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Preface

Objective Caml (OCaml) is a popular, expressive, high-performance dialect of ML
developed by a research team at INRIA in France. This book presents a practical in-
troduction and guide to the language, with topics ranging from how to write a program
to the concepts and conventions that affect how affect how programs are developed in
OCaml. The text can be divided into three main parts.

• The core language (Chapters 2–10).

• The module system (Chapters 11–13).

• Objects and class (Chapters 14–17).

This sequence is intended to follow the ordering of concepts needed as programs grow
in size (though objects and classes can be introduced at any point in the development).
It also happens to follow the history of Caml: many of the core concepts were present in
Caml and Caml Light in the mid-1980s and early 1990s; Caml Special Light introduced
modules in 1995; and Objective Caml added objects and classes in 1996.

This book is intended for programmers, undergraduate and beginning graduate stu-
dents with some experience programming in a procedural programming language like
C or Java, or in some other functional programming language. Some knowledge of
basic data structures like lists, stacks, and trees is assumed as well.

The exercises vary in difficulty. They are intended to provide practice, as well as
to investigate language concepts in greater detail, and occasionally to introduce special
topics not present elsewhere in the text.

Acknowledgements This book grew out of set of notes I developed for Caltech
CS134, an undergraduate course in compiler construction that I started teaching in
2000. My thanks first go to the many students who have provided comments and feed-
back over the years.

My special thanks go to Tim Rentsch, who provided the suggestion and impetus for
turning my course notes into a textbook. Tim provided careful reading and comments
on earlier forms of the text. In our many discussions, he offered suggestions on top-
ics ranging from programming language design and terminology to writing style and
punctuation. Tim’s precision and clarity of thought have been indispensible, making a
lasting impression on me about how to think and write about programming languages.
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Chapter 1

Introduction

This book is an introduction to ML programming, specifically for the Objective Caml
(OCaml) programming language from INRIA [5, 10]. OCaml is a dialect of the ML
(Meta-Language) family of languages, which derive from the Classic ML language de-
signed by Robin Milner in 1975 for the LCF (Logic of Computable Functions) theorem
prover [3].

OCaml shares many features with other dialects of ML, and it provides several new
features of its own. Throughout this document, we use the term ML to stand for any of
the dialects of ML, and OCaml when a feature is specific to OCaml.

• ML is a functional language, meaning that functions are treated as first-class
values. Functions may be nested, functions may be passed as arguments to other
functions, and functions can be stored in data structures. Functions are treated
like their mathematical counterparts as much as possible. Assignment statements
that permanently change the value of certain expressions are permitted, but used
much less frequently than in languages like C or Java.

• ML is strongly typed, meaning that the type of every variable and every expres-
sion in a program is determined at compile-time. Programs that pass the type
checker are safe: they will never “go wrong” because of an illegal instruction or
memory fault.

• Related to strong typing, ML uses type inference to infer types for the expres-
sions in a program. Even though the language is strongly typed, it is rare that the
programmer has to annotate a program with type constraints.

• The ML type system is polymorphic, meaning that it is possible to write pro-
grams that work for values of any type. For example, it is straightforward to
define generic data structures like lists, stacks, and trees that can contain ele-
ments of any type. In a language without polymorphism, the programmer would
either have to write different implementations for each type (say, lists of integers
vs. lists of floating-point values), or else use explicit coercions to bypass the type
system.

1



CHAPTER 1. INTRODUCTION

/*
* A C function to

* determine the greatest

* common divisor of two

* positive numbers a and b.

* We assume a>b.

*/
int gcd(int a, int b)
{

int r;

while((r = a % b) != 0) {
a = b;
b = r;

}
return b;

}

(*
* An OCaml function to

* determine the greatest

* common divisor of two

* positive numbers a and b.

* We assume a>b.

*)
let rec gcd a b =

let r = a mod b in
if r = 0 then

b
else

gcd b r

Figure 1.1: C is an imperative programming language, while OCaml is functional. The
code on the left is a C program to compute the greatest common divisor of two natural
numbers. The code on the right is equivalent OCaml code, written functionally.

• ML implements a pattern matching mechanism that unifies case analysis and
data destructors.

• ML includes an expressive module system that allows data structures to be spec-
ified and defined abstractly. The module system includes functors, which are are
functions over modules that can be used to produce one data structure from an-
other.

• OCaml is also the only widely-available ML implementation to include an ob-
ject system. The module system and object system complement one another:
the module system provides data abstraction, and the object system provides in-
heritance and re-use.

• OCaml includes a compiler that supports separate compilation. This makes the
development process easier by reducing the amount of code that must be recom-
piled when a program is modified. OCaml actually includes two compilers: a
byte-code compiler that produces code for the portable OCaml byte-code inter-
preter, and a native-code compiler that produces efficient code for many machine
architectures.

• One other feature should be mentioned: all the languages in the ML family have
a formal semantics, which means that programs have a mathematical interpre-
tation, making the programming language easier to understand and explain.
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CHAPTER 1. INTRODUCTION1.1. FUNCTIONAL AND IMPERATIVE LANGUAGES

1.1 Functional and imperative languages
The ML languages are mostly functional, meaning that the normal programming style
is functional, but the language includes assignment and side-effects.

To compare ML with an imperative language, a comparison of two simple imple-
mentations of Euclid’s algorithm is shown in Figure 1.1 (Euclid’s algorithm computes
the greatest common divisor of two nonnegative integers). In a language like C, the
algorithm is normally implemented as a loop, and progress is made by modifying the
state. Reasoning about this program requires that we reason about the program state:
give an invariant for the loop, and show that the state makes progress on each step
toward the goal.

In OCaml, Euclid’s algorithm is normally implemented using recursion. The steps
are the same, but there are no side-effects. The let keyword specifies a definition,
the rec keyword specifies that the definition is recursive, and the gcd a b defines a
function with two arguments a and b.

In ML, programs rarely use assignment or side-effects except for I/O. Pure func-
tional programs have some nice properties: one is that data structures are persistent,
which means that no data structure is ever destroyed.

There are problems with taking too strong a stance in favor of pure functional pro-
gramming. One is that every updatable data structure has to be passed as an argument
to every function that uses it (this is called threading the state). This can make the
code obscure if there are too many of these data structures. We take an intermediate
approach. We use imperative code when necessary, but we encourage the use of pure
functional approach whenever appropriate.

1.2 Organization
This book is organized as a user guide to programming in OCaml. It is not a reference
manual: there is already an online reference manual. We assume that the reader already
has some experience using an imperative programming language like C; we’ll point out
the differences between ML and C in the cases that seem appropriate.

1.3 Additional Sources of Information
This book was originally used for a course in compiler construction at Caltech. The
course material, including exercises, is available at http://www.cs.caltech.edu/
courses/cs134/cs134b.

The OCaml reference manual [5] is available on the OCaml home page http://
www.ocaml.org/.

The author can be reached at jyh@cs.caltech.edu.
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Chapter 2

Simple Expressions

Most functional programming implementations include a runtime environment that de-
fines a standard library and a garbage collector. They also often include an evaluator
that can be used to interact with the system, called a toploop. OCaml provides a com-
piler, a runtime, and a toploop. By default, the toploop is called ocaml. The toploop
prints a prompt (#), reads an input expression, evaluates it, and prints the result . Ex-
pressions in the toploop are terminated by a double-semicolon ‘;;’.

% ocaml
Objective Caml version 3.10.0

# 1 + 4;;
- : int = 5
#

The toploop prints the type of the result (in this case, int) and the value (5). To exit
the toploop, you may type the end-of-file character (usually Control-D when using a
Unix1 system, and Control-Z when using a Microsoft Windows system).

2.1 Comment convention
In OCaml, comments are enclosed in matching (* and *) pairs. Comments may be
nested, and the comment is treated as white space.

# 1 (* this is a comment *) + 4;;
- : int = 5

2.2 Basic expressions
OCaml is a strongly typed language. In OCaml every valid expression must have a
type, and expressions of one type may not be used as expressions in another type.

1UNIX is a registered trademark of The Open Group.
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Apart from polymorphism, which we discuss in Chapter 5, there are no implicit coer-
cions. Normally, you do not have to specify the types of expressions. OCaml uses type
inference [2] to figure out the types for you.

The primitive types are unit, int, char, float, bool, and string.

2.2.1 unit: the singleton type
The simplest type in OCaml is the unit type, which contains one element: (). This
type seems to be a rather silly. However, in a functional language every function must
return a value; () is commonly used as the value of a procedure that computes by
side-effect. It corresponds to the type void in C.

2.2.2 int: the integers
The type int is the type of signed integers: . . . ,−2,−1, 0, 1, 2, . . . The precision is
finite. Integer values are represented by a machine word, minus one bit that is reserved
for use by the runtime (for garbage collection), so on a 32-bit machine architecture, the
precision is 31 bits, and on a 64-bit architecture, the precision is 63 bits.

Integers are usually specified in decimal, but there are several alternate forms. In
the following table the symbol d denotes a decimal digit (‘0’..‘9’); o denotes an octal
digit (‘0’..‘7’); b denotes a binary digit (‘0’ or ‘1’); and h denotes a hexadecimal digit
(‘0’..‘9’, or ‘a’..‘f’, or ‘A’..‘F’).

ddd . . . an int literal specified in decimal.
0oooo . . . an int literal specified in octal.
0bbbb . . . an int literal specified in binary.
0xhhh . . . an int literal specified in hexadecimal.

There are the usual operations on ints, including arithmetic and bitwise operations.

-i or ~-i negation.
i + j addition.
i - j subtraction.
i * j multiplication.
i / j division.
i mod j remainder.
lnot i bitwise-inverse.
i lsl j logical shift left i× 2j .
i lsr j logical shift right bi÷ 2jc (i is treated as an unsigned integer).
i asl j arithmetic shift left i× 2j .
i asr j arithmetic shift right bi÷ 2jc (the sign of i is preserved).
i land j bitwise-and.
i lor j bitwise-or.
i lxor j bitwise exclusive-or.

Here are some examples of integer expressions.

Copyright © Jason Hickey 6 Draft. Do not redistribute.



CHAPTER 2. SIMPLE EXPRESSIONS 2.2. BASIC EXPRESSIONS

# 12345 + 1;;
- : int = 12346
# 0b1110 lxor 0b1010;;
- : int = 4
# 1 - - 2;;
- : int = 3
# 0x7fffffff;;
- : int = -1
# 0xffffffff;;
Characters 0-10:

0xffffffff;;
^^^^^^^^^^

Integer literal exceeds the range of representable integers of type int

2.2.3 float: the floating-point numbers
The floating-point numbers provide dynamically scaled “floating point” numbers. The
syntax of a floating point requires a decimal point, an exponent (base 10) denoted by
an ‘E’ or ‘e’, or both. A digit is required before the decimal point, but not after. Here
are a few examples:

0.2, 2e7, 3.1415926, 31.415926E-1, 2.

The integer arithmetic operators (+, -, *, /, . . .) do not work with floating point values.
The operators for floating-point numbers include a ‘.’ as follows:

-.x or ~-.x floating-point negation
x +. y floating-point addition.
x -. y floating-point subtraction.
x *. y float-point multiplication.
x /. y floating-point division.
int_of_float x float to int conversion.
float_of_int x int to float conversion.

Here are some example floating-point expressions.

# 31.415926e-1;;
- : float = 3.1415926
# float_of_int 1;;
- : float = 1.
# int_of_float 1.2;;
- : int = 1
# 3.1415926 *. 17.2;;
- : float = 54.03539272
# 1 + 2.0;;
Characters 4-7:

1 + 2.0;;
^^^

This expression has type float but is here used with type int

The final expression fails to type-check because the int operator + is used with the
floating-point value 2.0.
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2.2.4 char: the characters
The character type char specifies characters from the ASCII character set. The syntax
for a character constants uses the single quote symbol ’c’.

’a’, ’Z’, ’ ’, ’W’

In addition, there are several kinds of escape sequences with an alternate syntax. Each
escape sequence begins with the backslash character “\”.

’\\’ The backslash character itself.
’\’’ The single-quote character.
’\t’ The tab character.
’\r’ The carriage-return character.
’\n’ The newline character.
’\b’ The backspace character.
’\ddd’ A decimal escape sequence.
’\xhh’ A hexadecimal escape sequence.

A decimal escape sequence must have exactly three decimal characters d; it specifies
the ASCII character with the given decimal code. A hexadecimal escape sequence
must have exactly two hexadecimal characters h.

’a’, ’Z’, ’\120’, ’\t’, ’\n’, ’\x7e’

There are functions for converting between characters and integers. The function
Char.code returns the integer corresponding to a character, and Char.chr returns the
character with the given ASCII code. The Char.lowercase and Char.uppercase func-
tions give the equivalent lower- or upper-case characters.

# ’\120’;;
- : char = ’x’
# Char.code ’x’;;
- : int = 120
# ’\x7e’;;
- : char = ’~’
# Char.uppercase ’z’;;
- : char = ’Z’
# Char.uppercase ’[’;;
- : char = ’[’
# Char.chr 33;;
- : char = ’!’

2.2.5 string: character strings
In OCaml, character strings belong to a primitive type string. Unlike strings in C,
character strings are not arrays of characters, and they do not use the null-character
’\000’ for termination.

The syntax for strings uses the double-quote symbol " as a delimiter. Characters in
the string may be specified using the same escape sequences used for characters.
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"Hello", "The character ’\000’ is not a terminator", "\072\105"

The operator ^ performs string concatenation.

# "Hello " ^ " world\n";;
- : string = "Hello world\n"
# "The character ’\000’ is not a terminator";;
- : string = "The character ’\000’ is not a terminator"
# "\072\105";;
- : string = "Hi"

Strings also support random access. The expression s.[i] returns the i’th from string
s; and the expression s.[i] <- c replaces the i’th in string s by character c, returning
a unit value. The String module (see Section 8.3) also defines many functions to
manipulate strings, including the String.length function, which returns the length of
a string; and the String.sub function, which returns a substring.

# "Hello".[1];;
- : char = ’e’
# "Hello".[0] <- ’h’;;
- : unit = ()
# String.length "Ab\000cd";;
- : int = 5
# String.sub "Abcd" 1 2;;
- : string = "bc"

2.2.6 bool: the Boolean values
The bool type includes the Boolean values true and false. Logical negation of
Boolean values is performed by the not function.

There are several relations that can be used to compare values, returning true if the
comparison holds and false otherwise.

x = y x is equal to y.
x == y x is “identical” to y.
x != y x is not “identical” to y.
x <> y x is not equal to y.
x < y x is less than y.
x <= y x is no greater than y.
x >= y x is no less than y.
x > y x is greater than y.

These relations operate on two values x and y having equal but arbitrary type. For
the primitive types in this chapter, the comparison is what you would expect. For
values of other types, the value is implementation-dependent, and in some cases may
raise a runtime error. For example, functions (discussed in the next chapter) cannot be
compared.

The == deserves special mention, since we use the word “identical” in an informal
sense. The exact semantics is this: if the expression “x == y” evaluates to true, then
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so does the expression “x = y”. However it is still possible for “x = y” to be true even
if “x == y” is not. In the OCaml implementation from INRIA, the expression “x ==
y”evaluates to true only if the two values x and y are exactly the same value, similar
to the == operators in C/Java, or the function eq? operator in Scheme. The comparison
== is a constant-time operation that runs in a bounded number of machine instructions;
the comparison = is not.

# 2 < 4;;
- : bool = true
# "A good job" > "All the tea in China";;
- : bool = false
# 2 + 6 = 8;;
- : bool = true
# 1.0 = 1.0;;
- : bool = true
# 1.0 == 1.0;;
- : bool = false
# 2 == 1 + 1;;
- : bool = true

Strings are compared lexicographically (in alphabetical-order), so the second example
is false because the character ‘l’ is greater than the space-character ‘ ’ in the ASCII
character set. The comparison “1.0 == 1.0” in this case returns false (because the 2
floating-point numbers are represented by different values in memory), but it performs
normal comparison on int values.

There are two logical operators: && is conjunction (which can also be written &),
and || is disjunction (which can also be written or). Both operators are the “short-
circuit” versions: the second clause is not evaluated if the result can be determined
from the first clause.

# 1 < 2 || (1 / 0) > 0;;
- : bool = true
# 1 < 2 && (1 / 0) > 0;;
Exception: Division_by_zero.
# 1 > 2 && (1 / 0) > 0;;
- : bool = false

Conditionals are expressed with the syntax if b then e1 else e2.

# if 1 < 2 then
3 + 7

else
4;;

- : int = 10

2.3 Operator precedences
The precedences of operators on the basic types are as follows, listed in increasing
order.

Copyright © Jason Hickey 10 Draft. Do not redistribute.



CHAPTER 2. SIMPLE EXPRESSIONS 2.4. THE OCAML TYPE SYSTEM

Operators Associativity
|| && left
= == != <> < <= > >= left
+ - +. -. left
* / *. /. mod land lor lxor left
lsl lsr asr right
lnot left
~- - ~-. -. right

2.4 The OCaml type system
The ML languages are statically and strictly typed. In addition, every expression has
a exactly one type. In contrast, C is a weakly-typed language: values of one type can
usually be coerced to a value of any other type, whether the coercion makes sense
or not. Lisp is a language that is dynamically and strictly typed: the compiler (or
interpreter) will accept any program that is syntactically correct; the types are checked
at run time. The strictly typed languages are safe; both Lisp and ML are safe languages,
but C is not.

What is “safety?” There is a formal definition based on the operational semantics
of the programming language, but an approximate definition is that a valid program
will never fault because of an invalid machine operation. All memory accesses will be
valid. ML guarantees safety by proving that every program that passes the type checker
can never produce a machine fault, and Lisp guarantees it by checking for validity at
run time. One surprising (some would say annoying) consequence is that ML has no
nil or NULL values; these would potentially cause machine errors if used where a value
is expected.

As you learn OCaml, you will initially spend a lot of time getting the OCaml type
checker to accept your programs. Be patient, you will eventually find that the type
checker is one of your best friends. It will help you figure out where errors may be
lurking in your programs. If you make a change, the type checker will help track down
the parts of your program that are affected. In the meantime, here are some rules about
type checking.

1. Every expression has exactly one type.

2. When an expression is evaluated, one of four things may happen:

(a) it may evaluate to a value of the same type as the expression,

(b) it may raise an exception (we’ll discuss exceptions in Chapter 9),

(c) it may not terminate,

(d) it may exit.

One of the important points here is that there are no “pure commands.” Even assign-
ments produce a value—although the value has the trivial unit type.

To begin to see how this works, let’s look at the conditional expression.
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% cat -b x.ml
1 if 1 < 2 then
2 1
3 else
4 1.3

% ocamlc -c x.ml
File "x.ml", line 4, characters 3-6:
This expression has type float but is here used with type int

This error message seems rather cryptic: it says that there is a type error on line 4,
characters 3-6 (the expression 1.3). The conditional expression evaluates the test. If the
test is true, it evaluates the first branch. Otherwise, it evaluates the second branch. In
general, the compiler doesn’t try to figure out the value of the test during type checking.
Instead, it requires that both branches of the conditional have the same type (so that the
value will have the same type no matter how the test turns out). Since the expressions
1 and 1.3 have different types, the type checker generates an error.

One other issue: the else branch is not required in a conditional. If it is omitted,
the conditional is treated as if the else case returns the () value. The following code
has a type error.

% cat -b y.ml
1 if 1 < 2 then
2 1

% ocamlc -c y.ml
File "y.ml", line 2, characters 3-4:
This expression has type int but is here used with type unit

In this case, the expression 1 is flagged as a type error, because it does not have the
same type as the omitted else branch.

2.5 Compiling your code
You aren’t required to use the toploop for all your programs. In fact, as your programs
become larger, you will begin to use the toploop less, and rely more on the OCaml
compilers. Here is a brief introduction to using the compiler; more information is
given in the Chapter 11.

If you wish to compile your code, you should place it in a file with the .ml suffix. In
INRIA OCaml, there are two compilers: ocamlc compiles to byte-code, and ocamlopt
compiles to native machine code. The native code is several times faster, but compile
time is longer. The usage is similar to cc. The double-semicolon terminators are not
necessary in .ml source files; you may omit them if the source text is unambiguous.

• To compile a single file, use ocamlc -g -c file.ml. This will produce a file
file.cmo. The ocamlopt programs produces a file file.cmx. The -g option
causes debugging information to be included in the output file.

• To link together several files into a single executable, use ocamlc to link the .cmo
files. Normally, you would also specify the -o program_file option to specify
the output file (the default is a.out). For example, if you have two program files
x.cmo and y.cmo, the command would be:
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% ocamlc -g -o program x.cmo y.cmo
% ./program
...

There is also a debugger ocamldebug that you can use to debug your programs. The
usage is a lot like gdb, with one major exception: execution can go backwards. The
back command will go back one instruction.
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2.6 Exercises
Exercise 2.1 For each of the following expressions, is the expression well-typed? If it
is well-typed, does it evaluate to a value? If so, what is the value?

1. 1 - 2

2. 1 - 2 - 3

3. 1 - - 2

4. 0b101 + 0x10

5. 1073741823 + 1

6. 1073741823.0 + 1e2

7. 1 ^ 1

8. if true then 1

9. if false then ()

10. if 0.3 -. 0.2 = 0.1 then ’a’ else ’b’

11. true || (1 / 0 >= 0)

12. 1 > 2 - 1

13. "Hello world".[6]

14. "Hello world".[11] <- ’s’

15. String.lowercase "A" < "B"

16. Char.code ’a’

17. (((())))

18. ((((*1*))))

19. ((*((()*))
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Chapter 3

Variables and Functions

So far, we have considered only simple expressions not involving variables. In ML,
variables are names for values. Variable bindings are introduced with the let keyword.
The syntax of a simple top-level definition is as follows.

let identifier = expression

For example, the following code defines two variables x and y and adds them together
to get a value for z.

# let x = 1;;
val x : int = 1
# let y = 2;;
val y : int = 2
# let z = x + y;;
val z : int = 3

Definitions using let can also be nested using the in form.

let identifier = expression1 in expression2

The expression expression2 is called the body of the let. The variable named identifier
is defined as the value of expression1 within the body. The identifier is defined only in
the body expression2 and not expression1.

A let with a body is an expression; the value of a let expression is the value of
the body.

# let x = 1 in
let y = 2 in

x + y;;
- : int = 3
# let z =

let x = 1 in
let y = 2 in

x + y;;
val z : int = 3
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Binding is static (lexical scoping), meaning that the value associated with a variable is
determined by the nearest enclosing definition in the program text. For example, when
a variable is defined in a let expression, the defined value is used within the body of
the let (or the rest of the file for toplevel let definitions). If the variable was defined
previously, the previous definition is shadowed, meaning that the previous definition
becomes inaccessible while the new definition is in effect.

For example, consider the following program, where the variable x is initially de-
fined to be 7. Within the definition for y, the variable x is redefined to be 2. The value
of x in the final expression x + y is still 7, and the final result is 10.

# let x = 7 in
let y =

let x = 2 in
x + 1

in
x + y;;

- : int = 10

Similarly, the value of z in the following program is 8, because of the definitions that
double the value of x.

# let x = 1;;
val x : int = 1
# let z =

let x = x + x in
let x = x + x in

x + x;;
val z : int = 8
# x;;
- : int = 1

3.1 Functions
Functions are defined with the keyword fun.

fun v1 v2 · · · vn -> expression

The fun is followed by a sequence of variables that define the formal parameters of the
function, the -> separator, and then the body of the function expression. By default,
functions are anonymous, meaning they are not named. In ML, functions are values
like any other. Functions may be constructed, passed as arguments, and applied to
arguments, and, like any other value, they may be named by using a let.

# let increment = fun i -> i + 1;;
val increment : int -> int = <fun>

Note the type int -> int for the function. The arrow -> stands for a function type.
The type before the arrow is the type of the function’s argument, and the type after the
arrow is the type of the result. The increment function takes an argument of type int,
and returns a result of type int.
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The syntax for function application (function call) is concatenation: the function is
followed by its arguments. The precedence of function application is higher than most
operators. Parentheses are required only for arguments that are not simple expressions.

# increment 2;;
- : int = 3
# increment 2 * 3;;
- : int = 9
# increment (2 * 3);;
- : int = 7

The keywords begin · · · end are equivalent to parentheses.

# increment begin 2 * 3 end;;
- : int = 7

Functions may also be defined with multiple arguments. For example, a function to
compute the sum of two integers might be defined as follows.

# let sum = fun i j -> i + j;;
val sum : int -> int -> int = <fun>
# sum 3 4;;
- : int = 7

Note the type for sum: int -> int -> int. The arrow associates to the right, so
this type is the same as int -> (int -> int). That is, sum is a function that takes
a single integer argument, and returns a function that takes another integer argument
and returns an integer. Strictly speaking, all functions in ML take a single argument;
multiple-argument functions are treated as nested functions (this is called “Currying,”
after Haskell Curry, a famous logician who had a significant impact on the design and
interpretation of programming languages). The definition of sum above is equivalent to
the following explicitly-curried definition.

# let sum = (fun i -> (fun j -> i + j));;
val sum : int -> int -> int = <fun>
# sum 4 5;;
- : int = 9

The application of a multi-argument function to only one argument is called a partial
application.

# let incr = sum 1;;
val incr : int -> int = <fun>
# incr 5;;
- : int = 6

Since named functions are so common, OCaml provides an alternative syntax for func-
tions using a let definition. The formal parameters of the function are listed in a
let-definition after to the function name, before the equality symbol.

let identifier v1 v2 · · · vn = expression

For example, the following definition of the sum function is equivalent to the ones
above.
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# let sum i j = i + j;;
val sum : int -> int -> int = <fun>

3.1.1 Scoping and nested functions
Functions may be arbitrarily nested. They may also be passed as arguments. The rule
for scoping uses static binding: the value of a variable is determined by the code in
which a function is defined—not by the code in which a function is evaluated. For
example, another way to define sum is as follows.

# let sum i =
let sum2 j =

i + j
in

sum2;;
val sum : int -> int -> int = <fun>
# sum 3 4;;
- : int = 7

To illustrate the scoping rules, let’s consider the following definition.

# let i = 5;;
val i : int = 5
# let addi j =

i + j;;
val addi : int -> int = <fun>
# let i = 7;;
val i : int = 7
# addi 3;;
- : val = 8

In the addi function, the previous binding defines i as 5. The second definition of i has
no effect on the definition used for addi, and the application of addi to the argument 3
results in 3 + 5 = 8.

3.1.2 Recursive functions
Suppose we want to define a recursive function: that is, a function that is used in its own
definition. In functional languages, recursion is used to express repetition or looping.
For example, the “power” function that computes xi might be defined as follows.

# let rec power i x =
if i = 0 then

1.0
else

x *. (power (i - 1) x);;
val power : int -> float -> float = <fun>
# power 5 2.0;;
- : float = 32

Note the use of the rec modifier after the let keyword. Normally, the function is not
defined in its own body. The following definition is rejected.
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# let power_broken i x =
if i = 0 then

1.0
else

x *. (power_broken (i - 1) x);;
Characters 70-82:

x *. (power_broken (i - 1) x);;
^^^^^^^^^^^^

Unbound value power_broken

Mutually recursive definitions (functions that call one another) can be defined using
the and keyword to connect several let definitions.

# let rec f i j =
if i = 0 then

j
else

g (j - 1)
and g j =

if j mod 3 = 0 then
j

else
f (j - 1) j;;

val f : int -> int -> int = <fun>
val g : int -> int = <fun>
# g 5;;
- : int = 3

3.1.3 Higher order functions
Let’s consider a definition where a function is passed as an argument, and another
function is returned as a result. Given an arbitrary function f on the real numbers, an
approximate numerical derivative can be defined as follows.

# let dx = 1e-10;;
val dx : float = 1e-10
# let deriv f =

(fun x -> (f (x +. dx) -. f x) /. dx);;
val deriv : (float -> float) -> float -> float = <fun>

Remember, the arrow associates to the right, so another way to write the type is
(float -> float) -> (float -> float). That is, the derivative is a function that
takes a function as an argument, and returns another function.

Let’s apply the deriv function to the power function defined above, partially ap-
plied to the argument 3.

# let f = power 3;;
val f : float -> float = <fun>
# f 10.0;;
- : float = 1000
# let f’ = deriv f;;
val f’ : float -> float = <fun>
# f’ 10.0;;
- : float = 300.000237985

Copyright © Jason Hickey 19 Draft. Do not redistribute.



3.2. VARIABLE NAMES CHAPTER 3. VARIABLES AND FUNCTIONS

# f’ 5.0;;
- : float = 75.0000594962
# f’ 1.0;;
- : float = 3.00000024822

As we would expect, the derivative of x3 is approximately 3x2. To get the second
derivative, we apply the deriv function to f’.

# let f’’ = deriv f’;;
val f’’ : float -> float = <fun>
# f’’ 0.0;;
- : float = 6e-10
# f’’ 1.0;;
- : float = 0
# f’’ 10.0;;
- : float = 0

The second derivative, which we would expect to be 6x, is way off! Ok, there are some
numerical errors here.

# let g x = 3.0 *. x *. x;;
val g : float -> float = <fun>
# let g’ = deriv g;;
val g’ : float -> float = <fun>
# g’ 1.0;;
- : float = 6.00000049644
# g’ 10.0;;
- : float = 59.9999339101

3.2 Variable names
As you may have noticed in the previous section, the single quote symbol (’) is a valid
character in a variable name. In general, a variable name may contain letters (lower
and upper case), digits, and the ’ and _ characters, but it must begin with a lowercase
letter or the underscore character, and it may not be an underscore _ all by itself.

In OCaml, sequences of characters from the infix operators, like +, -, *, /, . . .
are also valid names. The normal prefix version is obtained by enclosing them in
parentheses. For example, the following code is a starting point for an Obfuscated ML
contest. Don’t use this style in your code.

# let (+) = ( * )
and (-) = (+)
and ( * ) = (/)
and (/) = (-);;

val + : int -> int -> int = <fun>
val - : int -> int -> int = <fun>
val * : int -> int -> int = <fun>
val / : int -> int -> int = <fun>
# 5 + 4 / 1;;
- : int = 15

Note that the * operator requires space within the parenthesis. This is because of com-
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ment conventions—comments start with (* and end with *).
The redefinition of infix operators may make sense in some contexts. For example,

a program module that defines arithmetic over complex numbers may wish to redefine
the arithmetic operators. It is also sensible to add new infix operators. For example, we
may wish to have an infix operator for the power construction.

# let ( ** ) x i = power i x;;
val ** : float -> int -> float = <fun>
# 10.0 ** 5;;
- : float = 100000

The precedence and associativity of new infix operators is determined by its first char-
acter in the operator name. For example an operator named +/- would have the same
precedence and associativity as the + operator.

3.3 Labeled parameters and arguments
OCaml allows functions to have labeled and optional parameters and arguments. La-
beled parameters are specified with the syntax ~label: pattern. Labeled arguments are
similar, ~label: expression. Labels have the same syntactic conventions as variables:
the label must begin with a lowercase letter or an underscore _.

# let f ~x:i ~y:j = i - j;;
val f : x:int -> y:int -> int = <fun>
# f ~y:1 ~x:2;;
- : int = 1
# f ~y:1;;
- : x:int -> int = <fun>

Within the type, a type expression of the form label: type specifies a labeled function
parameter.

When all parameters are labeled, the order of the arguments does not matter, so
the expression f ~y:1 applies the function f to the argument labeled ~y (the second
argument), returning a function that expects an argument labeled ~x.

Since labels are frequently the same as the parameter names, OCaml provides a
shorthand where a parameter ~label specifies both the parameter and label. Similarly,
an argument ~label represents both the label and the argument (a variable with the same
name).

# let f ~x ~y = x - y;;
val f : x:int -> y:int -> int = <fun>
# let y = 1 in

let x = 2 in
f ~y ~x;;

- : int = 1

Optional parameters are like labeled parameters, using question mark ? instead of a
tilde ~ and specifying an optional value with the syntax ?(label = expression). Op-
tional arguments are specified the same way as labeled arguments, or they may be
omitted entirely.
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# let g ?(x = 1) y = x - y;;
val g : ?x:int -> int -> int = <fun>
# g 1;;
- : int = 0
# g ~x:3 4;;
- : int = -1

3.3.1 Rules of thumb
Labeled, unlabeled, and optional arguments can be mixed in many different combina-
tions. However, there are some rules of thumb to follow.

• An optional parameter should always be followed by a non-optional parameter
(usually unlabeled).

• The order of labeled arguments does not matter, except when a label occurs more
than once.

• Labeled and optional arguments should be specified explicitly for higher-order
functions.

The reason for following an optional parameter with an unlabeled one is that, oth-
erwise, it isn’t possible to know when an optional argument has been omitted. The
compiler produces a warning for function definitions with a final optional parameter.

# let f ~x ?(y = 1) = x - y;;
Characters 15-16:
Warning X: this optional argument cannot be erased.

let f ~x ?(y = 1) = x - y;;
^

val f : x:int -> ?y:int -> int = <fun>

There is a slight difference between labeled and unlabeled arguments with respect to
optional arguments. When an optional argument is followed only by labeled arguments,
then it is no longer possible to omit the argument. In contrast, an unlabeled argument
“forces” the omission.

# let add1 ?(x = 1) ~y ~z = x + y + z;;
val add1 : ?x:int -> y:int -> z:int -> int = <fun>
# add1 ~y:2 ~z:3;;
- : ?x:int -> int = <fun>
# let add2 ?(x = 1) ~y z = x + y + z;;
val add2 : ?x:int -> y:int -> int -> int = <fun>
# add2 ~y:2 3;;
- : int = 6

It is legal for a label to occur more than once in an argument list. If it does, then the
arguments with that label are bound in the same order as the corresponding parameters.

# let h ~x:i ~x:j ?(y = 1) ~z =
i * 1000 + j * 100 + y * 10 + z;;

val h : x:int -> x:int -> ?y:int -> z:int -> int = <fun>
# h ~z:3 ~x:4 ~y:5 ~x:6;;
- : int = 4653
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For the final rule, explicit annotation for higher-order functions, consider the following
definition of a function apply.

# let apply g = g ~x:1 2 + 3;;
val apply : (x:int -> int -> int) -> int = <fun>

Note that the compiler infers that the function ~g has a labeled, not an optional argu-
ment. The syntax g ~x:1 is the same, regardless of whether the label x is labeled or
optional, but the two are not the same.

# apply (fun ?(x = 0) y -> x + y);;
Characters 6-31:

apply (fun ?(x = 0) y -> x + y);;
^^^^^^^^^^^^^^^^^^^^^^^^^

This function should have type x:int -> int -> int
but its first argument is labeled ~?x

The compiler will always prefer to infer that an argument is labeled, not optional. If
you want the other behavior, you can specify the type explicitly.

# let apply (g : ?x:int -> int -> int) = g ~x:1 2 + 3;;
val apply : (?x:int -> int -> int) -> int = <fun>
# apply (fun ?(x = 0) y -> x + y);;
- : int = 6
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3.4 Exercises
Exercise 3.1 Which of the following let-expressions is legal? For each expression that
is legal, give its type and the value that it evaluates to. Otherwise, explain why the
expression is not legal.

1. let x = 1 in x

2. let x = 1 in let y = x in y

3. let x = 1 and y = x in y

4. let x = 1 and x = 2 in x

5. let x = 1 in let x = x in x

6. let a’ = 1 in a’ + 1

7. let ’a = 1 in ’a + 1

8. let a’b’c = 1 in a’b’c

9. let x x = x + 1 in x 2

10. let rec x x = x + x in x 2

11. let (++) f g x = f (g x) in
let f x = x + 1 in
let g x = x * 2 in
(f ++ g) 1

12. let (-) x y = y - x in 1 - 2 - 3

13. let rec (-) x y = y - x in 1 - 2 - 3

14. let (+) x y z = x + y + z in 5 + 6 7

15. let (++) x = x + 1 in ++x

Exercise 3.2 What are the values of the following expressions?

1. let x = 1 in let x = x + 1 in x

2. let x = 1 in
let f y = x in
let x = 2 in
f 0

3. let f x = x - 1 in
let f x = f (x - 1) in
f 2
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4. let y = 2 in
let f x = x + y in
let f x = let y = 3 in f y in
f 5

5. let rec factorial i =
if i = 0 then 1 else i * factorial (i - 1)

in
factorial 5

Exercise 3.3 Write a function sum that, given two integer bounds n and m and a function
f, computes a summation.

sum n m f =
∑m

i=n f(i).

Exercise 3.4 Euclid’s algorithm computes the greatest common divisor (GCD) of two
integers. It is one of the oldest known algorithms, appearing in Euclid’s Elements in
roughly 300 BC. It can be defined in pseudo-code as follows, where ← represents
assignment.

gcd(n, m) =
while m 6= 0

if n > m
n← n−m

else
m← m− n

return n

Write an OCaml function %% that computes the GCD using Euclid’s algorithm (so
n %% m is the GCD of the integers n and m). You should define it without assignment, as
a recursive function. [Note, this is Euclid’s original definition of the algorithm. More
modern versions usually use a modulus operation instead of subtraction.]

Exercise 3.5 Suppose you have a function on integers f : int -> int that is mono-
tonically increasing over some range of arguments from 0 up to n. That is,
f i < f (i + 1) for any 0 ≤ i < n. In addition f 0 < 0 and f n > 0. Write a
function search f n that finds the smallest argument i where f i ≥ 0.

Exercise 3.6 A dictionary is a data structure that represents a map from keys to values.
A dictionary has three operations.

• empty : dictionary

• add : dictionary -> key -> value -> dictionary

• find : dictionary -> key -> value

The value empty is an empty dictionary; the expression add dict key value takes an
existing dictionary dict and augments it with a new binding key -> value; and the
expression find dict key fetches the value in the dictionary dict associated with the
key.
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One way to implement a dictionary is to represent it as a function from keys to
values. Let’s assume we are building a dictionary where the key type is string, the
value type is int, and the empty dictionary maps every key to zero. This dictionary
can be implemented abstractly as follows, where we write 7→ for the map from keys to
values.

empty = key 7→ 0

add(dict, key, v) = key′ 7→
{

v if key′ = key
dict(key) otherwise

find(dict, key) = dict(key)

1. Implement the dictionary in OCaml.

2. Suppose we have constructed several dictionaries as follows.

let dict1 = add empty "x" 1
let dict2 = add dict1 "y" 2
let dict3 = add dict2 "x" 3
let dict4 = add dict3 "y" 4

What are the values associated with "x" and "y" in each of the four dictionaries?

Exercise 3.7 Partial application is sometimes used to improve the performance of a
multi-argument function when the function is to be called repeatedly with one or more
of its arguments fixed. Consider a function f(x, y) that is to be called multiple times
with x fixed. First, the function must be written in a form f(x, y) = h(g(x), y) from
some functions g and h, where g represents the part of the computation that uses only
the value x. We then write it in OCaml as follows.

let f x =
let z = g(x) in

fun y -> h(z, y)

Calling f on its first argument computes g(x) and returns a function that uses the value
(without re-computing it).

Consider one root of a quadratic equation ax2 + bx + c = 0 specified by the
quadratic formula r(a, b, c) = −b+

√
b2−4ac
2a . Suppose we wish to to evaluate the

quadratic formula for multiple values of a with b and c fixed. Write a function to
compute the formula efficiently.

Exercise 3.8 A stream is an infinite sequence of values supporting an operation hd(s)
that returns the first value in the stream s, and tl(s) that returns a new stream with the
first element removed.

One way to implement a stream is to represent it as a function over the nonnegative
integers. Given a stream s : int -> int, the first element is (s 0), the second is
(s 1), etc. The operations are defined as follows.

let hd s = s 0
let tl s = (fun i -> s (i + 1))
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For this exercise, we’ll assume that we’re working with streams of integers, so the type
stream is int -> int. We’ll write a stream as a sequence (x0, x1, x2, . . .).

1. Define the following stream functions.

• (+:) : stream -> int -> stream. Add a constant to a stream.
(x0, x1, x2, . . .) +: c = (x0 + c, x1 + c, x2 + c, . . .).

• (-|) : stream -> stream -> stream.
Subtract two streams pointwise.
(x0, x1, x2, . . .) -| (y0, y1, y2, . . .) = (x0 − y0, x1 − y1, x2 − y2. . . .).

• map : (int -> int) -> stream -> stream.
Apply a function to each element of the stream.
map f (x0, x1, x2, . . .) = (f x0, f x1, f x2, . . .).

2. A “derivative” function can be defined as follows.

let derivative s = tl s -| s

Define a function integral : stream -> stream such that, for any stream s,
integral (derivative s) = s +: c for some constant c.
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Chapter 4

Basic pattern matching

One of ML’s more powerful features is the use of pattern matching to define computa-
tion by case analysis. Pattern matching is specified by a match expression, which has
the following syntax.

match expression with
| pattern1 -> expression1
| pattern2 -> expression2

.

.

.
| patternn -> expressionn

The first vertical bar | is optional.
When a match expression is evaluated, the expression expression to be matched

is first evaluated, and its value is compared with the patterns in order. If patterni is
the first pattern to match the value, then the expression expressioni is evaluated and
returned as the result of the match.

A simple pattern is an expression made of constants and variables. A constant
pattern c matches values that are equal to it, and a variable pattern x matches any
expression. A variable pattern x is a binding occurrence; when the pattern match is
successful, the variable x is bound the the value being matched.

For example, Fibonacci numbers can be defined succinctly using pattern matching.
Fibonacci numbers are defined inductively: fib 0 = 0, fib 1 = 1, and for all other
natural numbers i, fib i = fib (i - 1) + fib (i - 2).

# let rec fib i =
match i with

0 -> 0
| 1 -> 1
| j -> fib (j - 2) + fib (j - 1);;

val fib : int -> int = <fun>
# fib 1;;
- : int = 1
# fib 2;;
- : int = 1
# fib 3;;
- : int = 2
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# fib 6;;
- : int = 8

In this code, the argument i is compared against the constants 0 and 1. If either of
these cases match, the return value is equal to i. The final pattern is the variable j,
which matches any argument. When this pattern is reached, j takes on the value of the
argument, and the body fib (j - 2) + fib (j - 1) computes the returned value.

Note that variables occurring in a pattern are always binding occurrences. For
example, the following code produces a result you might not expect. The first case
matches all expressions, returning the value matched. The toploop issues a warning for
the second and third cases.

# let zero = 0;;
# let one = 1;;
# let rec fib i =

match i with
zero -> zero

| one -> one
| j -> fib (j - 2) + fib (j - 1);;

Characters 57-60:
Warning: this match case is unused.
Characters 74-75:
Warning: this match case is unused.

| one -> one
^^^

| j -> fib (j - 2) + fib (j - 1);;
^

val fib : int -> int = <fun>
# fib 1;;
- : int = 1
# fib 2002;;
- : int = 2002

4.1 Functions with matching
It is quite common for the body of an ML function to be a match expression. To
simplify the syntax somewhat, OCaml allows the use of the keyword function (instead
of fun) to specify a function that is defined by pattern matching. A function definition
is like a fun, where a single argument is used in a pattern match. The fib definition
using function is as follows.

# let rec fib = function
0 -> 0

| 1 -> 1
| i -> fib (i - 1) + fib (i - 2);;

val fib : int -> int = <fun>
# fib 1;;
- : int = 1
# fib 6;;
- : int = 8
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4.2 Pattern expressions
Larger patterns can be constructed in several different ways. The vertical bar | can be
used to define a choice pattern pattern1 | pattern2 that matches many value matching
pattern1 or pattern2. For example, we can write the Fibonacci function somewhat more
succinctly by combining the first two cases.

let rec fib i =
match i with

(0 | 1) -> i
| i -> fib (i - 1) + fib (i - 2);;

val fib : int -> int = <fun>

The pattern pattern as identifier matches that same values as the pattern pattern and
also binds the matched value to the identifier. For example, we can use this to shorten
the Fibonacci definition further.

let rec fib = function
(0 | 1) as i -> i

| i -> fib (i - 1) + fib (i - 2);;
val fib : int -> int = <fun>

The keyword as has very low precedence; the patterns (0 | 1) as i and 0 | 1 as i
are the same.

Patterns can also be qualified by a predicate with the form
pattern when expression. This matches the same values as the pattern pattern,
but only when the predicate expression evaluates to true. The expression is evaluated
within the context of the pattern; all variables in the pattern are bound to their matched
values. Continuing with our Fibonacci example, we get yet another version.

let rec fib = function
i when i < 2 -> i

| i -> fib (i - 1) + fib (i - 2);;
val fib : int -> int = <fun>

4.3 Values of other types
Patterns can also be used with values having the other basic types, like characters,
strings, and Boolean values. In addition, multiple patterns can be used for a single
body. For example, one way to check for capital letters is with the following function
definition.

# let is_uppercase = function
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’

| ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’
| ’Q’ | ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’
| ’Y’ | ’Z’ ->

true
| c ->

false;;
val is_uppercase : char -> bool = <fun>
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# is_uppercase ’M’;;
- : bool = true
# is_uppercase ’m’;;
- : bool = false

It is rather tedious to specify the letters one at a time. OCaml also allows pattern ranges
c1..c2, where c1 and c2 are character constants.

# let is_uppercase = function
’A’ .. ’Z’ -> true

| c -> false;;
val is_uppercase : char -> bool = <fun>
# is_uppercase ’M’;;
- : bool = true
# is_uppercase ’m’;;
- : bool = false

Note that the pattern variable c in these functions acts as a “wildcard” pattern to handle
all non-uppercase characters. The variable itself is not used in the body false. This
is another commonly occurring structure, and OCaml provides a special pattern for
cases like these. The _ pattern (a single underscore character) is a wildcard pattern
that matches anything. It is not a variable, so it can’t be used in an expression. The
is_uppercase function would normally be written this way.

