the peak gain is 1 or so. When the peak gain is 1, then the filter is unlikely to overflow. Finally, we
note that the one-pole filter is stable if and only if |5, | < 1.
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3.3. Two-Pole Filter

x(n) + - y(n)

Figure 8.8. System diagram for the general two-pole filter y(n) = goz(n) — biy(n—1)~—
bay(n ~ 2).

The system diagram for the general two-pole filter is given in Fig. 3.6. We proceed as usual with
the general analysis steps to obtain the following:

Difference equation: y(n) = aoz(n) — byy(n — 1) = boy(n — 2)

Z transform: Y(2) = a0 X(2) = b1 271V (2) ~ bp22Y(2)
" = Y() _ Qo

Transfer function: H(z) X% T+ v 57

Frequency response: H(¢¥) = 2o

1+ bye=7oT 4 bye—i2wT

The numerator of H(z) is a constant, so there are no zeros other than at the origin of the z-plane.
- Since there-are two poles.(denominator roots of H(z)), and the coefficients 5, and b, are real, then
the poles must be either real or a complex conjugate pair. When both poles are real, the two-pole
is simply the cascade of two one-pole sections as analyzed in the previous section. That is, you can
multiply pointwise two plots such as in Fig. 3.5 which correspond to each pole separately to get the
two-pole amplitude response for two real poles.

Consider the case when the poles are not real but form a complex conjugate pair. Then we may
express the poles in polar form (no pun desired) as Rei’s and Re~7%, where R > 0 is the common
radius of both poles, and ., —8. are the two pole angles. In this case the filter exhibits a resonance
at the radian frequency w, == 8,/T. (A resonance may be loosely defined as a local peak in the
amplitude response caused by a nearby pole.)

With this new notation for the filter poles, the two-pole transfer function must also be expressible
as

a9
O = R - R
R (3.1)

= 1-2R cos(fc)z=1 + R2z—2
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from which we may identify b, = —2Rcos(d;) and b, = R?. The difference equation may be
rewritten as

y(n) = apz(n) + [2R cos(d,)]y(n — 1) — R%y(n — 2) (3.2)

The gain at the resonance frequency w, is found by substituting z = /% = /T into (3.1), which
gives an upper bound on the peak gain of 1/(1 — R)?.

Note that, for stability, we must have R < 1. The closer R is to 1, the higher the gain at the
resonance frequency we. If R is 0, the filter degenerates to H(z) = ao, which is like a volume knob
(constant gain versus frequency). The resonance frequency in Hz is of course given by the formula
Je = we/2m Hz.

There is an approximate relation between bandwidth and R, for R close to 1, namely,

R~ e—rBT
B~ _In(R), (3.3)
zT

where B is the approximate bandwidth in Hz.

Thus, expressing the coefficients as in (3.2) directly relates the resonance frequency and the
bandwidth of the resonator to the coefficients of the difference equation. Note that to sweep the
resonance frequency around requires changing only the coefficient b,, while changing the bandwidth
. (a function of R) requires both b, and b; to change.

Figure 3.7 shows a family of frequency responses for the two-pole resonator obtained by setting
ao to 1 and varying R. The value of d. in all cases is 7 /4 (corresponding to fc = f,/8). The analytic
expressions for amplitude and phase response are

Glw) = !
\m + by cos(wT') + b cos(2wT)]? + [~by sin(wT') = by sin(2wT)]?

6(w) = —tan™! ( =by sin(wT) — b sin(2wT) ),

1+ by cos(wT) + by cos(2wT)

where b; = —2R cos(d.) and b, = RZ.
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3.4. Two-Zero Filter

a

a;
x(n) > ! —»{ ;! ¥(n)

Figure 8.8. System diagram for the general two-zero filter y(n) == goz(n) + a1z(n — 1)+
azz(n - 2).

The system diagram for the general two-zero filter is given in Fig. 3.8, and the derivation of frequency
response is as follows:

Difference equation: ¥(n) = aoz(n) + a12(n — 1) + apz(n ~ 2)

Z transform: Y(2) = a0 X (2) + 01271 X (2) + a2 272X (2)

Transfer function: H(z) = ggé’; =g +a1z"! +ay272

Frequency response: H(eY) = ag + a,67%T 4 gge—i20T

Amplitude response: G(w) = \ﬁao + @y cos(wT) + ag cos(2wT))? + [—a, sin(wT) — a, sin(2wT))?
Phase response: O(w) = tan™! (ao":;%:(g%,y :‘-’::'c‘(()g‘("i%)

As before, if the roots of agz® + a;2 + ap are real, then the two-zero case reduces to our earlier
analysis for the one-zero. Assuming the zeros to be complex, we may express the zeros in polar form
as Ref?s and Re~7%, where 8, = w.T = 2x/.T.