# let is_uppercase = function
’A’ .. ’Z’ -> true

| _ -> false;;
val is_uppercase : char -> bool = <fun>
# is_uppercase ’M’;;
- : bool = true
# is_uppercase ’m’;;
- : bool = false

The values being matched are not restricted to the basic scalar types like integers and
characters. String matching is also supported, using the usual syntax.

# let names = function
"first" -> "George"

| "last" -> "Washington"
| _ -> ""

val names : string -> string = <fun>
# names "first";;
- : string = "George"
# names "Last";;
- : string = ""

Matching against floating-point values is supported, but it is rarely used because of
numerical issues. The following example illustrates the problem.

# match 4.3 -. 1.2 with
3.1 -> true

| _ -> false;;
- : bool = false
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4.4 Incomplete matches
You might wonder about what happens if the match expression does not include pat-
terns for all the possible cases. For example, what happens if we leave off the default
case in the is_uppercase function?

# let is_uppercase = function
’A’ .. ’Z’ -> true;;

Characters 19-49:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
’a’
val is_uppercase : char -> bool = <fun>

The OCaml compiler and toploop are verbose about inexhaustive patterns. They warn
when the pattern match is inexhaustive, and even suggest a case that is not matched.
An inexhaustive set of patterns is usually an error—what would happen if we applied
the is_uppercase function to a non-uppercase character?

# is_uppercase ’M’;;
- : bool = true
# is_uppercase ’m’;;
Uncaught exception: Match_failure("", 19, 49)

Again, OCaml is fairly strict. In the case where the pattern does not match, it raises an
exception (we’ll see more about exceptions in Chapter 9). In this case, the exception
means that an error occurred during evaluation (a pattern matching failure).

A word to the wise: heed the compiler warnings! The compiler generates warnings
for possible program errors. As you build and modify a program, these warnings will
help you find places in the program text that need work. In some cases, you may be
tempted to ignore the compiler. For example, in the following function, we know that
a complete match is not needed because i mod 2 is always 0 or 1—it can’t be 2 as the
compiler suggests.

# let is_odd i =
match i mod 2 with

0 -> false
| 1 -> true;;

Characters 18-69:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
2
val is_odd : int -> bool = <fun>
# is_odd 3;;
- : bool = true
# is_odd 12;;
- : bool = false

However, do not ignore the warning! If you do, you will find that you begin to ignore
all the compiler warnings—both real and bogus. Eventually, you will overlook real
problems, and your program will become hard to maintain. For now, you should add a
wildcard case that raises an exception. The Invalid_argument exception is designed
for this purpose. It takes a string argument that is usually used to identify the name
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of the place where the failure occurred. You can generate an exception with the raise
construction.

# let is_odd i =
match i mod 2 with

0 -> false
| 1 -> true
| _ -> raise (Invalid_argument "is_odd");;

val is_odd : int -> bool = <fun>
# is_odd 3;;
- : bool = true
# is_odd (-1);;
Uncaught exception: Invalid_argument("is_odd")

4.5 Patterns are everywhere
It may not be obvious at this point, but patterns are used in all the binding mechanisms,
including the let and fun constructions. The general forms are as follows.

let pattern = expression
let identifier pattern . . . pattern = expression
fun pattern -> expression

These forms aren’t much use with constants because the pattern match will always
be inexhaustive (except for the () pattern). However, they will be handy when we
introduce tuples and records in the next chapter.

# let is_one = fun 1 -> true;;
Characters 13-26:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
0
val is_one : int -> bool = <fun>
# let is_one 1 = true;;
Characters 11-19:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
0
val is_one : int -> bool = <fun>
# is_one 1;;
- : bool = true
# is_one 2;;
Uncaught exception: Match_failure("", 11, 19)
# let is_unit () = true;;
val is_unit : unit -> bool = <fun>
# is_unit ();;
- : bool = true
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4.6 Exercises
Exercise 4.1 Which of the following expressions are legal in OCaml? For those that
are legal, what is the type of the expression, and what does it evaluate to?

1. match 1 with
1 -> 2

| _ -> 3

2. match 2 with
1 + 1 -> 2

| _ -> 3

3. let _ as s = "abc" in s ^ "def"

4. (fun (1 | 2) as i -> i + 1) 2

Exercise 4.2 We have seen pattern matching for values of all the basic types with one
notable exception—functions. For example, the following code is rejected.

# match (fun i -> i + 1) with
(fun i -> i + 1) -> true;;
^^^

Syntax error

Why do you think the OCaml designers left out function matching?

Exercise 4.3 Suppose we have a crypto-system based on the following substitution
cipher, where each plain letter is encrypted according to the following table.

Plain A B C D
Encrypted C A D B

For example, the string BAD would be encrypted as ACB.
Write a function check that, given a plaintext string s1 and a ciphertext string s2,

returns true if, and only if, s2 is the ciphertext for s1. Your function should raise an
exception if s1 is not a plaintext string. You may wish to refer to the string operations
on page 8. How does your code scale as the alphabet gets larger?

Copyright © Jason Hickey 35 Draft. Do not redistribute.



4.6. EXERCISES CHAPTER 4. BASIC PATTERN MATCHING

Copyright © Jason Hickey 36 Draft. Do not redistribute.



Chapter 5

Tuples, lists, and polymorphism

So far, we have seen simple expressions involving numbers, characters, strings, func-
tions and variables. This language is already Turing complete—we can code arbitrary
data types using numbers, functions, and strings. Of course, in practice, this would not
only be inefficient, it would also make it very hard to understand our programs. For
efficient and readable data structure implementations we need to be able to organized
and compose data in structured ways.

OCaml provides a rich set of types for defining data structures, including tuples,
lists, disjoint unions (also called tagged unions, or variant records), records, and ar-
rays. In this chapter, we’ll look at the simplest part of these—tuples and lists. We’ll
discuss unions in Chapter 6, and we’ll leave the remaining types for Chapter 8, when
we introduce side-effects.

5.1 Polymorphism
As we explore the type system, polymorphism will be one of the first concepts that
we encounter. The ML languages provide parametric polymorphism. That is, types
and expressions may be parameterized by type variables. For example, the identity
function (the function that returns its argument) can be expressed in OCaml with a
single function.

# let identity x = x;;
val identity : ’a -> ’a = <fun>
# identity 1;;
- : int = 1
# identity "Hello";;
- : string = "Hello"

Type variables are lowercase identifiers preceded by a single quote ’. A type variable
represents an arbitrary type. The typing identity : ’a -> ’a says that the identity
function takes an argument of some arbitrary type ’a and returns a value of the same
type ’a. If the identity function is applied to a value with type int, then it returns a
value of type int; if it is applied to a string, then it returns a string. The identity
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function can even be applied to function arguments.

# let succ i = i + 1;;
val succ : int -> int = <fun>
# identity succ;;
- : int -> int = <fun>
# (identity succ) 2;;
- : int = 3

In this case, the (identity succ) expression returns the succ function itself, which
can be applied to 2 to return 3.

There may be times when the compiler infers a polymorphic type where one wasn’t
intended. In this case, the type can be constrained with the syntax (s : type), where
s can be a pattern or expression.

# let identity_int (i : int) = i;;
val identity_int : int -> int = <fun>

If the constraint is for the return type of the function, it can be placed after the final
parameter.

# let do_if b i j = if b then i else j;;
val do_if : bool -> ’a -> ’a -> ’a = <fun>
# let do_if_int b i j : int = if b then i else j;;
val do_if_int : bool -> int -> int -> int = <fun>

5.1.1 Value restriction
What happens if we apply the polymorphic identity to a value with a polymorphic
function type?

# let identity’ = identity identity;;
val identity’ : ’_a -> ’_a = <fun>
# identity’ 1;;
- : int = 1
# identity’;;
- : int -> int = <fun>
# identity’ "Hello";;
Characters 10-17:
This expression has type string
but is here used with type int

This doesn’t quite work as we might expect. Note the type assignment
identity’ : ’_a -> ’_a. The type variables ’_a are now preceded by an underscore.
These type variables specify that the identity’ function takes an argument of some
(as yet unknown) type, and returns a value of the same type. The identity’ function
is not truly polymorphic, because it can be used with values of only one type. When we
apply the identity’ function to a number, the type of the identity’ function becomes
int -> int, and it is no longer possible to apply it to a string.

This behavior is due to the value restriction: for an expression to be truly polymor-
phic, it must be an immutable value, which means 1) it is already fully evaluated, and 2)
it can’t be modified by assignment. For example, numbers and character constants are
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values. Functions are also values. Function applications, like identity identity are
not values, because they can be simplified (the identity identity expression eval-
uates to identity). Furthermore, mutable expressions like arrays and reference cells
(Chapters 7–8) are not polymorphic.1

Why does OCaml have this restriction? It probably seems silly, but the value re-
striction is a simple way to maintain correct typing in the presence of side-effects. For
example, suppose we had two functions set : ’a -> unit and get : unit -> ’a
that share a storage location. The intent is that the function get should return the last
value that was saved with set. That is, if we call set 10, then get () should return
the 10 (of type int). However, the type get : unit -> ’a is clearly too permissive.
It states that get returns a value of arbitrary type, no matter what value was saved with
set.

The solution here is to use the restricted types set : ’_a -> unit and
get : unit -> ’_a. In this case, the set and get functions can be used only with
values of a single type. Now, if we call set 10, the type variable ’_a becomes int, and
the type of the get function becomes unit -> int.

The general point of the value restriction is that mutable values are not polymor-
phic. In addition, function applications are not polymorphic because evaluating the
function might create a mutable value or perform an assignment. The policy is used
even for simple applications like identity identity where it is obvious that no as-
signments are being performed.

It is usually easy to get around the value restriction by using a technique called
eta-expansion. Suppose we have an expression e of function type. The expression
(fun x -> e x) is nearly equivalent—in fact, it is equivalent if e does not contain
side-effects. The expression (fun x -> e x) is a function, so it is a value, and it may
be polymorphic. Consider this redefinition of the identity’ function.

# let identity’ = (fun x -> (identity identity) x);;
val identity’ : ’a -> ’a = <fun>
# identity’ 1;;
- : int = 1
# identity’ "Hello";;
- : string = "Hello"

The new version of identity’ computes the same value as the previous definition
of identity’, but now it is properly polymorphic.

5.1.2 Other kinds of polymorphism
Polymorphism can be a powerful tool. In ML, a single identity function can be defined
that works on values of any type. In a non-polymorphic language like C, a separate
identity function would have to be defined for each type (unless the coercions are used
to bypass the type system), in a style like the following.

int int_identity(int i) { return i; }

1In the literature, the term value is usually restricted to immutable expressions, so the phrase “immutable
value” is redundant. We prefer the redundant form, because it emphasizes the reason behind the restriction—
that mutable data is not polymorphic.
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struct complex { float real; float imag; };
struct complex complex_identity(struct complex x) { return x; }

Overloading

Another kind of polymorphism present in some languages is overloading (also called
ad-hoc polymorphism). Overloading allows function definitions to have the same name
if they have different parameter types. When a function application is encountered, the
compiler selects the appropriate function by comparing the available functions against
the type of the arguments. For example, in Java we could define a class that includes
several definitions of addition for different types (note that the + operator is already
overloaded).

class Adder {
static float Add(float x, int i) { return x + i; }
static int Add(int i, float x) { return i + (int) x; }
static String Add(String s1, String s2) { return s1 + s2; }

}

The expression Adder.Add(5.5f, 7) evaluates to 12.5, the expression
Adder.Add("Hello ", "world") evaluates to the string "Hello world", and the
expression Adder.Add(5, 6) is an error because of ambiguous overloading.

OCaml does not provide overloading. There are probably two main reasons. One
has to do with a technical difficulty. It is hard to provide both type inference and over-
loading at the same time. For example, suppose the + function were overloaded to work
both on integers and floating-point values. What would be the type of the following add
function? Would it be int -> int -> int, or float -> float -> float?

let add x y = x + y;;

The best solution would probably to have the compiler produce two instances of the
add function, one for integers and another for floating point values. This complicates
the compiler, and with a sufficiently rich type system, type inference would become
uncomputable. That would be a problem.

Another possible reason for not providing overloading is that programs can become
more difficult to understand. It may not be obvious by looking at the program text
which one of a function’s definitions is being called, and there is no way for a compiler
to check if all the function’s definitions do “similar” things.

Subtype polymorphism and dynamic method dispatch

Subtype polymorphism and dynamic method dispatch are concepts used extensively in
object-oriented programs. Both kinds of polymorphism are fully supported in OCaml.
We discuss the object system in Chapter 14.
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5.2 Tuples
Tuples are the simplest aggregate data type. They correspond to the ordered tuples you
have seen in mathematics, or in set theory. A tuple is a collection of values of arbitrary
types. The syntax for a tuple is a sequence of expressions separated by commas. For
example, the following tuple is a pair containing a number and a string.

# let p = 1, "Hello";;
val p : int * string = 1, "Hello"

The syntax for the type of a tuple is a *-separated list of the types of the components.
In this case, the type of the pair is int * string.

Tuples can be deconstructed by pattern matching with any of the pattern matching
constructs like let, match, fun, or function. For example, to recover the parts of the
pair in the variables x and y, we might use a let form.

# let x, y = p;;
val x : int = 1
val y : string = "Hello"

The built-in functions fst and snd return the components of a pair, defined as follows.

# let fst (x, _) = x;;
val fst : ’a * ’b -> ’a = <fun>
# let snd (_, y) = y;;
val snd : ’a * ’b -> ’b = <fun>
# fst p;;
- : int = 1
# snd p;;
- : string = "Hello"

Tuple patterns in a function parameter must be enclosed in parentheses. Note that the
fst and snd functions are polymorphic. They can be applied to a pair of any type
’a * ’b; fst returns a value of type ’a, and snd returns a value of type ’b. There are
no similar built-in functions for tuples with more than two elements, but they can be
defined easily.

# let t = 1, "Hello", 2.7;;
val t : int * string * float = 1, "Hello", 2.7
# let fst3 (x, _, _) = x;;
val fst3 : ’a * ’b * ’c -> ’a = <fun>
# fst3 t;;
- : int = 1

Note also that the pattern assignment is simultaneous. The following expression swaps
the values of x and y.

# let x = 1;;
val x : int = 1
# let y = "Hello";;
val y : string = "Hello"
# let x, y = y, x;;
val x : string = "Hello"
val y : int = 1
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Since the components of a tuple are unnamed, tuples are most appropriate if they have
a small number of well-defined components. For example, tuples would be an appro-
priate way of defining Cartesian coordinates.

# let make_coord x y = x, y;;
val make_coord : ’a -> ’b -> ’a * ’b = <fun>
# let x_of_coord = fst;;
val x_of_coord : ’a * ’b -> ’a = <fun>
# let y_of_coord = snd;;
val y_of_coord : ’a * ’b -> ’b = <fun>

However, it would be awkward to use tuples for defining database entries, like the
following. For that purpose, records would be more appropriate. Records are defined
in Chapter 8.

# (* Name, Height, Phone, Salary *)
let jason = ("Jason", 6.25, "626-395-6568", 50.0);;

val jason : string * float * string * float =
"Jason", 6.25, "626-395-6568", 50

# let name_of_entry (name, _, _, _) = name;;
val name_of_entry : ’a * ’b * ’c * ’d -> ’a = <fun>
# name_of_entry jason;;
- : string = "Jason"

5.3 Lists
Lists are also used extensively in OCaml programs. A list is a sequence of values
of the same type. There are two constructors: the [] expression is the empty list,
and the e1 :: e2 expression, called a cons operation, creates a cons cell—a new list
where the first element is e1 and the rest of the list is e2. The shorthand notation
[e1; e2; · · ·; en] is identical to e1 :: e2 :: · · · :: [].

# let l = "Hello" :: "World" :: [];;
val l : string list = ["Hello"; "World"]

The syntax for the type of a list with elements of type t is t list. The type list
is an example of a parametrized type. An int list is a list containing integers, a
string list is a list containing strings, and an ’a list is a list containing elements
of some type ’a (but all the elements have the same type).

Lists can be deconstructed using pattern matching. For example, here is a function
that adds up all the numbers in an int list.

# let rec sum = function
[] -> 0

| i :: l -> i + sum l;;
val sum : int list -> int = <fun>
# sum [1; 2; 3; 4];;
- : int = 10

Functions on lists can also be polymorphic. The function to check if a value x is in a
list l might be defined as follows.
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# let rec mem x l =
match l with

[] -> false
| y :: l -> x = y || mem x l;;

val mem : ’a -> ’a list -> bool = <fun>
# mem 5 [1; 7; 3];;
- : bool = false
# mem "do" ["I’m"; "afraid"; "I"; "can’t"; "do"; "that"; "Dave"];;
- : bool = true

The function mem shown above takes an argument x of any type ’a, and checks if the
element is in the list l, which must have type ’a list.

Similarly, the map operation applies a function f to each element of a list l might be
defined as follows (the map function is also defined in the standard library as List.map).

# let rec map f = function
[] -> []

| x :: l -> f x :: map f l;;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>
# map (fun i -> (float_of_int i) +. 0.5) [1; 2; 3; 4];;
- : int list = [1.5; 2.5; 3.5; 4.5]

The function map takes a function f of type ’a -> ’b (meaning the function takes a
value of type ’a and returns a value of type ’b), and a list containing elements of type
’a, and it returns a list containing elements of type ’b.

Lists are also combined with tuple to represent sets of values, or a key-value re-
lationships like the dictionaries in Exercise 3.6. The List library contains many list
functions. For example, the List.assoc function returns the value associated with a
key in a list of key-value pairs. This function might be defined as follows.

# let rec assoc key = function
(key2, value) :: l ->

if key2 = key then
value

else
assoc x l

| [] ->
raise Not_found;;

Here we see a combination of list and tuple pattern matching. The pattern
(key2, value) :: l should be read from the outside-in. The outermost operator is
::, so this pattern matches a nonempty list, where the first element should be a pair
(key2, value) and the rest of the list is l. If this pattern matches, and if the key2 is
equal to the argument key, then the value is returned as a result. Otherwise, the search
continues. If the search bottoms out with the empty list, the default action is to raise
an exception. According to convention in the List library, the Not_found exception is
normally used by functions that search through a list and terminates unsuccessfully.

Association lists can be used to represent a variety of data structures, with the
restriction that all values must have the same type. Here is a simple example.

# let entry =
[("name", "Jason");
("height", "6’ 3’’");
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(* Non-tail-recursive *)
let rec fact1 i =

if i = 0 then
1

else
i * fact1 (i - 1)

(* Tail recursive *)
let fact2 i =

let rec loop accum i =
if i = 0 then

accum
else

loop (i * accum) (i - 1)
in

loop 1

Figure 5.1: Two versions of a factorial function. The version on the right is tail-
recursive. The version on the left is not.

("phone", "626-555-1212");
("salary", "50")];;

val entry : (string * string) list =
["name", "Jason"; "height", "6’ 3’’";
"phone", "626-555-1212"; "salary", "50"]

# List.assoc "phone" entry;;
- : string = "626-555-1212"

Note that commas (,) separate the elements of the pairs in the list, and semicolons (;)
separate the items of the list.

5.4 Tail recursion
We have seen several examples of recursive functions so far. A function is recursive
if it calls itself. Recursion is the primary means for specifying looping and iteration,
making it one of the most important concepts in functional programming.

Tail recursion is a specific kind of recursion where the value produced by a recur-
sive call is returned directly by the caller without further computation. For example,
consider the two implementations of a factorial function shown in Figure 5.1.

The factorial implementation fact1 is not tail-recursive because value produced by
the recursive call fact1 (i - 1) must be multiplied by i before it is returned by the
caller.

The implementation fact2 illustrates a standard “trick,” where an extra argument,
often called an accumulator, is used to collect the result of the computation. The
function loop is tail-recursive because the result of the recursive call is returned directly
by the caller.

5.4.1 Optimization of tail-recursion
Tail-recursion is important because it can be optimized effectively by the compiler.
Consider the evaluation of a normal non-tail recursive call i * fact1 (i - 1) on a
stack-based machine. First, the argument (i - 1) is evaluated and pushed on the stack
together with the return address, and the function is called. When it returns, the ar-
gument and return address are removed from the stack, and the result of the call is
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multiplied by i. In general, a non-tail-recursive function will require stack space linear
in the number of recursive calls.

Now, consider the mechanics of a tail-call like loop (i * accum) (i - 1). The
result is to be returned directly by the caller, so instead of allocating stack space for the
arguments, it is sufficient to overwrite the caller’s state. That is, using← to represent
assignment, the compiler can translate the code as follows.

let rec loop accum i =
if i = 0 then

accum
else

accum <- i * accum;
i <- i - 1;
goto loop

By goto loop we mean that the function loop is restarted with the new values for its
arguments—there is no goto instruction in OCaml.

The optimized function computes the same result as the original definition, but it
requires only a constant amount of stack space, and it is usually much faster than the
original.

5.4.2 Lists and tail recursion
Tail-recursion is especially important when programming with lists, because otherwise
functions would usually take stack space linear in the length of the list. Not only would
that be slow, but it would also mean that the list length is limited by the maximum stack
size.

Fortunately, there are some standard techniques for writing tail-recursive functions.
If the function is to return a list, one standard approach is to use an accumulator that
collects the result in reverse order. For example, consider the following implementation
of a function map.

let rec map f = function
h :: t -> f h :: map f t

| [] -> []

The function definition is simple, but it is not tail-recursive. To obtain a tail recursive
version, we collect the result in an argument accum.

let rec rev accum = function
h :: t -> rev (h :: accum) t

| [] -> accum

let rec rev_map f accum = function
h :: t -> rev_map f (f h :: accum) t

| [] -> accum

let map f l = rev [] (rev_map f [] l)

Note that the result is collected in accum in reverse order, so it must be reversed (with
the function rev) at the end of the computation. Still, traversing the list twice, once with
rev_map and once with rev, is often faster than the non-tail-recursive implementation.
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For clarity, we listed the rev function here. Normally, one would use the standard
implementation List.rev.
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5.5 Exercises
Exercise 5.1 The comma , that is used to separate the elements of a tuple has one of
the lowest precedences in the language. How many elements do the following tuples
have, and what do the expressions evaluate to?

1. 1 + 2, 3, - 5

2. "ABC", ( 1 , "def" ), ()

3. let x = 1 in x + 1, let y = 2 in y + 1, 4

Exercise 5.2 What are the types of the following functions?

1. let f (x, y, z, w) = x + z

2. let f (x, y, z, w) = (w, z, y, x)

3. let f [x; y; z; w] = x

4. let f [x; y] [z; w] = [x; z]

5. let f (x, y) (z, w) = [x; z]

Exercise 5.3 One of the issues with tuples is that there is no general destructor function
that takes a tuple and projects an element of it. Suppose we try to write one for triples.

let nth i (x, y, z) =
match i with

1 -> x
| 2 -> y
| 3 -> z
| _ -> raise (Invalid_argument "nth")

1. What is the type of the nth function?

2. Is there a way to rewrite the function so that it allows the elements of the tuple
to have different types?

Exercise 5.4 Suppose you are implementing a relational employee database, where
the database is a list of tuples name * phone * salary.

let db =
["John", "x3456", 50.1;
"Jane", "x1234", 107.3;
"Joan", "unlisted", 12.7]

1. Write a function find_salary : string -> float that returns the salary of an
employee, given the name.

2. Write a general function
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select : (string * string * float -> bool) -> (string * string * float) list

that returns a list of all the tuples that match the predicate. For example the ex-
pression select (fun (_, _, salary) -> salary < 100.0) would return the
tuples for John and Joan.

Exercise 5.5 We have seen that the identity function (fun x -> x) has type ’a -> ’a.
Are there any other functions with type ’a -> ’a?

Exercise 5.6 In Exercise 3.7 we saw that partial application is sometimes used to im-
prove performance of a function f(x, y) under the following conditions:

• the function can be written in the form f(x, y) = h(g(x), y), and

• f is to be called for multiple values of y with x fixed.

In this case, we code f(x, y) as follows, so that g(x) is computed when f is partially
applied to its first argument.

let f x = h (g x)

Unfortunately, this technique doesn’t always work in the presence of polymorphism.
Suppose the original type of the function is f : int -> ’a -> ’a, and we want to
compute the values of (f 0 "abc") and (f 0 1.2).

let f’ = f 0
let v1 = f’ "abc"
let v2 = f’ 1.2

What goes wrong? How can you compute both values without computing g 0 twice?

Exercise 5.7 The function append : ’a list -> ’a list -> ’a list appends two
lists. It can be defined as follows.

let rec append l1 l2 =
match l1 with

h :: t -> h :: append t l2
| [] -> l2

Write a tail-recursive version of append.

Exercise 5.8 It is known that a welfare crook lives in Los Angeles. You are given lists
for 1) people receiving welfare, 2) Hollywood actors, and 3) residents of Beverly Hills.
The names in each list are sorted alphabetically (by <). A welfare crook is someone
who appears in all three lists. Write an algorithm to find at least one crook.
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Chapter 6

Unions

Disjoint unions, also called tagged unions, variant records, or algebraic data types,
are an important part of the OCaml type system. A disjoint union, or union for short,
represents the union of several different types, where each of the parts is given an
unique, explicit name.

OCaml allows the definition of exact and open union types. The following syntax
is used for an exact union type; we discuss open types later in Section 6.5.

type typename =
| Identifier1 of type1
| Identifier2 of type2
.
.
.
| Identifiern of typen

The union type is defined by a set of cases separated by the vertical bar | character;
the first vertical bar is optional. Each case i has an explicit name Identifieri, called a
constructor name; and it has an optional value of type typei. The constructor name
must be capitalized. The definition of typei is optional; if omitted there is no explicit
value associated with the constructor.

Let’s look at a simple example using unions, where we wish to define a numeric
type that is either a value of type int or float or a canonical value Zero. We can define
this type as follows.

# type number =
Zero

| Integer of int
| Real of float;;

type number = Zero | Integer of int | Real of float

Values in a disjoint union are formed by applying a constructor to an expression of the
appropriate type.

# let zero = Zero;;
val zero : number = Zero
# let i = Integer 1;;
val i : number = Integer 1
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# let x = Real 3.2;;
val x : number = Real 3.2

Patterns also use the constructor name. For example, we can define a function that
returns a floating-point representation of a number as follows. In this program, each
pattern specifies a constructor name as well as a variable for the constructors that have
values.

# let float_of_number = function
Zero -> 0.0

| Integer i -> float_of_int i
| Real x -> x

Patterns can be arbitrarily nested. The following function represents one way that we
might perform addition of values in the number type.

# let add n1 n2 =
match n1, n2 with

Zero, n
| n, Zero ->

n
| Integer i1, Integer i2 ->

Integer (i1 + i2)
| Integer i, Real x
| Real x, Integer i ->

Real (x +. float_of_int i)
| Real x1, Real x2 ->

Real (x1 +. x2);;
val add : number -> number -> number = <fun>
# add x i;;
- : number = Real 4.2

There are a few things to note in this pattern matching. First, we are matching against
the pair (n1, n2) of the numbers n1 and n2 being added. The patterns are then pair
patterns. The first clause specifies that if the first number is Zero and the second is n,
or if the second number is Zero and the first is n, then the sum is n.

Zero, n
| n, Zero ->

n

The second thing to note is that we are able to collapse some of the cases that have
similar patterns. For example, the code for adding Integer and Real values is the
same, whether the first number is an Integer or Real. In both cases, the variable i is
bound to the Integer value, and x to the Real value.

OCaml allows two patterns p1 and p2 to be combined into a choice pattern p1 | p2

under two conditions: both patterns must define the same variables; and, the value
being matched by multiple occurrences of a variable must have the same types. Other-
wise, the placement of variables in p1 and p2 is unrestricted.

In the remainder of this chapter we will describe the the disjoint union type more
completely, using a running example for building balanced binary trees, a frequently-
used data structure in functional programs.
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6.1 Binary trees
Binary trees are often used for representing collections of data. For our purposes, a
binary tree is an acyclic graph, where each node (vertex) has either zero or two nodes
called children. If node n2 is a child of n1, then n1 is called the parent of n2. One
node, called the root, has no parents; all other nodes have exactly one parent.

One way to represent this data structure is by defining a disjoint union for the
type of a node and its children. Since each node has either zero or two children, we
need two cases. The following definition defines the type for a labeled tree: the type
variable ’a represents the type of labels; the constructor Node represents a node with
two children; and the constructor Leaf represents a node with no children. Note that
the type ’a tree is defined with a type parameter ’a for the type of labels. This type
definition is recursive—the type ’a tree is mentioned in its own definition.

# type ’a tree =
Node of ’a * ’a tree * ’a tree

| Leaf;;
type ’a tree = | Node of ’a * ’a tree * ’a tree | Leaf

The use of tuple types in a constructor definition (for example,
Node of ’a * ’a tree * ’a tree) is quite common, and has an efficient im-
plementation. When applying a constructor, parentheses are required around the
elements of the tuple. In addition, even though constructors that take arguments are
similar to functions, they are not functions, and may not be used as values.

# Leaf;;
- : ’a btree = Leaf
# Node (1, Leaf, Leaf);;
- : int btree = Node (1, Leaf, Leaf)
# Node;;
The constructor Node expects 3 argument(s),
but is here applied to 0 argument(s)

Since the type definition for ’a tree is recursive, many of the functions defined on
the tree will also be recursive. For example, the following function defines one way to
count the number of non-leaf nodes in the tree.

# let rec cardinality = function
Leaf -> 0

| Node (_, left, right) ->
cardinality left + cardinality right + 1;;

val cardinality : ’a btree -> int = <fun>
# cardinality (Node (1, Node (2, Leaf, Leaf), Leaf));;
- : int = 2

6.2 Unbalanced binary trees
Now that we have defined the type of binary trees, lets build a simple data structure for
representing sets of values of type ’a.
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The empty set is just a Leaf. To add an element to a set s, we create a new Node
with a Leaf as a left-child, and s as the right child.

# let empty = Leaf;;
val empty : ’a btree = Leaf
# let insert x s = Node (x, Leaf, s);;
val insert : ’a -> ’a btree -> ’a btree = <fun>
# let rec set_of_list = function

[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a btree = <fun>
# let s = set_of_list [3; 5; 7; 11; 13];;
val s : int btree =

Node
(3, Leaf,
Node (5, Leaf,

Node (7, Leaf,
Node (11, Leaf, Node (13, Leaf, Leaf)))))

The membership function is defined recursively: an element x is a member of a tree iff
the tree is a Node and x is the label, or x is in the left or right subtrees.

# let rec mem x = function
Leaf -> false

| Node (y, left, right) ->
x = y || mem x left || mem x right;;

val mem : ’a -> ’a btree -> bool = <fun>
# mem 11 s;;
- : bool = true
# mem 12 s;;
- : bool = false

6.3 Unbalanced, ordered, binary trees
One problem with the unbalanced tree defined here is that the complexity of the mem-
bership operation is O(n), where n is cardinality of the set.

We can can begin to address the performance by ordering the nodes in the tree.
The invariant we would like to maintain is the following: for any interior node
Node (x, left, right), all the labels in the left child are smaller than x, and all the
labels in the right child are larger than x. To maintain this invariant, we must modify
the insertion function.

# let rec insert x = function
Leaf -> Node (x, Leaf, Leaf)

| Node (y, left, right) as node ->
if x < y then

Node (y, insert x left, right)
else if x > y then

Node (y, left, insert x right)
else

node;;
val insert : ’a -> ’a btree -> ’a btree = <fun>
# let rec set_of_list = function
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[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a btree = <fun>
# let s = set_of_list [7; 5; 9; 11; 3];;
val s : int btree =

Node
(3, Leaf,
Node (11,
Node (9,

Node (5, Leaf, Node (7, Leaf, Leaf)), Leaf), Leaf))

Note that this insertion function still does not build balanced trees. For example, if
elements are inserted in increasing order, the tree will be completely unbalanced, with
all the elements inserted along the right branch.

For the membership function, we can take advantage of the set ordering to speed
up the search.

# let rec mem x = function
Leaf -> false

| Node (y, left, right) ->
x = y || (x < y && mem x left) || (x > y && mem y right);;

val mem : ’a -> ’a btree -> bool = <fun>
# mem 5 s;;
- : bool = true
# mem 9 s;;
- : bool = true
# mem 12 s;;
- : bool = false

The complexity of this membership function is O(l) where l is the maximal depth of
the tree. Since the insert function does not guarantee balancing, the complexity is
still O(n), worst case.

6.4 Balanced red-black trees
In order to address the performance problem, we turn to an implementation of balanced
binary trees. We’ll use a functional implementation of red-black trees due to Chris
Okasaki [9]. Red-black trees add a label, either Red or Black, to each non-leaf node.
We will establish several new invariants.

1. Every leaf is colored black.

2. All children of every red node are black.

3. Every path from the root to a leaf has the same number of black nodes as every
other path.

4. The root is always black.

These invariants guarantee the balancing. Since all the children of a red node are black,
and each path from the root to a leaf has the same number of black nodes, the longest
path is at most twice as long as the shortest path.
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The type definitions are similar to the unbalanced binary tree; we just need to add
a red/black label.

type color =
Red

| Black

type ’a rbtree =
Node of color * ’a * ’a rbtree * ’a rbtree

| Leaf

The membership function also has to be redefined for the new type.

let rec mem x = function
Leaf -> false

| Node (_, y, left, right) ->
x = y || (x < y && mem x left) || (x > y && mem x right)

The difficult part of the data structure is maintaining the invariants when a value is
added to the tree with the insert function. This can be done in two parts. First find
the location where the node is to be inserted. If possible, add the new node with a Red
label because this would preserve invariant 3. This may, however, violate invariant 2
because the new Red node may have a Red parent.

In order to preserve the invariant, we implement the balance function, which con-
siders all the cases where a Red node has a Red child and rearranges the tree.

# let balance = function
Black, z, Node (Red, y, Node (Red, x, a, b), c), d

| Black, z, Node (Red, x, a, Node (Red, y, b, c)), d
| Black, x, a, Node (Red, z, Node (Red, y, b, c), d)
| Black, x, a, Node (Red, y, b, Node (Red, z, c, d)) ->

Node (Red, y, Node (Black, x, a, b), Node (Black, z, c, d))
| a, b, c, d ->

Node (a, b, c, d)

let insert x s =
let rec ins = function

Leaf -> Node (Red, x, Leaf, Leaf)
| Node (color, y, a, b) as s ->

if x < y then balance (color, y, ins a, b)
else if x > y then balance (color, y, a, ins b)
else s

in
match ins s with (* guaranteed to be non-empty *)

Node (_, y, a, b) -> Node (Black, y, a, b)
| Leaf -> raise (Invalid_argument "insert");;

val balance : color * ’a * ’a rbtree * ’a rbtree -> ’a rbtree = <fun>
val insert : ’a -> ’a rbtree -> ’a rbtree = <fun>

Note the use of nested patterns in the balance function. The balance function takes a
4-tuple, with a color, two btrees, and an element, and it splits the analysis into five
cases: four of the cases are for the situation where invariant 2 needs to be re-established
because Red nodes are nested, and the final case is the case where the tree does not need
rebalancing.

Copyright © Jason Hickey 54 Draft. Do not redistribute.



CHAPTER 6. UNIONS6.5. OPEN UNION TYPES (POLYMORPHIC VARIANTS)

Since the longest path from the root is at most twice as long as the shortest path,
the depth of the tree is O(log n). The balance function takes O(1) (constant) time.
This means that the insert and mem functions each take time O(log n).

# let empty = Leaf;;
val empty : ’a rbtree = Leaf
# let rec set_of_list = function

[] -> empty
| x :: l -> insert x (set_of_list l);;

val set_of_list : ’a list -> ’a rbtree = <fun>
# let s = set_of_list [3; 9; 5; 7; 11];;
val s : int rbtree =

Node (Black, 7, Node (Black, 5, Node (Red, 3, Leaf, Leaf), Leaf),
Node (Black, 11, Node (Red, 9, Leaf, Leaf), Leaf))

# mem 5 s;;
- : bool = true
# mem 6 s;;
- : bool = false

6.5 Open union types (polymorphic variants)
OCaml defines a second kind of union type where the type is open—that is, subsequent
definitions may add more cases to the type. The syntax is similar to the exact defini-
tion discussed previously, but the constructor names are prefixed with a back-quote (‘)
symbol, and the type definition is enclosed in [> . . . ] brackets.

For example, let build an extensible version of the numbers from the first example
in this chapter. Initially, we might define the implementation for ‘Integer values.

# let string_of_number1 n =
match n with

‘Integer i -> string_of_int i
| _ -> raise (Invalid_argument "unknown number");;

val string_of_number1 : [> ‘Integer of int ] -> string = <fun>
# string_of_number1 (‘Integer 17);;
- : string = "17"

The type [> ‘Integer of int ] specifies that the function takes an argument having
an open union type, where one of the constructors is ‘Integer (with a value of type
int).

Later, we might want extend the definition to include a constructor ‘Real for
floating-point values.

# let string_of_number2 n =
match n with

‘Real x -> string_of_float x
| _ -> string_of_number1 n;;

val string_of_number2 : [> ‘Integer of int | ‘Real of float ] -> string =
<fun>

If passed a floating-point number with the ‘Real constructor, the string is created with
string_of_float function. Otherwise, the original function string_of_number1 is
used.

Copyright © Jason Hickey 55 Draft. Do not redistribute.



6.5. OPEN UNION TYPES (POLYMORPHIC VARIANTS)CHAPTER 6. UNIONS

The type [> ‘Integer of int | ‘Real of float ] specifies that the function
takes an argument in an open union type, and handles at least the constructors ‘Integer
with a value of type int, and ‘Real with a value of type float. Unlike the exact union,
the constructors may still be used with expressions of other types. However, application
to a value of the wrong type remains disallowed.

# let n = ‘Real 1;;
val n : [> ‘Real of int ] = ‘Real 1
# string_of_number2 n;;
Characters 18-19:

string_of_number2 n;;
^

This expression has type [> ‘Real of int ] but is here used with type
[> ‘Integer of int | ‘Real of float ]

Types for tag ‘Real are incompatible

6.5.1 Type definitions for open types
Something strange comes up when we try to write a type definition using an open union
type.

# type number = [> ‘Integer of int | ‘Real of float];;
Characters 4-50:

type number = [> ‘Integer of int | ‘Real of float];;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

A type variable is unbound in this type declaration.
In definition [> ‘Integer of int | ‘Real of float ] as ’a
the variable ’a is unbound

One way to think of the open type is that it contains the specified cases
(‘Integer of int and ‘Real of float) and potentially more—it also contains values
like ‘Zero, ‘Natural 17, etc. In fact, any type constructor not explicitly mentioned in
the definition is also part of the type.

Type theoretically then, any function defined over an open type must be polymor-
phic over the unspecified cases. Technically, this amounts to the same thing as saying
that an open type is some type ’a that includes at least the cases specified in the defini-
tion (and more). In order for the type definition to be accepted, we must write the type
variable explicitly.

# type ’a number = [> ‘Integer of int | ‘Real of float] as ’a;;
type ’a number = ’a constraint ’a = [> ‘Integer of int | ‘Real of float ]
# let (zero : ’a number) = ‘Zero;;
val zero : [> ‘Integer of int | ‘Real of float | ‘Zero ] number = ‘Zero

The as form and the constraint form are two different ways of writing the same thing.
In both cases, the type that is being defined is the type ’a with an additional constraint
that it includes at least the cases ‘Integer of int | ‘Real of float. For example,
it also includes the value ‘Zero.
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6.5.2 Closed union types
The notation [> · · · ] (with a >) is meant to suggest that the actual type includes the
specified cases, and more. In OCaml, one can also write a closed type as [< · · ·] to
mean that the type includes the specified values and no more.

# let string_of_number = function
‘Integer i -> string_of_int i

| ‘Real x -> string_of_float x;;
val string_of_number : [< ‘Integer of int | ‘Real of float ] -> string = <fun>
# string_of_number ‘Zero;;
Characters 17-22:

string_of_number ‘Zero;;
^^^^^

This expression has type [> ‘Zero ] but is here used with type
[< ‘Integer of int | ‘Real of float ]

The second variant type does not allow tag(s) ‘Zero

6.6 Some common built-in unions
A few of the types we have already seen are unions. The built-in Boolean type bool
is defined as a union. Normally, the constructor names in a union must be capitalized.
OCaml defines an exception in this case by treating true and false as capitalized
identifiers.

# type bool =
true

| false
type bool = | true | false

The list type is similar, having the following effective definition. However, the ’a list
type is primitive in this case because [] is not considered a legal constructor name.

type ’a list =
[]

| :: of ’a * ’a list;;

Although it is periodically requested on the OCaml mailing list, OCaml does not have
a NIL (or NULL) value that can be assigned to a variable of any type. Instead, the built-in
type ’a option is used.

# type ’a option =
None

| Some of ’a;;
type ’a option = | None | Some of ’a

The None case is intended to represent a NIL value, while the Some case handles non-NIL
values.
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6.7 Exercises
Exercise 6.1 Suppose you are given the following definition of a list type.

type ’a mylist = Nil | Cons of ’a * ’a mylist

1. Write a function map : (’a -> ’b) -> ’a mylist -> ’b mylist, where

map f [x0; x1; · · ·; xn] = [f x0; f x1; · · ·; f xn].

2. Write a function append : ’a mylist -> ’a mylist -> ’a mylist, where

append [x1; · · ·; xn] [xn+1; · · ·; xn+m] = [x1; · · ·; xn+m].

Exercise 6.2 A type of unary (base-1) natural numbers can be defined as follows,

type unary_number = Z | S of unary_number

where Z represents the number zero, and if i is a unary number, then S i is i + 1. For
example, the number 5 would be represented as S (S (S (S (S Z)))).

1. Write a function to add two unary numbers. What is the complexity of your
function?

2. Write a function to multiply two unary numbers.

Exercise 6.3 Suppose we have the following definition for a type of small numbers.

type small = Four | Three | Two | One

The builtin comparison (<) orders the numbers in reverse order.

# Four < Three;;
- : bool = true

1. Write a function lt_small : small -> small -> bool that orders the numbers
in the normal way.

2. Suppose the type small defines n small integers. How does the size of your code
depend on n?

Exercise 6.4 We can define a data type for simple arithmetic expressions as follows.

type unop = Neg
type binop = Add | Sub | Mul | Div
type exp =

Constant of int
| Unary of unop * exp
| Binary of exp * binop * exp

Write a function eval : exp -> int to evaluate an expression, performing the calcu-
lation to produce an integer result.
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Exercise 6.5 In Exercise 3.6 we defined the data structure called a dictionary. Another
way to implement a dictionary is with tree, where each node in the tree has a label and
a value. Implement a polymorphic dictionary, (’key, ’value) dictionary, as a tree
with the three dictionary operations.

empty : (’key, ’value) dictionary
add : (’key, ’value) dictionary -> ’key -> ’value -> (’key, ’value) dictionary
find : (’key, ’value) dictionary -> ’key -> ’value

Exercise 6.6 A graph (V,E) has a set of vertices V and a set of edges E ⊆ V × V ,
where each edge (v1, v2) is a pair of vertices. In a directed graph, each edge is an
arrow from one vertex to another. For example, for the graph below, the set of vertices
is V = {1, 2, 3, 4}, and the set of edges is {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}.

2

1

3

4

One way to represent a graph is with a dictionary
(vertex, vertex list) dictionary where each entry in the dictionary lists
the outgoing edges from that vertex. Assume the following type definitions.

type vertex = int
type graph = (vertex, vertex list) dictionary

Write a function reachable : graph -> vertex -> vertex -> bool, where
reachable graph v1 v2 is true iff vertex v2 is reachable from v1 by following edges
only in the forward direction. Your algorithm should terminate on all inputs.

Exercise 6.7 Consider the function insert for unbalanced, ordered, binary trees
in Section 6.2. One potential problem with this implementation is that it
uses the builtin comparison (<). Rewrite the definition so the it is parame-
terized by a comparison function that, given two elements, returns on of three
values type comparison = LessThan | Equal | GreaterThan. The expression
insert compare x tree inserts an element x into the tree tree. The type is
insert : (’a -> ’a -> comparison) -> ’a -> ’a tree -> ’a tree.

Exercise 6.8 A heap of integers is a data structure supporting the following operations.

• makeheap : int -> heap: create a heap containing a single element,

• insert : heap -> int -> heap: add an element to a heap; duplicates are al-
lowed,

• findmin : heap -> int: return the smallest element of the heap.

• deletemin : heap -> heap: return a new heap that is the same as the original,
without the smallest element.
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• meld : heap -> heap -> heap: join two heaps into a new heap containing the
elements of both.

A heap can be represented as a binary tree, where for any node a, if b is a child node of
a, then label(a) ≤ label(b). The order of children does not matter. A pairing heap is a
particular implementation where the operations are performed as follows.

• makeheap i: produce a single-node tree with i at the root.

• insert h i = meld h (makeheap i).

• findmin h: return the root label.

• deletemin h: remove the root, and meld the subtrees.

• meld h1 h2: compare the roots, and make the heap with the larger element a
subtree of the other.

1. Define a type heap and implement the five operations.

2. A heap sort is performed by inserting the elements to be sorted into a heap,
then the values are extracted from smallest to largest. Write a function
heap_sort : int list -> int list that performs a heap sort, where the re-
sult is sorted from largest to smallest.
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Chapter 7

Reference cells and side-effects

Most of the values we have seen so far, like tuples and lists, are immutable. That is,
once a value is created, it never changes. In this chapter we introduce operations and
values for imperative programming—programming with assignment, side-effects, and
mutable state.

The principal tool for imperative programming in OCaml is the reference cell,
which can be viewed as a kind of “box.” The box always holds a value, but the con-
tents of the box can be replaced by assignment. The operations on reference cells are
as follows.

val ref : ’a -> ’a ref
val (:=) : ’a ref -> ’a -> unit
val (!) : ’a ref -> ’a

Reference cells are created with the expression ref e, which takes the initial value e
for the reference cell. The expression !r returns the value in the reference cell r, and
the expression r := e replaces the contents of the reference cell with the value e.

For illustration, two imperative implementations of a factorial function are shown
in Figure 7.1, one written in C++, and the other in OCaml. The structure of the code
is similar: the variable j is initially defined to be 1 on line 2; then j is multiplied by
each value 2, . . . , i on the for-loop in lines 3 and 4 to produce the final value j =
1 ∗ 2 ∗ · · · ∗ i = i!.

Structurally, the programs look quite similar, but there is a key difference in regard
to the variables. In C, the variable j is assigned to directly. In OCaml, variables are
always immutable. Instead, the variable j refers to a reference cell and it is the contents
of the reference cell that is modified. This also means that every time the value of the
cell is needed, the expression !j is used.

The figure also shows examples of sequencing and looping. In OCaml, semicolons
are used as separators to specify sequencing of evaluation expression1; expression2.
To evaluate the sequence, expression expression1 is first evaluated, the value discarded,
then the expression expression2 is evaluated and the value returned as the result of the
sequence. It should be emphasized that the semicolon ; is not a terminator, like it is
in C. For example, if line 6 of the OCaml factorial were followed by a semicolon, it
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Imperative factorial in C++ Imperative factorial in OCaml

int factorial(int i) {
int j = 1;
for(int k = 2; k <= i; k++)

j *= k;
return j;

}

1 let factorial i =
2 let j = ref 1 in
3 for k := 2 to i do
4 j := !j * k
5 done;
6 !j

Figure 7.1: Imperative implementations of a factorial function.

would mean that the value of the expression !j should be discarded—and the value of
the function is defined by whatever follows the semicolon.

For-loops and while-loops are specified in one of the following forms.

for identifier := expression1 to expression2 do expression3 done
for identifier := expression1 downto expression2 do expression3 done
while expression1 do expression2 done

In a for-loop, the body expression3 of the loop is evaluated for each value of the iden-
tifier identifier between expression1 and expression2 inclusive; the to form counts up-
ward by 1, and downto counts down. The expressions expression1 and expression2 are
evaluated once, before the loop is entered.

A while-loop is evaluated by first evaluating the Boolean expression expression1; if
true, then the expression expression2 is evaluated for its side-effect. The evaluation is
repeated until expression1 is false. For comparison, the factorial is implemented with a
while-loop in Figure 7.2.

7.1 Pure functional programming
The one feature that is central to all functional programming languages is that functions
are first class values. Functions can be passed as arguments and stored in data struc-
tures, just like any other kind of value. In fact, this is the only strict requirement for a
language to be functional, and by this definition it can be argued that many languages
are functional, including C, Javascript, OCaml, and others.

A related property is purity; a pure functional language does not include assignment
or other side-effects. Haskell is an example of a pure functional language; OCaml and
most Lisp dialects are impure, meaning that they allow side-effects of some form. One
reason to prefer purity is that it simplifies reasoning about programs. In mathematics,
a function is defined as a single-valued map, meaning that if f is a function and f(x) is
defined for some x, then there is only one value of f(x). Now, consider the following
“function” written in C.

int index = 1;
int g(int i) {

index = index + 1;
return i + index;

}
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Imperative factorial in C++ Imperative factorial in OCaml

int factorial(int i) {
int j = 1;
while(i > 0) {

j *= i;
i--;

}
return j;

}

let factorial i =
let j = ref 1 in
let i = ref i in
while !i > 0 do

j := !j * !i;
i := !i - 1

done;
!j

Figure 7.2: Imperative implementations of a factorial function using while-loops.

When called, the function modifies the variable index by side-effect. Mathematically
speaking, it is not a function because an expression like g(0) can have many possible
values—in fact, the expression g(0) == g(0) is always false!

Reasoning about imperative programs can be more difficult than it is for pure
functional programs because of the need to analyze the program state. Pure func-
tional programs don’t have a global mutable state, which simplifies their analysis.
More precisely, pure functional programs provide referential transparency, mean-
ing that if two expressions evaluate to the same value, then one can be substituted
for the other without affecting the result of the computation. For example, con-
sider an expression f(0) + f(0). If the expression f(0) is referentially transparent,
then the two occurrences can be replaced with the same value, and the expression
let x = f(0) in x + x is equivalent (and probably more efficient).

Pure functional programming and referential transparency have many benefits.
Data structures are persistent, meaning that once a data value is created, it cannot be
changed or destroyed. Programs can be easier to reason about than equivalent impera-
tive programs, and the compiler is given a great deal of latitude in optimizations.

However, purity does have its drawbacks. Side-effects can be useful in reducing
code size. For example, suppose we have written a program containing a function
f(x). During testing, we might want to know whether f is ever called. With side-
effects, this is easy—we add a flag that gets set whenever the function is called. No
other part of the program need be changed.

let f_was_called = ref false

let f x =
f_was_called := true;
...

Without side-effects, this would be difficult to do without changing other parts of the
program as well.

Another, deeper, issue with purity is that it becomes impossible to construct some
cyclic data structures, ruling out some commonly-used data representations for graphs,
circular lists, etc. The problem is that, when a data value like a tuple or list is con-
structed, the values it refers to must already exist. In particular, a value being con-
structed may not, in general, refer to itself. In imperative programming, this is not an
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issue, because data values can be constructed, then later mutated if a cyclic structure is
desired.

A related issue is that, for some algorithms, the best known implementations are
imperative. For these reasons, and perhaps others, OCaml supports side-effects, includ-
ing operations on mutable data and imperative input/output operations. In the next few
sections, we’ll look at some common imperative data representations using reference
cells.

7.1.1 Value restriction
As we mentioned in Section 5.1.1, mutability and side-effects interact with type infer-
ence. For example, consider a “one-shot” function that saves a value on its first call,
and returns that value on all future calls. This function is not properly polymorphic
because it contains a mutable field. We illustrate this with a mutable variable x.

# let x = ref None;;
val x : ’_a option ref = {contents=None}
# let one_shot y =

match !x with
None ->

x := Some y;
y

| Some z ->
z;;

val one_shot : ’_a -> ’_a = <fun>
# one_shot 1;;
- : int = 1
# one_shot;;
val one_shot : int -> int = <fun>
# one_shot 2;;
- : int = 1
# one_shot "Hello";;
Characters 9-16:
This expression has type string but is here used with type int

The value restriction requires that polymorphism be restricted to immutable values.
Values include functions, constants, constructors with fields that are values, and other
fully-evaluated immutable expressions. A function application is not a value, and a
mutable reference cell is not a value. By this definition, the x and one_shot variables
cannot be polymorphic, as the type constants ’_a indicate.

7.2 Queues
A simple imperative queue is a data structure supporting three operations.

val create : unit -> ’a queue
val add : ’a queue -> ’a -> unit
val take : ’a queue -> ’a

In a first-in-first-out (FIFO) queue, the queue contains a sequence of elements, and the
first element added to the queue is the first one taken out.
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One way to represent a queue would be with a list, but this would mean that one
of the operations add or take would be required to scan to the end of the list. An
alternative commonly used implementation is to represent the queue with two lists
(front, back) where elements are added to the list front, taken from the list back, and
the entire sequence of elements is front @ (List.rev back)—that is, the list back
is represented in reverse order. The first two queue functions can be implemented as
follows.

type ’a queue = (’a list * ’a list) ref

let create () =
ref ([], [])

let add queue x =
let (front, back) = !queue in
queue := (x :: front, back)

In the empty queue, both front and back are empty; the function add simply adds the
element to front and sets the queue reference to the new value.

The function take is only a little more complicated. By default, values are taken
from the list back. If the list back is empty, the elements in front are “shifted” to back
by reversing the list.

let rec take queue =
match !queue with

(front, x :: back) ->
queue := (front, back);
x

| ([], []) ->
raise (Invalid_argument "queue is empty")

| (front, []) ->
queue := ([], List.rev front);
take queue

Note the recursive call to take in the final clause, which restarts the operation once
the elements have been shifted. The worst-case complexity of the function take is
O(n) where n is the number of elements in the queue. However, if we consider the
amortized cost, “charging” the one extra unit of time to each add call to account for the
list reversal, then all operations take constant O(1) amortized time.

7.3 Doubly-linked lists
In the builtin type ’a list, a list element contains a value of type ’a and a link to the
next element of the list. This means that list traversal is always ordered front-to-back.

A doubly-linked list supports efficient traversal in both directions by adding a ad-
ditional link, as shown in Figure 7.3. In addition to a link to the next element, each
element also has a link to the previous element. This is a cyclic data structure, so it will
necessarily be imperative.

To implement the list, we’ll split the operations into two parts: operations on list
elements, and operations on lists. Given a list element, there are operations to get
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x1 x2 x3 x4

List head

Figure 7.3: Doubly-linked list.

the next and previous elements; and there are operations for inserting and removing
elements from a list.

(* The type of elements in the list *)
type ’a elem

val nil_elem : ’a elem
val create_elem : ’a -> ’a elem
val get : ’a elem -> ’a
val prev_elem : ’a elem -> ’a elem
val next_elem : ’a elem -> ’a elem

(* The type of lists with elements of type ’a element *)
type ’a dllist

val create : unit -> ’a dllist
val insert : ’a dllist -> ’a elem -> unit
val remove : ’a dllist -> ’a elem -> unit

The implementation starts with the list elements. A link to an element can be null (at
the end of the list), or it can point to a real element. Instead of having two kinds of
links, we can fold the two cases directly into the element type. The list is designed to
be modified in place, so the links should be references to elements.

type ’a elem =
Nil

| Elem of ’a * ’a elem ref * ’a elem ref

With this type definition in place, the implementation of elements is fairly straightfor-
ward. A fragment is shown below; the omitted functions are similar.

let nil_elem = Nil
let create_elem x = Elem (x, ref Nil, ref Nil)

let get = function
Elem (x, _, _) -> x

| Nil -> raise (Invalid_argument "get")

let prev_elem = function
Elem (_, prev, _) -> !prev

| Nil -> raise (Invalid_argument "prev_elem")
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Next, to implement the doubly-linked list, the list itself can be just be a reference to
the first element. The function create constructs an empty list, and insert adds an
element at the head of the list. The list operations are similar to what we would see on
other imperative languages; the links are modified in place as the list is changed.

type ’a dllist = ’a elem ref

let create () = ref Nil

let insert list elem =
match elem, !list with

Elem (_, prev, next), Nil ->
prev := Nil;
next := Nil;
list := elem

| Elem (_, prev1, next1), (Elem (_, prev2, _) as head) ->
prev1 := Nil;
next1 := head;
prev2 := elem;
list := elem

| Nil, _ ->
raise (Invalid_argument "insert")

In the first case, the new element is added to an empty list; so both pointers are set
to Nil. In the second case, the list has a head element, which is modified so that its
previous link is now the new element.

Removing an element from the list is similar. If the element to be removed is the
head element, then its previous link is Nil, and the list must be updated to refer to the
next element. Otherwise, the forward-link of the previous element must be adjusted.
Similarly, the back-link of the next element must be adjusted.

let remove list elem =
match elem with

Elem (_, prev, next) ->
(match !prev with

Elem (_, _, prev_next) -> prev_next := !next
| Nil -> list := !next);

(match !next with
Elem (_, next_prev, _) -> next_prev := !prev

| Nil -> ())
| Nil ->

raise (Invalid_argument "remove")

7.4 Memoization
Sometimes references and side-effects are used to improve performance without other-
wise changing the behavior of a program. Memoization is an example of this, where a
record is made of function applications as a kind of run-time optimization. If a func-
tion f is pure, and f(e) is computed for some argument e, then any future computation
f(e) will return the same result. When a function f is memoized, the results of func-
tion applications are stored in a table, and the function is called at most once for any
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argument.
In OCaml, we can implement this in a generic way. For immediate purposes, we’ll

represent the memo (the table) as an association list. The memoization itself can be
implemented as a single higher-order function.

val memo : (’a -> ’b) -> (’a -> ’b)

That is, the function memo takes a function and returns a function with the same type.
The intent is that the result should be a function that is equivalent, but perhaps faster.
The memo can be implemented as follows.

1 let memo f =
2 let table = ref [] in
3 let rec find_or_apply entries x =
4 match entries with
5 (x’, y) :: _ when x’ = x -> y
6 | _ :: entries -> find_or_apply entries x
7 | [] ->
8 let y = f x in
9 table := (x, y) :: !table;

10 y
11 in
12 (fun x -> find_or_apply !table x)

The memo table is defined as a mutable table on line 2; the table is filled in with
argument/result pairs as the function is called. Given an argument x, the function
find_or_apply is called to search the table. If a previous entry is found (line 5),
the previous value is returned. Otherwise the function is called (line 8), the result is
saved in the table (line 9) by side-effect, and the value is returned. Let’s try it on a
computation of Fibonacci numbers.

let rec fib = function
0 | 1 as i -> i

| i -> fib (i - 1) + fib (i - 2)

To measure it, we can use the function Sys.time to measure the CPU time taken by the
process.

# let time f x =
let start = Sys.time () in
let y = f x in
let finish = Sys.time () in
Printf.printf "Elapsed time: %f seconds\n" (finish -. start);
y

;;
val time : (’a -> ’b) -> ’a -> ’b = <fun>
# let memo_fib = memo fib;;
val memo_fib : int -> int = <fun>
# time memo_fib 40;;
Elapsed time: 14.581937 seconds
- : int = 102334155
# time memo_fib 40;;
Elapsed time: 0.000009 seconds
- : int = 102334155
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In the the first call, the computation of fib 40 took roughly 15 seconds, while the
second call was nearly instantaneous.

It should be noted that, although this kind of memoization does make use of side-
effects, it has no effect on results of the computation (as long as it is applied to pure
functions). In fact, if a function f is referentially transparent, so is memo f—it behaves
as the original function, except that it trades space for time.

7.5 Graphs
Let’s finish this chapter with a classic algorithm from graph theory: Kruskal’s algo-
rithm for minimum spanning trees. Given a connected, undirected graph, a spanning
tree is a subset of edges that forms a tree and includes every vertex. If edges are as-
signed weights, the minimum spanning tree is the spanning tree with the lowest weight.
The computation of minimum spanning trees has many practical purposes. One of the
original uses was by Czech scientist Oscar Boruvka in 1923 to minimize the cost of
electrical coverage in Bohemia.

Kruskal’s algorithm is specified as follows, for a weighted graph (V, E) with ver-
tices V and edges E.

1. Sort the edges E by weight.

2. For each edge in order of increasing weight, include the edge in the spanning tree
if it would not form a cycle with the edges already in the tree, otherwise discard
it.

The interesting part of the algorithm is step 2. An example is shown in Figure 7.4
for a small graph. First, the two edges with weight 5 are added to the spanning tree.
Next, the edges with weights 6 and 7 are added, but the edge with weight 8 is discarded
because it would produce a cycle. Similarly, the edge with weight 9 is included, but
the edge with weight 11 is discarded, and the final edge 23 is discarded as well.

We can think of the algorithm as working over connected components of the graph.
When an edge (v1, v2) is included in the tree, the connected component containing v1

is merged with the component containing v2. In order to be included in the spanning
tree, the vertices v1 and v2 must belong to separate components—otherwise the edge
would form a cycle.

We can implement this with a union-find data structure, which supports two opera-
tions.

• find : vertex -> vertex, where find v returns a canonical vertex of the set
(connected component) containing v. Two vertices v1 and v2 are in the same
component if find v1 = find v2.

• union : vertex -> vertex -> unit, where union u1 u2 takes the union of
the sets containing canonical elements u1 and u2 (by side-effect).

Step 2 of Kruskal’s algorithm can be written as follows, where the expression
List.iter f edges calls the function f for each edge in the list of edges.
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Figure 7.4: An example run of Kruskal’s algorithm for computing the minimum span-
ning tree of a weighted undirected graph.

(* An edge is a triple (weight, vertex1, vertex2) *)
type ’a edge = float * ’a vertex * ’a vertex

(* A list of edges, sorted by increasing weight *)
let kruskal edges =

let spanning_tree = ref [] in
List.iter (fun ((_, v1, v2) as edge) ->

let u1 = find v1 in
let u2 = find v2 in
if u1 != u2 then begin

(* v1 and v2 belong to different components *)
spanning_tree := edge :: !spanning_tree;
union u1 u2

end) edges;
!spanning_tree

What remains is to specify the type for vertices, and to implement the functions find
and union. One simple way to do so is to organize the vertices in each connected
component into a tree, where each vertex has a pointer to its parent. The root of the
tree is the canonical element returned by the function find. Given roots u1 and u2,
the union operation simply makes one a child of the other. For efficiency, we use the
following heuristics.

• When performing a union, the smaller tree should become a child of the larger.
We’ll save the size of the tree at the root.

• When performing a find v, first find the root u, then traverse the path from v to
u a second time, updating all parent pointers to point to u.
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Both heuristics will tend to make the tree fatter. The second, called path compression,
decreases the cost of subsequent find operations.

We’ll represent a vertex as a pair (label, parent) where label is the label of the
vertex, and parent is the parent link: either Root i for the root vertex, or Parent p if
not. The union operation can be written as follows.

type ’a parent =
Root of int

| Parent of ’a vertex

and ’a vertex = ’a * ’a parent ref

let union ((_, p1) as u1) ((_, p2) as u2) =
match !p1, !p2 with

Root size1, Root size2 when size1 > size2 ->
p2 := Parent u1;
p1 := Root (size1 + size2)

| Root size1, Root size2 ->
p1 := Parent u2;
p2 := Root (size1 + size2)

| _ ->
raise (Invalid_argument "union: not roots")

The find operation is implemented in two parts: the actual find operation simple_find,
and the path compression compress.

let rec compress root (_, p) =
match !p with

Root _ -> ()
| Parent v -> p := Parent root; compress root v

let rec simple_find ((_, p) as v) =
match !p with

Root _ -> v
| Parent v -> simple_find v

let find v =
let root = simple_find v in
compress root v;
root

It can be shown that with these heuristics, the complexity of step 2 of Kruskal’s algo-
rithm is O((n + m)α(n)) where n is the number of vertices n = |V |, m is the number
of edges m = |E|, and α(n) is the inverse of Ackermann’s function. For any practical
n, α(n) is at most 4, so Kruskal’s algorithm effectively takes linear time.

The complexity argument is fairly long (see Kozen [4] for a good explanation), but
the key benefit comes from path compression. Suppose path compression were not
used. The first heuristic would still ensure that path lengths are at most log n because
the tree at least doubles in size along each edge in the path from a vertex to the root
of the tree, leading to a time complexity of O((n + m) log n). However, when path
compression is used, the result of each find operation is effectively memoized, and the
practical cost of the find operation becomes constant.

The principal motivation behind this example is to show that, in some cases, im-
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perative programming can be both simple and efficient. While it is always possible
to recode these algorithms in a pure functional language, it is not always natural, and
equivalent performance may not be achievable.
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7.6 Exercises
Exercise 7.1 What is the value of the following expressions?

1. let x = ref 1 in let y = x in y := 2; !x

2. let x = ref 1 in let y = ref 1 in y := 2

3. let x = ref 1 in
let y = ref x in
!y := 2;
!x

4. let fst (x, _) = x in
let snd (_, x) = x in
let y = ref 1 in
let x = (y, y) in
fst x := 2;
!(snd x)

5. let x = ref 0 in
let y = ref [5; 7; 2; 6] in
while !y <> [] do

x := !x + 1;
y := List.tl !y

done;
!x

Exercise 7.2 A lazy value is a computation that is deferred until it is needed; we say
that it is forced. A forced value is memoized, so that subsequent forcings do not reeval-
uate the computation. The OCaml standard library already provides an implementation
of lazy values in the Lazy module, but we can also construct them ourselves using ref-
erence cells and functions.

type ’a deferred
val defer : (unit -> ’a) -> ’a deferred
val force : ’a deferred -> ’a

Implement the type ’a deferred and the functions defer and force.

Exercise 7.3 A lazy list is a list where the tail of the list is a deferred computation (a
lazy list is also called a stream). The type can be defined as follows, where the type
deferred is defined as in Exercise 7.2.

type ’a lazy_list =
Nil

| Cons of ’a * ’a lazy_list
| LazyCons of ’a * ’a lazy_list deferred

Define the following functions on lazy lists.

val nil : ’a lazy_list
val cons : ’a -> ’a lazy_list -> ’a lazy_list
val lazy_cons : ’a -> (unit -> ’a lazy_list) -> ’a lazy_list
val is_nil : ’a lazy_list -> bool
val head : ’a lazy_list -> ’a
val tail : ’a lazy_list -> ’a lazy_list
val (@@) : ’a lazy_list -> ’a lazy_list -> ’a lazy_list
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The expression l1 @@ l2 appends two lazy lists in constant time.

Exercise 7.4 The FIFO queues described in Section 7.2 are imperative; whenever a
value is added to or taken from the queue, the queue is modified by side-effect. Imple-
ment a persistent queue with the following operations.

val empty : ’a queue
val add : ’a queue -> ’a -> ’a queue
val take : ’a queue -> ’a * ’a queue

The expression add queue e produces a new queue, without affecting the contents of
the original queue queue. The expression take queue returns an element of the queue
queue and a new queue; again, the contents of the original queue queue are unaffected.

? Can you implement the queue so that any sequence of n add and take opera-
tions, in any order, take O(n) time? Hint: consider using lazy lists (Exercise 7.3) to
represent the queue, shifting the queue whenever the front is longer than the back. See
Okasaki [8].

Exercise 7.5 One problem with the memoization function
memo : (’a -> ’b) -> (’a -> ’b) in Section 7.4 is that it ignores recursive
definitions. For example, the expression memo fib i still takes exponential time in i to
compute.

To solve this, we’ll need to modify the recursive definition for fib and per-
form an explicit memoization. Implement the following types and functions, where
fib = memo_fib (create_memo ()). How fast is the Fibonacci function now?

type (’a, ’b) memo
val create_memo : unit -> (’a, ’b) memo
val memo_find : (’a, ’b) memo -> ’a -> ’b option
val memo_add : (’a, ’b) memo -> ’a -> ’b -> unit
val memo_fib : (int, int) memo -> int -> int

let fib = memo_fib (create_memo ())

Exercise 7.6 One way to represent a directed graph is with an adjacency list stored
directly in each vertex. Each vertex has a label and a list of out-edges; we also include
a “mark” flag and an integer to be used by a depth-first-search.

type ’a vertex =
(* Vertex (label, out-edges, dfs-mark, dfs-index) *)
Vertex of ’a * ’a vertex list ref * bool ref * int option ref

type ’a directed_graph = ’a vertex list

Depth-first search and breadth-first search are two highly useful graph algorithms. A
depth-first search (DFS) traverses the graph, assigning to each vertex a DFS index and
marking a vertex v when all out-edges of v have been explored. The DFS search is
performed as follows.

Choose an unmarked vertex u in the graph, push out-edges (u, v) onto a stack.
Assign u DFS index 0, set the DFS counter c to 1, and then repeat the following until
the stack is empty.
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1. Pop an edge (u, v) from the stack, and classify it according to the following
table.

Condition Edge type for (u, v)
v does not have a DFS index tree edge
DFS(u) < DFS(v) forward edge
DFS(u) > DFS(v) and v not marked back edge
DFS(u) > DFS(v) and v marked cross edge

2. If (u, v) is a tree edge, assign v the current DFS index c, increment c, and push
all edges (v, w) onto the stack.

3. When all edges (u, v) have been considered, mark the vertex u.

Repeat until all vertices have been marked. A graph is cyclic iff the DFS search found
any back-edges.

Implement a DFS search. You can assume that all vertices are initially unmarked
and their DFS index is None.

Exercise 7.7 One issue with graph data structures is that some familiar operations are
hard to implement. For example, consider the following representation (similar to the
previous exercise) for a directed graph.

(* Vertex (label, out-edges) *)
type ’a vertex = Vertex of ’a * ’a vertex list ref
type ’a directed_graph = ’a vertex list

Suppose we want to define a polymorphic map function on graphs.

val graph_map : (’a -> ’b) -> ’a directed_graph -> ’b directed_graph

Given an arbitrary function f : ’a -> ’b and a graph g, the expression
graph_map f g should produce a graph isomorphic to g, but where f has been applied
to each label. Is the function graph_map definable? If so, describe the implementation.
If not, explain why not. Is there another implementation of graphs where graph_map
can be implemented efficiently?
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Chapter 8

Records, Arrays, and String

Records, arrays, and strings are aggregate data types. A record is like a tuple where
the elements of the tuple are named. Arrays and strings are fixed-length sequences of
data supporting random access to the elements in constant time. All three types support
mutation of elements, by assignment.

8.1 Records
A record is a labeled collection of values of arbitrary types. The syntax for a record
type is a set of field type definitions surrounded by braces, and separated by semicolons.
Fields are declared as label : type, where the label is an identifier that must begin
with a lowercase letter or an underscore. For example, the following record redefines
the database entry from Chapter 5.

# type db_entry =
{ name : string;

height : float;
phone : string;
salary : float

};;
type db_entry = { name: string; height: float;

phone: string; salary: float }

The syntax for a record value is similar to the type declaration, but the fields are defined
as label = expr. Here is an example database entry.

# let jason =
{ name = "Jason";

height = 6.25;
phone = "626-555-1212";
salary = 50.0

};;
val jason : db_entry =

{name="Jason"; height=6.25;
phone="626-555-1212"; salary=50}
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There are two ways to access the fields in a record. The projection operation r.l returns
the field labeled l in record r.

# jason.height;;
- : float = 6.25
# jason.phone;;
- : string = "626-555-1212"

Pattern matching can also be used to access the fields of a record. The syntax for a
pattern is like a record value, but the fields contain a label and a pattern label = patt.
Not all of the fields have to be included. Note that the binding occurrences of the
variables n and h occur to the right of the equality symbol in their fields.

# let { name = n; height = h } = jason;;
val n : string = "Jason"
val h : float = 6.25

8.1.1 Functional and imperative record updates
There is a functional update operation that produces a copy of a record with new values
for the specified fields. The syntax for functional update uses the with keyword in a
record definition.

# let dave = { jason with name = "Dave"; height = 5.9 };;
val dave : db_entry =

{name="Dave"; height=5.9; phone="626-555-1212"; salary=50}
# jason;;
- : db_entry = {name="Jason"; height=6.25;

phone="626-555-1212"; salary=50}

Record fields can also be modified by assignment, but only if the record field is declared
as mutable in the type definition for the record. The syntax for a mutable field uses the
mutable keyword before the field label. For example, if we wanted to allow salaries to
be modified, we would need to declare the field salary as mutable.

# type db_entry =
{ name : string;

height : float;
phone : string;
mutable salary : float

};;
type db_entry =

{ name: string;
height: float;
phone: string;
mutable salary: float }

# let jason =
{ name = "Jason";

height = 6.25;
phone = "626-555-1212";
salary = 50.0

};;
val jason : db_entry =

{name="Jason"; height=6.25; phone="626-555-1212"; salary=50}
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The syntax for a field update is r.label <- expr. For example, if we want to give
jason a raise, we would use the following statement.

# jason.salary <- 150.0;;
- : unit = ()
# jason;;
- : db_entry = {name="Jason"; height=6.25; phone="626-555-1212"; salary=150}

Note that the assignment statement itself returns the canonical unit value (). That is, it
doesn’t return a useful value, unlike the functional update. A functional update creates
a completely new copy of a record; assignments to the copies do not interfere.

# let dave = { jason with name = "Dave" };;
val dave : db_entry =

{name="Dave"; height=6.25; phone="626-555-1212"; salary=150}
# dave.salary <- 180.0;;
- : unit = ()
# dave;;
- : db_entry = {name="Dave"; height=6.25; phone="626-555-1212"; salary=180}
# jason;;
- : db_entry = {name="Jason"; height=6.25; phone="626-555-1212"; salary=150}

8.1.2 Field label namespace
One important point: the namespace for toplevel record field labels is flat. This is
important if you intend to declare records with the same field names. If you do, the
original labels will be lost! For example, consider the following sequence.

# type rec1 = { name : string; height : float };;
type rec1 = { name: string; height: float }
# let jason = { name = "Jason"; height = 6.25 };;
val jason : rec1 = {name="Jason"; height=6.25}
# type rec2 = { name : string; phone : string };;
type rec2 = { name: string; phone: string }
# let dave = { name = "Dave"; phone = "626-555-1212" };;
val dave : rec2 = {name="Dave"; phone="626-555-1212"}
# jason.name;;
Characters 0-5:
This expression has type rec1 but is here used with type rec2
# dave.name;;
- : string = "Dave"
# let bob = { name = "Bob"; height = 5.75 };;
Characters 10-41:
The label height belongs to the type rec1
but is here mixed with labels of type rec2

In this case, the name field was redefined in the type definition for rec2. At this point,
the original rec1.name label is lost, making it impossible to access the name field in a
value of type rec1, and impossible to construct new values of type rec1. It is, however,
permissible to use the same label names in separate files, as we will see in Chapter 12.
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8.2 Arrays
Arrays are fixed-size vectors of values. All of the values must have the same type. The
fields in the array can be accessed and modified in constant time. Arrays can be created
with the syntax [| e1; e2; · · ·; en |], which creates an array of length n initialized
with the values computed from the expressions e1, . . . , en.

# let a = [|1; 3; 5; 7|];;
val a : int array = [|1; 3; 5; 7|]

Fields can be accessed with the a.(i) construction. Array indexes start from 0, and
runtime checking is used to ensure that indexes are within the array bounds.

# a.(0);;
- : int = 1
# a.(1);;
- : int = 3
# a.(5);;
Uncaught exception: Invalid_argument("Array.get")

Fields are updated with the a.(i) <- e assignment statement.

# a.(2) <- 9;;
- : unit = ()
# a;;
- : int array = [|1; 3; 9; 7|]

The Array library module defines additional functions on arrays. Arrays of arbitrary
length can be created with the Array.create function, which requires a length and
initializer argument. The Array.length function returns the number of elements in the
array.

# let a = Array.create 10 1;;
val a : int array = [|1; 1; 1; 1; 1; 1; 1; 1; 1; 1|]
# Array.length a;;
- : int = 10

The Array.blit function can be used to copy elements destructively from one array to
another. The blit function requires five arguments: the source array, a starting offset
into the array, the destination array, a starting offset into the destination array, and the
number of elements to copy.

# Array.blit [| 3; 4; 5; 6 |] 1 a 3 2;;
- : unit = ()
# a;;
- : int array = [|1; 1; 1; 4; 5; 1; 1; 1; 1; 1|]

8.3 Strings
In OCaml, strings are a lot like packed arrays of characters. The access and update
operations use the syntax s.[i] and s.[i] <- c.
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John 555-1212 Jane 271-3257

Joan 374-5555

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22

John Joan

hash(“John”)=1 hash(“Joan”)=14

Figure 8.1: An open hash table.

# let s = "Jason";;
val s : string = "Jason"
# s.[2];;
- : char = ’s’
# s.[3] <- ’y’;;
- : unit = ()
# s;;
- : string = "Jasyn"

The String module defines additional functions, including the String.length and
String.blit functions that parallel the corresponding Array operations. The
String.create function does not require an initializer. It creates a string with arbi-
trary contents.

# String.create 10;;
- : string = "\000\011\000\000,\200\027x\000\000"
# String.create 10;;
- : string = "\196\181\027x\001\000\000\000\000\000"

8.4 Hash tables
To illustrate these types in action, let’s implement (yet another) dictionary, this time in
the form of a hash table. A hash table provides the usual map from keys to values, but
this time the expected running time for lookup and insertion is constant. The hash table
works by computing an integer hash of a key that serves as an index into an array of
dictionary entries. Insertion is performed by adding a new entry to the table at the hash
index of the key; lookup is performed by searching for an entry with a matching key at
the key’s hash index. An example of a hash table is shown in Figure 8.1.

In the usual case, the space of indices is smaller than the space of keys, so hash
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collisions may occur where two keys hash to the same index. Hash collisions can
have a significant impact on performance. The hash table in the figure shows a so-
called “chained” implementation, where entries with the same hash are stored in a list
associated with that index.

For our example, we’ll implement a simple hash table where the keys are strings,
and the table is polymorphic over the type of values. One approach to producing a
fast, fairly good hash is called a s-box (for substitution box), which uses a table of
randomly-generated numbers.

1 let random_numbers =
2 [|0x04a018c6; 0x5ba7b0f2; 0x04dcf08b; 0x1e5a22cc; 0x2523b9ea; · · ·|]
3 let random_length = Array.length random_numbers
4

5 type hash_info = { mutable hash_index : int; mutable hash_value : int }
6

7 let hash_char info c =
8 let i = Char.code c in
9 let index = (info.hash_index + i + 1) mod random_length in

10 info.hash_value <- (info.hash_value * 3) lxor random_numbers.(index);
11 info.hash_index <- index

The record type hash_info has two fields: the hash_index is an index into the random
number array, and hash_value is the partially computed hash. The function hash_char
uses the character to update the hash_index and updates the hash_value by taking the
exclusive-or with a random integer. The hash of a string is computed one character at
a time.

12 let hash s =
13 let info = { hash_index = 0; hash_value = 0 } in
14 for i = 0 to String.length s - 1 do
15 hash_char info s.[i]
16 done;
17 info.hash_value

Note that the bounds in the for-loop on line 3 are inclusive; the index of the first char-
acter in the string is 0, and the final character has index String.length s - 1.

The hash table itself is an array of key/value pair lists (called buckets), as shown in
the following code.

18 type ’a hash_entry = { key : string; value : ’a }
19 type ’a hash_table = ’a hash_entry list array
20

21 (* create : unit -> ’a hash_table *)
22 let create () =
23 Array.create 101 []
24

25 (* add : ’a hash_table -> string -> ’a -> unit *)
26 let add table key value =
27 let index = (hash key) mod (Array.length table) in
28 table.(index) <- { key = key; value = value } :: table.(index)
29

30 (* find : ’a hash_table -> string -> ’a *)
31 let rec find_entry key = function
32 { key = key’; value = value } :: _ when key’ = key -> value
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33 | _ :: entries -> find_entry key entries
34 | [] -> raise Not_found
35

36 let find table key =
37 let index = (hash key) mod (Array.length table) in
38 find_entry key table.(index)

The function add : ’a hash_table -> string -> ’a -> unit adds a new entry to
the table by adding the key/value pair to the table at the hash index for the key. The
function find : ’a hash_table -> string -> ’a searches the table for the entry
containing the key.
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8.5 Exercises
Exercise 8.1 Reference cells are a special case of records, with the following type
definition.

type ’a ref = { mutable contents : ’a }

Implement the operations on reference cells.

val ref : ’a -> ’a ref
val (!) : ’a ref -> ’a
val (:=) : ’a ref -> ’a -> unit

Exercise 8.2 Consider the following record type definition.

type (’a, ’b) mpair = { mutable fst : ’a; snd : ’b }

What are the types of the following expressions?

1. [|[]|]

2. { fst = []; snd = [] }

3. { { fst = (); snd = 2 } with fst = 1 }

Exercise 8.3 Records can be used to implement abstract data structures, where the
data structure is viewed as a record of functions, and the data representation is hidden.
For example, a type definition for a functional dictionary is as follows.

type (’key, ’value) dictionary =
{ insert : ’key -> ’value -> (’key, ’value) dictionary;

find : ’key -> ’value
}

val empty : (’key, ’value) dictionary

Implement the empty dictionary empty. Your implementation should be pure, without
side-effects. You are free to use any internal representation of the dictionary.

Exercise 8.4 Records can also be used to implement a simple form of object-oriented
programming. Suppose we are implementing a collection of geometric objects (blobs),
where each blob has a position, a function (called a method) to compute the area cov-
ered by the blob, and methods to set the position and move the blob. The following
record defines the methods for a generic object.

type blob =
{ get : unit -> float * float;

area : unit -> float;
set : float * float -> unit;
move : float * float -> unit

}

An actual object like a rectangle might be defined as follows.
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let new_rectangle x y w h =
let pos = ref (x, y) in
let rec r =

{ get = (fun () -> !pos);
area = (fun () -> w *. h);
set = (fun loc -> pos := loc);
move = (fun (dx, dy) ->

let (x, y) = r.get () in
r.set (x +. dx, y +. dy))

}
in
r

The rectangle record is defined recursively so that the method move can be defined in
terms of get and set.

Suppose we have created a new rectangle rect1, manipulated it, and now we want
to fix it in position. We might try to do this by redefining the method set.

let rect1 = new_rectangle 0.0 0.0 1.0 1.0 in
rect1.move 1.2 3.4; · · ·
let rect2 = { rect1 with set = (fun _ -> ()) }

1. What happens to rect2 when rect2.move is called? How can you prevent it
from moving?

2. What happens to rect2 when rect1.set is called?

Exercise 8.5 Write a function string_reverse : string -> unit to reverse a string
in-place.

Exercise 8.6 What problem might arise with the following implementation of an array
blit function? How can it be fixed?

let blit src src_off dst dst_off len =
for i = 0 to len - 1 do

dst.(dst_off + i) <- src.(src_off + i)
done

Exercise 8.7 Insertion sort is a sorting algorithm that works by inserting elements one-
by-one into an array of sorted elements. Although the algorithm takes O(n2) time to
sort an array of n elements, it is simple, and it is also efficient when the array to be
sorted is small. The pseudo-code is as follows.

insert(array a, int i)
x <- a[i]
j <- i - 1
while j >= 0 and a[j] > x

a[j] <- a[j - 1]
j = j - 1

a[j + 1] <- x

insertion_sort(array a)
i <- 1
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while i < length(a)
insert(a, i)
i <- i + 1

Write this program in OCaml.
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Chapter 9

Exceptions

Exceptions are used in OCaml as a control mechanism, either to signal errors, or control
the flow of execution in some other way. In their simplest form, exceptions are used
to signal that the current computation cannot proceed because of a run-time error. For
example, if we try to evaluate the quotient 1 / 0 in the toploop, the runtime signals
a Division_by_zero error, the computation is aborted, and the toploop prints an error
message.

# 1 / 0;;
Exception: Division_by_zero.

Exceptions can also be defined and used explicitly by the programmer. For example,
suppose we define a function head that returns the first element in a list. If the list is
empty, we would like to signal an error.

# exception Fail of string;;
exception Fail of string
# let head = function

h :: _ -> h
| [] -> raise (Fail "head: the list is empty");;

val head : ’a list -> ’a = <fun>
# head [3; 5; 7];;
- : int = 3
# head [];;
Exception: Fail "head: the list is empty".

The first line of this program defines a new exception, declaring Fail as an exception
with a string argument. The head function uses pattern matching—the result is h if the
list has first element h; otherwise, there is no first element, and the head function raises
a Fail exception. The expression (Fail "head: the list is empty") is a value of
type exn; the raise function is responsible for aborting the current computation.

# Fail "message";;
- : exn = Fail "message"
# raise;;
- : exn -> ’a = <fun>
# raise (Fail "message");;
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Exception: Fail "message".

The type exn -> ’a for the raise function may seem striking at first—it appears to say
that the raise function can produce a value having any type. In fact, what it really means
is that the raise function never returns, and so the type of the result doesn’t matter.
When a raise expression occurs in a larger computation, the entire computation is
aborted.

# 1 + raise (Fail "abort") * 21;;
Exception: Fail "abort".

When an exception is raised, the current computation is aborted, and control is passed
directly to the currently active exception handler, which in this case is the toploop itself.

It is also possible to define explicit exception handlers. Exception handlers have the
same form as a match pattern match, but using the try keyword instead. The syntax is
as follows.

try expressiont with
| pattern1 -> expression1
| pattern2 -> expression2

.

.

.
| patternn -> expressionn

First, expressiont is evaluated. If it does not raise an exception, its value is returned as
the result of the try statement. Otherwise, if an exception is raised during evaluation
of e, the exception is matched against the patterns pattern1, . . . , patternn. If the first
pattern to match the exception is patterni, the expression expressioni is evaluated and
returned as the result of the entire try expression. Unlike a match expression, there
is no requirement that the pattern matching be complete. If no pattern matches, the
exception is not caught, and it is propagated to the next exception handler (which may
be the toploop).

For example, suppose we wish to define a function head_default, similar to head,
but returning a default value if the list is empty. One way would be to write a new
function from scratch, but we can also choose to handle the exception from head.

# let head_default l default =
try head l with

Fail _ -> default;;
val head_default : ’a list -> ’a -> ’a = <fun>
# head_default [3; 5; 7] 0;;
- : int = 3
# head_default [] 0;;
- : int = 0

In this case, if evaluation of head l raises an exception Fail, the value default is
returned.
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9.1 Nested exception handlers
Exceptions are handled dynamically, and at run-time there may be many active excep-
tion handlers. To illustrate this, let’s consider an alternate form of a list-map function,
defined using a function split that splits a non-empty list into its head and tail.

# exception Empty;;
exception Empty
# let split = function

h :: t -> h, t
| [] -> raise Empty;;

val split : ’a list -> ’a * ’a list = <fun>
# let rec map f l =

try
let h, t = split l in

f h :: map f t
with

Empty -> [];;
val map : (’a -> ’b) -> ’a list -> ’b list = <fun>
# map (fun i -> i + 1) [3; 5; 7];;
- : int list = [4; 6; 8]

The call to map on the three-element list [3; 5; 7] results in four recursive calls
corresponding to map f [3; 5; 7], map f [5; 7], map f [7], and map f [], before
the function split is called on the empty list. Each of the calls defines a new exception
handler.

It is appropriate to think of these handlers forming an exception stack correspond-
ing to the call stack (this is, in fact, the way it is implemented in the OCaml implemen-
tation from INRIA). When a try expression is evaluated, a new exception handler is
pushed onto the the stack; the handler is removed when evaluation completes. When
an exception is raised, the entries of the stack are examined in stack order. If the top-
most handler contains a pattern that matches the raised exception, it receives control.
Otherwise, the handler is popped from the stack, and the next handler is examined.

In our example, when the split function raises the Empty exception, the top four
elements of the exception stack contain handlers corresponding to each of the recursive
calls of the map function. When the Empty exception is raised, control is passed to the
innermost call map f [], which returns the empty list as a result.

map f []
map f [7]
map f [5; 7]
map f [3; 5; 7]

This example also contains a something of a surprise. Suppose the function f raises the
Empty exception. The program gives no special status to f, and control is passed to the
uppermost handler on the exception stack. As a result, the list is truncated at the point
where the exception occurs.

# map (fun i ->
if i = 0 then

raise Empty
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else
i + 1) [3; 5; 0; 7; 0; 9];;

- : int list = [4; 6]

9.2 Examples of uses of exceptions
Like many other powerful language constructs, exceptions can used to simplify pro-
grams and improve their clarity. They can also be abused. In this section we cover
some standard uses of exceptions.

9.2.1 The exception Not_found
The OCaml standard library uses exceptions for several different purposes. One of
the most common exceptions is Not_found, which is raised by functions that perform
searching or lookup. There are many such functions in OCaml. One is the function
List.assoc, which searches for a key-value pair in an association. For example, sup-
pose we were implementing a grading program where the grades are represented as a
list of name/grade pairs.

# let grades = [("John", "C+"); ("Jane", "A+"); ("Joan", "B")];;
val grades : (string * string) list = ...
# List.assoc "Jane" grades;;
- : string = "A+"
# List.assoc "June" grades;;
Exception: Not_found.

In typical programs, Not_found exceptions routinely occur and can be expected to
happen during normal program operation.

9.2.2 Invalid_argument and Failure
An Invalid_argument exception means that some kind of runtime error occurred, like
an array bounds violation. The string argument describes the error.

# let a = [|5; 6; 7|];;
val a : int array = [|5; 6; 7|]
# a.(2);;
- : int = 7
# a.(3);;
Exception: Invalid_argument "index out of bounds".

The exception Failure is similar to Invalid_argument, but it is usually used for less
severe errors. A Failure exception also includes a string describing the failure. The
standard convention is that this string should be the name of the function that failed.

# int_of_string "0xa0";;
- : int = 160
# int_of_string "0xag";;
Exception: Failure "int_of_string".
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The Invalid_argument and Failure exceptions are quite similar—they each indicate
a run-time error, using a string to describe it, so what is the difference?

The difference is primarily a matter of style. The Invalid_argument exception is
usually used to indicate programming errors, or errors that should never happen if the
program is correct. The Failure exception is used to indicate errors that are more
benign, where it is possible to recover, or where the cause is often due to external un-
controllable events (for example, when a string 0xag is read in a place where a number
is expected).

For illustration, let’s return to the grading example, but suppose the grades are
stored separately from the names. We are given a pair of lists, names and grades, that
describe the students taking a class. We are told that every student in the class must
have a grade, but not every student is taking the class. We might define the function
to return a student’s grade by recursively searching through the two lists until the entry
for the student is found.

let rec find_grade name (names, grades) =
match names, grades with

name’ :: _, grade :: _ when name’ = name -> grade
| _ :: names’, _ :: grades’ -> find_grade name (names’, grades’)
| [], [] -> raise (Failure ("student is not enrolled: " ^ name))
| (_ :: _), [] | [], (_ :: _) -> raise (Invalid_argument "corrupted database")

The function find_grade searches the lists, returning the first match if there is one.
If the lists have different lengths, an Invalid_argument exception is raised because,
1) the implementation assumes that the lists have the same length, so the error vio-
lates a program invariant, and 2) there is no easy way to recover. The pattern [], []
corresponds to the case where the student is not found, but the lists have the same
length. This is expected to occur during normal operation, so the appropriate exception
is Failure (or Not_found since this is a search function).