Forming a general two-zero transfer function from this form leads to

H(z) = ao(1 = Ref* 5™ )(1 - Rei%571)

= ao[1 — 2R cos(8.)z"" + R?z7%]

from which we identify ¢, = —2Raq cos(d.) and a2 = aoR?, so that
y(n) = ao{z(n) — [2R cos(d¢)|z(n ~ 1) + R?¥z(n — 2)}

is again the difference equation of the general two-zero filter with complex zeros. The frequency
w, is now viewed as a notch frequency, or antiresonance frequency. The closer R is to 1, the more
incisive is the notch at w,.

The approximate relation (3.3) between bandwidth and R given for the two-pole resonator now
applies to the notch width.

Fig. 3.9 gives some two-zero frequency responses obtained by setting ao to 1 and varying R.
The value of §. is again /4. Note that the response is exactly analogous to the two-pole resonator
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with notches replacing the resonance peaks. Since the plots are on a linear magnitude scale, the
two-zero amplitude response appears as the reciprocal of a two-pole response. On a dB scale, the
two-zero response is an upside-down two-pole response. :

4
=1
3 R=0.9
-
!
¢
5‘ 2 R =06
g R=03
£
E . R=0 R=0
R=03
R=06
@ R=08 R=1 |
0 f/2
frequency (Hz) —»
25 R,
o2
a7
(=0
3 R=06 p-g3
= R=0
0
]
g, f/2
i
®» "

Figure 3.9. Frequency response of the two-zero filter y(n) == z(n) — 2R cos(dc)z(n — 1) +
R%z(n — 2) with 0, fixed at x/4 and for various values of R.

a) Amplitude response.

b) Phase response.

3.5. Conclusion

The basic tools for the analysis of digital filters have been presented. The main utility of these
methods is in ascertaining how a given filter will affect the spectrum of a signal passing through it.
Some of the concepts introduced include linearity, time-invariance, filter impulse response, difference
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equations, transfer functions, amplitude response, phase response, group delay, poles and zeros, filter
stability, and the general use of complex numbers to represents signals and spectra.

However, this is still only the beginning. With these foundations, there are an unlimited number
of avenues of investigation into reverberation, musical acoustics, time-varying spectral modifications,
speech modeling by means of pulse-driven filters, musical instrument simulation, and so on. Given
the immense range of naturally occurring filters in the domain of music, it is reasonable to suppose
that filter theory will continue to provide valuable tools for the analysis and simulation of acoustical
systems.
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3.8. Problems

6. Linearity

Show that part 2) of (2.2) implies part 1) for rational g. (Recall that every rational number can be
expressed as a ratio of integers.)

7. Order

From the definition of order given in the discussion after (2.4), determine the order of the following
filter:

yn)=zn-1)+z(n-2)+y(n—-1)
What is the order of the filter below?
¥(n) = z(n) + z(n - 1) + y(n - 1)
Derive the frequency response for each filter. In what ways are these filters identical? How are they
different?
8. Hum Cancellation

Design a second-order filter which will utterly reject 60 Hz hum, given a sampling rate of 40 KHz.
How is the frequency response not ideal. What is a simple way to obtain a better frequency response
at the price of higher filter order? (Hint: consider limps_.o, | cos(8)|™ )

9. Allzero Form of a Recursive Filter

Consider the difference equation for the recursive integrator, y(n) = z(n)+y(n—1). Find its impulse
response and write down its convolution representation. Why can you not program this form? How
will the recursive form develop trouble even though you can program it? What'’s going on in the
frequency domain?

10. Canceling Nonlinear Phase

A recording has been made from a condensor microphone and digitized into a disk file. The
microphone introduced a wandering DC bias (a wandering average value that should be 0) which
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you removed with a high order recursive highpass filter. The producer has found out and threatens
to wring your neck because he is fashionably afraid of nonmlinear phase for reasons he does not
understand. You claim that you can perfectly undo the nonlinear phase effects while making your
highpassfiltering job twice as good in terms of the amplitude response (reverse-time filtering).

a) Prove that your method works by deriving the frequency response for a general filter used
in the same way as your highpass filter.

b) Derive another way to accomplish the same thing without having to filter the data backward
in time. (Hint: Apply the substitution z «— z71.) Is there anything “fishy” about this method? Pick
an example recursive filter (such as (2.5)), and compute the impulse response for both the original
filter and the transformed filter.