As a matter of style, it’s considered bad practice to catch Invalid_argument excep-
tions (in fact, some early OCaml implementations did not even allow it). In contrast,
Failure exceptions are routinely caught in order to recover from correctable errors.

9.2.3 Pattern matching failure
When a pattern matching is incompletely specified, the OCaml compiler issues a warn-
ing (and a suggestion for the missing pattern). At runtime, if the matching fails because
it is incomplete, the Match_failure exception is raised with three values: the name of
the file, the line number, and the character offset within the line where the match failed.
It is often considered bad practice to catch the Match_failure exception because the
failure indicates a programming error (proper programming practice would dictate that
all pattern matches be complete).

# let f x =
match x with

Some y -> y;;
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Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None
val f : ’a option -> ’a = <fun>
# f None;;
Exception: Match_failure ("", 2, 3).

9.2.4 Assertions
Another common use of exceptions is for checking runtime invariants. The assert
operator evaluates a Boolean expression, raising an Assert_failure exception if the
value is false. For example, in the following version of the factorial function, an
assertion is used to generate a runtime error if the function is called with a negative
argument. The three arguments represent the file, line, and character offset of the
failed assertion. As with Invalid_argument and Match_failure, it is considered bad
programming practice to catch the Assert_failure exception.

# let rec fact i =
assert (i >= 0);
if i = 0 then

1
else

i * fact (i - 1);;
val fact : int -> int = <fun>
# fact 10;;
- : int = 3628800
# fact (-10);;
Exception: Assert_failure ("", 9, 3).

9.2.5 Memory exhaustion exceptions
The two exceptions Out_of_memory and Stack_overflow indicate that memory re-
sources have been exhausted. The Out_of_memory exception is raised by the garbage
collector when there is insufficient memory to continue running the program. The
Stack_overflow exception is similar, but it is restricted to just stack space. The
Stack_overflow exception is often caused by an infinite loop, or excessively deep
recursion, for example, using the function List.map on a list with more than a few
thousand elements.

Both errors are severe, and the exceptions should not be caught casually. For the
exception Out_of_memory it is often useless to catch the exception without freeing some
resources, since the exception handler will usually not be able to execute if all memory
has been exhausted.

Catching the Stack_overflow exception is not advised for a different reason. Al-
though the Stack_overflow exception can be caught reliably by the byte-code inter-
preter, it is not supported by the native-code compiler on all architectures. In many
cases, a stack overflow will result in a system error (a “segmentation fault”), instead of
a runtime exception. For portability, it is often better to avoid catching the exception.
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9.3 Other uses of exceptions
Exceptions are also frequently used to modify the control flow of a program, without
necessarily being associated with any kind of error condition.

9.3.1 Decreasing memory usage
As a simple example, suppose we wish to write a function to remove the first occur-
rence of a particular element x in a list l. The straightforward implementation is defined
as a recursive function.

let rec remove x = function
y :: l when x = y -> l

| y :: l (* x <> y *) -> y :: remove x l
| [] -> []

The function remove function searches through the list for the first occurrence of an
element y that is equal to x, reconstructing the list after the removal.

One problem with this function is that the entire list is copied needlessly when
the element is not found, potentially increasing the space needed to run the program.
Exceptions provide a convenient way around this problem. By raising an exception in
the case where the element is not found, we can avoid reconstructing the entire list. In
the following function, when the Unchanged exception is raised, the remove function
returns the original list l.

exception Unchanged

let rec remove_inner x = function
y :: l when x = y ->

l
| y :: l (* x <> y *) ->

y :: remove_inner x l
| [] ->

raise Unchanged

let remove x l =
try remove_inner x l with

Unchanged ->
l

9.3.2 Break statements
OCaml provides both “for” and “while” loops, but there is no “break” statement as
found in languages like C and Java. Instead, exceptions can be used to abort a loop
prematurely. To illustrate this, suppose we want to define a function cat that prints out
all the lines from the standard input channel. We discuss input/output in more detail
in Section 10, but for this problem we can just use the standard functions input_char
to read a character from the input channel, and output_char to write it to the output
channel. The input_char function raises the exception End_of_file when the end of
the input has been reached.
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let cat in_channel out_channel =
try

while true do
output_char out_channel (input_char in_channel)

done
with

End_of_file ->
()

The function cat defines an infinite loop (while true do... done) to copy the input
data to the output channel. When the end of the input has been reached, the input_char
function raises the End_of_file exception, breaking out of the loop, returning the ()
value as the result of the function.

9.3.3 Unwind-protect (finally)
In some cases where state is used, it is useful to define a “finally” clause (similar to an
“unwind-protect” as seen in Lisp languages). The purpose of a “finally” clause is to
execute some code (usually to clean up) after an expression is evaluated. In addition,
the finally clause should be executed even if an exception is raised. A generic finally
function can be defined using a wildcard exception handler. In the following function,
the type result is used to represent the result of executing the function f on argument
x, returning a Success value if the evaluation was successful, and Failed otherwise.
Once the result is computed, the cleanup function is called, and 1) the result is returned
on Success, or 2) the exception is re-raised on Failed.

type ’a result =
Success of ’a

| Failed of exn

let finally f x cleanup =
let result =

try Success (f x) with
exn ->

Failed exn
in

cleanup ();
match result with

Success y -> y
| Failed exn -> raise exn

For example, suppose we wish to process in input file. The file should be opened, pro-
cessed, and it should be closed afterward, whether or not the processing was successful.
We can implement this as follows.

let process in_channel = · · ·

let process_file file_name =
let in_channel = open_in file_name in

finally process in_channel (fun () -> close_in in_channel)

In this example the function finally is used to ensure that the channel in_channel
is closed after the input file is processed, whether or not the process function was
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successful.

9.3.4 The exn type
We close with a somewhat unorthodox use of exceptions completely unrelated to con-
trol flow. Exceptions (values of the exn type) are first-class values; they can be passed
as arguments, stored in data structures, etc. The values in the exn type are specified
with exception definitions. One unique property of the exn type is that it is open so
that new exceptions can be declared when desired. This mechanism can be used to
provide a kind of dynamic typing, somewhat like the polymorphic variants discussed
in Section 6.5.

For example, suppose we want to define a list of values, where the type of the
values can be extended as desired. Initially, we might want lists containing strings and
integers. Suppose we wish to define a function succ that increments every integer in
the list, preserving all other values.

# exception String of string;;
# exception Int of int;;
# let succ l =

List.map (fun x ->
match x with

Int i -> Int (i + 1)
| _ -> x) l;;

val succ : exn list -> exn list = <fun>
# let l = succ [String "hello"; Int 1; Int 7];;
val l : exn list = [String "hello"; Int 2; Int 8]

Later, we might also decide to add floating-point numbers to the list, with their own
successor function.

# exception Float of float;;
exception Float of float
# let succ_float l =

List.map (fun x ->
match x with

Float y -> Float (y +. 1.0)
| _ -> x) l;;

val succ_float : exn list -> exn list = <fun>
# succ_float (Float 2.3 :: l);;
- : exn list = [Float 3.3; String "hello"; Int 2; Int 8]

The main purpose of this example is to illustrate properties of exception values. In
cases where extendable unions are needed, the use of polymorphic variants is more
appropriate. Needless to say, it can be quite confusing to encounter data structures
constructed from exceptions!
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9.4 Exercises
Exercise 9.1 Which of the following are legal expressions?

1. exception A

2. exception b

3. exception C of string

4. exception D of exn

5. exception E of exn let x = E (E (E Not_found))

6. let f () = exception F raise F

Exercise 9.2 What is the result of evaluating the following programs?

1. exception A
try raise A with

A -> 1

2. exception A of int
let f i =

raise (A (100 / i));;
let g i =

try f i with
A j -> j;;

g 100

3. exception A of int
let rec f i =

if i = 0 then
raise (A i)

else
g (i - 1)

and g i =
try f i with

A i -> i + 1;;
g 2

Exercise 9.3 In the following program, the function sum_entries sums up the integer
values associated with each name in the list names. The List.assoc function finds
the value associated with the name, raising the Not_found exception if the entry is not
found. For example, the expression sum_entries 0 ["a"; "c"] would evaluate to 35,
and the expression sum_entries 0 ["a"; "d"] would raise the Not_found exception.

let table = [("a", 10); ("b", 20); ("c", 25)]
let rec sum_entries total (names : string list) =

match names with
name :: names’ ->

sum_entries (total + List.assoc name table) names’
| [] ->

total
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Suppose we wish to catch the exception, arbitrarily assigning a value of 0 to each
unknown entry. What is the difference between the following two functions? Which
form is preferable?

1. let table = [("a", 10); ("b", 20); ("c", 25)]
let rec sum_entries total (names : string list) =

match names with
name :: names’ ->

(try sum_entries (total + List.assoc name table) names’ with
Not_found ->

sum_entries total names’)
| [] ->

total

2. let table = [("a", 10); ("b", 20); ("c", 25)]
let rec sum_entries total (names : string list) =

match names with
name :: names’ ->

let i =
try List.assoc name table with

Not_found ->
1

in
sum_entries (total + i) names’

| [] ->
total

Exercise 9.4 Suppose we are given a table as in the last exercise, and we wish to call
some function f on one of the entries, or returning 0 if the entry is not found. That
is, we are given the function f, and a name, and we wish to evaluate f (List.assoc
table name). What is the difference between the following functions?

1. let callf f name =
try f (List.assoc table name) with

Not_found ->
0

2. let callf f name =
let i =

try Some (List.assoc table name) with
Not_found ->

None
in

match i with
Some j -> f j

| None -> 0

Exercise 9.5 The expression input_line stdin reads a line of text from standard in-
put, returning the line as a string, or raising the exception End_of_file if the end of
the file has been reached. Write a function input_lines to read all the lines from the
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channel stdin, returning a list of all the lines. The order of the lines in the list does not
matter.
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Chapter 10

Input and Output

The I/O library in OCaml is fairly expressive, including a library (the Unix library) that
implements a set of system calls that are portable across the platforms on which OCaml
runs. In this chapter, we’ll cover many of the standard built-in I/O functions.

The I/O library starts by defining two data types: the type in_channel specifies
an I/O channel from which characters can be read, and the type out_channel specifies
an I/O channel to which characters can be written. I/O channels may represent files,
communication channels, or some other device; the exact operation depends on the
context.

At program startup, there are three channels open, corresponding to the standard
file descriptors in Unix; stdin is the standard input stream, stdout is the standard
output stream, and stderr is the standard output stream for error messages.

val stdin : in_channel
val stdout : out_channel
val stderr : out_channel

10.1 File opening and closing
There are two functions to open an output file: the function open_out opens a file for
writing text data, and the function open_out_bin opens a file for writing binary data.
These two functions are identical on a Unix system. On some Macintosh and Microsoft
Windows systems, the open_out function performs line termination translation, while
the open_out_bin function writes the data exactly as written. These functions raise the
exception Sys_error if the file can’t be opened; otherwise they return an out_channel.

A file can be opened for reading with the functions open_in and open_in_bin.

val open_out : string -> out_channel
val open_out_bin : string -> out_channel
val open_in : string -> in_channel
val open_in_bin : string -> in_channel
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The open_out_gen and open_in_gen functions can be used to perform more kinds
of file opening. The function requires an argument of type open_flag list that
describes how to open the file. The flags mimic the oflags bitmask given to the
int open(const char *path, int oflags, ...) system call in Unix; on other plat-
forms the behavior is similar.

type open_flag =
Open_rdonly | Open_wronly | Open_append

| Open_creat | Open_trunc | Open_excl
| Open_binary | Open_text | Open_nonblock

These opening modes have the following interpretation.

• Open_rdonly open for reading

• Open_wronly open for writing

• Open_append open for appending

• Open_creat create the file if it does not exist

• Open_trunc empty the file if it already exists

• Open_excl fail if the file already exists

• Open_binary open in binary mode (no conversion)

• Open_text open in text mode (may perform conversions)

• Open_nonblock open in non-blocking mode

The functions open_in_gen and open_out_gen have the following types.

val open_in_gen : open_flag list -> int -> string -> in_channel
val open_out_gen : open_flag list -> int -> string -> out_channel

The open_flag list describe how to open the file, the int argument describes the
Unix permissions mode to apply to the file if the file is created, and the string argu-
ment is the name of the file.

Channels are not closed automatically. The closing operations close_out and
close_in are used for explicitly closing the channels.

val close_out : out_channel -> unit
val close_in : in_channel -> unit

10.2 Writing and reading values on a channel
There are several functions for writing values to an out_channel. The output_char
writes a single character to the channel, and the output_string writes all the characters
in a string to the channel. The output function can be used to write part of a string to
the channel; the int arguments are the offset into the string, and the length of the
substring.
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val output_char : out_channel -> char -> unit
val output_string : out_channel -> string -> unit
val output : out_channel -> string -> int -> int -> unit

The input functions are slightly different. The input_char function reads a single char-
acter, and the input_line function reads an entire line, discarding the line terminator.
The input functions raise the exception End_of_file if the end of the file is reached
before the entire value could be read.

val input_char : in_channel -> char
val input_line : in_channel -> string
val input : in_channel -> string -> int -> int -> int

There are also several functions for passing arbitrary OCaml values on a channel
opened in binary mode. The format of these values is implementation specific, but
it is portable across all standard implementations of OCaml. The output_byte and
input_byte functions write/read a single byte value. The output_binary_int and
input_binary_int functions write/read a single integer value.

The output_value and input_value functions write/read arbitrary OCaml values.
These functions are unsafe! Note that the input_value function returns a value of
arbitrary type ’a. OCaml makes no effort to check the type of the value read with
input_value against the type of the value that was written with output_value. If these
differ, the compiler will not know, and most likely your program will fail unpredictably.

val output_byte : out_channel -> int -> unit
val output_binary_int : out_channel -> int -> unit
val output_value : out_channel -> ’a -> unit
val input_byte : in_channel -> int
val input_binary_int : in_channel -> int
val input_value : in_channel -> ’a

10.3 Channel manipulation
If the channel is a normal file, there are several functions that can modify the position
in the file. The seek_out and seek_in function change the file position. The pos_out
and pos_in function return the current position in the file. The out_channel_length
and in_channel_length return the total number of characters in the file.

val seek_out : out_channel -> int -> unit
val pos_out : out_channel -> int
val out_channel_length : out_channel -> int
val seek_in : in_channel -> int -> unit
val pos_in : in_channel -> int
val in_channel_length : in_channel -> int

If a file may contain both text and binary values, or if the mode of the the file is not
known when it is opened, the set_binary_mode_out and set_binary_mode_in func-
tions can be used to change the file mode.

val set_binary_mode_out : out_channel -> bool -> unit
val set_binary_mode_in : in_channel -> bool -> unit
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The channels perform buffered I/O. The characters on an out_channel may not be
completely written until the channel is closed. To force the writing on the buffer, use
the flush function.

val flush : out_channel -> unit

10.4 String buffers
The Buffer library module provides string buffers that can, in some cases, be signif-
icantly more efficient that using the native string operations. String buffers have type
Buffer.t. The type is abstract, meaning that the specific implementation of the buffer
is not specified. Buffers are created with the Buffer.create function.

val create : unit -> Buffer.t

There are several functions to examine the state of the buffer. The contents function
returns the current contents of the buffer as a string. The length function returns the
total number of characters stored in the buffer. The clear and reset function remove
the buffer contents; the difference is that reset also deallocates internal storage used
by the buffer.

val contents : Buffer.t -> string
val length : Buffer.t -> int
val clear : Buffer.t -> unit
val reset : Buffer.t -> unit

There are also several functions to add values to the buffer. The add_char function
appends a character to the buffer contents. The add_string function appends a string
to the contents; there is also an add_substring function to append part of a string.
The add_buffer function appends the contents of another buffer, and the add_channel
reads input from a channel and appends it to the buffer.

val add_char : Buffer.t -> char -> unit
val add_string : Buffer.t -> string -> unit
val add_substring : Buffer.t -> string -> int -> int -> unit
val add_buffer : Buffer.t -> Buffer.t -> unit
val add_channel : Buffer.t -> in_channel -> int -> unit

For example, the following code sequence produces the string "Hello world!\n"

# let buf = Buffer.create 20;;
val buf : Buffer.t = <abstr>
# Buffer.add_string buf "Hello";;
# Buffer.add_char buf ’ ’;;
# Buffer.add_string buf "world!\n";;
# Buffer.contents buf;;
- : string = "Hello world!\n"

The output_buffer function can be used to write the contents of the buffer to an
out_channel.

val output_buffer : out_channel -> Buffer.t -> unit
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10.5 Formatted output with Printf
The regular functions for I/O are fairly low-level, and they can be awkward to use.
OCaml also implements a printf function similar to the printf in the standard library
for the C programming language. These functions are defined in the library module
Printf. The general form is given by the function fprintf.

val fprintf: out_channel -> (’a, out_channel, unit) format -> ’a

Don’t be worried if you don’t understand this type definition. The format type is
a built-in type intended to match a Printf format string. For example, the following
statement prints a line containing an integer i and a string s.

fprintf stdout "Number = %d, String = %s\n" i s

The strange typing of the fprintf function is because the OCaml fprintf function is
type-safe. The OCaml compiler analyzes the the format string to determine the type
of the arguments. For example, the following format string specifies that the fprintf
function takes a float, int, and string argument.

# let f = fprintf stdout "Float = %g, Int = %d, String = %s\n";;
val f : float -> int -> string -> unit = <fun>

The OCaml format specification is similar to format specifications in ANSI C. Normal
characters (not %) are copied verbatim from the input to the output. Conversions are
introduced by the character %, which is followed in sequence by optional width and
length specifiers, and a conversion specifier. The conversion specifiers include the
following.

• d or i: print an integer argument as a signed decimal value.

• u: print an integer argument as an unsigned decimal value.

• o: print an integer argument as an unsigned octal value.

• x: print an integer argument as an unsigned hexadecimal value, using lowercase
letters.

• X: print an integer argument as an unsigned hexadecimal value, using uppercase
letters.

• s: print a string argument.

• c: print a character argument.

• f: print a floating-point argument using decimal notation, in the style dddd.ddd.

• e or E: print a floating-point argument using decimal notation, in the style d.ddd
e+-dd (mantissa and exponent).

• g or G: print a floating-point argument using decimal notation, in the style f, e, or
E, whichever is more compact.
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• b: print a Boolean argument as the string true or false.

• a: The argument should be a user-defined printer that takes two arguments, ap-
plying the first one to the current output channel and to the second argument.
The first argument must therefore have type out_channel -> ’b -> unit and
the second one has type ’b. The output produced by the function is inserted into
the output of fprintf at the current point.

• t: This is mostly the same as a, but takes only one argument (with type
out_channel -> unit) and applies it to the current out_channel.

• !: takes no argument, and flushes the output channel.

• %: takes no argument and outputs one % character.

There may be more format conversions in your version of OCaml; see the reference
manual for additional cases.

Most format specifications accept width and precision specifiers with the following
syntax, where the square brackets indicate that the field is optional.

% [-] [width] [.precision] specifier

If specified, the width indicates the minimum number of characters to output. If the
format contains a leading minus sign -, the output is left-justified; otherwise it is right-
justified. For numeric arguments, if the width specifier begins with a zero, the output
is padded to fit with width by adding leading zeros. The precision is used for floating-
points values to specify how many fractional digits to print after the decimal point.
Here are some examples.

# open Printf;;
# printf "///%8.3f///" 3.1415926;;
/// 3.142///
# printf "///%-8.3f///" 3.1415926;;
///3.142 ///
# printf "///%8s///" "abc";;
/// abc///
# printf "///%8s///" "abcdefghijk";;
///abcdefghijk///
# printf "///%x///" 65534;;
///fffe///
# printf "///0x%08x///\n" 65534;;
///0x0000fffe///

# printf "///%a///" (fun buf (x, y) ->
fprintf buf "x = %d, y = %g" x y) (17, 231.7);;

///x = 17, y = 231.7///
# printf "x = %d, y = %g" 17 231.7e35;;
x = 17, y = 2.317e+37

The Printf module also provides several additional functions for printing on the stan-
dard channels. The printf function prints on the standard output channel stdout, and
eprintf prints on the standard error channel stderr.

let printf = fprintf stdout
let eprintf = fprintf stderr
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The sprintf function has the same format specification as printf, but it prints the
output to a string and returns the result.

val sprintf : (’a, unit, string) format -> ’a

The Printf module also provides formatted output to a string buffer. The bprintf
function takes a printf-style format string, and formats output to a buffer.

val bprintf : Buffer.t -> (’a, Buffer.t, unit) format -> ’a

10.6 Formatted input with Scanf
The Scanf module is similar to Printf, but for input instead of output. The types are
as follows.

val fscanf : in_channel -> (’a, Scanning.scanbuf, ’b) format -> ’a -> ’b
val sscanf : string -> (’a, Scanning.scanbuf, ’b) format -> ’a -> ’b
val scanf : (’a, Scanning.scanbuf, ’b) format -> ’a -> ’b

The fscanf function reads from an input channel; the sscanf function reads from a
string; and the scanf function reads from the standard input.

Once again, the types are somewhat cryptic. In actual use, the scanf functions
take a format string and a function to process the values that are scanned. The format
specifier uses a syntax similar to the printf format specification. For scanf, there are
two main kinds of scanning actions.

• A plain character matches the same literal character on the input. There is one
exception, a single space character matches any amount of whitespace in the
input, including tabs, spaces, newlines, and carriage returns.

• A conversion specifies the format of a value in the input streams. For example,
the conversion %d specifies that a decimal integer is to be read from the input
channel.

Here are some examples.

# open Scanf;;
# sscanf "ABC 345" "%s %d" (fun s i -> s, i);;
- : string * int = ("ABC", 345)
# sscanf "ABC 345" "%s%d" (fun s i -> s, i);;
Exception: Scanf.Scan_failure "scanf: bad input at char number 4: ".
# sscanf "ABC 345" "%4s %d" (fun s i -> s, i);;
- : string * int = ("ABC", 345)
# sscanf "ABC DEF 345" "%s %_s %f" (fun s x -> s, x);;
- : string * float = ("ABC", 345.)
# sscanf "123456" "%3d%3d" (fun i1 i2 -> i1 + i2);;
- : int = 579
# sscanf "0x123 -0b111" "%i %i" (fun i1 i2 -> i1, i2);;
- : int * int = (291, -7)
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10.7 Exercises
Exercise 10.1 Write a “Hello world” program, which prints the line Hello world! to
the standard output.

Exercise 10.2 The input functions raise the End_of_file exception when the end of
file is reached, which dictates a style where input functions are always enclosed in ex-
ception handlers. The following function is not tail-recursive (see Section 5.4), which
means the stack may overflow if the file is big.

let read_lines chan =
let rec loop lines =

try loop (input_line chan :: lines) with
End_of_file -> List.rev lines

in
loop []

1. Why isn’t the function read_lines tail-recursive?

2. How can it be fixed?

Exercise 10.3 Exceptions can have adverse interactions with input/output. In
particular, unexpected exceptions may lead to situations where files are not
closed. This isn’t just bad style, on systems where the number of open
files is limited, this may lead to program failure. Write a function
with_in_file : string -> (in_channel -> ’a) -> ’a to handle this problem.
When the expression with_in_file filename f is evaluated, the file with the given
filename should be opened, and the function f called with the resulting in_channel.
The channel should be closed when f completes, even if it raises an exception.

Exercise 10.4 You are given two files a.txt and b.txt, each containing a single char-
acter. Write a function exchange to exchange the values in the two files. Your function
should be robust to errors (for example, if one of the files doesn’t exist, or can’t be
opened).

Is it possible to make the exchange operation atomic? That is, if the operation is
successful the contents are exchanged, but if the operation is unsuccessful the files are
left unchanged?

Exercise 10.5 Suppose you are given a value of the following type, and you want to
produce a string representation of the value.

type exp =
Int of int

| Id of string
| List of exp list

The representation is as follows.

• Int and Id values print as themselves.

Copyright © Jason Hickey 106 Draft. Do not redistribute.



CHAPTER 10. INPUT AND OUTPUT 10.7. EXERCISES

• List values are enclosed in parentheses, and the elements in the list are separated
by a single space character.

Write a function print_exp to produce the string representation for a value of type exp.
The following gives an example.

# print_exp (List [Int 2; Id "foo"]);;
(2 foo)

Exercise 10.6 You are given an input file data.txt containing lines that begin with a
single digit 1 or 2. Write a function using the Buffer module to print the file, without
leading digits, in de-interleaved form.

data.txt −→ output

2Is
1This
2File
1A

This
Is
A
File

For example, given the input on the left, your program should produce the output on
the right.

Exercise 10.7 Suppose you are given three values
(x, y, z) : string * int * string. Using printf, print a single line in the
following format.

• The string x should be printed left-justified, with a minimum column width of 5
characters.

• The integer y should be printed in hex with the prefix 0x, followed by 8 hexadec-
imal digits, followed by a single space.

• The third word should be printed right-justified, with a minimum column width
of 3 characters.

• The line should be terminated with a newline \n.

Exercise 10.8 Suppose you are given a list of pairs of strings (of type
(string * string) list. Write a program to print out the pairs, separated by
white space, in justified columns, where the width of the first column is equal
to the width of the longest string in the column. For example, given the input
[("a", "b"); ("ab", "cdef")] the width of the first column would be 2. Can you
use printf to perform the formatting?

# print_cols ["a", "b"; "abc", "def"];;
a b
abc def

Exercise 10.9 Consider the following program. The exception Scan_failure is raised
when the input cannot be scanned because it doesn’t match the format specification.
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try scanf "A%s" (fun s -> s) with
Scan_failure _ ->

scanf "B%s" (fun s -> s)

What is the behavior of the this program when presented with the following input?

1. AA\n

2. B\n

3. AB\n

4. C\n

5. ABC\n
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Chapter 11

Files, Compilation Units, and
Programs

Until now, we have been using the OCaml toploop to evaluate programs. As your
programs get larger, it is natural to want to save them in files so that they can be re-used
and shared. There are other advantages to doing so, including the ability to partition
a program into multiple files that can be written and compiled separately, making it
easier to construct and maintain the program. Perhaps the most important reason to use
files is that they serve as abstraction boundaries that divide a program into conceptual
parts. We will see more about abstraction during the next few chapters as we cover the
OCaml module system, but for now let’s begin with an example of a complete program
implemented in a single file.

11.1 Single-file programs
For this example, let’s build a simple program that removes duplicate lines in an input
file. That is, the program should read its input a line at a time, printing the line only if
it hasn’t seen it before.

One of the simplest implementations is to use a list to keep track of which lines
have been read. The program can be implemented as a single recursive function that 1)
reads a line of input, 2) compares it with lines that have been previously read, and 3)
outputs the line if it has not been read. The entire program is implemented in the single
file unique.ml, shown in Figure 11.1 with an example run.

In this case, we can compile the entire program in a single step with the command
ocamlc -o unique unique.ml, where ocamlc is the OCaml compiler, unique.ml is
the program file, and the -o option is used to specify the program executable unique.

11.1.1 Where is the main function?
Unlike C programs, OCaml program do not have a “main” function. When an OCaml
program is evaluated, all the statements in the implementation files are evaluated in or-
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File: unique.ml

let rec unique already_read =
output_string stdout "> ";
flush stdout;
let line = input_line stdin in

if not (List.mem line already_read) then begin
output_string stdout line;
output_char stdout ’\n’;
unique (line :: already_read)

end else
unique already_read;;

(* "Main program" *)
try unique [] with

End_of_file ->
();;

Example run

% ocamlc -o unique unique.ml
% ./unique
> Great Expectations
Great Expectations
> Vanity Fair
Vanity Fair
> Great Expectations
> Paradise Lost
Paradise Lost

Figure 11.1: A program to print only unique lines.
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der. In general, implementation files can contain arbitrary expressions, not just function
definitions. For this example, the main program is the essentially try expression in the
unique.ml file, which gets evaluated when the unique.cmo file is evaluated. We say
“essentially” because the main function is really the entire program, which is evaluated
starting from the beginning when the program is executed.

11.1.2 OCaml compilers
The INRIA OCaml implementation provides two compilers—the ocamlc byte-code
compiler, and the ocamlopt native-code compiler. Programs compiled with ocamlc are
interpreted, while programs compiled with ocamlopt are compiled to native machine
code to be run on a specific operating system and machine architecture. While the
two compilers produce programs that behave identically functionally, there are some
differences.

• Compile time is shorter with the ocamlc compiler. Compiled byte-code is
portable to any operating system and architecture supported by OCaml, without
the need to recompile. Some tasks, like debugging, work only with byte-code
executables.

• Compile time is longer with the ocamlopt compiler, but program execution is
usually faster. Program executables are not portable, and ocamlopt is supported
on fewer operating systems and machine architectures than ocamlc.

We generally won’t be concerned with the compiler being used, since the two compil-
ers produce programs that behave identically (apart from performance). During rapid
development, it may be useful to use the byte-code compiler because compilation times
are shorter. If performance becomes an issue, it is usually a straightforward process to
begin using the native-code compiler.

11.2 Multiple files and abstraction
OCaml uses files as a basic unit for providing data hiding and encapsulation, two im-
portant properties that can be used to strengthen the guarantees provided by the imple-
mentation. We will see more about data hiding and encapsulation in Chapter 12, but
for now the important part is that each file can be assigned a interface that declares
types for all the accessible parts of the implementation, and everything not declared is
inaccessible outside the file.

In general, a program will have many files and interfaces. An implementation file
is defined in a file with a .ml suffix, called a compilation unit. An interface for a
file filename.ml is defined in a file named filename.mli. There are four major steps to
planning and building a program.

1. Decide how to divide the program into separate files. Each part will be imple-
mented in a separate compilation unit.

Copyright © Jason Hickey 111 Draft. Do not redistribute.



11.2. MULTIPLE FILES AND ABSTRACTIONCHAPTER 11. FILES, COMPILATION UNITS, AND PROGRAMS

2. Implement each of compilation units as a file with a .ml suffix, and optionally
define an interface for the compilation unit in a file with the same name, but with
a .mli suffix.

3. Compile each file and interface with the OCaml compiler.

4. Link the compiled files to produce an executable program.

One nice consequence of implementing the parts of a program in separate files is that
each file can be compiled separately. When a project is modified, only the files that are
affected must be recompiled; there is there is usually no need to recompile the entire
project.

Getting back to the example unique.ml, the implementation is already too concrete.
We chose to use a list to represent the set of lines that have been read, but one problem
with using lists is that checking for membership (with List.mem) takes time linear in
the length of the list, which means that the time to process a file is quadratic in the
number of lines in the file. There are clearly better data structures than lists for the set
of lines that have been read.

As a first step, let’s partition the program into two files. The first file set.ml is to
provide a generic implementation of sets, and the file unique.ml provides the unique
function as before. For now, we’ll keep the list representation in hopes of improving it
later—for now we just want to factor the project.

The new project is shown in Figure 11.2. We have split the set operations into a
file called set.ml, and instead of using the List.mem function we now use the Set.mem
function. The way to refer to a definition f in a file named filename is by capitalizing
the filename and using the infix . operator to project the value. The Set.mem expression
refers to the mem function in the set.ml file. In fact, the List.mem function is the same
way. The OCaml standard library contains a file list.ml that defines a function mem.

Compilation now takes several steps. In the first step, the set.ml and unique.ml
files are compiled with the -c option, which specifies that the compiler should pro-
duce an intermediate file with a .cmo suffix. These files are then linked to produce an
executable with the command ocamlc -o unique set.cmo unique.cmo.

The order of compilation and linking here is significant. The unique.ml file refers
to the set.ml file by using the Set.mem function. Due to this dependency, the set.ml
file must be compiled before the unique.ml file, and the set.cmo file must appear
before the unique.cmo file during linking. Cyclic dependencies are not allowed. It is
not legal to have a file a.ml refer to a value B.x, and a file b.ml that refers to a value
A.y.

11.2.1 Defining an interface
One of the reasons for factoring the program was to be able to improve the implemen-
tation of sets. To begin, we should make the type of sets abstract—that is, we should
hide the details of how it is implemented so that we can be sure the rest of the pro-
gram does not unintentionally depend on the implementation details. To do this, we
can define an abstract interface for sets, in a file set.mli.
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File: set.ml

let empty = []
let add x l = x :: l
let mem x l = List.mem x l

File: unique.ml

let rec unique already_read =
output_string stdout "> ";
flush stdout;
let line = input_line stdin in

if not (Set.mem line already_read) then begin
output_string stdout line;
output_char stdout ’\n’;
unique (Set.add line already_read)

end else
unique already_read;;

(* Main program *)
try unique [] with

End_of_file ->
();;

Example run

% ocamlc -c set.ml
% ocamlc -c unique.ml
% ocamlc -o unique set.cmo unique.cmo
% ./unique
> Adam Bede
Adam Bede
> A Passage to India
A Passage to India
> Adam Bede
> Moby Dick
Moby Dick

Figure 11.2: Factoring the program into two separate files.
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File: set.mli

type ’a set
val empty : ’a set
val add : ’a -> ’a set -> ’a set
val mem : ’a -> ’a set -> bool

File: set.ml

type ’a set = ’a list
let empty = []
let add x l = x :: l
let mem x l = List.mem x l

Example run (with lists)

% ocamlc -c set.mli
% ocamlc -c set.ml
% ocamlc -c unique.ml
% ocamlc -o unique set.cmo unique.cmo
% ./unique
> Siddhartha
Siddhartha
> Siddhartha
> Siddharta
Siddharta

Figure 11.3: Adding an interface to the Set implementation.

An interface should declare types for each of the values that are publicly accessible
in a module, as well as any needed type declarations or definitions. For our purposes,
we need to define a polymorphic type of sets ’a set abstractly. That is, in the interface
we will declare a type ’a set without giving a definition, preventing other parts of the
program from knowing, or depending on, the particular representation of sets we have
chosen. The interface also needs to declare types for the public values empty, add, and
mem values, as a declaration with the following syntax.

val identifier : type

The complete interface is shown in Figure 11.3. The implementation remains mostly
unchanged, except that a specific, concrete type definition must be given for the type
’a set.

Now, when we compile the program, we first compile the interface file
set.mli, then the implementations set.ml and unique.ml. Note that, although
the set.mli file must be compiled, it does not need to be specified during linking
ocamlc -o unique set.cmo unique.cmo.

At this point, the set.ml implementation is fully abstract, making it easy to replace
the implementation with a better one (for example, the implementation of sets using
red-black trees in Section 6.4).

11.2.2 Transparent type definitions
In some cases, abstract type definitions are too strict. There are times when we want a
type definition to be transparent—that is, visible outside the file. For example, suppose
we wanted to add a choose function to the set implementation, where, given a set s,
the expression (choose s) returns some element of the set if the set is non-empty, and
nothing otherwise. One possible way to write this function is to define a union type
choice that defines the two cases, as shown in Figure 11.4.

The type definition for choice must be transparent (otherwise there isn’t much
point in defining the function). For the type to be transparent, the interface simply
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Interface file: set.mli

type ’a set
type ’a choice =

Element of ’a
| Empty

val empty : ’a set
val add : ’a -> ’a set -> ’a set
val mem : ’a -> ’a set -> bool
val choose : ’a set -> ’a choice

Implementation file: set.ml

type ’a set = ’a list
type ’a choice =

Element of ’a
| Empty

let empty = []
let add x l = x :: l
let mem x l = List.mem x l
let choose = function

x :: _ -> Element x
| [] -> Empty

Figure 11.4: Extending the Set implementation.

provides the definition. The implementation must contain the same definition.

11.3 Some common errors
As you develop programs with several files, you will undoubtably encounter some
errors.

11.3.1 Interface errors
When an interface file (with a .mli suffix) is compiled successfully with ocamlc or
ocamlopt, the compiler produces a compiled representation of the file, having a .cmi
suffix. When an implementation is compiled, the compiler compares the implementa-
tion with the interface. If a definition does not match the interface, the compiler will
print an error and refuse to compile the file.

Type errors

For example, suppose we had reversed the order of arguments in the Set.add function
so that the set argument is first.

let add s x = x :: s

When we compile the file, we get an error. The compiler prints the types of the mis-
matched values, and exits with an error code.

% ocamlc -c set.mli
% ocamlc -c set.ml
The implementation set.ml does not match the interface set.cmi:
Values do not match:

val add : ’a list -> ’a -> ’a list
is not included in

val add : ’a -> ’a set -> ’a set
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The first declaration is the type the compiler inferred for the definition; the second
declaration is from the interface. Note that the definition’s type is not abstract (using
’a list instead of ’a set). For this example, we deduce that the argument ordering
doesn’t match, and the implementation or the interface must be changed.

Missing definition errors

Another common error occurs when a function declared in the interface is not defined in
the implementation. For example, suppose we had defined an insert function instead
of an add function. In this case, the compiler prints the name of the missing function,
and exits with an error code.

% ocamlc -c set.ml
The implementation set.ml does not match the interface set.cmi:
The field ‘add’ is required but not provided

Type definition mismatch errors

Transparent type definitions in the interface can also cause an error if the type definition
in the implementation does not match. For example, in the definition of the choice
type, suppose we had declared the cases in different orders.

Interface file: set.mli

type ’a set
type ’a choice =

Element of ’a
| Empty
· · ·

Implementation file: set.ml

type ’a set = ’a list
type ’a choice =

Empty
| Element of ’a
· · ·

When we compile the set.ml file, the compiler produces an error with the mismatched
types.

% ocamlc -c set.mli
% ocamlc -c set.ml
The implementation set.ml does not match the interface set.cmi:
Type declarations do not match:

type ’a choice = Empty | Element of ’a
is not included in

type ’a choice = Element of ’a | Empty

The type definitions are required to be exactly the same. Some programmers find this
duplication of type definitions to be annoying. While it is difficult to avoid all duplica-
tion of type definitions, one common solution is to define the transparent types in a sep-
arate .ml file without an interface, for example by moving the definition of ’a choice
to a file set_types.ml. By default, when an interface file does not exist, the compiler
automatically produces an interface in which all definitions from the implementation
are fully visible. As a result, the type in set_types.ml needs to be defined just once.
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Compile dependency errors

The compiler will also produce errors if the compile state is inconsistent. Each time
an interface is compiled, all the files that uses that interface must be recompiled. For
example, suppose we update the set.mli file, and recompile it and the unique.ml file
(but we forget to recompile the set.ml file). The compiler produces the following error.

% ocamlc -c set.mli
% ocamlc -c unique.ml
% ocamlc -o unique set.cmo unique.cmo
Files unique.cmo and set.cmo make inconsistent
assumptions over interface Set

It takes a little work to detect the cause of the error. The compiler says that the files
make inconsistent assumptions for interface Set. The interface is defined in the file
set.cmi, and so this error message states that at least one of set.ml or unique.ml
needs to be recompiled. In general, we don’t know which file is out of date, and the
best solution is usually to recompile them all.

11.4 Using open to expose a namespace
Using the full name Filename.identifier to refer to the values in a module can get
tedious. The statement open Filename can be used to “open” an interface, allow-
ing the use of unqualified names for types, exceptions, and values. For example, the
unique.ml module can be somewhat simplified by using the open directive for the Set
module. In the following listing, the underlined variables refer to values from the Set
implementation (the underlines are for illustration only, they don’t exist in the program
files).

File: unique.ml

open Set
let rec unique already_read =

output_string stdout "> ";
flush stdout;
let line = input_line stdin in

if not (mem line already_read) then begin
output_string stdout line;
output_char stdout ’\n’;
unique (add line already_read)

end else
unique already_read;;

(* Main program *)
try unique empty with

End_of_file ->
();;

Sometimes multiple opened files will define the same name. In this case, the last file
with an open statement will determine the value of that symbol. Fully qualified names
(of the form Filename.identifier) may still be used even if the file has been opened.
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Fully qualified names can be used to access values that may have been hidden by an
open statement.

11.4.1 A note about open
Be careful with the use of open. In general, fully qualified names provide more infor-
mation, specifying not only the name of the value, but the name of the module where
the value is defined. For example, the Set and List modules both define a mem func-
tion. In the Unique module we just defined, it may not be immediately obvious to a
programmer that the mem symbol refers to Set.mem, not List.mem.

In general, you should use open statement sparingly. Also, as a matter of style,
it is better not to open most of the library modules, like the Array, List, and String
modules, all of which define methods (like create) with common names. Also, you
should never open the Unix, Obj, and Marshal modules! The functions in these modules
are not completely portable, and the fully qualified names can be used to identify all
the places where portability may be a problem (for instance, the Unix grep command
can be used to find all the places where Unix functions are used).

The behavior of the open statement is not like an #include statement in C. An
implementation file mod.ml should not include an open Mod statement. One common
source of errors is defining a type in a .mli interface, then attempting to use open to
“include” the definition in the .ml implementation. This won’t work—the implemen-
tation must include an identical type definition. This might be considered to be an
annoying feature of OCaml, but it preserves a simple semantics—the implementation
must provide a definition for each declaration in the interface.

11.5 Debugging a program
The ocamldebug program can be used to debug a program compiled with ocamlc. The
ocamldebug program is a little like the GNU gdb program. It allows breakpoints to be
set; when a breakpoint is reached, control is returned to the debugger so that program
variables can be examined.

To use ocamldebug, the program must be compiled with the -g flag.

% ocamlc -c -g set.mli
% ocamlc -c -g set.ml
% ocamlc -c -g unique.ml
% ocamlc -o unique -g set.cmo unique.cmo

The debugger is invoked using by specifying the program to be debugged on the
ocamldebug command line.

% ocamldebug ./unique
Objective Caml Debugger version 3.08.3

(ocd) help
List of commands: cd complete pwd directory kill help quit shell run reverse
step backstep goto finish next start previous print display source break
delete set show info frame backtrace bt up down last list load_printer
install_printer remove_printer
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There are several commands that can be used. The basic commands are run, step,
next, break, list, print, and goto.

• run: Start or continue execution of the program.

• break @ module linenum: Set a breakpoint on line linenum in mod-
ule module.

• list: display the lines around the current execution point.

• print expr: Print the value of an expression. The expression must
be a variable.

• goto time: Execution of the program is measured in time steps,
starting from 0. Each time a breakpoint is reached, the debugger
prints the current time. The goto command may be used to continue
execution to a future time, or to a previous timestep.

• step: Go forward one time step.

• next: If the current value to be executed is a function, evaluate the
function, a return control to the debugger when the function com-
pletes. Otherwise, step forward one time step.

For debugging the unique program, we need to know the line numbers. Let’s set a
breakpoint in the unique function, which starts in line 1 in the Unique module. We’ll
want to stop at the first line of the function.

(ocd) break @ Unique 1
Loading program... done.
Breakpoint 1 at 21656 : file unique.ml, line 2, character 4
1
(ocd) run
Time : 12 - pc : 21656 - module Unique
Breakpoint : 1
2 <|b|>output_string stdout "> ";
(ocd) n
Time : 14 - pc : 21692 - module Unique
2 output_string stdout "> "<|a|>;
(ocd) n
> Time : 15 - pc : 21720 - module Unique
3 flush stdout<|a|>;
(ocd) n
Robinson Crusoe
Time : 29 - pc : 21752 - module Unique
5 <|b|>if not (Set.mem line already_read) then begin
(ocd) p line
line : string = "Robinson Crusoe"

Next, let’s set a breakpoint just before calling the unique function recursively.

(ocd) list
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1 let rec unique already_read =
2 output_string stdout "> ";
3 flush stdout;
4 let line = input_line stdin in
5 <|b|>if not (Set.mem line already_read) then begin
6 output_string stdout line;
7 output_char stdout ’\n’;
8 unique (Set.add line already_read)
9 end
10 else
11 unique already_read;;
12
13 (* Main program *)
14 try unique Set.empty with
15 End_of_file ->
16 ();;
Position out of range.
(ocd) break @ 8
Breakpoint 2 at 21872 : file unique.ml, line 8, character 42
(ocd) run
Time : 38 - pc : 21872 - module Unique
Breakpoint : 2
8 unique (Set.add line already_read)<|a|>

Next, suppose we don’t like adding this line of input. We can go back to time 15 (the
time just before the input_line function is called).

(ocd) goto 15
> Time : 15 - pc : 21720 - module Unique
3 flush stdout<|a|>;
(ocd) n
Mrs Dalloway
Time : 29 - pc : 21752 - module Unique
5 <|b|>if not (Set.mem line already_read) then begin

Note that when we go back in time, the program prompts us again for an input line. This
is due to way time travel is implemented in ocamldebug. Periodically, the debugger
takes a checkpoint of the program (using the Unix fork() system call). When reverse
time travel is requested, the debugger restarts the program from the closest checkpoint
before the time requested. In this case, the checkpoint was taken before the call to
input_line, and the program resumption requires another input value.

We can continue from here, examining the remaining functions and variables. You
may wish to explore the other features of the debugger. Further documentation can be
found in the OCaml reference manual.
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11.6 Exercises
Exercise 11.1 Consider a file f.ml with the following contents.

type t = int
let f x = x

Which of the following are legal f.mli files?

1. f.mli is empty.

2. f.mli:

val f : ’a -> ’a

3. f.mli:

val f : (’a -> ’b) -> (’a -> ’b)

4. f.mli:

val f : t -> t

5. f.mli:

type t
val f : t -> t

6. f.mli:

type s = int
val f : s -> s

Exercise 11.2 Consider the following two versions of a list reversal function.

rev.mli

val rev : ’a list -> ’a list

rev.ml (version 1)
let rev l =

let rec rev_loop l1 l2 =
match l2 with

x :: l2 ->
loop (x :: l1) l2

| [] ->
l1

in
rev_loop [] l

rev.ml (version 2)
let rec rev_loop l1 l2 =

match l2 with
x :: l2 ->

loop (x :: l1) l2
| [] ->

l1

let rev l = rev_loop [] l

1. Is there any reason to prefer one version over the other?

2. In the second version, what would happen if we defined the rev function as a
partial application?
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(* let rev l = rev_loop [] l *)
let rev = rev_loop []

Exercise 11.3 When a program is begin developed, it is sometimes convenient to have
the compiler produce a .mli file automatically, using the -i option to ocamlc. For
example, suppose we have an implementation file set.ml containing the following
definitions.

type ’a set = ’a list
let empty = []
let add x s = x :: s
let mem x s = List.mem x s

Inferring types, we obtain the following output. The output can then be edited to pro-
duce the desired set.mli file.

% ocamlc -i set.ml
type ’a set = ’a list
val empty : ’a list
val add : ’a -> ’a list -> ’a list
val mem : ’a -> ’a list -> bool

1. The output produced by ocamlc -i is not abstract—the declarations use the type
’a list, not ’a set. Instead of editing all the occurrences by hand, is there a
way to get ocamlc -i to produce the right output automatically?

2. In some cases, ocamlc -i produces illegal output. What is the inferred interface
for the following program? What is wrong with it? Can it be fixed?

let cell = ref []
let push i = cell := i :: !cell
let pop () =

match !cell with
[] -> raise (Invalid_argument "pop")

| i :: t ->
cell := t;
i

Exercise 11.4 One issue we discussed was the need for duplicate type definitions. If a
.mli provides a definition for a type t, the the .ml file must specify exactly the same
definition. This can be annoying if the type definition is to be changed.

One solution we discussed is to place the type definition in a separate file, like
types.ml, with no interface file types.mli. It is also legal to place the type definition
in a file types.mli with no implementation types.ml.

Is it ever preferable to use the second form (where types.mli exists, but types.ml
doesn’t)?

Exercise 11.5 The strict-ordering requirement during linking can potentially have a
major effect on the software design. For example, suppose we were designing a bi-
directional communication protocol, as shown in the following diagram.
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net_sendnet_recv

app_sendapp_recv

protocol.ml

network.ml

Application

With this design, the Network component calls Protocol.net_recv when a message ar-
rives, and the Protocol component calls Network.net_send to send a message. How-
ever, this is not possible if the implementations are in separate files protocol.ml and
network.ml because that would introduce a cyclic dependency.

Describe a method to circumvent this problem, without placing the code for the
two components into a single file.
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Chapter 12

The OCaml Module System

As we saw in the previous chapter, programs can be divided into parts that can be im-
plemented in files, and each file can be given an interface that specifies what its public
types and values are. Files are not the only way to partition a program, OCaml also pro-
vides a module system that allows programs to be partitioned even within a single file.
There are three key parts in the module system: signatures, structures, and functors,
where signatures correspond to interfaces, structures correspond to implementations,
and functors are functions over structures. In this chapter, we will discuss the first two;
we’ll leave discussion of functors to Chapter 13.

There are several reasons for using the module system. Perhaps the simplest reason
is that each structure has its own namespace, so name conflicts are less likely when
modules are used. Another reason is that abstraction can be specified explicitly within
a file by assigning a signature to a structure. Let’s begin with naming.

12.1 Structures and signatures
Named structures are defined with the module and struct keywords using the follow-
ing syntax.

module ModuleName = struct implementation end

The module name ModuleName must begin with an uppercase letter. The implementa-
tion can include any definition that might occur in a .ml file.

In the discussion of records (page 79), we noted that the space of record label names
is flat; if two record types are defined with the same label names in the same file, the
first definition is lost. Modules solve this problem by allowing the name space to be
partitioned. Here is an example using records; the same principle applies to unions and
constructor names.

module A = struct
type t = { name : string; phone : string }

end
module B = struct
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File: unique.ml

module Set = struct
let empty = []
let add x l = x :: l
let mem x l = List.mem x l

end;;

let rec unique already_read =
output_string stdout "> ";
flush stdout;
let line = input_line stdin in

if not (Set.mem line already_read) then begin
output_string stdout line;
output_char stdout ’\n’;
unique (Set.add line already_read)

end else
unique already_read;;

(* Main program *)
try unique Set.empty with

End_of_file ->
();;

Figure 12.1: Gathering the Set implementation into a module.

type t = { name : string; salary : float }
end
# let jason = { A.name = "Jason"; A.phone = "626-555-1212" };;
val jason : A.t = {A.name = "Jason"; A.phone = "626-555-1212"}
# let bob = { B.name = "Bob"; B.salary = 180.0 };;
val bob : B.t = {B.name = "Bob"; B.salary = 180.}

A simple pathname, or fully-qualified name, has the syntax ModuleName.identifier,
where the identifier is the name of a module component (a type, value, record label,
a nested module, etc.), and the ModuleName is the module containing the component.
In the example, the pathname B.salary is the fully-qualified name of a field in the B.t
record type (which is also a fully-qualified name).

Let’s return to the unique.ml example from the previous chapter, using a simple
list-based implementation of sets. This time, instead of defining the set data structure
in a separate file, let’s define it as a module, called Set, using an explicit module
definition. The program is shown in Figure 12.1. The file is compiled and executed
using the usual methods.

% ocamlc -o unique unique.ml
% ./unique
> Adam Bede
Adam Bede
> A passage to India
A Passage to India
> Adam Bede
> Moby Dick
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Signature definition

module type SetSig = sig
type ’a set
val empty : ’a set
val add : ’a -> ’a set -> ’a set
val mem : ’a -> ’a set -> bool

end;;

Structure definition

module Set : SetSig = struct
type ’a set = ’a list
let empty = []
let add x l = x :: l
let mem x l = List.mem x l

end;;

Figure 12.2: Defining an explicit signature for the Set module.

Moby Dick

In this new program, the main role of the module Set is to collect the set functions
into a single block of code that has an explicit name. The values are now named using
the module name as a prefix, as Set.empty, Set.add, and Set.mem. Otherwise, the
program is as before.

In many ways, structures are like files. If we wish to hide the Set implementation,
we can specify an explicit signature to hide parts of the implementation. A named
signature is defined with a module type definition.

module type ModuleName = sig signature end

The name of the signature must begin with an uppercase letter. The signature
can contain any of the items that can occur in an interface .mli file. For our
example, the signature should include an abstract type declaration for the ’a set
type and val declarations for each of the values. The Set module’s signature
is constrained by specifying the signature after a colon in the module definition
module Set : SetSig = struct · · · end, as shown in Figure 12.2.

12.2 Module definitions
In general, structures and signatures are just like implementation files and their inter-
faces. Structures are allowed to contain any of the definitions that might occur in a
implementation, including any of the following.

• type definitions

• exception definitions

• let definitions

• open statements to open the namespace of another module

• include statements that include the contents of another module

• signature definitions

• nested structure definitions
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Similarly, signatures may contain any of the declarations that might occur in an inter-
face file, including any of the following.

• type declarations

• exception definitions

• val declarations

• open statements to open the namespace of another signature

• include statements that include the contents of another signature

• nested signature declarations

12.2.1 Modules are not first-class
Modules/structures/signatures are not first-class, meaning in particular that they are
not expressions. Modules cannot be passed as arguments to a function nor can they be
returned as results. Normally, modules are defined as top-level outermost components
in a program, hence all type and exception definitions are also top-level.

There are several reasons why modules are not first-class. Perhaps the most impor-
tant is that modules and module types are complicated expressions involving types and
type abstraction; if modules could be passed as values, type inference would become
undecidable. Another reason is called the phase-distinction. From the point of view of
the compiler, a program has two phases in its lifetime: compile-time and run-time. The
objective of the phase distinction is to ensure that module expressions can be computed
at compile-time. If modules were expressions, the phase-distinction would be difficult
to ensure. In any case, the phase distinction is simply a guideline for the language
designers. The effect on programmers is that modules can only be defined in a few
chosen locations, but there is no performance penalty for using them.

12.2.2 The let module expression
One exception to top-level module definitions is the let module expression, which has
the following syntax.

let module ModuleName = module_expression in body_expression

The module_expression is the definition of a module (often a struct · · · end block),
and the module is defined in the body_expression. The let module expression is fre-
quently used for renaming modules locally.

module ModuleWithALongName
...
let f x =

let module M = ModuleWithALongName in
...
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Similarly, it can be useful sometimes to redefine an existing module locally. In the
following example, a String module is defined so that pathnames String.identifier
in the function body refer to the locally-defined module, not the standard library (in
this case, it is for debugging purposes).

let f x =
let module String = struct

let create n =
eprintf "Allocating a string of length %d\n%!" n;
String.create n

...
end in
function body

One other use of let module expression is to allow types and exceptions to be defined
locally, not only at the top-level. For example, in the following program, the excep-
tion Error is local. It is guaranteed to be different from every other exception in the
program.

let f x =
let module M = struct exception Abort end in
let g y =

...
if done then raise M.Abort

in
try map g x with

M.Abort message -> ...

In this particular case, the local definition of the M.Abort exception means that the map
function (not shown) is not able to catch the exception except generically, by catching
all exceptions.

12.3 Recursive modules
It is also possible to define modules that are defined recursively. That is, several mod-
ules that refer to one another are defined at once. The syntax for a recursive definition
uses the module rec form.

module rec Name1 : Signature1 = struct_expression1
and Name2 : Signature2 = struct_expression2

.

.

.
and Namen : Signaturen = struct_expressionn

The signatures Signaturei are required.
For example, let’s build a kind of nonempty trees with unbounded branching, and

a function map with the standard meaning. The map function could be defined as part
of a single module, but it is also possible to use recursive modules to split the program
into two parts 1) mapping over single tree nodes, and 2) mapping over lists of trees.

type ’a ubtree = Node of ’a * ’a ubtree list
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module rec Tree : sig
val map : (’a -> ’b) -> ’a ubtree -> ’b ubtree

end = struct
let map f (Node (x, children)) =

Node (f x, Forest.map f children)
end

and Forest : sig
val map : (’a -> ’b) -> ’a ubtree list -> ’b ubtree list

end = struct
let map f l =

List.map (Tree.map f) l
end;;

This definition is necessarily recursive because the Tree module refers to Forest.map,
and Forest refers to Tree.map.

The signatures are required—one way to think of it is that the types of the mu-
tual references are needed so that type checking can be performed for each module in
isolation.1 Stylistically, recursive modules are used infrequently for simple structure
definitions; they become much more useful when used with functors, which allow the
module bodies to be placed in separate files.

12.4 The include directive
We have seen most of the module components before. However, one new construct we
haven’t seen is include, which allows the entire contents of a structure or signature
to be included in another. The include statement can be used to create modules and
signatures that re-use existing definitions.

12.4.1 Using include to extend modules
Suppose we wish to define a new kind of sets ChooseSet that has a choose function
that returns an element of the set if one exists. Instead of re-typing the entire signature,
we can use the include statement to include the existing signature, as shown in Fig-
ure 12.3. The resulting signature includes all of the types and declarations from SetSig
as well as the new function declaration val choose. For this example, we are using the
toploop to display the inferred signature for the new module.

12.4.2 Using include to extend implementations
The include statement can also be used in implementations. For our example, how-
ever, there is a problem. The straightforward approach in defining a module ChooseSet
is to include the Set module, then define the new function choose. The result of this at-
tempt is shown in Figure 12.4, where the toploop prints out an extensive error message
(the toploop prints out the full signature, which we have elided in sig · · · end).

1Recursive modules are relatively new to OCaml; these requirements may change.
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Signature definition

module type ChooseSetSig = sig
include SetSig
val choose : ’a set -> ’a option

end;;

Inferred type

module type ChooseSetSig = sig
type ’a set
val empty : ’a set
val add : ’a -> ’a set -> ’a set
val mem : ’a -> ’a set -> bool
val choose : ’a set -> ’a option

end;;

Figure 12.3: Extending a signature with include.

Structure definition

module ChooseSet
: ChooseSetSig =

struct
include Set
let choose = function

x :: _ -> Some x
| [] -> None

end;;

Inferred type (from the toploop)

Signature mismatch:
Modules do not match:

sig ... end
is not included in

ChooseSetSig
Values do not match:

val choose : ’a list -> ’a option
val choose : ’a set -> ’a option

Figure 12.4: A failed attempt to extend the Set implementation.

The problem is apparent from the last few lines of the error message—the choose
function has type ’a list -> ’a option, not ’a set -> ’a option as it should. The
issue is that we included the abstract module Set, where the type ’a set has an abstract
type, not a list.

One solution is to manually copy the code from the Set module into the ChooseSet
module. This has its drawbacks of course. We aren’t able to re-use the existing imple-
mentation, our code base gets larger, etc. If we have access to the original non-abstract
set implementation, there is another solution—we can just include the non-abstract set
implementation, where it is known that the set is represented as a list.

Suppose we start with a non-abstract implementation SetInternal of sets as lists.
Then the module Set is the same implementation, with the signature SetSig; and the
ChooseSet includes the SetInternal module instead of Set. Figure 12.5 shows the
definitions in this order, together with the types inferred by the toploop.

Note that for the module Set it is not necessary to use a struct · · · end definition
because the Set module is equivalent to the SetInternal module, it just has a different
signature. The modules Set and ChooseSet are “friends,” in that they share internal
knowledge of each other’s implementation, while keeping their public signatures ab-
stract.
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Structure definitions

module SetInternal = struct
type ’a set = ’a list
let empty = []
let add x l = x :: l
let mem x l = List.mem x l

end;;

module Set : SetSig = SetInternal

module ChooseSet
: ChooseSetSig =
struct

include SetInternal
let choose = function

x :: _ -> Some x
| [] -> None

end;;

Inferred types (from the toploop)

module SetInternal : sig
type ’a set = ’a list
val empty : ’a list
val add : ’a -> ’a list -> ’a list
val mem : ’a -> ’a list -> bool

end;;

module Set : SetSig

module ChooseSet : ChooseSetSig

Figure 12.5: Extending the Set using an internal specification.

12.5 Abstraction, friends, and module hiding
So far, we have seen that modules provide two main features, 1) the ability to divide
a program into separate program units (modules) that each have a separate names-
pace, and 2) the ability to assign signatures that make each structure partially or
totally abstract. In addition, as we have seen in the previous example, a structure
like SetInternal can be given more than one signature (the module Set is equal to
SetInternal but it has a different signature).

Another frequent use of modules uses nesting to define multiple levels of abstrac-
tion. For example, we might define a module container in which several modules are
defined and implementation are visible, but the container type is abstract. This is akin
to the C++ notion of “friend” classes, where a set of friend classes may mutually refer
to class implementations, but the publicly visible fields remain protected.

In our example, there isn’t much danger in leaving the SetInternal module
publicly accessible. A SetInternal.set can’t be used in place of a Set.set or a
ChooseSet.set, because the latter types are abstract. However, there is a cleaner solu-
tion that nests the Set and ChooseSet structures in an outer Sets module. The signa-
tures are left unconstrained within the Sets module, allowing the ChooseSet structure
to refer to the implementation of the Set structure, but the signature of the Sets module
is constrained. The code for this is shown in Figure12.6.

There are a few things to note for this definition.

1. The Sets module uses an anonymous signature (meaning that the signature has
no name). Anonymous signatures and struct implementations are perfectly ac-
ceptable any place where a signature or structure is needed.

2. Within the Sets module the Set and ChooseSet modules are not constrained, so
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Module definitions

module Sets : sig
module Set : SetSig
module ChooseSet : ChooseSetSig

end = struct
module Set = struct

type ’a set = ’a list
let empty = []
let add x l = x :: l
let mem x l = List.mem x l

end
module ChooseSet = struct

include Set
let choose = function

x :: _ -> Some x
| [] -> None

end
end;;

Inferred types (from the toploop)

module Sets : sig
module Set : SetSig
module ChooseSet : ChooseSetSig

end

Figure 12.6: Defining ChooseSet and Set as friends.

that their implementations are public. This allows the ChooseSet to refer to the
Set implementation directly (so in this case, the Set and ChooseSet modules are
friends). The signature for the Sets module makes them abstract.

12.5.1 Using include with incompatible signatures
In our current example, it might seem that there isn’t much need to have two separate
modules ChooseSet (with choice) and Set (without choice). In practice it is perhaps
more likely that we would simply add a choice function to the Set module. The
addition would not affect any existing code, since any existing code doesn’t refer to the
choice function anyway.

Surprisingly, this kind of example occurs in practice more than it might seem, due to
programs being developed with incompatible signatures. For example, suppose we are
writing a program that is going to make use of two independently-developed libraries.
Both libraries have their own Set implementation, and we decide that we would like
to use a single Set implementation in the combined program. Unfortunately, the sig-
natures are incompatible—in the first library, the add function was defined with type
val add : ’a -> ’a set -> ’a set; but in the second library, it was defined with
type val add : ’a set -> ’a -> ’a set. Let’s say that the first library uses the de-
sired signature. Then, one solution would be to hunt through the second library, finding
all calls to the Set.add function, reordering the arguments to fit a common signature.
Of course, the process is tedious, and it is unlikely we would want to do it.

An alternative is to derive a wrapper module Set2 for use in the second library.
The process is simple, 1) include the Set module, and 2) redefine the add to match the
desired signature; this is shown in Figure 12.7.

The Set2 module is just a wrapper. Apart from the add function, the types and
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Signature

module type Set2Sig = sig
type ’a set
val empty : ’a set
val add : ’a set -> ’a -> ’a set
val mem : ’a -> ’a set -> bool

end;;

Implementation

module Set2 : Set2Sig = struct
include Set
let add l x = Set.add x l

end;;

Figure 12.7: Wrapping a module to use a new signature.

values in the Set and Set2 modules are the same, and the Set2.add function simply
reorders the arguments before calling the Set.add function. There is little or no per-
formance penalty for the wrapper—in most cases the native-code OCaml compiler will
inline the Set2.add function (in other words, it will perform the argument reordering
at compile time).

12.6 Sharing constraints
There is one remaining problem with this example. In the combined program, the first
library uses the original Set module, and the second library uses Set2. It is likely that
we will want to pass values, including sets, from one library to the other. However, as
defined, the ’a Set.set and ’a Set2.set types are distinct abstract types, and it is an
error to use a value of type ’a Set.set in a place where a value of type ’a Set2.set
is expected, and vice-versa. The following error message is typical.

# Set2.add Set.empty 1;;
This expression has type ’a Set.set

but is here used with type ’b Set2.set

Of course, we might want the types to be distinct. But in this case, it is more likely that
we want the definition to be transparent. We know that the two kinds of sets are really
the same—Set2 is really just a wrapper for Set. How do we establish the equivalence
of ’a Set.set and ’a Set2.set?

The solution is called a sharing constraint. The syntax for a sharing constraint uses
the with keyword to specify a type equivalence for a module signature in the following
form.

signature ::= signature with type typename = type

In this particular case, we wish to say that the ’a Set2.set type is equal to the
’a Set.set type, which we can do by adding a sharing constraint when the Set2 mod-
ule is defined, as shown in Figure 12.8.

The constraint specifies that the types ’a Set2.set and ’a Set.set are the same.
In other words, they share a common type. Since the two types are equal, set values
can be freely passed between the two set implementations.
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Module definition

module Set2 : Set2Sig
with type ’a set = ’a Set.set =

struct
include Set
let add l x = Set.add x l

end;;

Toploop

# let s = Set2.add Set.empty 1;;
val s : int Set2.set = <abstr>
# Set.mem 1 s;;
- bool = true

Figure 12.8: Defining a sharing constraint.
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12.7 Exercises
Exercise 12.1 Which of the following are legal programs? Explain your answers.

1. module A : sig
val x : string

end = struct
let x = 1
let x = "x"

end

2. module A : sig
val x : string
val x : string

end = struct
let x = "x"

end

3. module a = struct
let x = 1

end;;

4. module M : sig
val f : int -> int
val g : string -> string

end = struct
let g x = x
let f x = g x

end

5. let module X = struct let x = 1 end in X.x

6. module M = struct
let g x = h x
let f x = g x
let h x = x + 1

end

7. module rec M : sig
val f : int -> int
val h : int -> int

end = struct
open M
let g x = h x
let f x = g x
let h x = x + 1

end

8. module rec M : sig
val f : int -> int

end = struct
let f = M.f

end

9. type ’a t = { set : ’a -> unit; get : unit -> ’a }
let f x =

let cell = ref x in
let module M = struct

let s i = cell := i
let g () = !cell
let r = { set = s; get = g }

end
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in
M.r

10. let f x =
let cell = ref x in
let module M = struct

type ’a t = { set : ’a -> unit; get : unit -> ’a }
let s i = cell := i
let g () = !cell
let r = { set = s; get = g }

end
in

M.r

11. module type ASig = sig type s val f : int -> s end
module type BSig = sig type t val g : t -> int end
module C : sig

module A : ASig
module B : BSig with type t = A.s

end = struct
type u = string
module A = struct type s = u let f = string_of_int end
module B = struct type t = u let g = int_of_string end

end
include C
let i = B.g (A.f ())

12. module type ASig = sig type t end
module type BSig = sig val x : int end
module A : ASig with type t = int

= struct type t = int end
module B : BSig = struct let x = 1 end
module C : sig

include ASig
val x : t

end = struct
include A
include B

end

Exercise 12.2 In OCaml, programs are usually written “bottom-up,” meaning that pro-
grams are constructed piece-by-piece, and the last function is a file is likely to be the
most important. Many programmers prefer a top-down style, where the most important
functions are defined first in a file, and supporting definitions are placed later in the file.
Can you use the module system to allow top-down programming?

Exercise 12.3 One could argue that sharing constraints are never necessary for un-
parameterized modules like the ones in this chapter. In the example of Figure 12.8,
there are at least two other solutions that allow the Set2 and Set modules to share val-
ues, without having to use sharing constraints. Present two alternate solutions without
sharing constraints.

Exercise 12.4 In OCaml, signatures can apparently contain multiple declarations for
the same value.

# module type ASig = sig
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val f : ’a -> ’a
val f : int -> int
end;;

module type ASig = sig val f : ’a -> ’a val f : int -> int end

In any structure that is given this signature, the function f must have all the types listed.
If f is not allowed to raise an exception, what is the only sensible definition for it?

Exercise 12.5 Unlike val declarations, type declarations must have distinct names in
any structure or signature.

# module type ASig = sig
type t = int
type t = bool

end;;
Multiple definition of the type name t.
Names must be unique in a given structure or signature.

While this particular example may seem silly, the real problem is that all modules
included with include must have disjoint type names.

# module type XSig = sig
type t
val x : t

end;;
# module A : XSig = struct

type t = int
let x = 0

end;;
# module B : XSig = struct

type t = int
let x = 1

end;;
# module C = struct

include A
include B

end;;
Multiple definition of the type name t.
Names must be unique in a given structure or signature.

Is this a problem? If it is not, argue that conflicting includes should not be allowed in
practice. If it is, propose a possible solution to the problem (possibly by changing the
language).
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Functors

Modules often refer to other modules. The modules we saw in Chapter 12 referred to
other modules by name. Thus, all the module references we’ve seen up to this point
have been to specific, constant modules.

It’s also possible in OCaml to write modules that are parameterized by other mod-
ules. To be used, functors are instantiated by supplying actual module arguments for
the functor’s module parameters (similar to supplying arguments in a function call).

To illustrate the use of a parameterized module, let’s return to the set implementa-
tion we have been using in the previous two chapters. One of the problems with that
implementation is that the elements are compared using the OCaml built-in equality
function =. What if, for example, we want a set of strings where equality is case-
insensitive, or a set of floating-point numbers where equality is to within a small con-
stant? Rather than re-implementing a new set for each of new case, we can implement
it as a functor, where the equality function is provided as a parameter. An example is
shown in Figure 13.1, where we represent the set as a list of elements.

In this example, the module MakeSet is a functor that takes another module Equal
with signature EqualSig as an argument. The Equal module provides two things—a
type of elements, and a function equal to compare two elements. The body of the
functor MakeSet is much the same as the previous set implementations we have seen,
except now the elements are compared using the function equal x x’ instead of the
builtin-equality x = x’. The expression List.exists f s is true iff the predicate f
is true for some element of the list s. The List.find f s expression returns the first
element of s for which the predicate f is true, or raises Not_found if there is no such
element.

To construct a specific set, we first build a module that implements the equality
function (in this case, the module StringCaseEqual), then apply the MakeSet functor
module to construct the set module (in this case, the module SSet).

In many ways, functors are just like functions at the module level, and they can be
used just like functions. However, there are a few things to keep in mind.

1. A functor parameter, like (Equal : EqualSig) must be a module, or another
functor. It is not legal to pass non-module values (like strings, lists, or integers).
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Set functor

module type EqualSig = sig
type t
val equal : t -> t -> bool

end;;

module MakeSet (Equal : EqualSig) = struct
open Equal
type elt = Equal.t
type t = elt list
let empty = []
let mem x s = List.exists (equal x) s
let add = (::)
let find x s = List.find (equal x) s

end;;

Building a specific case

module StringCaseEqual = struct
type t = string
let equal s1 s2 =

String.lowercase s1 = String.lowercase s2
end;;
module SSet = MakeSet (StringCaseEqual);;

Using the set

# let s = SSet.add "Great Expectations" SSet.empty;
val s : string list = ["Great Expectations"]
# SSet.mem "great eXpectations" s;;
- : bool = true
# SSet.find "great eXpectations" s;;
- StringCaseEqual.t = "Great Expectations"

Figure 13.1: An implementation of sets based on lists.
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2. Syntactically, module and functor identifiers must always be capitalized.
Functor parameters, like (Equal : EqualSig), must be enclosed in paren-
theses, and the signature is required. For functor applications, like
MakeSet (StringCaseEqual), the argument must be enclosed in parenthesis.

3. Modules and functors are not first class. That is, they can’t be stored in data
structures or passed as arguments like other values, and module definitions can-
not occur in function bodies.

Another point to keep in mind is that the new set implementation is no longer
polymorphic—it is now defined for a specific type of elements defined by the Equal
module. This loss of polymorphism occurs frequently when modules are parameter-
ized, because the goal of parameterizing is to define different behaviors for different
types of elements. While the loss of polymorphism is inconvenient, in practice it is
rarely an issue because modules can be constructed for each specific type of parameter
by using a functor application.

13.1 Sharing constraints
In the MakeSet example of Figure 13.1, we omitted the signature for sets. This leaves
the set implementation visible (for example, the SSet.add function returns a string
list). We can define a signature that hides the implementation, preventing the rest of
the program from depending on these details. Functor signatures are defined the usual
way, by specifying the signature after a colon, as shown in Figure 13.2.

The sharing constraint SetSig with type elt = Equal.t is an important part of
the construction. In the SetSig signature, the type elt is abstract. If the MakeSet
functor were to return a module with the plain signature SetSig, the type SSet.elt
would be abstract, and the set would be useless. If we repeat the construction without
the sharing constraint, the compiler produces an error message when we try to use it.

# module MakeSet (Equal : EqualSig) : SetSig = struct ... end
# module SSet = MakeSet (StringCaseCompare);;
# SSet.add "The Magic Mountain" SSet.empty;;
Characters 9-29:

SSet.add "The Magic Mountain" SSet.empty;;
^^^^^^^^^^^^^^^^^^^^

This expression has type string but is here used with type
SSet.elt = MakeSet(StringCaseEqual).elt

The message indicates that the types string and SSet.elt are not the
same—and in fact, the only property known is that the types SSet.elt and
MakeSet(StringCaseEqual).elt are equal.

13.2 Module sharing constraints
The sharing constraints that we have seen so far apply to types in a module definition. It
is also possible to specify sharing constraints on entire modules. The effect of a module
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Set signature

module type SetSig = sig
type t
type elt
val empty : t
val mem : elt -> t -> bool
val add : elt -> t -> t
val find : elt -> t -> elt

end;;

module MakeSet (Equal : EqualSig)
: SetSig with type elt = Equal.t =

struct
type elt = Equal.t
· · ·

end;;

Building a specific case

module StringCaseEqual = struct · · · end;;
module SSet = MakeSet (StringCaseEqual);;

Using the set

# SSet.empty;;
- : SSet.t = <abstr>
# open SSet;;
# let s = add "Paradise Lost" empty;;
val s : SSet.t = <abstr>
# mem "paradise lOst" s;;
- : bool = true
# find "paradise loSt" s;;
- : string = "Paradise Lost"

Figure 13.2: Assigning a signature to the MakeSet functor.
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sharing constraint is to equate two modules, including all the types contained within
the modules. This can be a tremendous benefit when many types must be constrained
as part of a new module definition.

To see how this works, let’s redefine the MakeSet functor using a sharing constraint
on the Equal module. The first step is to revise the signature SetSig to include the
module. In this new module signature, the type elt is now defined as Equal.t.

module type SetSig = sig
module Equal : EqualSig

type t
type elt = Equal.t
val empty : t
val mem : elt -> t -> bool
val add : elt -> t -> t
val find : elt -> t -> elt

end;;

The next step is to revise the MakeSet functor to include the Equal module and the
corresponding sharing constraint.

module MakeSet (EqArg : EqualSig)
: SetSig with module Equal = EqArg =
struct

module Equal = EqArg

type elt = Equal.t
type t = elt list
let empty = []
...

end;;

The effect of the sharing constraint is to specify that the types elt and Equal.t are
equivalent. In this example, there is only one type, so there isn’t much benefit. In gen-
eral, however, the modules being constrained can include many types, and the module
constraint provides both clarity and a reduction in code size.

13.3 Module re-use using functors
Now that we have successfully constructed the MakeSet functor, let’s move on to our
old friend, the map or dictionary data structure. A map is a table that associates a value
with each element in a set. The data structure provides a function add to add an element
and its value to the table, as well as a function find that retrieves that value associated
with an element, or raises the exception Not_found if the element is not in the table.

The map and set data structures are very similar. Since we have implemented sets
already, we will try to re-use the implementation for maps. In this case, we will write
a functor that produces a map data structure given a comparison function. The code is
shown in Figure 13.4.

The MakeMap functor takes two parameters, a Equal module to compare keys, and
a Value module that specifies the type of values stored in the table. The constructed
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Signature definitions

module type ValueSig = sig
type value

end;;

module type MapSig = sig
type t
type key
type value
val empty : t
val add : t -> key -> value -> t
val find : t -> key -> value

end;;

Figure 13.3: Signatures for the map module.

module MakeMap (Equal : EqualSig) (Value : ValueSig)
: MapSig

with type key = Equal.t
with type value = Value.value

= struct
type key = Equal.t
type value = Value.value
type item = Key of key | Pair of key * value

module EqualItem = struct
type t = item
let equal (Key key1 | Pair (key1, _)) (Key key2 | Pair (key2, _)) =

Equal.equal key1 key2
end;;
module Set = MakeSet (EqualItem);;
type t = Set.t

let empty = Set.empty
let add map key value =

Set.add (Pair (key, value)) map
let find map key =

match Set.find (Key key) map with
Pair (_, value) -> value

| Key _ ->
raise (Invalid_argument "find")

end;;

Figure 13.4: Constructing a map (a dictionary) from a set.
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module has three parts: 1) type definitions, 2) the construction of a Set module, and 3)
the implementation of the functions and values for the Map.

The Set contains values of type item, which is defined as either a Key or a Pair.
The set itself always contains key/value pairs Pair (key, value). The Key key form
is defined so that the find function can be implemented without requiring a dummy
value.

13.4 Higher-order functors
A higher-order functor is a functor that takes another functor as an argument. While
higher-order functors are rarely used in practice, there are times when they can be
useful.

For example, in relation to our running example, the MakeMap functor is tied to a
specific definition of the MakeSet functor. If we have multiple ways to build sets (for
example, as lists, trees, or some other data structure), we may want to be able to use
any of these sets when building a map. The solution is to pass the MakeSet functor as a
parameter to MakeMap.

The type of a functor is specified using the functor keyword, where signature2 is
allowed to depend on the argument Arg.

functor (FunctorName : signature1) -> signature2

When passing the MakeSet functor to MakeMap, we need to specify the functor type
with its sharing constraint. The MakeMap definition changes as follows; the structure
definition itself doesn’t change.

module MakeMap (Equal : EqualSig) (Value : ValueSig)
(MakeSet : functor (Equal : EqualSig) ->

SetSig with type elt = Equal.t)
: MapSig

with type key = Equal.t
with type value = Value.value

= struct · · · end

These types can get complicated! Certainly, it can get even more complicated with
the ability to specify a functor argument that itself takes a functor. However, as we
mentioned, higher-order functors are used fairly infrequently in practice, partly because
they can be hard to understand. In general, it is wise to avoid gratuitous use of higher-
order functors.

13.5 Recursive modules and functors
In Section 12.3 we saw how modules can be defined recursively, as long as they are
all defined in the same file. With functors, the situation becomes much better, because
the modules can now be implemented in separate files as functors (although the final
recursive construction must still be in a single file).
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The syntax for recursive functors remains the same as before, using the syntax
module rec · · · and · · ·, where some of the definitions are functor applications.

To illustrate, let’s build a more general versions of sets, where the set elements may
be integers or—in addition—other sets. So, for instance, sets like {1, 2}, {{1, 2}}, and
{17, {21}, {−3, {88}}} should all be representable.

The immediate problem is that, if we wish to re-use the MakeSet functor we already
defined to build the set, there appears to be no way to define the type of set elements.

type elt = Int of int | Set of ???

What should be the type of sets to use in this type definition? Certainly, it should be
the type MakeSet(SetEqual).t, but the SetEqual module must be able to compare sets
before the type is constructed.

To solution is to define the SetEqual and the corresponding Set module recursively.
For now, let’s just use the builtin equality = to compare sets.

type ’set element = Int of int | Set of ’set

module rec SetEqual
: EqualSig with type t = Set.t element =
struct

type t = Set.t element
let equal = (=)

end

and Set : SetSig with type elt = SetEqual.t = MakeSet (SetEqual)

The construction is necessarily recursive—the SetEqual module refers to the Set mod-
ule and vice versa.

Recursive module definitions are often more verbose than non-recursive defini-
tions because the modules are required to have signatures. This often means that it
is usually necessary to specify types twice, once in the module body, and again in the
signature. In this example, the type t is defined twice as type t = Set.t element.
Another issue is that it isn’t possible to define a sharing constraint of the form
EqualSig with type t = Int of int | Set of Set.t because that would be a type
definition, not a type constraint. The actual type definition must be given beforehand,
and since the type of sets is not known at that point, a type variable ’set must be
introduced to stand for the type of sets.

In practice, recursive modules are used much less frequently than simple non-
recursive modules. They are, however, a powerful tool that adds significant expressiv-
ity to the module system. Without recursion, the Set module could not be constructed
using the MakeSet functor. When used judiciously, recursion is an important part in
maintaining modularity in programs.

13.6 A complete example
For simplicity, we have been using a list representation of sets. However, this imple-
mentation is not practical except for very small sets, because the set operations take
time linear in the size of the set. Let’s explore a more practical implementation based
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on a tree representation, where the set operations are logarithmic in the size of the set.
For this, we turn to the red-black trees discussed in Section 6.4.

Red-black trees (and binary search trees in general) are labeled trees where the
nodes are in-order; that is, given a node n with label l, the left children of n have labels
smaller than l, and the right children have labels larger than l. The module Equal that
we have been using is too coarse. We need a more general comparison function, so the
first step is to define a module signature for it.

type comparison = LT | EQ | GT

module type CompareSig = sig
type t
val compare : t -> t -> comparison

end

The SetSig signature is unchanged for the most part, but we include a compare function
so that it will be easy to construct sets of sets.

module type SetSig = sig
module Compare : CompareSig

type t
type elt = Compare.t
val empty : t
val add : elt -> t -> t
val mem : elt -> t -> bool
val find : elt -> t -> elt
val compare : t -> t -> comparison

end

The rest of the construction is now to define the MakeSet functor in terms of red-black
trees. The module sketch is as follows, where our objective is to fill in the ellipses · · ·
with the actual implementation.

module MakeSet (Compare : CompareSig)
: SetSig with module Compare = Compare =
struct

module Compare = Compare
type elt = Compare.t
type color = Red | Black
type t = Leaf | Node of color * elt * t * t
let empty = Leaf
let add x s = · · ·
let mem x s = · · ·
let find x s = · · ·
let compare s1 s2 = · · ·

end

The definition module Compare = Compare may seem a little silly at first, but it defines
the placeholder that allows the sharing constraint to be expressed—namely, that the
type of elements in the set is Compare.t.

To implement the final four functions, we can use the implementation of red-black
trees, modified to take the comparison into account. Let’s start with the find function,
which traverses the tree, looking for a matching element. This is the usual recursive
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inorder traversal.

let rec find x = function
Leaf -> raise Not_found

| Node (_, y, left, right) ->
match Compare.compare x y with

LT -> find x left
| GT -> find x right
| EQ -> y

The mem function is similar. It is so similar in fact, that we can simply implement
it in terms of find, using the exception to determine membership. The expression
ignore (find x s); true discards the result of find x s, returning true.

let mem x s =
try ignore (find x s); true with

Not_found -> false

The function add is the same as the function insert from page ??, modified to use the
generic function compare. The balance function is as before.

let add x s =
let rec insert = function

Leaf -> Node (Red, x, Leaf, Leaf)
| Node (color, y, a, b) as s ->

match Compare.compare x y with
LT -> balance (color, y, insert a, b)

| GT -> balance (color, y, a, insert b)
| EQ -> s

in
match insert s with (* guaranteed to be non-empty *)

Node (_, y, a, b) -> Node (Black, y, a, b)
| Leaf -> raise (Invalid_argument "insert");;

Finally, we must implement a compare function on sets. The builtin equality (=) is not
appropriate. First, we should be using the supplied comparison Compare instead, and
second, there may be many different red-black trees that represent the same set. The
shape of the tree is determined partly by the order in which elements are added to the
set, while we want true set equality: two sets are equal iff they have the same elements.

There are many ways to define a set equality. We will implement a simple one
that first converts the sets to lists, then performs a lexicographic ordering on the lists.
This is not the most efficient comparison, but it is adequate, taking time O(max(n,m))
when comparing two sets of size n and m.

let rec to_list l = function
Leaf -> l

| Node (_, x, left, right) ->
to_list (x :: to_list l right) left

let rec compare_lists l1 l2 =
match l1, l2 with

[], [] -> EQ
| [], _ :: _ -> LT
| _ :: _, [] -> GT
| x1 :: t1, x2 :: t2 ->
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match Compare.compare x1 x2 with
EQ -> compare_lists t1 t2

| LT | GT as cmp -> cmp

let compare s1 s2 =
compare_lists (to_list [] s1) (to_list [] s2)

The expression to_list [] s produces a list of elements of the set in sorted order—
this is important, because it means that two equal sets have the same list representation.
The function compare_lists defines the lexicographic ordering of two lists, and the
function compare s1 s2 ties it together.

The MakeSet functor is now finished. For a final step, let’s repeat the recursive
definition of a set of sets, from Section 13.5.

type ’set element = Int of int | Set of ’set

module rec Compare
: CompareSig with type t = Set.t element =
struct

type t = Set.t element
let compare x1 x2 =

match x1, x2 with
Int i1, Int i2 ->

if i1 < i2 then LT else if i1 > i2 then GT else EQ
| Int _, Set _ -> LT
| Set _, Int _ -> GT
| Set s1, Set s2 -> Set.compare s1 s2

end

and Set : SetSig with module Compare = Compare = MakeSet (Compare)

The function Compare.compare compares two elements; we choose to use the usual
ordering on integers, the Set ordering on sets, and integers are always smaller than
sets. Note that the module definition is now recursive not only in the types being
defined, but also in the definition of the compare function.
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13.7 Exercises
Exercise 13.1 Which of the following are legal programs? Explain your answers.

1. module type XSig = sig val i : int end
module F (X : XSig) = X

2. module type S = sig end
module Apply (F : functor (A : S) -> S) (A : S) = F (A)

3. module type ISig = sig val i : int end
module F (I : ISig) : ISig = struct let i = I.i + 1 end
let j = F(struct let i = 1 end).i

4. module X = struct type t = int end
module F (X) = struct type t = X.t end

5. module F (X : sig type t = A | B end) : sig type t = A | B end = X

6. module F (X : sig type t = A | B end) : sig type t = A | B end =
struct type t = A | B end

7. module F (X : sig type t = A | B end) : sig type t = A | B end =
struct type t = X.t end

Exercise 13.2 Consider the following well-typed program.

module type T = sig type t val x : t end
module A = struct type t = int let x = 0 end
module B = struct type t = int let x = 0 end
module C = A
module F (X : T) = X
module G (X : T) : T = X
module D1 = F (A)
module D2 = F (B)
module D3 = F (C)
module E1 = G (A)
module E2 = G (B)
module E3 = G (C)

Which of the following expressions are legal? Which have type errors?
1. D1.x + 1

2. D1.x = D2.x

3. D1.x = D3.x

4. E1.x + 1

5. E1.x = E2.x

6. E1.x = E3.x

7. D1.x = E1.x

Exercise 13.3 How many lines of output does the following program produce?

module type S = sig val x : bool ref end

module F (A : S) =
struct

let x = ref true;;
if !A.x then begin
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print_string "A.x is true\n";
A.x := false

end
end

module G = F (F (F (struct let x = ref true end)))

Exercise 13.4 It is sometimes better to define a data structure as a record instead of a
module. For example, the record type for the finite sets in this chapter might be defined
as follows, where the type ’elt t is the set representation for sets with elements of
type ’elt.

type ’elt t = · · ·
type ’elt set =

{ empty : ’elt t;
add : ’elt -> ’elt t -> ’elt t;
mem : ’elt -> ’elt t -> bool;
find : ’elt -> ’elt t -> ’elt

}

1. Write a function make_set : (’elt -> ’elt -> bool) -> ’elt set that cor-
responds to the MakeSet functor on page 140 (the argument to make_set is the
equality function). Can you hide the definition of the type ’elt t from the rest
of the program?

2. Is it possible to implement sets two different ways such that both implementa-
tions use the same ’elt set type, but different ’elt t representations?

3. Consider an alternative definition for sets, where the record type is also parame-
terized by the set representation.

type (’elt, ’t) set =
{ empty : ’t;

add : ’elt -> ’t -> ’elt;
mem : ’elt -> ’t -> bool;
find : ’elt -> ’t -> ’elt

}

Write the function make_set for this new type. What is the type of the make_set
function?

4. What are some advantages of using the record representation? What are some
advantages of using the functor representation?

Exercise 13.5 Suppose you wish to write a program that defines two mutually-
recursive functions f : int -> int and g : int -> int. To keep the design mod-
ular, you wish to write the code for the two functions in separate files f.ml and g.ml.
Describe how to use recursive modules to accomplish the task.
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Exercise 13.6 In Unix-style systems1 a pipeline is a series of processes
p1 | p2 | · · · | pn that interact through communication channels, where the input
of process pi+1 is the output of process pi.

We can use a similar architecture within a program to connect modules, which
we will call filters, giving them the signature Filter. The pipeline itself is given the
signature Pipeline, where the type of elements passed into the pipeline have type
Pipeline.t.

module type Pipeline = sig
type t
val f : t -> unit

end

module type Filter = functor (P : Pipeline) -> Pipeline

For example, the following pipeline CatFile prints the contents of a file to the terminal,
one line at a time.

module Print = struct
type t = string
let f s = print_string s; print_char ’\n’

end

module Cat (Stdout : Pipeline with type t = string) =
struct

type t = string

let f filename =
let fin = open_in filename in
try

while true do Stdout.f (input_line fin) done
with End_of_file -> close_in fin

end

module CatFile = Cat (Print)

1. Write a Uniq filter that, given a sequence of input lines, discards lines that are
equal to their immediate predecessors. All other lines should be passed to the
output.

2. Write a Grep filter that, given a regular expression and a sequence of in-
put lines, outputs only those lines that match the regular expression. For
regular expression matching, you can use the Str library. The function
Str.regexp : string -> regexp compiles a regular expression presented as a
string; the expression Str.string_match r s 0 tests whether a string s matches
a regular expression r.

3. Write a function grep : string -> string -> unit, where the expression
grep regex filename prints the lines of the file filename that match the pat-
tern specified by the string regex, using the pipeline construction and the module
Grep from the previous part.

1UNIX® is a registered trademark of The Open Group.
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4. Sometimes it is more convenient for filters to operate over individual characters
instead of strings. For example, the following filter translates a character stream
to lowercase.

module Lowercase (Stdout with type t = char) =
struct

type t = char
let f c = Stdout.f (Char.lowercase c)

end

Write a filter StringOfChar that converts a character-based pipeline to a string-
based pipeline.

StringOfChar : functor (P : Pipeline with type t = char) ->
Pipeline with type t = string

5. The pipeline signatures, as defined, seem to require that pipelines be con-
structed from the end toward the beginning, as a module expression of the form
P1 (P2 · · · (Pn) · · ·). Write a functor Compose that takes two filters and pro-
duces a new one that passes the output of the first to the second. What is the
signature of the Compose functor? (Hint: consider redefining the signature for
filters.)
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Chapter 14

Objects

Object-oriented programming is a programming model based on “objects” and their
interactions. The OCaml object system, like many other object-oriented languages,
includes various concepts like objects, classes, inheritance, subtype polymorphism, etc.
OCaml’s object system also differs from other languages in several ways. It is quite
expressive, and it is structural rather than nominal, meaning that the names of objects
and classes make very little difference. We’ll point out some of these differences as we
go along. For now, let’s start with simple objects, without classes. We’ll look at classes
and inheritance in Chapter 15, and we’ll cover polymorphic classes in Chapter 17.