11. Interchanging Sections

Since the transfer functions of series-connected filter stages just multiply, the transfer function is
unaffected if we permute the order of the sections. Use this fact to show that 2.1a is equivalent to
2.1b. (Hint: find a way to share delays.)

12. The Complez Resonator

There is nothing mandatory about real coefficients {a,, b;} in (2.4). Write a Fortran program to
implement a filter which has the frequency response,

1

H(eT) = ———
1 — (Refb)e=iuT

13. A Graphic Equalizer
Use the identity
cos?(9) +sin’(6) = 1
to design a two-band graphic equalizer which is transparent (G(w) = 1) when the two slide pots are
even with each other. Is there any phase distortion caused by this equalizer?

14. Two Types of Comb Filter
Find the frequency response of

y(n) = eoz(n) + a1z(n — M)

where M > 1 is some integer. (If M varies with time, you get a popular device known as a flanger.)
For ag = a; = q, find a general formula for the number of notches and the notch frequencies as a
function of M. Next try the following filter:

y(n) = boz(n) + byy(n — M)

For by = b; = b, find an expression for the number of peaks and the peak frequencies as a function
of M. How does this allpole comb filter compare to the allzero comb filter above? How do the peak
gains compare when @ = b? (The peak gain is the maximum value assumed by G(w).)

15. The Allpass Filter

Give the conditions necessary on {ao, ey, by, b, } in the previous problem such that the cascade of
an allpole and allzero comb filter will have an amplitude response G(w) = 1, but a nondegenerate
phase response. Where are the poles and zeros for this case? Is there a simple way to remember the
relation between the a’s and the b’s? Check your rule by applying it to the numerator coefficients
versus the denominator coeflicients of a general transfer function and seeing if the transfer function
is allpass. Can you also find the general allpass rule which specifies the zeros given the poles or vice
versa?




Appendix A. Signal Representation

Units

All time is in seconds (sec). The continuous real-valued time variable is normally written ¢
and the discrete integer-valued time variable is denoted n, with ¢t = nT, where T is the sampling
interval in seconds. Frequencies are either in cycles-per-second or radians-per-second. The name for
cycles-per-second is Hertz (Hz). One cycle = 2r radians = 360 degrees, and therefore f Hz is the
same frequency as 27 f radians per second. It is easy to confuse the two because both radians and
cycles are pure numbers, so that both types of frequency are in physical units of inverse seconds
(sec™?). As an example, a sine wave with period 7 (greek “tau”) seconds has frequency f = (1/7)
Hz, and radian frequency w = 2r /7 rad/sec. The sampling rate f, is the reciprocal of the sampling
period T. Note that since the sampling period is in seconds, the sampling rate f, = 1/T is in Hz.
One might often find it helpful, however, to think “seconds-per-sample” and “samples-per-second,”
where “samples” is a dimensionless quantity (pure number) thrown in for clarity. The phase of a
signal is written as ¢ as often as possible and is in radian units. The amplitude of a signal may be
thought of in any arbitrary units such as volts, sound pressure, and the like.

Time-Waveform

We represent the time-waveform of a signal as a real-valued function of an integer, corresponding
to continuous amplitude versus discrete time. This means that for any sample (numbered n), the
amplitude may take on any real value. The time-waveform may appear in your mind as a kind of
bar graph that extends forever to the left and right.

By convention, z(n) denotes the filter input amplitude at sample n, and the output is called
y(n). This potation should be comfortable for anyone who has written a computer subroutine for
processing samples of digitized sound. It could even be Fortran, except that lowercase is significant
here.

The term sinugoid is used to mean a waveform of the type Acos(2r/nT + ¢) = Acos(wnT + ¢),
i.e. a cosine at amplitude A, frequency f, and phase ¢.