To begin, it is simplest to think of an object as a collection of data together with
functions to operate on that data. The data are called fields of the object, and the
functions are called methods. For example, the following object represents a polygon
that includes a method draw to draw it on the screen (this examples uses the OCaml
Graphics package to perform the drawing).

# #load "graphics.cma";; (* Load the Graphics module into the toploop *)
# let poly =

object
val vertices = [|(46, 70); (54, 70); (60, 150); (40, 150)|]
method draw = Graphics.fill_poly vertices

end;;
val poly : < draw : unit > = <obj>

The syntax for an object uses the keywords object · · · end as delimiters. Fields are
defined with the keyword val, and methods are defined with the keyword method.

The type of an object is similar to a record type, but it uses angle brackets < · · · >
as delimiters. The object type includes the method types, but not the types of the fields,
so the type of the polygon is simply < draw : unit >. It is easy to define other objects
with the same type.

# let circle =
object

val center = (50, 50)
val radius = 10
method draw =
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let x, y = center in
Graphics.fill_circle x y radius

end;;
val circle : < draw : unit > = <obj>

Methods are invoked by with the syntax object#method-name (this is often called send-
ing a message to the object). The following sequence of operations opens the graphics
window, draws the two objects, and waits for a button to be pressed. The display is
shown on the right.

Graphics.open_graph " 200x200";;
poly#draw;;
circle#draw;;
ignore (Graphics.wait_next_event [Graphics.Button_down]);;

This example illustrates a property of object-oriented programming called dynamic
lookup. 1 For an expression obj#m, the actual method m that gets called is determined
dynamically by the object obj, not by some static property of the program. A polygon
draws itself one way, a circle draws itself in another way, but the implementation is the
responsibility of the object, not the client.

14.1 Encapsulation and polymorphism
Another important feature of object-oriented programming is encapsulation, also
called abstraction. An object encapsulates some data with methods for operating on
the data; it isn’t necessary to know how an object is implemented in order to use it. In
our example, the polygon and the circle have a single method draw, so they have the
same type, and they can be used in the same ways. Let’s define a function to draw a
list of objects.

# let draw_list items =
List.iter (fun item -> item#draw) items;;

val draw_list : < draw : unit; .. > list -> unit = <fun>
# draw_list [poly; circle];;
- : unit = ()

Note the type of the function draw_list, which specifies that it takes a list of objects
of type < draw : unit; .. >. The ellipsis .. in this type stands for “other” meth-
ods. That is, the function draw_list takes a list of objects having at least a method
draw : unit, and possibly some other methods. Suppose we defined a new kind of
object that represents a square that, in addition to having a method draw, also defines a
method area to compute the area.

1Dynamic lookup is often called polymorphism in object-oriented circles, but that conflicts with the term
polymorphism that we use for ML. The two are not at all the same. Following Mitchell [6], we’ll use the
term polymorphism to refer to parametric polymorphism (type polymorphism), and dynamic lookup to refer
to object polymorphism.
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# let square =
object

val lower_left = (100, 100)
val width = 10
method area = width * width
method draw =

let (x, y) = lower_left in
Graphics.fill_rect x y width width

end;;
val square : < area : int; draw : unit > = <obj>
# draw_list [square];;
- : unit = ()

If we had used the simpler type draw_list_exact : < draw : unit > list -> unit,
the list drawing function would work only with objects having exactly one method,
the method draw. The expression draw_list_exact [square] produces a type error,
because the object square has an extra method area.

# let draw_list_exact (items : < draw : unit > list) =
List.iter (fun item -> item#draw) items;;

val draw_list_exact : < draw : unit > list -> unit = <fun>
# draw_list_exact [square];;
Characters 17-23:

draw_list_exact [square];;
^^^^^^

This expression has type < area : int; draw : unit >
but is here used with type < draw : unit >
The second object type has no method area

Technically speaking, an occurrence of an ellipsis .. in an object type is called a row
variable, and the scheme for typing is called row polymorphism. It might not look like
it, but the type is really polymorphic, as we’ll see if we try to write a type definition.

# type blob = < draw : unit; ..>;;
Characters 4-30:

type blob = < draw : unit; ..>;;
^^^^^^^^^^^^^^^^^^^^^^^^^^

A type variable is unbound in this type declaration.
In definition < draw : unit; .. > as ’a the variable ’a is unbound

The issue is that an ellipsis .. is like a type variable, standing for the types of all the
“other” methods. Unfortunately, it doesn’t look like a type variable, and it doesn’t
make sense to write type (..) blob = < draw : unit; .. >. The error message is
a little cryptic, but it suggests the solution, which is to introduce a type variable ’a
that stands for the type of the entire object. The as form and the constraint form are
equivalent; you can write it either way.

# type ’a blob = < draw : unit; .. > as ’a;;
type ’a blob = ’a constraint ’a = < draw : unit; .. >
# let draw_list_poly : ’a blob list -> unit = draw_list;;
val draw_list_poly : < draw : unit; .. > blob list -> unit = <fun>
# draw_list_poly [square];;
- : unit = ()
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14.2 Transformations
An important feature of any 2D graphics library is the ability to transform objects by
scaling, rotation, or translation. The cleanest way to do this is to make use of so-called
homogeneous coordinates, where the 2D coordinates (x, y) are represented as triples
(x, y, 1), and transformations are represented as 3×3 transformation matrices. A 3×3
matrix has 9 values tij , written as follows.




t11 t12 t13
t21 t22 t23
t31 t32 t33




The product of a matrix and a vector is computed as follows, where ab represents the
product of a and b.




t11 t12 t13
t21 t22 t23
t31 t32 t33







x
y
z


 =




t11x + t12y + t13z
t21x + t22y + t23z
t33x + t23y + t33z




The product of two matrices is computed as follows,




s11 s12 s13

s21 s22 s23

s31 s32 s33







t11 t12 t13
t21 t22 t23
t31 t32 t33


 =




u11 u12 u13

u21 u22 u23

u31 u32 u33




where uij = si1t1j + si2t2j + si3t3j .

14.2.1 Basis transformations
The basis transformation matrices are specified as follows.

Scale by (sx, sy) Rotate by θ Translate by (dx, dy)


sx 0 0
0 sy 0
0 0 1







cos θ − sin θ 0
sin θ cos θ 0

0 0 1







1 0 dx
0 1 dy
0 0 1




Transformations are composed by multiplying their matrices. The application of a
transformation to a point is also a matrix multiplication, treating the coordinate as a
column vector. The following formula represents a scaling by (sx, sy) followed by a
translation by (dx, dy) (for a formula (Tn · · ·T2T1)p, the matrix T1 is the first transfor-
mation, and Tn is the last).







1 0 dx
0 1 dy
0 0 1


×




sx 0 0
0 sy 0
0 0 1





×




x
y
1




=




sx 0 dx
0 sy dy
0 0 1


×




x
y
1


 =




sxx + dx
syy + dy

1




Copyright © Jason Hickey 158 Draft. Do not redistribute.



CHAPTER 14. OBJECTS 14.2. TRANSFORMATIONS

14.2.2 Functional update
Let’s implement an object that represents a transformation matrix. We could imple-
ment three separate functions to produce the basis transformations, but that would re-
quire duplicating the object definition. It will be easier to implement them as methods
instead.

Let’s start with the basis transformations. Since the last row in a transformation is
always (0 0 1), we’ll just omit it and use a flattened 6-tuple to represent the matrix.

Matrix Flattened representation as a 6-tuple


x11 x12 x13

x21 x22 x23

0 0 1


 =⇒ (x11, x12, x13, x21, x22, x23)

First, let’s write the methods new_scale, new_rotate, and new_translate that con-
struct the basis transformations. For the moment, we’re omitting the implementations
of the methods transform and multiply.

# let transform =
object

val matrix = (1., 0., 0., 0., 1., 0.)
method new_scale sx sy =

{< matrix = (sx, 0., 0., 0., sy, 0.) >}
method new_rotate theta =

let s, c = sin theta, cos theta in
{< matrix = (c, -.s, 0., s, c, 0.) >}

method new_translate dx dy =
{< matrix = (1., 0., dx, 0., 1., dy) >}

method transform (x, y) = · · ·
method multiply matrix2 = · · ·

end;;
val transform :

< new_scale : float -> float -> ’a;
new_rotate : float -> ’a;
new_translate : float -> float -> ’a;
transform : float * float -> int * int;
multiply : ... > as ’a = <obj>

The expression {< · · · >} represents a functional update. This kind of update pro-
duces a new object that is the same as the current object, except for the specified
changes; the original object is not affected. For example, an expression {< >} would
produce an identical copy of the current object. In the transform object, the expres-
sion {< matrix = expression >} produces a new transform object with new values for
the field matrix. In our example, the canonical object transform is the identity trans-
formation, and each basis method new_. . . produces a new object by discarding the
original value of the field matrix, and replacing it with new values that implement the
desired transformation. In effect, each method new_. . . is a constructor that constructs
a new object, using the current one as a template.

In general, there are two things to keep in mind when using a functional update.
First, the expression form {< · · · >} can be used only in a method body. Second, the
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update can be used only to update fields, not methods—method implementations are
fixed at the time the object is created.

14.3 Binary methods
Let’s return to the implementation and fill in the remaining methods. The method
transform is just a matrix multiplication, which we write out by hand.

method transform (x, y) =
let (m11, m12, m13, m21, m22, m23) = matrix in
(m11 *. x +. m12 *. y +. m13,
m21 *. x +. m22 *. y +. m23)

The multiply method is a little harder. The problem is that in OCaml, unlike some
other object-oriented languages, fields are private to an object. The multiply method is
called a binary method because it takes another object of the same type as an argument.
A binary method cannot directly access the fields of the object passed as an argument.

There are several approaches to dealing with binary methods, but the easiest one
here is to add a method representation that exposes the internal representation of the
object.2 The remaining part of the implementation is as follows.

# let transform =
object
· · ·
method representation = matrix
method multiply matrix2 =

let (x11, x12, x13, x21, x22, x23) = matrix in
let (y11, y12, y13, y21, y22, y23) = matrix2#representation in
{< matrix =

(x11 *. y11 +. x12 *. y21,
x11 *. y12 +. x12 *. y22,
x11 *. y13 +. x12 *. y23 +. x13,
x21 *. y11 +. x22 *. y21,
x21 *. y12 +. x22 *. y22,
x21 *. y13 +. x22 *. y23 +. x23)

>}
end;;
val transform : < ... > as ’a = <obj>
# let ( ** ) t1 t2 = t1#multiply t2;;
val ( ** ) : < multiply : ’a -> ’b; .. > -> ’a -> ’b = <fun>

14.4 Object factories
Now that we have defined the transformation, let’s return to the graphical objects,
where we now want to add a new method transform to apply a transformation to
the object. It can get tedious to define an entire object each time it is created, so in-
stead we will write functions that create new objects (functions that create new objects

2Of course, this is not always desirable. In Section 15.4, we describe a way to use the module system to
improve abstraction.
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are often called factories). In addition, we now represent the coordinates as pairs of
floating-point numbers. Here is the implementation of the factory new_poly; the code
for circles is similar.3

# let int_coord (x, y) = (int_of_float x, int_of_float y);;
val int_coord : float * float -> int * int = <fun>
# let new_poly vertices =
object

val vertices = vertices
method draw = Graphics.fill_poly (Array.map int_coord vertices)
method transform matrix = {< vertices = Array.map matrix#transform vertices >}

end;;
val new_poly :

(float * float) array ->
(< draw : unit;

transform : < transform : float * float -> float * float; .. > -> ’a >
as ’a) = <fun>

Note the type of the transform method, which is more subtle than it might seem.
Remember that the ellipsis .. is a row variable—it is like a type variable, so the type of
polygons really contains two type variables. We’ll revisit this issue in the next section.

Finally, to illustrate our graphics library in action, let’s draw a few transformed and
rotated objects.

let poly = new_poly [|(-0.05, 0.2); (0.05, 0.2); (0.1, 1.0); (-0.1, 1.0)|] in
let circle = new_circle (0.0, 0.0) 0.1 in
let matrix1 =

(transform#new_translate 50.0 50.0) ** (transform#new_scale 100.0 100.0) in
for i = 0 to 9 do

let matrix2 = matrix1 ** (transform#new_rotate (0.628 *. float_of_int i)) in
(poly#transform matrix2)#draw

done;
(circle#transform matrix1)#draw;;

This program starts with two objects, poly and circle, centered at the origin. The
initial transformation matrix1 scales by 100 and centers the image on (50, 50). The
transformation matrix2 draws a ray rotated about the point (50, 50) to form a kind of
star. The following image shows the output.

14.5 Imperative objects
Next, it is natural to want to define a collection of items that acts like a single drawable
object. This time, let’s define it imperatively, so that the collection includes a method

3Note that the function to draw circles Graphics.fill_circle takes the circle’s radius. In general,
however, a transformed circle should be an ellipse.
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add that adds an item to the collection by side-effect. The syntax for a field that can be
modified is val mutable identifier = expression.

# let new_collection () =
object

val mutable items = []
method add item = items <- item :: items
method draw = List.iter (fun item -> item#draw) items
method transform matrix =

{< items = List.map (fun item -> item#transform matrix) items >}
end;;
val new_collection :

unit ->
(< add : (< draw : unit; transform : ’c -> ’b; .. > as ’b) -> unit;

draw : unit; transform : ’c -> ’a >
as ’a) = <fun>

Apart from the inferred type, the definition is reasonably simple. The field items is
declared as mutable, and the method add modifies it by side-effect (using <- for as-
signment). Let’s build a star.

let star =
let poly = new_poly [|(0.0, 0.2); (0.1, 0.5); (0.0, 1.0); (-0.1, 0.5)|] in
let star = new_collection () in
star#add (new_circle (0.0, 0.0) 0.1);
for i = 0 to 9 do

let trans = transform#new_rotate (0.628 *. (float_of_int i)) in
star#add (poly#transform trans)

done;
star;;

Since the star object is also a drawable object, we can also build a collection with
multiple stars.

let starry_night =
let starry_night = new_collection () in
let add_star (x, y, scale) =

let trans = (transform#new_translate x y)

** (transform#new_scale scale scale) in
starry_night#add (star#transform trans) in

List.iter add_star
[0.35, 0.50, 0.15;
0.12, 0.95, 0.12;
0.35, 0.95, 0.10;
0.62, 0.90, 0.12;
0.95, 0.85, 0.20];

starry_night

The images for the objects star and starry_night are shown below.
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star starry_night

14.6 self: referring to the current object
Suppose we wish to define a method that is recursive, or a method that calls another
method in the same object. In OCaml, the fields of an object can be referred to directly
by name, but methods must always use the syntax object#method-name. If we wish to
call a method in the current object, the object must first be named with the following
syntax, where the name occurs in parenthesis after the object keyword.

object (pattern) · · · end

The pattern can use any identifier, but by convention the current object is usually named
self. It is often specified with a type as well. The following form is conventional,
where the name self refers to the current object, and ’self is its type.

object (self : ’self) · · · end

Now that we have a name for the current object, let’s define a collection method
add_multiple n trans item that adds n of the item to the collection, transforming
each copy. The easiest way to define the method is to make it recursive.

let new_collection () =
object (self : ’self)

val mutable items = []
method add item = items <- item :: items
method add_multiple n matrix item =

if n > 0 then begin
self#add item;
self#add_multiple (n - 1) matrix (item#transform matrix)

end
method draw = List.iter (fun item -> item#draw) items
method transform matrix = · · ·

end;;

The expression self#add item is a method call that adds the item to the current col-
lection, and self#add_multiple is a recursive call.

let line =
new_poly [|(0., 0.); (2., 0.); (2., 30.); (0., 30.)|];;

let xform =
transform#new_translate 3. 0. ** transform#new_scale 1.1 1.1;;

let image = new_collection ();;
image#add_multiple 25 xform line;;
image#draw;;
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14.7 Initializers; private methods
There is an important rule to keep in mind when constructing objects.

—Field expressions may not refer to other fields, nor to self.—

Here is an example.

# object
val x = 1
val x_plus_1 = x + 1

end;;
Characters 38-39:

val x_plus_1 = x + 1
^

The instance variable x
cannot be accessed from the definition of another instance variable

The technical reason for this is that the object doesn’t exist when the field values are
being computed, so it is an error to refer to the object or any of its fields and methods.

As one way of addressing this problem, objects can contain an initializer, written
initializer expression. The initializer expression is evaluated just after the object is
created, but before it is used. The object exists at initialization, so it is legal to refer to
its fields and methods in the initializer.

# object
val x = 1
val mutable x_plus_1 = 0
initializer

x_plus_1 <- x + 1
end;;

Initializers are especially useful when an object has an invariant to be maintained, or
when the value of one field is derived from another. For a more realistic example along
these lines, let’s write a version of the polygon object that allows the polygon to be
transformed in place (by side-effect).

let new_imp_poly vertices =
object

val mutable vertices = vertices
method draw = Graphics.fill_poly (Array.map int_coord vertices)
method transform matrix = {< >}#transform_in_place matrix
method transform_in_place matrix =

vertices <- Array.map matrix#transform vertices
end;;

One potential source of inefficiency in this object is that the vertices are represented
with floating-point coordinates, but must be drawn with integer coordinates. The
method draw performs the conversion each time the object is drawn.

An alternative is to maintain two versions of the ver-
tices, float_vertices and int_vertices, with the invariant that
int_vertices = Array.map int_coord float_vertices. When one field is
derived from another like this, it is usually best to define a method that handles
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changes to the fields. In this case, the method set_vertices updates the object with
new coordinates.

# let new_imp_poly vertices =
object (self : ’self)

val mutable float_vertices = [||]
val mutable int_vertices = [||]
method draw = Graphics.fill_poly int_vertices
method transform matrix = {< >}#transform_in_place matrix
method transform_in_place matrix =

self#set_vertices (Array.map matrix#transform vertices)
method private set_vertices vertices =

float_vertices <- vertices;
int_vertices <- Array.map int_coord float_vertices

initializer
self#set_vertices vertices

end;;
val new_imp_poly : (float * float) array ->

< draw : unit;
transform : (< transform : float * float -> float * float; .. > as ’a) -> unit;
transform_in_place : ’a -> unit > = <fun>

The method set_vertices is called in two places, 1) by the initializer to set the
initial values of the vertices, and 2) by the method transform_in_place, which com-
putes new values for the vertices. The object reference self is legal in the initializer,
allowing the method call self#set_vertices.

This example also contains a private method. Private methods are defined with
the syntax method private identifier = expression. They are used just like normal
(public) methods, but they are not visible outside the object—they don’t even appear
in the object type.

14.8 Object types, coercions, and subtyping
The types of the objects we have been creating are getting pretty complicated. To make
sense of it all, let’s make some type definitions. We don’t really care about giving
the most general polymorphic types, so let’s use exact non-polymorphic types instead.
We’ll call a drawable object a blob.

type coord = float * float
type transform = < transform : coord -> coord >
type blob = < draw : unit; transform : transform -> blob >
type collection =

< add : blob -> unit;
draw : unit;
transform : transform -> collection

>

Note that the type collection differs from blob in two ways. A collection has an extra
method add, and the method transform returns another collection, not a blob.

We can now annotate the object creation functions to get simpler types (the object
definitions are the same as before).

Copyright © Jason Hickey 165 Draft. Do not redistribute.



14.8. OBJECT TYPES, COERCIONS, AND SUBTYPINGCHAPTER 14. OBJECTS

# let new_poly (vertices : coord array) : blob = object · · · end;;
val new_poly : coord array -> blob = <fun>
# let new_circle (center : coord) radius : blob = object · · · end;;
val new_circle : coord -> float -> blob = <fun>
# let new_collection () : collection = object · · · end;;
val new_collection : unit -> collection = <fun>

Now that the types are simplified, we run into a new issue: the actual object types do
not match the expected exact types. For example, the method transform now expects
an object with exactly one method (the method is also called transform), but the real
object has many more methods. Here is what we get if we try to perform a transforma-
tion.

# let circle = new_circle (0.0, 0.0) 0.1;;
val circle : blob = <obj>
# circle#transform (transform#new_translate 100.0 100.0);;
Characters 17-54:

circle#transform (transform#new_translate 100.0 100.0);;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This expression has type
< multiply : ... > as ’a

but is here used with type transform
The second object type has no method multiply

The problem here is that the expression (transform#new_translate 100.0 100.0)
produces an actual object with many methods, while the method circle#transform
expects an object having exactly one method. In principle, it should be fine to pass an
object with more methods to one that expects fewer—all the extra methods can simply
be ignored.

14.8.1 Coercions
In OCaml, such coercions are in fact legal, but they are not automatic. This is in accord
with the usual OCaml policy that all coercions should be explicit; for example, integers
are never coerced automatically to floating-point values, the function float_of_int
must be written explicitly.

An explicit object coercion can be written two ways, as a “single coercion” or as a
“double coercion.”

(object :> object-type) single coercion
(object : object-type :> object-type) double coercion

The single coercion expression (e :> t) coerces the object e to have type t (if legal).
The double coercion expression (e : t1 :> t2) means to consider first that e has type
t1, then coerce it to an object of type t2. In most cases, a single coercion is sufficient.

# circle#transform (transform#new_translate 100.0 100.0 :> transform);;
- : blob = <obj>

For another example, consider the collection object, which contains a list of simple
blobs. If we want to add any other kind of object, it must be coerced.
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# let image = new_collection ();;
val image : collection = <obj>
# image#add (new_circle (0.0, 0.0) 0.1);;
- : unit = ()
# image#add star;;
Characters 10-14:

image#add star;;
^^^^

This expression has type collection but is here used with type blob
The second object type has no method add

That is as we expected, but the single coercion doesn’t work either.

# image#add (star :> blob);;
Characters 11-15:

image#add (star :> blob);;
^^^^

This expression cannot be coerced to type
blob = < draw : unit; transform : transform -> blob >;

...
This simple coercion was not fully general. Consider using a double coercion.

The real error message is quite long, most of it has been elided. The last line suggests
using a double coercion, so we try that. Finally, success.

# star;;
- : collection = <obj>
# image#add (star : collection :> blob);;
- : unit = ()

Why does the single coercion sometimes work, but at other times the double coercion
is required? The complete technical explanation is complicated and has to do with
the specific algorithm used for type inference. The simplest rule is this: if the compiler
complains about a single coercion, try replacing it with a double coercion. If you would
like to know the real reason, a bit of explanation might be helpful.

Internally, the compiler uses only double coercions. Whenever the compiler en-
counters a single coercion (e :> t2) it constructs a double coercion (e : t1 :> t2)
by inferring the most general expected type t1. However, this fails if there is no unique
most general expected type. The general guidelines can be stated as follows.

A single coercion (e :> t2) may fail if:

• the type t2 is recursive, or

• the type t2 has polymorphic structure.

If either condition holds, use a double coercion (e : t1 :> t2).

In our example, the single coercion (transform#new_translate 100.0 100.0 :>
transform) is successful because the type transform is neither recursive nor poly-
morphic. However, the coercion (star :> blob) fails because the type blob is recur-
sive. The compiler doesn’t consider the actual type of the expression, so even though
we know star has type collection, it is still necessary to write the double coercion
(star : collection :> blob).
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14.8.2 Subtyping
That’s not the entire story of course, because not all coercions (e : t1 :> t2) are
legal. There are two necessary conditions: first, expression e should have type t1; and
second, type t1 must be a subtype of t2.

We say that a type t1 is a subtype of t2, written t1 <: t2, if values of type t1 can
be used where values of type t2 are expected. It may be confusing that the symbols :>
(the coercion operator) and <: (the subtyping relation) look like they point in opposite
directions. It may be helpful to remember that the former is an operator, and the latter
is a relation not belonging to the syntax of the language.

Consider the following type definitions: an animal eats, and a dog also barks.

type animal = < eat : unit >
type dog = < eat : unit; bark : unit >

The subtyping relation dog <: animal holds because a dog object has all the methods
that an animal has with the same type, and so a dog object e can be used wherever an
animal object is expected (so the coercion (e : dog :> animal) is legal).

Width and depth subtyping

Subtyping for object types takes two forms, called width and depth subtyping. Width
subtyping means that an object type t1 is a subtype of object type t2 if t1 implements
all the methods (and possibly more) of t2 with the same method types. The order
of methods in an object type doesn’t matter, so we can write this as follows, where
we use the notation f1..n : t1..n to represent n method declarations fi : ti for i ∈
{1, 2, . . . , n}.

< f1..n : t1..n, g1..m : s1..m > <: < f1..n : t1..n >

The subtyping relation dog <: animal follows from width subtyping, because class
type dog implements the eat method, the only method in the animal class type.

< eat : unit; bark : unit > <: < eat : unit >

Depth subtyping means that an object type t1 is a subtype of t2 if the two types have the
same methods, but the method types in t1 are subtypes of the corresponding types in t2.
This rule is usually written as follows, as an inference rule, where the subtyping prop-
erties above the horizontal line imply the subtyping property below the line. We read it
informally as follows, “If each method type si is a subtype of method type ti, then the
object type < f1..n : s1..n > is a subtype of the object type < f1..n : t1..n >.”

si <: ti (for each i ∈ {1, . . . , n})
< f1..n : s1..n > <: < f1..n : t1..n >

In general, the method types may include various type constructors for tuples, lists,
records, functions, other objects, etc. Each type constructor in OCaml has its own
subtyping rules describing how the type construction varies in terms of its component
types. These variances can be covariant, meaning that the construction varies in the
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same way as a component type; contravariant, meaning the construction varies oppo-
sitely to a component type; or invariant, which means that it is neither purely covariant
nor purely contravariant.

For example, consider the tuple type t1 * t2, which is covariant in both types
t1 and t2. If we have two dogs dog * dog, then we also have two animals
animal * animal (so dog * dog <: animal * animal). The inference rule for pairs
is specified as follows.

s1 <: t1 s2 <: s2

(s1 ∗ s2) <: (t1 ∗ t2)

Function subtyping

Nearly all type constructors in OCaml are covariant over all their component types,
but there are two exceptions. One is that types that specify mutable values are always
invariant. The other exception is more interesting, for the function type. A function
type t1 -> t2 is covariant in its range type t2, but contravariant in the domain type t1.
This property is written as follows.

t1 <: s1 s2 <: t2
(s1 -> s2) <: (t1 -> t2)

The contravariance in function types is the source of many problems in the design of
object-oriented programming languages, and it can be difficult to understand. To get
some intuition, consider a function feed for feeding an animal.

# let feed (x : animal) = x#eat;;
val feed : animal -> unit = <fun>

When calling the function, we can pass it an animal object or a dog object—both
support the eat method. Thus, if we like, we can coerce the function to have type
dog -> unit.

# let feed_dog = (feed : animal -> unit :> dog -> unit);;
val feed_dog : dog -> unit = <fun>

Now consider an barking function for dogs.

# let do_bark (x : dog) = x#bark;;
val do_bark : dog -> unit = <fun>

We can’t pass a plain animal object to do_bark, because animals do not bark in general.
In general, we cannot use a function of type dog -> unit in places where a function
of type animal -> unit is expected.

# (do_bark : dog -> unit :> animal -> unit);;
Characters 0-41:

(do_bark : dog -> unit :> animal -> unit);;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Type dog -> unit is not a subtype of type animal -> unit
Type animal = < eat : unit > is not a subtype of type

dog = < bark : unit; eat : unit >
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Subtyping of recursive object types

Finally, let’s consider subtyping for recursive object types. In this case, the subtyping
rule is circular: first, assume that the subtyping relationship holds, then prove that it
holds. Don’t worry—in this particular case the circular argument is sound.

For example, consider the argument that a collection is a blob. The types are
recursive, so we first assume that the relation holds, and then prove it. Here is the
argument.

• Assume: collection <: blob.

• Show:
< add : blob -> unit;

draw : unit;
transform : transform -> collection

>

<:
< draw : unit;

transform : transform -> blob
>

• From width subtyping, we can ignore the add method.
< draw : unit;

transform : transform -> collection
>

<:
< draw : unit;

transform : transform -> blob
>

• The draw methods have the same type. The transform method is justified by
depth subtyping. We must show the following.

transform -> collection <: transform -> blob

• Functions are covariant in the range type. The final goal is the following.

collection <: blob

This follows by assumption.

14.9 Narrowing
In object-oriented programming, narrowing is the ability to coerce an object to one
of its subtypes—the opposite of a normal coercion. This is commonly used when the
actual type of an object has been lost due to a coercion somewhere else in the program.
For example, suppose we have defined some types for cats and dogs. If we want a list
that contains both cats and dogs, the elements of the list must coerced to a common
type, in this case the supertype animal.

type animal = < eat : unit >
type dog = < eat : unit; bark : unit >
type cat = < eat : unit; meow : unit >

let fido : dog = · · ·
let daphne : cat = · · ·

let animals = [(fido :> animal); (daphne :> animal)]
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Because of the coercion, the methods bark and meow have been lost, which can be a
potential problem. Languages that support narrowing usually include a “typecase” to
perform a case analysis on an object’s actual type. The following function illustrates
how a typecase would be written, presented in OCaml-style pseudo-code.

(* THIS IS NOT LEGAL OCAML CODE *)
let chorus (animals : animal list) =

List.iter (fun animal ->
if animal instanceof dog then (animal :> dog)#bark
else if animal instanceof cat then (animal :> cat)#meow) animals

Narrowing is not permitted in OCaml. Period. First, we’ll give some arguments why
narrowing is undesirable, then we’ll describe how to do it anyway.

14.9.1 Why narrowing is bad
The usual argument against narrowing is that it is unsound. Actually, it is probably
more accurate to say that it isn’t known whether there is a useful, general form of
narrowing that is compatible with the OCaml type system.

We might leave it at that, but there are good design principles that also argue against
narrowing. One of the principal benefits of object-oriented programming is that the
responsibility of implementation is shifted to the object, away from the client. The
need for case analysis is reduced because of dynamic lookup, which ensures that the
code that is executed is always appropriate to the object.

Looking at our example, the problem is that a single concept, let’s call it “speak,”
is named in two different ways, bark and meow. A better implementation would use the
same name in both cases, perhaps also keeping the species-specific name.

type animal = < eat : unit; speak : unit >
type dog = < eat : unit; speak : unit; bark : unit >
type cat = < eat : unit; speak : unit; meow : unit >
type lizard = < eat : unit; speak : unit; sleep : unit >
let fido : dog = object (self) method speak = self#bark · · · end
let daphne : cat = object (self) method speak = self#meow · · · end
let fred : lizard = object (self) method speak = () · · · end
let animals = [(fido :> animal); (daphne :> animal); (fred :> animal)]

let chorus (animals : animal list) =
List.iter (fun animal -> animal#speak) animals

No case analysis is necessary; it is the responsibility of each animal to decide how it
will speak.

In other cases, the abstraction must be changed to avoid the lossy coercion. For
example, one might decide that, out of a collection of animals, the dogs should bark
but all other animals should remain silent. The solution in that case is to avoid the
coercion in the first place. If it is important to know which of the animals are dogs and
which are cats, then a single list of animals is not appropriate. Multiple lists should be
used instead.
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14.9.2 Implementing narrowing
If, despite these arguments, you still wish to use narrowing, it is fairly easy to imple-
ment. There are two things we need: a runtime “tag” that indicates what the actual type
of an object is, and a “typecase” for case analysis over the tag. The tags should be open
so that new subclasses can be added, which leaves us with two choices: polymorphic
variants (Section 6.5), or exceptions. We’ll use exceptions for illustration because the
types are easier to write down. The main idea is to define a method actual that returns
the actual object.

type narrowable_object = < actual : exn >
type animal = < actual : exn; eat : unit >
type dog = < actual : exn; eat : unit; bark : unit >
type cat = < actual : exn; eat : unit; meow : unit >
exception Dog of dog
exception Cat of cat

let fido : dog = object (self) method actual = Dog self · · · end
let daphne : cat = object (self) method actual = Cat self · · · end

let animals = [(fido :> animal); (daphne :> animal)]

let chorus (animals : animal list) =
List.iter (fun animal ->

match animal#actual with
Dog dog -> dog#bark

| Cat cat -> cat#meow
| _ -> ()) animals

The idea here is to define a constructor for each actual type of object (defined here as
the exceptions Dog and Cat). The method actual returns a tagged object, and the case
analysis uses a match expression. The use of exceptions is a technicality; Exercise 14.5
discusses narrowing using polymorphic variants.

14.10 Alternatives to objects
The objects we have seen in this chapter are simple, serving mainly to encapsulate some
data together with functions that operate on that data. In many ways, they are similar to
abstract data types. In fact, much of what we have done in this chapter can also be done
using the module system. However, there are two key differences: 1) with objects, the
type of the data is entirely hidden, and 2) objects are first-class values, while modules
are not. For example, a module to implement a polygon might be written as follows.

module type PolySig = sig
type poly
val create : (float * float) array -> poly
val draw : poly -> unit
val transform : poly -> transform -> poly

end;;

module Poly : PolySig =
type t = (float * float) array
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let create vertices = vertices
let draw vertices = Graphics.fill_poly (Array.map int_coord vertices)
let transform matrix = Array.map matrix#transform vertices

end;;

The main problem with this approach is that, even though the data type Poly.poly is
abstract, it is explicit. A polygon has type Poly.poly; a circle would have a similar
type like Circle.circle, etc. This means, for example, that one cannot create a list
containing both polygons and circles without further effort.

In Exercise 8.4, we suggested that a simplified object could be represented as a
record of methods. In fact, this is quite similar to what we have seen in this chapter,
except for functional update. Note the recursive call to the function new_poly in the
following implementation.

type blob =
{ draw : unit -> unit;

transform : transform -> blob
}

let rec new_poly vertices =
{ draw = Graphics.fill_poly (Array.map int_coord vertices);

transform = (fun matrix -> new_poly (Array.map matrix#transform vertices))
}

We can build many object features from records and other parts of the language, but
the fact is that the simple objects we have seen in this chapter provide a simple, useful
programming model. However, we are still missing one of the most important features,
inheritance, the topic of the next chapter.
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14.11 Exercises
Exercise 14.1 In Section 14.2 we implemented the three factory functions new_scale,
new_rotate, and new_translate as methods, claiming that it would avoid code dupli-
cation. Write one of the factory functions as a normal function (not a method). How
can you avoid code duplication?

Exercise 14.2 In Section 14.4 the factory functions include some apparently
silly field definitions. For example, the function new_poly includes the field
val vertices = vertices. What is the purpose of the field definition? What would
happen if it were omitted?

Exercise 14.3 Suppose we wish to enforce the fact that a program contains only one
copy of an object. For example, the object may be an accounting object, and we wish
to make sure the object is never copied or forged.

The standard library module Oo contains a function that copies any object.

val copy : (< .. > as ’a) -> ’a

Modify the following object so that it refuses to work after being copied.

let my_account =
object

val mutable balance = 100
method withdraw =

if balance = 0 then
raise (Failure "account is empty");

balance <- balance - 1
end

Exercise 14.4 For each of the following instances of types t1 and t2, determine
whether t1 is a subtype of t2—that is, whether t1 <: t2. Assume the following class
declarations and relations.

Subtyping relations
dog <: animal
cat <: animal

1. type t1 = animal -> cat
type t2 = dog -> animal

2. type t1 = animal ref
type t2 = cat ref

3. type ’a cl = < f : ’a -> ’a >
type t1 = dog cl
type t2 = animal cl

4. type ’a cl = < x : ’a ref >
type t1 = dog cl
type t2 = animal cl

5. type ’a c1 = < f : ’a -> unit; g : unit -> ’a >
type ’a c2 = < f : ’a -> unit >
type t1 = animal c1
type t2 = cat c2
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6. type t1 = ((animal -> animal) -> animal) -> animal
type t2 = ((cat -> animal) -> dog) -> animal

Exercise 14.5 Let’s reimplement the narrowing example from page 172 in terms of
polymorphic variants instead of exceptions. The type definitions can be given as fol-
lows.

type ’a animal = < actual : ’a; eat : unit >
type ’a dog = < actual : ’a; eat : unit; bark : unit >
type ’a cat = < actual : ’a; eat : unit; meow : unit >

type ’a tag = [> ‘Dog of ’a tag dog | ‘Cat of ’a tag cat ] as ’a

1. Implement the rest of the example, including the function chorus.

2. What does the type variable ’a represent?

3. What must be changed when a new type of animals is added, say ’a lizard, for
lizards that eat but don’t vocalize?

Exercise 14.6 The narrowing technique on page 172 skirts an important problem—
what if the inheritance hierarchy has multiple levels? For example, we might have the
following relationships.

hound <: dog <: animal
tabby <: cat <: animal

In a naïve implementation, typecases would have to be updated whenever a new tag is
added. For example, the chorus function might require at least four cases.

let chorus (animals : animal list) =
List.iter (fun animal ->

match animal#actual with
Dog dog -> dog#bark

| Hound hound -> hound#bark
| Cat cat -> cat#meow
| Tabby tabby -> tabby#meow
| _ -> ()) animals

This is undesirable of course, since the chorus function cares only about the general
cases dog and cat.

Modify the implementation so that the method actual takes a list of ac-
ceptable tags as an argument. For example, for a hound hound, the ex-
pression hound#actual [CatTag; DogTag] would evaluate to Dog hound; but
hound#actual [HoundTag; DogTag; CatTag] would evaluate to Hound hound.

Exercise 14.7 In OCaml, an object of type t1 can be coerced to any supertype t2, re-
gardless of whether type t2 has a name. This differs from some other languages. For
example, in C++, an object can safely be coerced to any of its superclasses, but arbi-
trary supertypes are not allowed. This is mainly because objects in C++ are represented
as a sequence of fields and methods (for space efficiency, methods are usually repre-
sented in a separate array called a vtable). For instance, if class C is a subclass of two
independent classes A and B, their representations are laid out in order.
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A B C

A B

C

The object A is laid out first, followed by B, then any additional fields in C. A pointer
to a C object is also a pointer to an A, so this coercion has no runtime cost. The
coercion from C to B is also allowed with a bit of pointer arithmetic.

In OCaml, the situation is quite different. The order of methods and fields in an ob-
ject doesn’t matter, coercions to arbitrary supertypes are allowed, and coercions never
have a runtime cost. To help understand how this works, let’s build a model of objects
using polymorphic variants.

Abstractly, an object is just a thing that reacts to messages that are sent to it—
in other words, it is a function on method names. Given an object o with method
names m1,m2, . . . , mn, the names are given variant labels ‘L_m1, ‘L_m2, . . ., ‘L_mn.
The object becomes a pattern match over method labels, and the fields become let-
definitions. Here is a dog object together with the corresponding model.

Object Model

type dog =
< eat : unit;

bark : unit;
chase : string -> unit

>

let dog s =
object (self)

val name = s
method eat = printf "%s eats\n" name
method bark = printf "%s barks\n" name
method chase s =

self#bark;
printf "%s chases %s\n" name s

end

! type model_dog =
! l:[‘L_eat | ‘L_bark | ‘L_chase] ->
! (match l with
! ‘L_eat | ‘L_bark -> unit
! | ‘L_chase -> (string -> unit))

let model_dog s =
let name = s in
let rec self = function

‘L_eat -> printf "%s eats\n" name
| ‘L_bark -> printf "%s barks\n" name
| ‘L_chase -> (fun s ->

self ‘L_bark;
printf "%s chases %s\n" name s)

in
self

The recursive function self represents the object. It takes a method label, and returns
the method value. The type model_dog can’t be defined in OCaml, because it is a
dependent type. Informally it says that a model_dog is a function that takes a label l. If
l is ‘L_eat or ‘L_bark, then the result type is unit. If the label is ‘L_chase, the result
type is string -> unit.

1. Suppose an animal object is defined as follows.

type animal = < eat : unit >
let animal s = object method eat = printf "%s eats\n" s end

Write the model model_animal for an animal object.
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2. Given a model_dog e, how is a coercion (e : model_dog :> model_animal)
implemented?

3. How is a coercion (e : dog :> < chase : string -> unit >) implemented
in the model?

Suppose that, instead of representing fields as individual let-definitions, the fields of an
object are collected in a record, with the compiler inserting the appropriate projections.
For example, here is a revised model_dog.

type dog_fields = { name : string }

let model_dog s =
let rec self fields = function

‘L_eat -> printf "%s eats\n" fields.name
| ‘L_bark -> printf "%s barks\n" fields.name
| ‘L_chase -> (fun s ->

self fields ‘L_bark;
printf "%s chases %s\n" fields.name s)

in
self { name = s }

4. In this revised version, how is a functional update implemented? Explain your
answer by giving the model for a new method

method new_dog s = {< name = s >}.

5. What is the complexity of method dispatch? Meaning, given an arbitrary method
label, how long does it take to perform the pattern match?

Suppose the pattern match is hoisted out of the object into a separate function vtable.

let model_dog s =
let vtable = function

‘L_eat -> (fun self fields -> printf "%s eats\n" fields.name)
| ‘L_bark -> (fun self fields -> printf "%s barks\n" fields.name)
| ‘L_chase -> (fun self fields s ->

self fields ‘L_bark;
printf "%s chases %s\n" fields.name s)

in
let rec self fields label =

vtable label self fields
in
self { name = s }

6. What are the advantages of the separate vtable? What are some disadvantages?
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Chapter 15

Classes and inheritance

The simple objects that we have seen so far provide abstraction, but they provide little
in the way of software re-use, which is one of the key benefits of object-oriented pro-
gramming. What exactly is object-oriented programming? Mitchell [6] points out four
fundamental properties.

• Abstraction: the details of the implementation are hidden in the object; the inter-
face is just the set of publically-accessible methods.

• Subtyping: if an object a has all the functionality of an object b, then we may use
a in any context where b is expected.

• Dynamic lookup: when a message is sent to an object, the method to be executed
is determined by the implementation of the object, not by some static property
of the program. In other words, different objects may react to the same message
in different ways.

• Inheritance: the definition of one kind of object can be re-used to produce a new
kind of object.

We have seen a little about first three features; we now look at inheritance. In OCaml,
like many other languages, inheritance arises from classes, where a class is a template
that describes how to build an object. Inheritance is the ability to create new classes
(and thus new objects) from existing ones by adding, removing, and modifying meth-
ods and fields.

15.1 Class basics
Let’s begin by defining a class. The simplest form of a class definition looks like the
definition of an object, but using the keyword class instead of let. Classes are not
objects in OCaml, and a class definition is not an expression. Every class definition
must occur at the top level.
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# class poly =
object

val vertices = [|(46, 70); (54, 70); (60, 150); (40, 150)|]
method draw = Graphics.fill_poly vertices

end;;
class poly : object val vertices : (int * int) array method draw : unit end

To create an object from a class, the keyword new is used with the name of the class.

# let p = new poly;;
val p : poly = <obj>
# p#draw;;
- : unit = ()

15.1.1 Class types
There are a number of things happening here, so let’s look at the parts. First, we defined
a class called poly with field vertices and a method draw. The class poly has a class
type that specifies the type of its methods and fields.

object
val vertices : (int * int) array
method draw : unit

end

Class types are something you may not have seen before, even if you are familiar with
object-oriented programming. However, class types arise naturally in languages that
include both classes and modules. In OCaml, every definition that can appear in a
module must have a type. A class is not a type (because it contains code), so it must
have a type. Consider a module that defines the blobs of the previous chapter. The
module Blobs contains the class definition, and the signature BlobsSig declares the
class and its type.

module Blobs : BlobsSig = struct module type BlobsSig = sig
class poly = class poly :
object object

val vertices = [||] val vertices : (int * int) array
method draw = method draw : unit

Graphics.fill_poly vertices end
end

let p = new poly val p : poly
end;; end;;

Another thing to point out is that the polygon p has type val p : poly. In
this context, the class name poly stands for the type of polygon objects—that is,
type poly = < draw : unit >. In general, whenever a class name appears in the
context of a type expression, it stands for an object type. There is nothing special about
the class name. Two classes that have methods with the same types stand for the same
object type, as the following example illustrates.
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# class gunfighter =
object

method draw = print_string "Bang!\n"
end;;

class gunfighter : object method draw : unit end
# let p : gunfighter = new poly;;
val p : gunfighter = <obj>

15.1.2 Parameterized classes
The current poly class is not very useful because the vertices are fixed. If we want
more than one polygon, we can define a parameterized class. A parameterized class
definition looks like a class definition that takes arguments; the arguments are passed
to new at object creation time.

# class poly vertices =
object

val vertices = vertices
method draw = Graphics.fill_poly vertices

end;;
class poly : (int * int) array ->

object val vertices : (int * int) array method draw : unit end
# let p1 =

new poly [|(46, 70); (54, 70); (60, 150); (40, 150)|];;
val p1 : poly = <obj>
# let p2 = new poly [|(40, 40); (60, 40); (60, 60); (40, 60)|];;
val p2 : poly = <obj>
# p1#draw; p2#draw;;
- : unit = ()

In OCaml, there is no specific language feature called an object constructor. Instead,
the class definition serves as its only constructor, and there is only one way to construct
an object from a class—by using new.

In a class definition, any class expression can be used as the definition. For ex-
ample, the following definition specifies that the class rectangle is a specific kind of
poly.

# class rectangle (x1, y1) (x2, x2) =
poly [|(x1, y1); (x2, y1); (x2, y2); (x1, y2)|];;

class rectangle : float * float -> float * float -> poly

15.1.3 Classes with let-expressions
Classes can be defined with leading let-definitions, which are evaluated before a new
object is created. The let-definitions have the standard form. For example, the fol-
lowing class defines a regular polygon with n sides. The vertices of the polygon are
computed before the object is created.

class regular_poly n radius =
let () = assert (n > 2) in
let vertices = Array.create n (0, 0) in
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let step = 6.28 /. float_of_int n in
let () =

for i = 0 to n - 1 do
let theta = float_of_int i *. step in
let x = int_of_float (cos theta *. radius) in
let y = int_of_float (sin theta *. radius) in
vertices.(i) <- (x + 100, y + 100)

done
in
object

method draw = Graphics.fill_poly vertices
end;;

Syntactically, each leading expression must be a let-definition, so any computations
that operate by side-effect are written with a dummy let in the form let () = · · · in.
The assertion ensures that the polygon has at least 3 sides.

# let p = new regular_poly 7 100.0;;
val p : regular_poly = <obj>
# p#draw;;
- : unit = ()

15.1.4 Type inference
If you have tried defining classes of your own, you may be running into a problem
where OCaml is inferring class types that are “too polymorphic.” Class types can be
polymorphic, as we will see in Chapter 17, but the polymorphism must be written
explicitly. Consider the following class definition, which is rejected by the compiler.

# class cell x =
object

method get = x
end;;

...
Some type variables are unbound in this type:

class cell : ’a -> object method get : ’a end
The method get has type ’a where ’a is unbound

The problem is that the argument x has polymorphic type, so the class also has a poly-
morphic type. We won’t bother much with polymorphic classes at this point, except
to say that if you really want one, then 1) you must write the type variables in square
brackets before the class name, and 2) you should read Chapter 17 before you do so.

# class [’a] cell (x : ’a) =
object

method get = x
end;;

class [’a] cell : ’a -> object method get : ’a end

In many cases, polymorphic classes are inadvertant. Suppose we copy the definition of
the polygon object from the previous chapter.
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# class poly vertices =
object

val vertices = vertices
method draw = Graphics.fill_poly (Array.map int_coord vertices)
method transform matrix = {< vertices = Array.map matrix#transform vertices >}

end;;
...
The method transform has type

(< transform : float * float -> float * float; .. > as ’b) -> ’a
where ’b is unbound

This class definition is rejected because the method transform takes a matrix that has
an open, thus polymorphic, method type. We really didn’t mean to write a polymorphic
class, it is just that the type that was inferred is polymorphic. There are two easy
solutions: constrain the type so that it is not polymorphic, or use a polymorphic method
type. Constraining the type so that it is not polymorphic is easy.

# type coord = float * float;;
type coord = float * float
# class poly vertices =
object

val vertices = vertices
method draw = Graphics.fill_poly (Array.map int_coord vertices)
method transform (matrix : < transform : coord -> coord >) =

{< vertices = Array.map matrix#transform vertices >}
end;;
class poly : coord array -> ...

Using a polymorphic method type is almost as easy. The method transform has
to be written with the type right after the method name, using an open object type
< transform : fcoord -> fcoord; .. > as ’a for the matrix argument.

class poly vertices =
object (self : ’self)

val vertices = vertices
method draw = Graphics.fill_poly (Array.map int_coord vertices)
method transform : ’a. (< transform : coord -> coord; .. > as ’a) -> ’self =

(fun matrix -> {< vertices = Array.map matrix#transform vertices >})
end;;

The leading ’a. is a type quantifier. It indicates that the type variable belongs specif-
ically to the method transform, not to the class as a whole. We’ll see more about
polymorphic methods in Section 15.5.

15.2 Inheritance
Generally speaking, inheritance is the ability to define new classes by re-using existing
ones. In the normal case, a new class is created by adding methods and fields to an
existing class, or by changing its method implementations, or both. When a class B
inherits from a class A, we say that B is a subclass of A, and A is a superclass of
B. When B also defines a subtype of A (so that an object of class B can be used
anywhere than an object of class A is expected), we say that the relationship is an
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Figure 15.1: Example inheritance hierarchies.

“is-a” relationship. Is-a relationships are the most common form of inheritance, and
in standard programming practice most, if not all, inheritance relationships are is-a
relationships.

This notion leads to a programming model where an inheritance hierarchy is con-
ceived in terms of the is-a relationship. Some examples are shown in Figure 15.1,
where the arrows point from subclass to immediate superclass. For example the class
square inherits from the class rectangle (and a square is-a rectangle).

Concretely, a class inherits from another with the directive
inherit class-expression, which effectively includes the entire class class-expression
within the current one. To illustrate, let’s build a simple model of a part of the animal
kingdom. The following diagram lists the class hierarchy and methods: every animal
eats; a pet is an animal with an owner and a name; and a pet dog is a pet that barks.

animal pet pet_dog

pet_cat

eat owner

name

make_sound

Methods

At the root of the hierarchy is the class animal, which has a single method eat.

# class animal species =
object

method eat = Printf.printf "A %s eats.\n" species
end;;

class animal : string -> object method eat : unit end

A pet is an animal with an owner and a name. The class pet defines methods owner
and name, and it also inherits from the class animal. The effect of the inheritance is
like inclusion, as if the methods of class animal were included in the class pet.

# class pet ~species ~owner ~name =
object

inherit animal species
method owner : string = owner
method name : string = name

end;;
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class pet : species:string -> owner:string -> name:string ->
object method name : string method owner : string method eat : unit end

The class pet_dog is a particular kind of pet that barks. Once again, the result of the
inheritance is exactly like inclusion. The class pet_dog includes the methods of class
pet, which in turn includes the methods of the class animal. The result is a class that
includes all the methods of all the ancestor classes.

# class pet_dog ~owner ~name =
object

inherit pet ~species:"dog" ~owner ~name
method speak = Printf.printf "%s barks!\n" name

end;;
class pet_dog : owner:string -> name:string ->

object
method speak : unit
method name : string
method owner : string
method eat : unit

end
# let clifford = new pet_dog ~name:"Clifford" ~owner:"Emily";;
val clifford : pet_dog = <obj>
# clifford#speak;;
Clifford barks!
# clifford#eat;;
A dog eats.

15.2.1 Method override
These previous two examples of inheritance are both forms of specialization where the
inheriting class includes the behavior of the superclass but does not modify it. It is also
possible for a subclass to modify the behavior by redefining its methods. For example,
since a pet has a name, we may wish to use the pet’s name instead of the species name
when it eats. We can do this by redefining the method eat.

# class pet ~species ~owner ~name =
object

inherit animal species
method owner : string = owner
method name : string = name
method eat = Printf.printf "%s eats.\n" name

end;;
class pet : species:string -> owner:string -> name:string ->

object method name : string method owner : string method eat : unit end

Some dogs are protective about their food. We can capture this by further redefining
the method eat.

# class pet_dog ~owner ~name =
object (self : ’self)

inherit pet ~species:"Dog" ~owner ~name as super
method speak = Printf.printf "%s barks!\n" name
method prepare_to_eat =

Printf.printf "%s growls menacingly.\n" name
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method eat =
self#prepare_to_eat;
super#eat

end;;
class pet_dog : ...
# let clifford = new pet_dog ~owner:"Emily" ~name:"Clifford";;
val clifford : pet_dog = <obj>
# clifford#eat;;
Clifford growls menacingly.
Clifford eats.

The syntax inherit class-expression as identifier gives a name to the superclass,
which allows the superclass methods to be invoked. This is useful mainly when the
superclass’s methods are overridden in the subclass. In this case, the method eat in the
class pet_dog is a kind of “wrapper” method. It overrides the pet’s eat method by first
preparing to eat, then calling the pet-eat method with the expression super#eat.

15.2.2 Class types
The design of the inheritance hierarchy can have a major impact on the ease of pro-
gramming a system. This is particularly true for languages based on nominal typing,
like C++ or Java, where subtyping is constrained by the hierarchy. For example, in a
nominal type scheme, the type of an object corresponds to the class name, so a pet_dog
can be coerced to a pet, and then to an animal, but no other coercions are allowed.

This can be overly restrictive of course. As the design proceeds we might discover
we need new classes. For the animal example, we might want a class farm_animal,
where animals have owners but might not have names; or a class vocal_animal for
animals that can vocalize, but might be wild. A dog can be a pet, a farm_animal, and
also a vocal_animal.

In the worst case, the inheritance hierarchy can become complicated because the
number of feature sets is combinatorial. Languages with interfaces, like Java, try to
combat this problem by allowing a class to satisfy multiple interface definitions.

interface farm_animal { void eat(); String owner(); };
interface vocal_animal { void eat(); void speak(); }
class dog extends pet implements farm_animal, vocal_animal { · · · }

One drawback of this approach is that the interfaces must be specified at class definition
time, requiring the designer to predict what the useful interfaces will be.

In OCaml, the situation is different. The inheritance hierarchy constrains the way
in which classes are specified and implemented, but it has no effect on subtyping. Here
is how we could extend the animal example to support farm animals and vocal animals.

# class type farm_animal =
object

inherit animal
method owner : string

end;;
class type farm_animal = object method owner : string method eat : unit end
# class type vocal_animal =

object
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inherit animal
method speak : unit

end;;
class type vocal_animal = object method speak : unit method eat : unit end
# (clifford : pet_dog :> farm_animal);;
- : farm_animal = <obj>

Note that in the inherit clause, the class type does not take arguments. In this context,
the name animal stands for the class type, and the inherit directive again acts as
textual inclusion.

The main advantage of structural subtyping is that an object can be coerced to any
compatible type, the types do not have to be specified ahead of time. The disadvantage
of course, is that subtyping may be overly permissive; some coercions might not make
sense semantically.

# class cat ~owner ~name =
object

inherit pet ~species:"cat" ~owner ~name
method speak = Printf.printf "%s meows.\n" name

end;;
class cat : owner:string -> name:string ->

object
method speak : unit
method name : string
method owner : string
method eat : unit

end
# let my_cat = (clifford :> cat);;
val my_cat : cat = <obj>
# my_cat#speak;;
Clifford barks!

15.2.3 Class type constraints and hiding
The type of a class can be constrained with the following syntax, where class-type is a
class type.

class class-name parameter1 · · · parametern : class-type = class-expression

It is also possible to place constraints on the object type, with an explicit con-
straint of the form constraint ’self = object-type, or equivalently using the syntax
object-type as ’self.

class cat ~name ~owner =
object (self : ’self)

constraint ’self = < eat : unit; speak : unit; .. >
inherit pet ~name ~owner
method speak = Printf.printf "%s meows.\n" name

end

As a programmer, you might want to write a type constraint to ensure that your imple-
mentation matches a specified interface. However, there are other reasons for using a
type constraint. Unlike the rest of OCaml, type constraints on classes can change how
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the program behaves. Here is what you can (and cannot) do with a constraint.

1. A constraint cannot be used hide public methods.

2. A constraint can be used to turn a private method into a public method.

3. A constraint can be used to hide fields and private methods.

The restriction on public methods is the same as it is for object types. If an object has
a public method, the method must appear in the type.

# (object method x = 1 method y = 2 end : < x : int >);;
...
This expression has type < x : int; y : int > but is here used with type

< x : int >
The second object type has no method y

The second property, where private methods are made public, may be a little surprising.
It is often used in cases where a superclass defines a private method that a subclass
would like to be made public.

# class foo =
object (self : ’self)

constraint ’self = < x : int; .. >
method private x = 1

end;;
class foo : object method x : int end

The third kind of constraint, used to hide field and private methods, requires some dis-
cussion. When a class hides a field, or a private method, that field becomes inaccessible
to subclasses, and it also means that the field or method cannot be overridden. Consider
the following class definitions.

# class a =
object (self)

method private f_private = print_string "aaaa\n"
method test_a = self#f_private

end;;
# class b =
object (self)

inherit a
method private f_private = print_string "bbbb\n"
method test_b =

self#test_a;
self#f_private

end;;
# (new b)#test_b;;
bbbb
bbbb

The method f_private is private, but it is the same method in both classes. The defi-
nition of f_private in class b overrides the definition in class a, so the result is to print
bbbb twice. Now let’s consider what happens when f_private is hidden by a type
constraint.
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# class type a_type = object method test_a : unit end;;
# class a : a_type =

object (self)
method private f_private = print_string "aaaa\n"
method test_a = self#f_private

end;;
# class b = · · · same as before · · ·;;
# (new b)#test_b;;
aaaa
bbbb

In this case, the result is different. By hiding the method f_private in class a, it can’t
be used or overridden in subclass b, and the behavior of the program is changed.

The property is the same for fields. When a field is hidden y a type constraint,
it is no longer accessible to subclasses. New field definitions with the same name in
subclasses are independent.

15.2.4 Classes and class types as object types
As we have mentioned, a class is not a type, but the class name stands for an object
type when used in the context of a type expression. The same holds for class types—a
class type is the type of a class, but it also stands for the type of an object when used in
context of a type expression. The object type is formed from a class type by omitting
the field types. The following table lists some examples of equivalent types.

Class type Object type Simplified

class type t1 =
object

val x : int
method y : int

end

type t1 = < y : int >

class type t2a =
object (’self)

val x : int
method f1 : t2a
method f2 : ’self

end

class type t2b =
object (’self)

inherit t2a
method f3 : unit

end

type t2a =
< f1 : t2a;

f2 : ’self
> as ’self

type t2b =
< f1 : t2a;

f2 : ’self;
f3 : unit

> as ’self

type t2a =
< f1 : t2a;

f2 : t2a
>

type t2b =
< f1 : t2a;

f2 : t2b;
f3 : unit

>

The role of ’self in these types is subtle and important. In class type t2a, the method
f1 returns an object of type t2a, which means that it is an object with exactly two
methods, f1 and f2. The method f2 returns an object of the same type as self—which,
for an object of type t2a, has the same methods f1 and f2.

However, when the subclass t2b is formed, a new method f3 is added. The method
f1 returns an object of type t2a, having two methods f1 and f2; but the method f2
returns an object of type ’self, now having three methods f1, f2, and f3.
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There are actually two kinds of object types that are formed from class names: exact
and open types. The type expression class-name stands for the type of objects having
exactly the methods of the class class-name and the type expression #class-name stands
for objects having those methods, and possibly more. In other words, a type expression
#class-name stands for an open object type.

Type expression Object type

t1
#t1

< y : int >
< y : int; .. >

t2a
#t2a

< f1 : t2a; f2 : ’self > as ’self
< f1 : t2a; f2 : ’self; .. > as ’self

#t2b < f1 : t2a;
f2 : ’self;
f3 : unit;
.. > as ’self

Just like an open object type, a type expression #class-name is polymorphic.

# type s2a = #t2a;;
Characters 4-15:

type s2a = #t2a;;
^^^^^^^^^^^

A type variable is unbound in this type declaration.
In definition #t2a as ’a the variable ’a is unbound
# type ’a s2a = #t2a as ’a;;
type ’a s2a = ’a constraint ’a = #t2a

15.3 Inheritance is not subtyping
Let’s summarize the operations that can be performed through inheritance. One may:

• add new fields and new private methods,

• add new public methods,

• override fields or methods, but the type can’t be changed.

Fields and private methods don’t appear in the object type, and method override isn’t
allowed to change the method’s type. So from a typing perspective, if a class B is a
subclass of A, it might have more methods than A, but everything else is unchanged.
By width subtyping (Section 14.8.2), this will usually mean that the object type for
B is a subtype of the object type for A. In fact, in many languages, subclassing and
subtyping are the same, and it isn’t possible to have one without the other.

Unfortunately, the correspondence is sound only in the case where the object type
is covariant in ’self; in other words, when the object has no binary methods. Consider
a class type comparable for objects that can be compared.
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(* less-than: negative; equal: zero; greater-than: positive *)
type comparison = int

class type comparable =
object (’self)

method compare : ’self -> comparison
end

The method compare is a binary method; it takes another object of type ’self and
performs a comparison. The implementations use the usual technique of adding a
method representation to expose the internal representation so that the comparison
can be implemented.1

class int_comparable (i : int) = class string_comparable (s : string) =
object object

method representation = i method representation = s
method compare (j : ’self) = method compare (s2 : ’self) =

i - j#representation String.compare s s2#representation
end end

We might later decide to implement some subclasses for printable, comparable objects.

class int_print_comparable i = class string_print_comparable s =
object (_ : ’self) object (_ : ’self)

inherit int_comparable i inherit string_comparable s
method print = print_int i method print = print_string s

end end

We might expect that a printable and comparable integer is also a comparable integer.
However, the expected coercions fail.

# (new int_comparable 1 :> comparable);;
... This expression cannot be coerced ...
# (new int_print_comparable 1 :> int_comparable);;
... This expression cannot be coerced ...

For an intuitive explanation, consider what would happen if the sub-
type relation int_comparable <: comparable held. The relation
string_comparable <: comparable would hold as well, allowing us to perform
an unsound comparison of strings and integers.

(* !!FAKE--THESE OPERATIONS ARE UNSOUND!! *)
# let i = (new int_comparable 1 :> comparable);;
i : comparable = < obj >
# let s = (new string_comparable "Hello" :> comparable);;
s : comparable = < obj >
# i#compare s;;
???

The real problem is the the method compare is contravariant in the type ’self because
it takes a value of type ’self as an argument. This is the opposite of what it normally
is. Here are the object types that correspond to the classes and class types.

comparable = < compare : ’self -> bool > as ’self

1Note that subtraction can only be used to compare small integers.
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int_comparable =
< representation : int;

compare : ’self -> bool > as ’self
int_print_comparable =

< representation : int;
compare : ’self -> bool;
print : unit > as ’self

Let’s try to carry out a proof of the subtyping relation int_comparable <: comparable
to see where it goes wrong. The type ’self in each case corresponds to the type name,
so we are try to show the following.

< representation : int; compare : int_comparable -> bool >
<: < compare : comparable -> bool >

Attempted proof:

• The types are recursive, so we first assume that subtyping holds on the type
names int_comparable <: comparable.

• By width subtyping, the method representation can be dropped. Show:

< compare : int_comparable -> bool > <: < compare : comparable -> bool >

• By depth subtyping, show:

(int_comparable -> bool) <: (comparable -> bool)

• By function subtyping, show:

comparable <: int_comparable

• This is the opposite of the assumption, so the proof fails.

Of course, this doesn’t mean that we can’t write generic functions of comparable
objects, it simply means that the functions should use the open type #comparable, not
the exact non-polymorphic type comparable.

# let sort (l : #comparable list) = List.sort (fun e1 e2 -> e1#compare e2) l;;
val sort : (#comparable as ’a) list -> ’a list = <fun>
# let l = List.map (new int_print_comparable) [9; 1; 6; 4];;
val l : int_print_comparable list = [<obj>; <obj>; <obj>; <obj>]
# List.iter (fun i -> i#print) (sort l);;
1469

We might be willing to accept the fact that there are no useful objects
with exact type comparable, but what about the relation between the types
int_print_comparable and int_comparable? If it seems that the subtyping relation
should hold, the solution is to avoid the use of binary methods. The method compare
doesn’t really need an argument of type ’self, it just needs an object with the same
representation. The classes can be reimplemented to use a constrained argument type.
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class int_comparable (i : int) =
object

method representation = i
method compare : ’a. (< representation : int; .. > as ’a) -> comparison =

(fun j -> Pervasives.compare i j#representation)
end

class int_print_comparable i =
object

inherit int_comparable i
method print = print_int i

end

It now holds that int_print_comparable is a subtype of int_comparable, but there
are several drawbacks. One is that the new objects no longer have type #comparable,
so it isn’t possible to write truly generic functions. Another problem is that the types
get quickly complicated. Still, with some effort, we get what we want.

# let compare_int (e1 : #int_comparable) (e2 : #int_comparable) =
e1#compare e2;;

val compare_int : #int_comparable -> #int_comparable -> comparison = <fun>
# let sort_int (l : #int_comparable list) =

List.sort compare_int l;;
val sort_int : (#int_comparable as ’a) list -> ’a list = <fun>
# let l = List.map (new int_print_comparable) [9; 1; 3; 2];;
val l : int_print_comparable list = [<obj>; <obj>; <obj>; <obj>]
# List.iter (fun i -> i#print) (sort_int l);;
1239

15.4 Modules and classes
OCaml includes two major systems for modularity and abstraction: the module system
and the object system. In many respects, the two systems are quite similar. Both
provide mechanisms for abstraction and encapsulation, for subtyping (by omitting
methods in objects, and omitting fields in modules), and for inheritance (objects use
inherit; modules use include, Section 12.4). However, the two systems are not com-
parable. On the one hand, objects have an advantage: objects are first-class values,
and modules are not—in other words, modules do not support dynamic lookup. On
the other hand, modules have an advantage: modules can contain type definitions, and
objects cannot.

We have already suggested that modules are handy for hiding internal representa-
tions in the definition of binary methods. For example, let’s use the module to hide the
representation of a comparable object.

module type IntComparableSig =
sig

type rep

class int_comparable : int ->
object (’self)

method representation : rep
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method compare : ’self -> comparison
end

end

module IntComparable : IntComparableSig =
struct

type rep = int

class int_comparable (i : int) =
object (_ : ’self)

method representation = i
method compare (j : ’self) =

Pervasives.compare i j#representation
end

end

This method of hiding the representation also has the side-effect that it is no longer
possible to construct an object of type int_comparable without using the class
int_comparable. We can use this to our advantage. In the animal example, if we
wish to ensure that dogs cannot be turned into cats, we can give the cats a “certificate”
that “justifies” their authenticity.

module type CatSig =
sig

type cert

class cat : owner:string -> name:string ->
object

inherit pet
method cert : cert
method speak : unit

end
end

module Cat : CatSig =
struct

type cert = unit

class cat ~owner ~name =
object

inherit pet ~species:"cat" ~owner ~name
method cert = ()
method speak = Printf.printf "%s meows.\n" name

end
end

It doesn’t matter what the certificate is, just that it is abstract. Of course, this technique
mainly prevents accidental coercions. If a dog really wants to become a cat, it can take
the certificate from one of them.

Functors can also be useful in class construction. For example, there are many
specific kinds of comparable objects, integers, floating-point values, strings, pairs of
comparable objects, etc. All we need to build one of these is a function to compare the
values. The generic class is described the usual way.

(* less-than: negative; equal: zero; greater-than: positive *)
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type comparison = int

class type comparable =
object (’self)

method compare : ’self -> comparison
end;;

To build a specific kind of comparable items, we need a function to compare the val-
ues. We can build a generic module as a functor that takes the type of items and the
comparison as an argument, and produces a new class of comparable items.

module type CompareSig =
sig

type t
val compare : t -> t -> comparison

end;;

module type ComparableSig =
sig

type t
type rep

class element : t ->
object (’self)

method representation : rep
method compare : ’self -> comparison

end
end;;

module MakeComparable (Compare : CompareSig)
: ComparableSig with type t = Compare.t =
struct

type t = Compare.t
type rep = Compare.t

class element (x : t) =
object (self : ’self)

method representation = x
method compare (item : ’self) =

Compare.compare x item#representation
end

end;;

The representation type rep is abstract, but the type of element values t is not. The
method compare simply uses the provided function Compare.compare to compare the
representations.

15.5 Polymorphic methods and virtual classes
Let’s turn to another example of object-oriented programming, this time more com-
putational. A collection, in general, is like a set of elements. There are many kinds
of collections, some based on implementations like arrays or lists, and others based
on access patterns, like stacks and queues. Figure 15.2 shows a partial inheritance
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list_collection array_collection bounded_stack

collection

enumerable_collection stack queue

Figure 15.2: Hierarchy of collections

hierarchy.
It won’t matter much what the elements are, so for now we’ll just assume the el-

ements can be printed. It might also be useful to build polymorphic collections, but
we’ll leave that topic for the Chapter 17.

class type element = object method print : unit end

At the root of the inheritance hierarchy is the type collection, which represents the
features that all collections have in common. What are those features? It can’t be
implementation or access pattern, because those features change for different kinds of
collections. In fact, the type collection by itself is pretty useless. We’ll assume it has
a method length that returns the number of elements in the collection.

class type collection =
object

method length : int
end

At the middle of the hierarchy is the “enumerable_collection,” which represents col-
lections where the elements can be enumerated, using functions like iter to iterate
over all the elements, or fold to compute a value from all the elements. The method
types correspond to the function types in the standard libraries List and Array. We
still haven’t implemented a concrete collection, so this is still a class type.

class type enumerable_collection =
object

inherit collection
method iter : (element -> unit) -> unit
method fold : (’a -> element -> ’a) -> ’a -> ’a

end;;

15.5.1 Polymorphic methods
Next, list and array are two concrete kinds of collections that differ mainly in how
they are accessed; a list is a stack, while an array allows random access. However,
when we try to provide a concrete list implementation, we encounter an error because
the method fold is polymorphic.

# class broken_list_collection =
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object
· · ·
method fold f x = List.fold_left f x elements

end;;
Characters 5-328: ...
Some type variables are unbound in this type:
...
The method fold has type (’a -> element -> ’a) -> ’a -> ’a where ’a
is unbound

The problem here is that OCaml assumes that the class must be polymorphic, not the
method (which is what we intend). OCaml allows methods to be polymorphic, but they
must be annotated explicitly using the following syntax.

method identifier : ’type-variable · · · ’type-variable. type = expression

The type expression ’type-variable · · · ’type-variable. type is called a universally
quantified type, and the type variables before the . are bound specifically in the method
type type, not for the class as a whole. Note that the type constraint is required to occur
right after the method name, so functions must be written explicitly. Here is a corrected
definition, which is now accepted by the top-loop. Note that in the class type, the type
variable is not required.

# class list_collection =
object

val mutable elements : element list = []
method length = List.length elements

method add x = elements <- x :: elements
method remove = elements <- List.tl elements

method iter f = List.iter f elements
method fold : ’a. (’a -> element -> ’a) -> ’a -> ’a =

(fun f x -> List.fold_left f x elements)
end;;

class list_collection :
object

...
method fold : (’a -> element -> ’a) -> ’a -> ’a

end

Continuing with our example, the array_collection has a similar definition. Some
differences are that the size of the array is determined at instantiation time, and the
Array module doesn’t provide a fold function, so we have to code it manually.

class array_collection size init =
object

val elements = Array.create size init
method length = size
method set i x = elements.(i) <- x
method get i = elements.(i)
method iter f = Array.iter f elements
method fold : ’a. (’a -> element -> ’a) -> ’a -> ’a =

(fun f x ->
let rec loop i x =
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if i = size then x else loop (i + 1) (f x elements.(i))
in
loop 0 x)

end;;

15.5.2 Virtual (abstract) classes and methods
At this point, we have two class types, collection and enumerable_collection; and
two concrete classes, list_collection and array_collection. The reason for using
class types for the former is because there are no actual instances of collection or
enumerable_collection; the only actual instances are of the subclasses.

Now, suppose we wanted to be able to print a collection. We could implement a
method print for each of the concrete classes list and array, but in fact the imple-
mentations can be written the same way.

method print = self#iter (fun element -> element#print)

A better way to implement it is to “lift” the implementation into the
enumerable_collection superclass. The problem is that enumerable_collection is
a class type, not a class, so it can’t contain code.

The solution is to define enumerable_collection as a virtual class, which is a
class where some or all of the method implementations are omitted. In our example,
the methods iter and fold are to be implemented in subclasses, so they are omitted,
but the method print can be implemented. A method where the implementation is
omitted is called a virtual method, and it is declared with the syntax

method virtual identifier : type.

Any class that contains a virtual method must also be declared virtual, with the syn-
tax class virtual. For completeness in our example, we also declare the class
collection as virtual, so that it can be inherited by the collection class.

class virtual collection =
object

method virtual length : int
end;;

class virtual enumerable_collection =
object (self : ’self)

inherit collection
method virtual iter : (element -> unit) -> unit
method virtual fold : ’a. (’a -> element -> ’a) -> ’a -> ’a
method print = self#iter (fun element -> element#print)

end;;

Virtual classes cannot be instantiated. However, once the methods have been imple-
mented (by a subclass), the virtual status of a class can be removed.

# class list_collection =
object

inherit enumerable_collection
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val mutable elements : element list = []
method length = List.length elements
method add x = elements <- x :: elements
method remove = elements <- List.tl elements
method iter f = List.iter f elements
method fold : ’a. (’a -> element -> ’a) -> ’a -> ’a =

(fun f x -> List.fold_left f x elements)
end;;

class list_collection :
object

val mutable elements : element list
method add : element -> unit
method fold : (’a -> element -> ’a) -> ’a -> ’a
method iter : (element -> unit) -> unit
method length : int
method print : unit
method remove : unit

end

15.5.3 Terminology
Classes with omitted implementations are a standard feature of many object-oriented
languages. In mainstream terminology, they are called abstract classes, and a “virtual
method” is a method that is resolved using dynamic lookup (as opposed to a “static
method” that uses static lookup).

The non-standard terminology OCaml uses can be quite confusing, especially to
those not familiar with OCaml, or those just learning the language. However, there is
a good argument that OCaml uses the correct terms, and mainstream terminology is
inaccurate. Here are selected definitions of the terms “abstract” and “virtual,” taken
from the American-Heritage dictionary of the English Language [1].

ab·stract . . . 4. Thought of or stated without reference to a specific instance . . .

vir·tu·al 1. Existing or resulting in essence or effect though not in actual fact, form,
or name. . .

Put more loosely, if something is abstract, it means it exists but it is not entirely speci-
fied or defined; if something is virtual, it appears to exist, but doesn’t in actual fact. In
this sense, virtual is the more appropriate term, because a virtual class can be used in
all ways like a normal class—except for one: it can’t be instantiated because it doesn’t
fully exist.

15.5.4 Stacks
Returning to our example, let’s move back up the hierarchy, and consider the stack
class. Stacks are defined by their behavior: elements are pushed onto the top of the
stack, and taken from the top of the stack, in last-in-first-out (LIFO) order. A generic
stack is a virtual class with two virtual methods: push : element -> unit pushes an
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element onto the top of the stack, and pop : element removes and returns the top ele-
ment. In addition, we include two derived methods: dup : unit duplicates to topmost
element of the stack, and swap : unit swaps the top two elements.

class virtual stack =
object (self : ’self)

inherit collection
method virtual push : element -> unit
method virtual pop : element
method dup =

let x = self#pop in
self#push x;
self#push x

method swap =
let x1 = self#pop in
let x2 = self#pop in
self#push x1;
self#push x2

end;;

Let’s implement a real subclass bounded_stack in terms of arrays. The bounded_stack
inherits from the virtual class stack, and implements the methods push and pop in
terms of array operations.

class bounded_stack size =
let dummy = object method print = () end in
object

inherit stack

val data = new array_collection size dummy
val mutable index = 0

method push x =
if index = size then

raise (Failure "stack is full");
data#set index x;
index <- index + 1

method pop =
if index = 0 then

raise (Failure "stack is empty");
index <- index - 1;
data#get index

method length = data#length
end;;

The class bounded_stack stores its values in an array, initialized to a dummy value.
The method push adds an element if there is room, and the method pop returns an
element if the stack is nonempty. The methods dup and swap are implemented by the
superclass stack.

15.5.5 Lists and stacks
The class bounded_stack demonstrates two relationships: it is-a stack, so it inherits
from the class stack; and it has-a array, which it includes as a field that it uses to
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implement the virtual methods needed to implement a stack.
Another way to build a stack is in terms of a list, but in this case the stack and list

are so similar, we might want to say that a stack is-a list, and inherit from the class
list_collection directly. OCaml supports multiple inheritance; we simply inherit
from each superclass.

# class unbounded_stack =
object (self : ’self)

inherit list_collection
inherit stack

method push x = self#add x
method pop =

let x = self#head in
self#remove;
x

end;;
class unbounded_stack :

object
val mutable elements : element list
method add : element -> unit
method dup : unit
method fold : (’a -> element -> ’a) -> ’a -> ’a
...

end

The resulting class has the methods and fields of both superclasses, so in addition to
being a stack, it is also an enumerable_collection (and a list_collection).

Is this construction appropriate? It depends on whether it is acceptable to view the
stack as a list. For example, the class unbounded_stack has two methods to add an
element to the stack: push and add, and they are the same (push calls add). If it is
acceptable for subclasses to override one of the methods and not the other, then the
multiple inheritance is acceptable; otherwise it is not. Certainly, it is not appropriate
for the bounded_collection to inherit from the array_collection because the array’s
unrestricted set and get operations are not appropriate for a stack. We’ll see more
about multiple inheritance in the next chapter.
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15.6 Exercises
Exercise 15.1 What are the class types for the following classes?

1. class c1 =
object

val x = 1
method get = x

end

2. class c2 =
object

method copy = {< >}
end

3. class c3 y =
object (self1)

method f x =
object (self2)

val x = x
method h = self1#g + x

end
method g = y

end

4. class c4 =
object (self : < x : int; .. > as ’self)

method private x = 1
end

Exercise 15.2 What does the following program print out?

class a (i : int) =
let () = print_string "A let\n" in
object

initializer print_string "A init\n"
end;;

class b (i : int) =
let () = print_string "B let\n" in
object

inherit a i
initializer print_string "B init\n"

end;;

new b 0;;

Exercise 15.3 Normally, we would consider a square to be a subtype of rectangle.
Consider the following class square that implements a square,

class square x y w =
object

val x = x
val y = y
method area = w * w
method draw = Graphics.fill_rect x y w w
method move dx dy = {< x = x + dx; y = y + dy >}

end
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Write a class rectangle that implements a rectangle by inheriting from square. Is it
appropriate to say that a rectangle is a square?

Exercise 15.4 A mutable list of integers can be represented in object-oriented form
with the following class type.

class type int_list =
object

method is_nil : bool
method hd : int
method tl : int_list
method set_hd : int -> unit
method set_tl : int_list -> unit

end

1. Define classes nil and cons that implement the usual list constructors.

class nil : int_list
class cons : int -> int_list -> int_list

2. The class type int_list is a recursive type. Can it be generalized to the follow-
ing type?

class type gen_int_list =
object (’self)

method is_nil : bool
method hd : int
method tl : ’self
method set_hd : int -> unit
method set_tl : ’self -> unit

end

3. The class type int_list should also include the usual list functions.

class type int_list =
object

method is_nil : bool
method hd : int
method tl : int_list
method set_hd : int -> unit
method set_tl : int_list -> unit
method iter : (int -> unit) -> unit
method map : (int -> int) -> int_list
method fold : ’a. (’a -> int -> ’a) -> ’a -> ’a

end

Implement the methods iter, map, and fold for the classes nil and cons.

Exercise 15.5 Consider the following definition of a stack of integers, implemented
using the imperative lists of Exercise 15.4.

class int_stack =
object
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val mutable items = new nil
method add x = items <- new cons x items
method take =

let i = items#hd in
items <- items#tl;
i

end

1. Define a class int_queue that implements a queue, by inheriting from the class
int_stack, without overriding the method take.

2. Is it appropriate to say that a queue is-a stack?

Exercise 15.6 The following type definition uses polymorphic variants to specify an
open type for simple arithmetic expressions with variables.

type ’a exp =
[> ‘Int of int
| ‘Var of string
| ‘Add of ’a exp * ’a exp
| ‘Sub of ’a exp * ’a exp ] as ’a

1. Build an object-oriented version of expressions, where class type exp includes
an evaluator that computes the value of the expression.

class type env =
object (’self)

method add : string -> int -> ’self
method find : string -> int

end

class type exp =
object

method eval : ’a. (#env as ’a) -> int
end

The classes should have the following types.

class int_exp : int -> exp
class var_exp : string -> exp
class add_exp : #exp -> #exp -> exp
class sub_exp : #exp -> #exp -> exp

2. Implement a new kind of expression ‘Let of string * exp * exp, where
‘Let (v, e1, e2) represents a let-expression let v = e1 in e2.

3. Suppose that, in addition to being able to evaluate an expression, we wish to
check whether it is closed, meaning that it has no undefined variables. For the
polymorphic variant form, the definition can be expressed concisely.

let rec closed defined_vars = function
‘Int _ -> true

| ‘Var v -> List.mem v defined_vars
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| ‘Add (e1, e2)
| ‘Sub (e1, e2) -> closed defined_vars e1 && closed defined_vars e2
| ‘Let (v, e1, e2) ->

closed defined_vars e1 && closed (v :: defined_vars) e2

Implement a method closed : bool for the expression classes. Any new classes
should be defined by inheriting from the existing ones. How many new classes
need to be defined?

Exercise 15.7 Object-oriented programming originated in the Simula, a language de-
signed by Dahl and Nygaard [7] for the purpose of simulation. In this exercise, we’ll
build a simple circuit simulator using objects in OCaml.

A logic circuit is constructed from gates and wires. A gate has one or more inputs
and an output that is a computed as a Boolean function of the inputs. A wire connects
the output of a gate to one or more input terminals, where a terminal has a method
set : bool -> unit to set the value of the terminal. Here are the definitions of the
classes terminal and wire.

type terminal = < set : bool -> unit >

class wire =
object

val mutable terminals : terminal list = []
val mutable value = false
method add_terminal t = terminals <- t :: terminals
method set x =

if x <> value then (value <- x; List.iter (fun t -> t#set x) terminals)
end

let dummy_wire = new wire

There are many kinds of gates, so we’ll build an inheritance hierarchy. A generic gate
has a single output, connected to a wire. It also has a virtual method compute_value
that defines the function computed by the gate.

class virtual gate =
object (self : ’self)

val mutable output_wire = dummy_wire
method connect_output wire = output_wire <- wire
method private set_output = output_wire#set self#compute_value
method private virtual compute_value : unit -> bool

end

A two_input_gate is a gate that has two inputs.

class virtual two_input_gate =
object (self : ’self)

inherit gate
val mutable a = false
val mutable b = false
method private set_input_a x = a <- x; self#set_output
method private set_input_b x = b <- x; self#set_output
method connect_input_a wire = · · ·
method connect_input_b wire = · · ·
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end

With the boilerplate defined, we can build some standard gates.

a

b
c

a

b
c

class nand2 =
object

inherit two_input_gate
method compute_value = not (a && b)

end

class nor2 =
object

inherit two_input_gate
method compute_value = not (a || b)

end

1. Fill in the definitions of the methods connect_input_a and connect_input_b.

2. Define a class three_input_gate (for gates with three inputs) by inheriting from
two_input_gate.

3. Would the definition be simpler if the type terminal were a function instead of
an object (where type terminal = bool -> unit)?

4. What is the purpose of the conditional if x <> value then · · · in the class
wire?

5. Write a program for the following circuit, called a SR latch.

S R Action
0 0 Keep state
0 1 Q = 0
1 0 Q = 1
1 1 Q = 0, Q = 0

S

R

Q

Q

Exercise 15.8 The simulator in Exercise 15.7 has a problem with some cyclic circuits.
For example, the following circuit, called a ring oscillator, oscillates indefinitely, over-
flowing the stack during simulation.

The simulation can be executed in constant stack space by implementing an event-
driven simulator. In the circuit context, an event occurs whenever the value on a ter-
minal is set. An event-driven simulator uses a scheduler to manage events. When
the value of a terminal is set, the terminal is scheduled, but not executed yet. When
scheduled, the terminal is removed from the scheduling queue and executed.

Define an event driven simulator by implementing a scheduler. You can use a
scheduling policy of your choice, but it should be fair, meaning that if a terminal is
scheduled, it will eventually be executed.
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The scheduler should include a method main : unit that runs until there are no
more events (perhaps forever). The type terminal should be defined as follows. The
method set schedules the terminal, and the method execute executes it.

type terminal = < set : bool -> unit; execute : unit >
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Chapter 16

Multiple inheritance

Multiple inheritance is the ability to inherit from more than one superclass. In OCaml,
the mechanism is simple, any class that contains more than one inherit directive in-
herits from each of them.

Object-oriented programming has received much attention over the years, and mul-
tiple inheritance is one of the more controversial areas. Some claims against it are
that it is complicated, that it requires extensive training to understand, or that all of its
useful features can be captured with interfaces. Many of these claims are baloney—in
fact, multiple inheritance is often one of the simplest and most elegant way to combine
features and abstractions. However, there are two main issues that give rise to these
claims:

• shadowing: what happens when two ancestor classes define a method with the
same name?

• repeated inheritance: what happens when a class is inherited more than once?

As we will see, OCaml’s model of inheritance is quite simple. It is essentially equiva-
lent to textual inclusion, and shadowing follows the normal rule: if a method is defined
more than once, the last definition wins. First though, let’s turn to some examples.

16.1 Examples of multiple inheritance
Multiple inheritance arises whenever an object is described as a collection of features.
Examples in the real world abound.

• A clock radio is a timepiece and a radio.

• An ambulance is a vehicle and an emergency medical facility.

• A mobile home is a vehicle and a home.

• A spork is a spoon and a fork.
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• A graduate student is a graduate and a student.

• A Swiss army knife is a knife and scissors and pliers and a screwdriver and...

If we consider these examples, there are really two kinds of combinations: those of
independent features like clock and radio; and those of related features. For example,
spoons and forks are both utensils, graduates and students are kinds of persons, etc.

16.1.1 Inheriting from multiple independent classes
From a programming perspective, inheritance from independent classes is simpler.
When the classes to be combined use disjoint names, the result of combining them
is simply to produce an object with all the parts. For example, consider the following
sketches of the classes clock and radio.

class clock =
object

val mutable now = · · ·
method gettimeofday = now
method private tick = · · ·

end;;

class radio =
object

val mutable frequency = 89.3e6
val mutable volume = 11.0
method tune freq = · · ·; frequency <- freq
method set_volume vol = · · ·; volume <- vol

end;;

The combined class clock_radio simply inherits from both. The resulting class has
the methods and fields of both superclasses.

# class clock_radio =
object

inherit clock
inherit radio

end;;
class clock_radio :

object
val mutable frequency : float
val mutable now : float
val mutable volume : float
method gettimeofday : float
method set_volume : float -> unit
method private tick : unit
method tune : float -> unit

end

16.1.2 Inheriting from multiple virtual classes
Sometimes inheritance is used as a mechanism to add functionality by inheriting from
a partially virtual superclass. Let’s take a look at an example, based on the class
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comparable we introduced on page 190. We’ll define two virtual classes.

• A comparable value can be compared to values of the same type.

• number is a class of numbers that can be compared, having a zero, and a negation
function.

The virtual class comparable declares a virtual method compare, and derives a method
less_than from it.

(* less-than: negative; equal: zero; greater-than: positive *)
type comparison = int

class virtual comparable =
object (self : ’self)

method virtual compare : ’self -> comparison
method less_than (x : ’self) = compare self x < 0

end;;

For the class number, we require that the subclass provide methods zero, neg (negate),
and compare. From that, a method abs (absolute value) can be derived.

class virtual number =
object (self : ’self)

method virtual zero : ’self
method virtual neg : ’self
method virtual compare : ’self -> comparison
method abs =

if self#compare self#zero < 0 then
self#neg

else
self

end;;

Finally, an actual concrete class of numbers inherits from both classes comparable and
number, implementing the virtual methods, and inheriting the derived methods. The
following class also implements the methods less_than and abs because it inherits
them from the virtual superclasses.

class float_number x =
object (self : ’self)

inherit comparable
inherit number

val number = x
method representation = number
method zero = {< number = 0.0 >}
method neg = {< number = -. number >}
method compare y = Pervasives.compare x y#representation

end;;

16.1.3 Mixins
A mixin is a class that is used to add augment the functionality of or change the behavior
of a subclass, but there is no explicit is-a relationship. According to folklore, the term
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mix-in was inspired by Steve’s Ice Cream Parlor in Somerville, Massachusetts, where
extra items like nuts, chocolate sprinkles, etc., were mixed into a base flavor of ice
cream like chocolate or vanilla.

Let’s implement some ice cream with two arbitrary mixed-in flavors. We’ll use the
drawable objects of Chapter 14. A blob is an object that can be drawn, including the
classes circle and poly, and a collection is a collection of blobs.

class vanilla_ice_cream = object · · · end

class virtual mixed_ice_cream =
object (self)

inherit vanilla_ice_cream
inherit collection

method virtual mixin1 : unit
method virtual mixin2 : unit

method stir = self#map (fun item ->
let t = recenter ** transform#new_rotate (Random.float 6.28)

** transform#new_translate (Random.float 10.) (sqrt (Random.float 1e4))
in item#transform t)

initializer self#mixin1; self#mixin2; self#stir
end

Vanilla ice cream is featureless, but the mixed ice cream contains a collection of extra
items. The virtual methods mixin1 and mixin2 add the extra items to the collection.
To implement a particular kind of mixed ice cream, we implement two classes, one for
each mixin.

class drop = circle ~color:0x880022 (0., 0.) 10.
class sprinkle = poly ~color:0x220044 [|(0., 0.); (10., 0.); (10., 3.); (0., 3.)|]

class virtual drop_mixin1 =
object (self)

method virtual add : blob -> unit
method mixin1 = for i = 0 to 4 do self#add (new drop) done

end

class virtual sprinkle_mixin2 =
object (self)

method virtual add : blob -> unit
method mixin2 = for i = 0 to 200 do self#add (new sprinkle) done

end

For the final product, we just mix the ice cream with its ingredients. The mixin classes
implement the virtual methods of the ice cream class, and the result is a flavored ice
cream.

class my_favorite_ice_cream =
object

inherit mixed_ice_cream
inherit drop_mixin1
inherit sprinkle_mixin2

end
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This use of inheritance is not a specialization. We certainly don’t mean that
my_favorite_ice_cream is-a sprinkle, or a collection of sprinkles, or anything of
the sort. The purpose of the inheritance in this case is simply for the mixin to specify
an item that is to be added to the ice cream.

(new my_favorite_ice_cream)#draw;;

In all the examples of this section, the inheritance is used to combine classes that are
really independent. In each case, there may be several declarations of a method as
virtual, but there only one implementation. Let’s turn to the more general case where
methods and fields may be defined multiple times, starting with the topic of shadowing.