Spectrum

In this paper, we think of filters primarily in terms of their effect on the spectrum of a signal.
This is appropriate because the ear (to a first approximation) converts the time-waveform from the
eardrum into a neurologically encoded spectrum. Mathematically, the spectrum of a signal is the
Fourier transform* of its time-waveform. Equivalently, the spectrum is the z transform evaluated
on the unit circle z = ¢/“T [13, 11]. We denote both the spectrum and the z transform of a signal
by uppercase letters. For example, if the time-waveform is denoted z(n), its z transform is called
X (2) and its spectrum is therefore X (¢/“T). The time-waveform z(n) is said to “correspond” to its

* More precisely, the discrete-time Fourier transform. The more commonly heard term, “Discrete Fourier
Transform” (DFT), refers to the one which is discrete in both time and frequency [11]. We do not encounter
the DFT nor its high-speed implementation, the FFT.
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z transform X (2), meaning they are transform pairs. This correspondence is often denoted z(n) +
X(z), or z(n) +» X(e/“T). Both the z transform and its special case, the (discrete-time) Fourier
transform, are said to transform from the time domain to the frequency domain.

We deal most often with discrete time nT" (or simply n) but with continuous frequency /. This
is because the computer can represent only digital signals, and digital time-waveforms are discrete
in time but may have energy at any frequency. On the other hand, if we were going to talk about
FFTs (Fast Fourier Transforms), then we would have to discretize the frequency variable in order
to represent spectra inside the computer. We use spectra only for insight into the perceptual effects
of digital filtering, and therefore e avoid discrete frequency as it only makes things seem more
complicated than they already are.

When we wish to consider an entire signal as a “thing in itself,” we write z(-) meaning the whole
time-waveform {z(n),n = —o0,...,—1,0,1,...,00}, or X(-) to mean the entire spectrum taken as
a whole. Imagine for example that we have plotted z(n) on a strip of paper that is infinitely long.
Then z(-) refers to the complete picture while z(n) refers to the nt® sample point on the plot.




Appendix B. Formulae Useful in Digital Filter Design

The symbol & means “is defined as”; z stands for a complex number; and r, 4, z, and y are

real numbers.

Complex Number Identities
jA V-

z == rcos(f)
[2122] = |z ]|z

Ldzyzg = L2y + L2y

r=ld = VFTT

4 limp—co (1+ £)" = a0 %nr
|e®] =1

|2 = Ir|le?| = r

2122 = (21 + j )(22 + Jy2)

= (2122 — $1¥2) + J(2192 + z231)
ZAz—jy=re !

Trigonometric Identities
&% = cos(6) + jsin(8)
‘/yf - ej‘/?

1] ~70
sin() = &£

sin(—4) = —sin(4)

cos(A + B) = cos(A)cos(B) — sin(A)sin(B)

cos?(8) = 1[1+ cos(26)]

cos(A)cos(B) = }[cos(A + B) + cos(A — B)|
sin(A4) cos(B) = }[sin(A + B) + sin(A — B)]

cos(A) + cos(B) = 2cos (A_-g_g) cos (%—B)
cos(A) — cos(B) = —2sin (%g) sin (i;ﬁ)
0052(.4) - c°52(B) = —sin(4 + B)sin(A — B)
cos?(A) — sin*(B) = cos(A + B)cos(A — B)

28 z+ 5y Aredl
§ = rsin(d)

= |l
[z

L =Ln—Ln

21
22

0= /{,z=tan™! (%)

e==2.7182818284...

Ir=0

Lz=Lr+ L =09

2129 = (rlej")(rzef'°)
= (rirz)e/(f1+0a)

Z= =22y =12

&™® = cos(nd) + j sin(n.O)

cos? 0 +sin? ¢ =1

cos(d) = M

cos(~8) = cos(4)

sin(A+B) = sin(A)cos(B)+cos(A)sin(B)
sin?(8) = 11 — cos(20)|

sin(A) sin(B) = L[cos(A — B) — cos(A + B))
cos(A)sin(B) = }[sin(4 + B) — sin(A — B)|
sin(A)+sin(B) = 2sin (%‘—q) cos (é;—B)
sin(A)—sin(B) = 2 cos ( i’;ﬁ) sin (A—;—B)
sin*(A)—sin®(B) = sin(A+ B)sin(A— B)

tan(A4) + tan(B) = ,ﬁ%
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tan(6) & 22 tan? (§) = :—E%:(g%

tan (§) = 15 : tan (§) = 1oy

cos(d) = 1=tz sin(0) = 12, [t A tan(2)]
tan(é) = ;2 tan(4 + B) = {2A sy




B.1

B.1.
(1}

(2l
(3]
[4
[5]

(6l
[
(8
(o]
[10]

[11]
[12]
(13]
(14]
(18]
[16]

17
13
[19]

(20}
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