16.2 Overriding and shadowing
What happens when an object defines a name twice? For comparison, let’s first con-
sider a similar question: what happens in a module when a name is defined twice? We
know the answer—the definition exported by the module is the last one.

# module M =
struct

let x = 1;;
Printf.printf "x = %d!\n" x;;
let x = 2;;

end;;
x = 1!
# M.x;;
- : int = 2

Objects are a little different from modules, but the naming is similar. Consider the fol-
lowing objects that contain duplicate definitions. OCaml warns about the duplication,
but it is instructive to see the results. First, let’s override a method.

# let a =
object

method get = 1
method get = 2

end;;
Warning M: the method get is overriden in the same class.
val a : < get : int > = <obj>
# a#get;;
- : int = 2

As would be expected, the last method definition is the one that is used by the object.
We can try the same thing with fields.

# let b =
object

Copyright © Jason Hickey 213 Draft. Do not redistribute.



16.3. REPEATED INHERITANCE CHAPTER 16. MULTIPLE INHERITANCE

val x = 1
method get = x
val x = 2

end;;
Warning V: the instance variable x is overriden.
# b#get;;
- : int = 2

Field override seems to be frowned upon by the compiler. Still, the result is the same,
it is the last definition that is used by the object. Any preceding definitions for the same
name are ignored.

16.3 Repeated inheritance
Repeated inheritance occurs when a class inherits from another along multiple paths in
the inheritance hierarchy, perhaps more commonly known as the “diamond problem.”
For example, we might say that a French programmer is both French and a programmer,
and both of these are more generally persons. That means that a French programmer
inherits from person twice. The following diagram illustrates the class relationship,
with a hypothetical programmer in italics.

person

programmer french_person

french_programmer

name: François; address = San Jose

favorite_language: OCaml favorite_language: Français

In OCaml, the inherit directive is nearly equivalent to textual inclusion—the result is
the same as if the inherit clause were replaced with the text of the class being inherited
from. This means that a programmer includes the program text for a person, so does a
french_person, and the french_programmer contains the program text twice.

When does this make a difference? For any given method or field, remember the
rule: it is the last definition that matters, so perform the textual expansion mentally and
look for the final definition. Consider a case where a class a is inherited twice.

1 # class a =
2 object
3 method x = 1
4 end;;
5 # class b =
6 object
7 inherit a
8 method x = 2
9 inherit a

10 end;;
11 Warning: ... x ... is overriden by the class a
12 # (new b)#x;;
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13 - : int = 1

The result is 1 because the final definition for the method x comes from the inherit
clause on line 9 (which defines x as 1).

The diamond problem is similar. Consider the French programmer example, here
drawn in the shape of a diamond (don’t type it in this way).

class person =
object

method name = "Francois"
method address = "San Jose"

end

class programmer = class french_person =
object object

inherit person inherit person
method lang = "OCaml" method lang = "Francais"

end end

class french_programmer =
object

inherit programmer
inherit french_person

end

Let’s think how the text will be expanded for class french_programmer.
If we perform the expansion, here is the order in which the methods
are defined: person#name,address, programmer#lang, person#name,address,
french_person#lang. Keeping only the final definition for each method, we obtain
the following class, equivalent to french_programmer.

class french_programmer_flattened =
object

method name = "Francois"
method lang = "Francais"
method address = "San Jose"

end

Field override works the same as method override for fields that are visible. If we
had defined the values as fields instead of methods, the result would be the same: the
favorite language is Français.

However, fields that are hidden (because of typing) are not overridden; they are
duplicated. Suppose we define a class a that defines a mutable field x, which is then
hidden using a type constraint.

class type a_type =
object

method set : int -> unit
method get : int

end;;

class a : a_type =
object

val mutable x = 0
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method set y = x <- y
method get = x

end;;

Repeated inheritance duplicates the hidden field x, which means that operations on one
copy of a do not effect the others.

# class b =
object

inherit a as super1
inherit a as super2

method test =
super1#set 10;
super2#get

end;;
class b :

object method get : int method set : int -> unit method test : int end
# (new b)#test;;
- : int = 0

16.4 Avoiding repeated inheritance
The previous section points out the issue with multiple inheritance, which is that there
are at least two different policies for repeated inheritance: override and copying. There
is no single policy that is best. For example, the French programmer may wish to go
by the same name in all contexts, but he might wish to use a different address for his
occupation than he uses as a French citizen. That is, the repeated field name should
refer to the same value, but the address field should be copied.

As pointed out, OCaml uses the following policy: visible fields and methods use
the override policy, fields and methods that are hidden use the copy policy. This pol-
icy can be difficult for a programmer to adhere to, “All the fields that are hidden are
copied.” The semantics of multiple inheritance might be simple enough to state, “it is
just textual expansion,” but the problem is that it might be necessary to know the text
of all repeated superclasses. For this reason and others, it is natural to want to avoid
repeated inheritance, at least in some cases.

16.4.1 Is-a vs. has-a
For an example, suppose we have classified vehicles in two different ways: according
to where they are used, and by how they are powered. In the following diagram, the
class vehicle is a superclass of all the others; for example it might contain methods
to move forward or stop, etc. A car is a vehicle that travels roads, a boat water; an
electric_vehicle needs to be charged occasionally, etc.
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vehicle

car electric_vehicle
boat gasoline_vehicle

submarine rocket
spacecraft pedaled_vehicle

sailed_vehicle
nuclear_vehicle

A particular kind of vehicle can constructed by combining a property from the left col-
umn and another from the right. We have gasoline powered boats, nuclear submarines,
and electric cars. Some combinations don’t make much sense, like pedaled spacecraft.

On the surface, this classification may seem reasonable. We classify vehicles by
two orthogonal properties, and use multiple inheritance to define classes for the combi-
nations that make sense. However, this will involve repeated inheritance, which might
be a problem if we don’t know how the class vehicle is defined.

There is another way to classify vehicles that is just as natural, but avoids the re-
peated inheritance. That is, we can continue to classify vehicles by where they travel,
but instead of classifying powered vehicles, we classify power sources directly.

vehicle

car
boat

submarine
spacecraft

power_source

electric_motor
gasoline_engine
rocket_engine

pedals
sails

nuclear_plant

assembled_vehicle

electric_car = car + electric_motor
nuclear_submarine = submarine + nuclear_plant

sailboat = boat + sails
rocket = spacecraft + rocket_engine

· · ·

Now we have two independent concepts, vehicles and power sources, and an assembled
vehicle needs one of each. The assemblies can be created with multiple inheritance,
which has the advantage that bogus assemblies (like rocket-powered submarines) can
be omitted from the collection.

An alternative to multiple inheritance is for the vehicle class to take a power source
as an argument and include it as a field. There are two potential advantages. One
is that it is not necessary to write down every possible assembly. The other is that
it might make more sense semantically—a vehicle has-a power source, but it isn’t-a
power source, at least not normally. A disadvantage is that it isn’t easy to rule out
combinations that don’t make sense.
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16.4.2 Mixins revisited
In many ways, the approach to the vehicle example is really just a mixin. Power sources
aren’t really useful until they are harnessed, which happens when an assembled vehicle
is created by mixing in a power source into a vehicle.

This suggests that one approach to avoiding repeated inheritance is to delay the
use of multiple inheritance as much as possible. Returning to the French programmer,
there were four classes with a repeated base class person. Another way to design the
hierarchy is to partition the properties, where the programming and French properties
are split from the person and become mixins.

programmer french_person

person

programmer_mixin french_mixin

french_programmer

The mixin classes programmer_mixin and french_mixin are now standalone classes.
They can still refer to the properties of being a person through virtual methods and
fields, but they don’t make much sense alone until combined with the person class.

As with any programming style, it isn’t always appropriate to program this way.
There are more classes; the relationship between classes is not as well defined—there
is nothing that says that a programmer_mixin is to be combined with a person; and
it is easy to forget about maintaining the relationship between a class and its mixins.
Of course, in many cases this is a useful technique, and it can lead to simpler, shorter
programs.

At this point we have covered objects, classes with single inheritance, and classes
with multiple inheritance. The object system is quite powerful, and we have many tools
at our disposal. There is one remaining important topic: polymorphic classes, which
we discuss in the next chapter.
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16.5 Exercises
Exercise 16.1 Assume there is a class name that represents the name of a person. We
would normally say that a person is-a human and has-a name,

class person (n : name) = object inherit human val name = n · · · end

Suppose that instead, the class person inherits from both.

class person (s : string) =
object

inherit human
inherit name s
· · ·

end

What is the difference? Under what conditions would the different representations be
preferred?

Exercise 16.2 Consider the following class, which implements a persistent reference-
counted value stored in a file. When there are no more references, the file is removed.

class persistent_refcounted_value filename =
object (self)

(* persistent_value *)
val mutable x : int list =

let fin = open_in_bin filename in
let x = input_value fin in
close_in fin;
x

method get = x
method set y = x <- y; self#save
method private save =

let fout = open_out_bin filename in
output_value fout x;
close_out fout

(* refcounted_value *)
val mutable ref_count = 1
method add_ref = ref_count <- ref_count + 1
method rm_ref =

ref_count <- ref_count - 1;
if ref_count = 0 then

Sys.remove filename
end

1. Partition the class into three classes: persistent_value implements persistent
values stored in files, refcounted_value implements generic reference counted
objects, and persistent_refcounted_value inherits from both.

2. What is the advantage in partitioning the class?

Exercise 16.3 In the French programmer example, the programmer has a field
favorite_language and so does the french_person. Can the inheritance hierar-
chy be modified so that these are available as favorite_programming_language
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and favorite_natural_language, without modifying the classes programmer and
french_person?

Exercise 16.4 You are given the following functor that defines a class cell containing
a value of type T.t.

module MakeCell (T : sig type t end) =
struct

class cell x =
object

val mutable x : T.t = x
method private get = x
method private set y = x <- y

end
end

Define a singly-linked list of integers by inheriting from the class cell twice. Your
class should have the type int_cons.

class type int_cons =
object

method hd : int
method tl : int_cons option
method set_hd : int -> unit
method set_tl : int_cons option -> unit

end

type int_list = int_cons option

Exercise 16.5 Suppose we have several mutually-recursive functions
f1 : int -> int, . . ., fn : int -> int that we want to define in separate files. In
Exercise 13.5 we did this with recursive modules. Do it with multiple inheritance
instead. Is there any advantage to using classes over recursive modules?
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Chapter 17

Polymorphic Classes

So far, we have seen many kinds of class and class type definitions. Classes can be
fixed, or they can be parameterized by ordinary values. In addition, classes and class
types can be polymorphic, meaning that they can be parameterized by types, just like
other expressions and types in the language (except for module types).

This kind of generic object-oriented programming appears in other programming
languages in various forms. The Eiffel programming language supports genericity;
C++ has a construct called templates; Java has type-parameterized classes called gener-
ics.

In OCaml, polymorphism is not a new concept when applied to classes. It is the
same concept that appears throughout the language, and it works the same way for
classes and class types as it does for other constructs.

17.1 Polymorphic dictionaries
Let’s start with an example based on the “map” data structure that we developed in
Section 13.3 using functors. A map is a dictionary containing key-value pairs, param-
eterized by a function compare that defines a total order on keys. For brevity, we’ll
implement the map using association lists.

# type ordering = Smaller | Equal | Larger
type ordering = Smaller | Equal | Larger
# class [’key, ’value] map (compare : ’key -> ’key -> ordering) =

let equal key1 (key2, _) = compare key1 key2 = Equal in
object (self : ’self)

val elements : (’key * ’value) list = []
method add key value = {< elements = (key, value) :: elements >}
method find key = snd (List.find (equal key) elements)

end;;
class [’a, ’b] map : (’a -> ’a -> ordering) ->

object (’self)
val elements : (’a * ’b) list
method add : ’a -> ’b -> ’self
method find : ’a -> ’b

end
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The result type has been edited slightly for readability.
The class definition is parameterized by two types, ’key and ’value, written within

square brackets before the class name as [’key, ’value]. The square brackets are
required even if there is only one type parameter to a class definition.

The entries of the map are stored in the list elements, of type
(’key * ’value) list, and the map’s methods examine the list. This imple-
mentation of a map is pure, the method add produces a new object with the new entry
added to the list, leaving the self object unchanged.

17.1.1 Free type variables in polymorphic classes
The type constraints, besides being good documentation, are required. Class definitions
are not allowed to have free type variables, meaning that every type variable must be a
parameter, or it must be bound somewhere else in the class definition. The following
definition fails.

# class [’a] is_x x = (* Does not work! *)
object (self : ’self)

method test y = (x = y)
end;;

Some type variables are unbound in this type:
class [’a] is_x : ’b -> object method test : ’b -> bool end

The method test has type ’a -> bool where ’a is unbound

The reason for the failure is that the type of the argument x is not specifically written
as being of type ’a, hence the method test has some type ’b -> bool, where the type
variable ’b is not a parameter of the class. The solution is to constrain the types so that
the method test has type ’a -> bool.

# class [’a] is_x (x : ’a) =
object (self : ’self)

method test y = (x = y)
end;;

class [’a] is_x : ’a -> object method test : ’a -> bool end

17.1.2 Instantiating a polymorphic class
Instantiating a class (to get an object), works the same it does with non-polymorphic
classes. The new operator is used to instantiate the class. For example, here is how we
might construct an actual map object where the keys are integers.

# let compare_int (i : int) (j : int) =
if i < j then Smaller
else if i > j then Larger
else Equal;;

val compare_int : int -> int -> ordering = <fun>
# let empty_int_map = new map compare_int;;
val empty_int_map : (int, ’_a) map = <obj>
# let one = empty_int_map#add 1 "One";;
val one : (int, string) map = <obj>
# empty_int_map;;
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- : (int, string) map = <obj>

Note that the type for the empty map is empty_int_map : (int, ’_a) map. That is,
it does not have polymorphic type, hence it can be used only at one type. This is due
to the value restriction (Section 5.1.1)—the expression new map compare_int is an
application, so it is not a value, and so it is not polymorphic. For the most part, the
practical consequences of the value restriction are minimal, it simply means that a new
empty map must be created for each type of map value that is to be used in a program.

One additional step we might take is to define a class specifically for the case when
the keys are integers. The new class is polymorphic over just one type, the type of
values.

# class [’value] int_map = [int, ’value] map compare_int;;
class [’a] int_map : [int, ’a] map

Note that the type arguments are required on the right as part of the definition (in
addition to the normal value argument compare_int). The syntax for type arguments
is a sequence of comma-separated type expressions between square brackets, placed
before the class name. We could, if we wish, further constrain the type.

# class int_map2 = [int, string * float] map compare_int;;
class int_map2 : [int, string * float] map

17.1.3 Inheriting from a polymorphic class
Inheriting from a polymorphic class works as usual, except that type arguments to
polymorphic superclasses must be supplied explicitly. Let’s define a new kind of map
that supports a method iter that applies a function once to each entry in the map.

# class [’key, ’value] iter_map compare =
object
inherit [’key, ’value] map compare
method iter f = List.iter (fun (key, value) -> f key value) elements

end;;
class [’a, ’b] iter_map : (’a -> ’a -> ordering) ->

object (’c)
...
method iter : (’a -> ’b -> unit) -> unit

end

The directive inherit takes the type arguments in addition to any normal arguments,
but otherwise the directive works as expected.

Next, let’s consider a new method map that applies a function to each of the values
in the dictionary, returning a new map. Given a function f : ’value -> ’value2,
what should be the type of the method map? Let’s write the code.

# class [’key, ’value] map_map compare =
object (self : ’self)

inherit [’key, ’value] map compare
method map f =
{< elements = List.map (fun (key, value) -> key, f value) elements >}
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end;;
class [’a, ’b] map_map : (’a -> ’a -> ordering) ->

object (’self)
...
method map : (’b -> ’b) -> ’self

end

Note the type of the method map, which requires that the function argument have type
’b -> ’b. We might have expected a more general typing where, given an object of
type obj : [’key, ’value1] map_map and a function f : ’value1 -> ’value2, that
the expression obj#map f would have type [’key, ’value2] map_map.

There is a good reason for the more restrictive typing. Suppose we decide to build
a variation on a map where, instead of the method find raising an exception when an
entry is not found, it returns some default value. The new class is easy to define.

class [’key, ’value] default_map compare (default : ’value) =
object (self : ’self)

inherit [’key, ’value] map_map compare as super
method find key =

try super#find key with
Not_found -> default

end;;

Objects of the class default_map have two places where values of type ’value appear:
in the list of elements, and the default value. It is not safe to change the type of
elements without also changing the default value in the same way. In this case, the
more general typing for the method map would be unsafe because it doesn’t also change
the default value.

Of course, OCaml does not try to predict how subclasses will be created. The only
safe approach is for the object type to be invariant.

17.2 Polymorphic class types
Polymorphic classes have polymorphic class types, using the usual syntax where the
type parameters are enclosed in square brackets.

# class type [’key, ’value] map_type =
object (’self)

method add : ’key -> ’value -> ’self
method find : ’key -> ’value

end;;
class type [’a, ’b] map_type =

object (’c) method add : ’a -> ’b -> ’c method find : ’a -> ’b end
# class [’key, ’value] map2 (compare : ’key -> ’key -> ordering)

: [’key, ’value] map_type =
let equal key1 (key2, _) = compare key1 key2 = Equal in
object · · · end

class [’a, ’b] map2 : (’a -> ’a -> ordering) -> [’a, ’b] map_type

This implementation of the class map2 is entirely self-contained. Let’s look at an ex-
ample of a recursive definition, based on the implementation of binary search trees in
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Section 6.1. In that section, we defined the binary tree with the following polymorphic
union type.

type ’a tree =
Node of ’a * ’a tree * ’a tree

| Leaf;;

If we wish to take an object-oriented approach, we can implement each case of the
union as a class that has a class type [’a] tree, where the type [’a] tree specifies
the operations on a tree, but not its implementation. For our purposes, a tree supports
a functional add operation to add an element to the tree, and a mem function to test for
membership in the tree.

class type [’a] tree =
object (’self)

method add : ’a -> ’a tree
method mem : ’a -> bool

end;;

There are then two classes that implement a tree: a class [’a] leaf that represents the
empty tree, and a class [’a] node that represents an internal node. Let’s start with the
internal node.

class [’a] node (compare : ’a -> ’a -> ordering)
(x : ’a) (l : ’a tree) (r : ’a tree) =

object (self : ’self)
val label = x
val left = l
val right = r
method mem y =
match compare y label with

Smaller -> left#mem y
| Larger -> right#mem y
| Equal -> true

method add y =
match compare y label with

Smaller -> {< left = left#add y >}
| Larger -> {< right = right#add y >}
| Equal -> self

end;;

An internal node has three fields: a label and two children, where the children have
type ’a tree. The method mem performs a binary search, and the method add performs
a functional update, returning a new tree.

The class [’a] leaf is simpler, the method mem always returns false, and the
method add produces a new internal node.

class [’a] leaf (compare : ’a -> ’a -> ordering) =
object (self : ’self)

method mem (_ : ’a) = false
method add x =
new node compare x (new leaf compare) (new leaf compare)

end;;
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This implementation is adequate, but it is slightly inefficient because the method add
creates entirely new leaves. Since all leaves are the same, we might consider using
self instead, but we run into a type error because the type ’self is not equivalent to
’a tree.

# class [’a] leaf (compare : ’a -> ’a -> ordering) =
object (self : ’self)

method mem (_ : ’a) = false
method add x = new node compare x self self

end;;
Characters 151-155:

new node compare x self self
^^^^

This expression has type < add : ’a -> ’b; mem : ’a -> bool; .. >
but is here used with type ’a tree
Self type cannot be unified with a closed object type

The problem is that, in general, the type ’self is a subtype of ’a leaf, but the class
node takes arguments of the exact type ’a tree. One solution is to coerce self to have
the appropriate type.

class [’a] leaf (compare : ’a -> ’a -> ordering) =
object (self : ’self)

method mem (_ : ’a) = false
method add x =

new node compare x (self :> ’a tree) (self :> ’a tree)
end;;

The coercion works as we expect, and the definition is accepted. We investigate poly-
morphic coercions more in the following section.

17.2.1 Coercing polymorphic classes
Objects having polymorphic class types can be coerced just like those with non-
polymorphic types, but the process requires more preparation when the type arguments
also change during the coercion.

Before we begin the discussion, let’s define an example that is smaller and easier
to work with. We define a polymorphic class mut_pair that is like a mutable arity-2
tuple.

# class [’a, ’b] mut_pair (x0 : ’a) (y0 : ’b) =
object (self : ’self)

val mutable x = x0
val mutable y = y0
method set_fst x’ = x <- x’
method set_snd y’ = y <- y’
method value = x, y

end;;
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class [’a, ’b] mut_pair : ’a -> ’b ->
object

val mutable x : ’a
val mutable y : ’b
method set_fst : ’a -> unit
method set_snd : ’b -> unit
method value : ’a * ’b

end

To test it, let’s use the animal example. Each kind of animal should have its own class
derived from a common super-class animal that characterizes all animals. Here are
some example definitions.

# class virtual animal (name : string) =
object (self : ’self)
method eat = Printf.printf "%s eats.\n" name

end;;
class virtual animal : string -> object method eat : unit end
# class dog (name : string) =

object (self : ’self)
inherit animal name
method bark = Printf.printf "%s barks!\n" name

end;;
class dog : string -> object method bark : unit method eat : unit end
# let dogs = new mut_pair (new dog "Spot") (new dog "Rover");;
val dogs : (dog, dog) mut_pair = <obj>

According to our definition, every animal has a name, all animals eat, and dogs also
bark. The final value dogs is a pair of dogs, named Spot and Rover.

The class animal is marked as virtual only because we intend that every animal
should belong to a particular class; there are no generic animals. Some operations,
however, should work for animals generically. For example, let’s build a function eat2
that, given a pair of animals, calls the method eat for the two animals.

# let eat2 animals =
let x, y = animals#value in x#eat; y#eat

val eat2 :
< value : < eat : ’a; .. > * < eat : ’b; .. >; .. > -> ’b = <fun>

# eat2 dogs;;
Spot eats.
Rover eats.

Note the strange type for the function eat2; it takes an object with a method value that
produces a pair of objects with methods eat. We might want to give it a simpler type
by specifically stating that it takes a pair of animals.

# let eat2_both (animals : (animal, animal) mut_pair) =
let x, y = animals#value in x#eat2; y#eat2;;

val eat2 : (animal, animal) mut_pair -> unit = <fun>
# eat2 dogs;;
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Characters 15-19:
eat2 dogs;;

^^^^
This expression has type

(dog, dog) pair = ...
but is here used with type

(animal, animal) mut_pair = ...
Type dog = < bark : unit; eat : unit > is not compatible with type

animal = < eat : unit >
Only the first object type has a method bark

Here, we run into a problem—the function eat2 expects a pair of animals, but we
passed it a pair of dogs. Of course, every dog is an animal, so perhaps we just need to
perform a type coercion to convert the pair to the right type.

# let animals = (dogs : (dog, dog) mut_pair :> (animal, animal) mut_pair);;
Characters 14-71:

let animals = (dogs : (dog, dog) mut_pair :> (animal, animal) mut_pair);;
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

...
Type animal = < eat : unit > is not a subtype of type

dog = < bark : unit; eat : unit >

Here we run into more trouble. The error message states that animal is not a subtype of
dog. Given a single dog object like spot, we can coerce it explicitly with the expression
(spot : dog :> animal). However, for the pair dogs it seems that we need would to
coerce the dog objects individually, which would not only be annoying, but possibly
incorrect because a new copy of the pair must be created.

OCaml does provide a solution, but to understand it we need to look at variance
annotations, which describe what coercions are legal for polymorphic classes.

17.2.2 Variance annotations
OCaml uses variance annotations on the parameters of a type definition to specify its
subtyping properties. A parameter annotation +’a means that the definition is covari-
ant in ’a; an annotation -’a means that the definition is contravariant in ’a; and the
plain parameter ’a means the definition is invariant in ’a. When a type is defined, the
compiler checks that the annotations are legal.

# type (+’a, +’b) pair’ = ’a * ’b;;
type (’a, ’b) pair’ = ’a * ’b
# type (+’a, +’b) func = ’a -> ’b;;
Characters 5-31:

type (+’a, +’b) func = ’a -> ’b;;
^^^^^^^^^^^^^^^^^^^^^^^^^^

In this definition, expected parameter variances are not satisfied.
The 1st type parameter was expected to be covariant,
but it is contravariant
# type (-’a, +’b) func = ’a -> ’b;;
type (’a, ’b) func = ’a -> ’b

The toploop is erasing the annotations in the displayed output, but it is still checking
that the annotations are legal.
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Let’s look at how this works in the context of classes and class types. Consider a
class definition of an immutable pair.

# class [+’a, +’b] pair (x0 : ’a) (y0 : ’b) =
object (self : ’self)
val mutable x = x0
val mutable y = y0
method value : ’a * ’b = x, y

end;;
class [’a, ’b] pair : ’a -> ’b -> object ... method value : ’a * ’b end
# let p = new pair (new dog "Spot") (new dog "Rover");;
val p : (dog, dog) pair = <obj>

As before, we might wish to coerce the pair of dogs to a pair of animals. This time the
coercion works as expected.

# (p :> (animal, animal) pair);;
- : (animal, animal) pair = <obj>

The reason this works is because the class type for pair is covariant in the component
types. Since dog is a subtype of animal, the type (dog, dog) pair is a subtype of
(animal, animal) pair.

Let’s try to specify similar annotations for the class of mutable pairs, mut_pair.

# class [+’a, +’b] mut_pair (x0 : ’a) (y0 : ’b) =
object (self : ’self)
val mutable x = x0
val mutable y = y0
method set_fst x’ = x <- x’
method set_snd y’ = y <- y’
method value = x, y

end;;
Characters 5-185: .....
In this definition, expected parameter variances are not satisfied.
The 1st type parameter was expected to be covariant,
but it is invariant

Why isn’t the new definition allowed? If we look back to the method types in the
unannotated class, we find the following types for the set_xxx methods.

# class [’a, ’b] mut_pair (x0 : ’a) (y0 : ’b) = · · ·
class [’a, ’b] pair : ’a -> ’b ->

object
...
method set_fst : ’a -> unit
method set_snd : ’b -> unit
method value : ’a * ’b

end

The problem is that the type parameters ’a and ’b occur to the left of an arrow, so
the occurrences are contravariant. The other significant occurrences are in the type
’a * ’b, where they are covariant. Since the variables have both contravariant and
covariant occurrences, they must be invariant.

For some intuition, imagine that the covariant definition were allowed. Consider
the following sequence of actions, where for illustration we refer to a subclass cat that
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inherits from animal, but is not a dog.

# let dogs = new mut_pair (new dog "Spot") (new dog "Rover");;
dogs : (dog, dog) mut_pair

(* Imagine if this were legal *)
# let animals = (dogs :> (animal, animal) mut_pair);;
animals : (animal, animal) mut_pair
# let fifi = new cat "Fifi";;
fifi : cat
# animals#set_fst (fifi :> animal);;
# let fifi’ = fst dogs#value;;
fifi’ : dog
# fifi’#bark;;
????

The steps 1) create a pair of dogs, 2) coerce it to a pair of animals, and 3) replace one of
the dogs with a cat (which is also an animal). Since the modification is done in-place,
the original dog pair now contains a cat. This is wrong because, among other things,
cats do not bark.

17.2.3 Positive and negative occurrences
Mechanically speaking, the restrictions on variance annotations are not determined by
whether a class has mutable fields or contains side-effects, it is purely based on the
non-private method types.

Consider the following slightly different definition of a class get_pair.

# class [+’a, +’b] get_pair (x0 : ’a) (y0 : ’b) =
object (self : ’self)

val mutable x = x0
val mutable y = y0
method get_fst : (’a -> unit) -> unit = fun f -> f x
method value = x, y

end;;
class [’a, ’b] get_pair : ’a -> ’b ->

object
val mutable x : ’a
val mutable y : ’b
method get_fst : (’a -> unit) -> unit
method value : ’a * ’b

end

This class is accepted, with the covariant annotation +’a, even though ’a occurs to
the left of an arrow in the method get_fst : (’a -> unit) -> unit. How does this
work?

There is a straightforward calculation for determining the variance of a variable in
a type. First, for some occurrence of the type variable in question, we define a left-
nesting depth with respect to the arrows in the type definition, where the left-nesting
depth increases by one each time the type variable occurs to the left of an arrow in the
fully-parenthesized type. Covariant constructors, like *, do not affect the depth. Type
constructors, like ref, that specify mutable values require that the variable be invariant.

Here are some examples for the nesting depth of a type variable ’a, where “*”
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indicates that the type is invariant.

Type Fully-parenthesized type Depth
t1 -> t2 -> ’a t1 -> (t2 -> ’a) 0
t1 -> ’a -> t2 -> t3 t1 -> (’a -> (t2 -> t3)) 1
(t1 -> ’a -> t2) -> t3 (t1 -> (’a -> t2)) -> t3 2
(t1 -> t2 -> ’a) -> t3 (t1 -> (t2 -> ’a)) -> t3 1
(((’a * t1) -> t2) -> t3) -> t4 same 3
’a ref same *
(’a -> t1) ref -> t2 same *

Next, consider the type variables that are not invariant. If the nesting depth is even,
the occurrence is called positive; if it is odd, the occurrence is negative. Positive
occurrences are covariant, negative occurrences are contravariant. For the method
get_fst : (’a -> unit) -> unit, the nesting depth of ’a is 2, which means that
the occurrence is positive and covariant.

17.2.4 Coercing by hiding
Let’s return to the class of mutable pairs mut_pair. Suppose we have pair of
dogs, and we still wish to coerce the object to a pair of animals. The methods
set_fst : ’a -> unit and set_snd : ’b -> unit prevent this, because of the neg-
ative occurrence of the type variables ’a and ’b. However, it is still possible to coerce
the class, provided that the these methods are omitted.

# let dogs = new mut_pair (new dog "Spot") (new dog "Rover");;
val dogs : (dog, dog) mut_pair = <obj>
# (dogs :> (animal, animal) pair);;
- : (animal, animal) pair = <obj>
# (dogs : (dog, dog) mut_pair :> (animal, animal) mut_pair);;
...
Type animal = < eat : unit > is not a subtype of type

dog = < bark : unit; eat : unit >

We can think of the the coercion to (animal, animal) pair as two steps: the first step
coerces the object to type (dog, dog) pair, which simply means omitting the methods
set_fst and set_snd; the next step coerces to (animal, animal) pair, which is legal
because the class pair is covariant in its type parameters.

There are other examples where it may be useful to view the same object with
different types. For example, suppose we have an object that behaves like a reference
cell.

# class [’a] refcell (x0 : ’a) =
object (self : ’self)

val mutable x = x0
method set y = x <- y
method get = x

end;;
class [’a] refcell : ’a ->

object val mutable x : ’a method get : ’a method set : ’a -> unit end
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We can give an object of this class two types, one covariant type with just the method
get, and another with contravariant type having just the method set.

# class type [+’a] getcell = object method get : ’a end;;
class type [’a] getcell = object method get : ’a end
# class type [-’a] setcell = object method set : ’a -> unit end;;
class type [’a] setcell = object method set : ’a -> unit end

To test it, let’s introduce a new class for guard dogs.

# class guard_dog name =
object (self : ’self)

inherit dog name
method growl = Printf.printf "%s growls!\n" name

end;;
class guard_dog : string ->

object method bark : unit method growl : unit method eat : unit end
# let cell = new refcell (new dog "Spot");;
val cell : dog refcell = <obj>
# let read = (cell : (dog) refcell :> (animal) getcell);;
val read : animal getcell = <obj>
# let write = (cell : (dog) refcell :> (guard_dog) setcell);;
val write : guard_dog setcell = <obj>
# write#set (new guard_dog "Spike");;
- : unit = ()
# let spike = read#get;;
val spike : animal = <obj>
# spike#eat;;
Spike eats.

17.3 Type constraints
Previously, we defined a function eat2 that called the eat methods for a pair of ani-
mals. Another way to do this is to define a class animal_pair specifically for pairs of
animals. We would like to inherit from the class pair, but how can we specify that the
components of the pair are animals? The solution is to use type constraints, previously
introduced in Section 14.1. To keep our example small, we require that the two animals
have the same type.

# class [+’a] animal_pair (x0 : ’a) (y0 : ’a) =
object (self : ’self)

inherit [’a, ’a] pair x0 y0
constraint ’a = #animal
method eat = x#eat; y#eat

end;;
class [+’a] animal_pair : ’a -> ’a ->

object
constraint ’a = #animal
method eat : unit
...

end
# let dogs = new animal_pair (new dog "Spot") (new dog "Rover");;
val dogs : dog animal_pair = <obj>
# dogs#eat;;

Copyright © Jason Hickey 232 Draft. Do not redistribute.



CHAPTER 17. POLYMORPHIC CLASSES 17.3. TYPE CONSTRAINTS

Spot eats.
Rover eats.

The constraint constraint ’a = #animal means that the type ’a must be a sub-
type of animals. We could have written an exact constraint instead, written
constraint ’a = animal. The exact constraint would mean that the elements of the
pair must exactly be animal, not any of its subtypes. Exact constraints may be ap-
propriate in some places, but they would make this example much less useful. For
example, suppose we wish to define a pair for dogs.

# class [+’a] dog_pair x0 y0 =
object (self : ’self)
inherit [’a] animal_pair x0 y0
constraint ’a = #dog
method bark = x#bark; y#bark

end;;
class [+’a] dog_pair : ’a -> ’a ->

object
constraint ’a = #dog
method bark : unit
method eat : unit
...

end

The constraint #dog is compatible with the constraint #animal, and the two together
simplify to the single constraint #dog. Exact constraints wouldn’t be compatible.

Next, to illustrate classes that contain polymorphic fields, let’s define a class that
represents a list of animal pairs.

# class [’a] animal_pairs =
object (self : ’self)

val mutable pairs : ’a animal_pair list = []
method insert x0 y0 =
pairs <- new animal_pair x0 y0 :: pairs

method eat = List.iter (fun p -> p#eat) pairs
end;;

class [’a] animal_pairs :
object

constraint ’a = #animal
val mutable pairs : ’a animal_pair list
method insert : ’a -> ’a -> unit
method eat : unit

end

Note that the toploop infers the constraint ’a = #animal.
If a class contains type constraints, the constraints must also be included in the class

type. It is of course legal to coerce objects to remove the type constraint because the
type of the object has already been fixed, and the constraint has already been satisfied.

# class type [+’a] read_only_animal_pairs_type =
object method eat : unit end;;

# let dogs = new animal_pairs;;
val dogs : _#animal animal_pairs = <obj>
# dogs#insert (new dog "Spot") (new dog "Fifi");;
# dogs#insert (new dog "Rover") (new dog "Muffin");;
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Modules Objects

module type DogSig = sig
type t
val create : string -> t
val name : t -> string
val eat : t -> unit
val bark : t -> unit
val bark_eat : t -> unit

end;;

class type dog_type =
object (’self)

method name : string
method eat : unit
method bark : unit
method bark_eat : unit

end;;

module Dog : DogSig = struct
type t = string
let create name = name
let name dog = dog
let eat dog =

printf "%s eats.\n" (name dog)
let bark dog =

printf "%s barks!\n" (name dog)
let bark_eat dog =

bark dog; eat dog
end;;

class dog name : dog_type =
object (self : ’self)

method name = name
method eat =
printf "%s eats.\n" self#name

method bark =
printf "%s barks!\n" self#name

method bark_eat =
self#bark; self#eat

end;;

Figure 17.1: Implementations of dogs, using modules and objects.

# let animals = (dogs : dog animal_pairs :> animal read_only_animal_pairs_type);;
val animals : animal read_only_animal_pairs_type = <obj>

17.4 Comparing objects and modules
OCaml provides two significant tools for abstraction and re-use: the module system
and the object system. Many tasks are supported equally well by both systems, but
there are differences that will determine whether you use one system or the other. To
finish this chapter, we’ll explore these differences.

17.4.1 Late binding
Let’s start with our example of animals, coding it in both systems. The example is very
simple, but should illustrate some of the differences. In the example, we define a dog
to be a thing that can bark and eat, shown in Figure 17.1.

The module defines an abstract data type: there is a type of dogs Dog.t (which is
just a string for the name of the dog), and functions for creating a new instance of a
dog, plus functions for having it bark and eat. The object definition is similar, except
that dog creation is performed with the operator new; there is no need for a separate
method.

So far, there is very little difference; which implementation to use is mainly a matter
of preference.
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Modules Objects

module Hound : DogSig = struct
include Dog
let bark dog =
printf "%s howls!\n" (name dog)

end;;

class hound n : dog_type =
object (self : ’self)

inherit dog n
method bark =

printf "%s howls!\n" self#name
end;;

# let sam = Hound.create "Sam";;
val sam : string = "Sam"
# Hound.bark sam;;
Sam howls!
# Hound.bark_eat sam;;
Sam barks!
Sam eats.

# let sam = new hound "Sam";;
val sam : hound = <obj>
# sam#bark;;
Sam howls!
# sam#bark_eat;;
Sam howls!
Sam eats.

Figure 17.2: Defining a subtype of dogs.

Next, let’s consider what will happen should we wish to create a new kind of dog.
We’ll define a new implementation for hounds, which usually howl instead of barking.
What we would like to do is replace the function/method bark with a new implemen-
tation that prints the appropriate message. The new implementations are shown in Fig-
ure 17.2, where the module definition uses include to include the Dog implementation.
The object definition uses inherit.

The behavior of the two implementations differ. When the function Hound.bark
is called, the dog howls as expected. However, when the function Hound.bark_eat
is called, the hound barks (not howls), and then eats. The reason is that the function
bark_eat was defined in the Dog module, and so it refers to the definition of Dog.bark.
This is simply static scoping: an identifier refers to the nearest previous definition in
the program text that is in scope.

In contrast, in the object definition, the method call self#bark refers to the latest
definition of the bark method in the class. The latest definition is in the hound object,
and so the dog always howls.

There are several names for this behavior. For objects it is called late binding,
dynamic method dispatch, or open recursion. For modules it is called early binding,
static scoping, or closed recursion. When late binding is desired, as it probably is in
this example, objects are the preferred solution.

Another point to notice is that in the module implementation, the data is decoupled
from the functions that use the data. In other words, the programmer must be sure to
use the functions from the Hound module when dealing with hounds. This is enforced
by the type checker because the type Hound.t is different from Dog.t. We could, if we
wish, define a sharing constraint Hound : DogSig with type t = Dog.t. However,
this would allow any of the functions from the module Dog to be applied to hounds,
which may not be what we wish. In contrast, the class hound encapsulates the data
with its methods; the programmer need not be concerned about whether the appropriate
methods are being used.
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17.4.2 Extending the definitions
It is frequently believed that object-oriented programs are easier to modify and extend
than “normal” functional programs. In fact, this is not the always the case—the two
styles are different and not exactly comparable. Let’s consider an example where we
define a calculator-style language with variables, together with an evaluator. In the
functional approach, we’ll define the language using a union type, and in the object-
oriented approach we’ll define a class of expressions. To handle variables, we’ll use
a version of the Map data structure that we developed earlier in this chapter, where we
specifically represent variables as strings.

Modules Objects

module type EnvSig = sig
type ’a t
val empty : ’a t
val add : ’a t -> string -> ’a -> ’a t
val find : ’a t -> string -> ’a

end;;

module Env : EnvSig = struct
type ’a t = (string * ’a) list
let empty = []
let add env v x = (v, x) :: env
let find env v = List.assoc v env

end;;

class type [’a] env_sig =
object (’self)

method add : string -> ’a -> ’self
method find : string -> ’a

end;;

class [’a] env : [’a] env_sig =
object (self : ’self)

val env : (string * ’a) list = []
method add v x =

{< env = (v, x) :: env >}
method find v = List.assoc v env

end;;

An “environment” is a map from variables to values. The implementations, as the
module Env and the class env are very similar. Again, the choice is mainly stylistic.

Next, we define the language itself. We’ll include constants, variables, some basic
arithmetic, and a “let” binding construct, shown in Figure 17.3. On the left, we show
a “standard” definition where expressions are specified with a disjoint union type. The
evaluator is a single function, defined by pattern matching, that computes the value
associated with each kind of expression.

On the right, we show a similar object-oriented implementation, where the class
type exp describes a generic expression that has a method eval that produces a value
given an environment. Each kind of expression is defined as a specific implementation
of a class that has class type exp. Since there are five kinds of expressions in the
language, there are five different classes.

The implementation using unions is somewhat smaller than the implementation
using objects, but otherwise the implementations are much the same. The main reason
for the object-oriented program being larger is that each of the classes must be named,
and there is some overhead for each definition. In larger programs, it is likely that this
overhead would be insignificant.

Adding a function

One way in which the implementations differ has to do with how they can be extended.
Suppose we wish to add a new function print that prints out an expression. Again,
the implementations are fairly straightforward. For the implementation with unions,
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Unions Objects

type exp =
Int of int

| Var of string
| Add of exp * exp
| If of exp * exp * exp
| Let of string * exp * exp

let rec eval env = function
Int i -> i

| Var v -> Env.find env v
| Add (e1, e2) ->

eval env e1 + eval env e2
| If (e1, e2, e3) ->

if eval env e1 <> 0
then eval env e2
else eval env e3

| Let (v, e1, e2) ->
let i = eval env e1 in
let env’ = Env.add env v i in

eval env’ e2

(* let x = 3 in x + 4 *)
# let e = Let ("x", Int 3,

Add (Var "x", Int 4));;
val e : exp = Let ("x", Int 3,

Add (Var "x", Int 4))
# let i = eval Env.empty e;;
val i : int = 7

(* Evaluation: objects *)
# let e =

new let_exp "x" (new int_exp 3)
(new add_exp (new var_exp "x")

(new int_exp 4));;
val e : let_exp = <obj>
# let i = e#eval (new env);;
val i : int = 7

class type exp =
object (’self)

method eval : int env -> int
end

class int_exp (i : int) =
object (self : ’self)

method eval (_ : int env) = i
end

class var_exp v =
object (self : ’self)

method eval (env : int env) =
env#find v

end

class add_exp (e1 : #exp) (e2 : #exp) =
object (self : ’self)

method eval env =
e1#eval env + e2#eval env

end

class if_exp
(e1 : #exp) (e2 : #exp) (e3 : #exp) =
object (self : ’self)

method eval env =
if e1#eval env <> 0
then e2#eval env
else e3#eval env

end

class let_exp
(v : string) (e1 : #exp) (e2 : #exp) =
object (self : ’self)

method eval env =
let i = e1#eval env in
let env’ = env#add v i in

e2#eval env’
end;;

Figure 17.3: Implementing an evaluator
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we simply add a new function, defined by pattern matching, that describes how to print
each of the kinds of expressions.

let rec print chan = function
Int i -> fprintf chan "%d" i

| Var v -> fprintf chan "%s" v
| Add (e1, e2) ->

fprintf chan "(%a + %a)" print e1 print e2
· · ·

The object version is somewhat different. In this case, we must add a new method to
each of the classes for each of the kinds of expressions. This means that either 1) we
have to modify the source code for each class definition, or 2) we have to define new
classes by inheritance that provide the new implementations—and then be sure to use
the new definitions in all the places where we construct new expressions. Fortunately,
the type checker will help us find all the code that needs to be changed. Let’s use the
latter form.

class type printable_exp =
object (’self)

inherit exp
method print : out_channel -> unit

end

class printable_add_exp
(e1 : #printable_exp) (e2 : #printable_exp) =
object (self : ’self)

inherit add_exp e1 e2
method print chan =

fprintf chan "(%t + %t)" e1#print e2#print
end
· · ·

Updating the union implementation is clearly easier than updating the object imple-
mentation. To add a new function to the union implementation, we simply add it—none
of the original code must be modified.

With objects, we have two options. If we have access to the original class defini-
tions, each of the classes can (and must) be updated. Otherwise, we define new updated
classes by inheritance, and each object creation with new must be updated to refer to
the new classes. The updates may be scattered throughout the program, and it may take
some time to find them.

Adding a new kind of expression

For another kind of example, let’s consider what must be done if we add a new kind
of expression. For example, suppose we wish to add an expression that represents the
product of two expressions. This time, the object-oriented approach is easy, we just
add a new object for products.

class printable_mul_exp (e1 : #printable_exp) (e2 : #printable_exp) =
object (self : ’self)

method eval env = e1#eval env * e2#eval env
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method print chan = fprintf chan "(%t + %t)" e1#print e2#print
end;;

Here, none of the original code need be modified. Objects of type printable_mul_exp
can be used anyplace where an expression is needed.

In contrast, updating the union definition is much more difficult. We must be able
to update the original type definition to include the new case, and in addition, each of
the functions must be updated to handle the new kind of expression.

type exp =
· · ·

| Mul of exp * exp

let rec eval env = function
· · ·

| Mul (e1, e2) ->
eval env e1 * eval env e2

let rec print chan = function
· · ·

| Mul (e1, e2) ->
fprintf chan "(%a * %a)" print e1 print e2

This problem is the dual of adding a new method in the object implementation. When
a new kind of expression is added to the union, each of the functions must be updated,
leading to a scattering of updates throughout the program. Fortunately, the type checker
will help find each of the functions—each function to be updated will likely cause an
“incomplete pattern match” warning.

We can summarize the differences in the following table.

Unions Objects
One type definition, with a
case for each kind of thing;
one function for each oper-
ation.

One class for each kind of
thing, one method for each
operation.

Adding a function Define the new function,
the original code is un-
changed.

Update each class defini-
tion. (However, see Exer-
cise 17.11.)

Adding a case Modify the type defini-
tion. Update each func-
tion. (However, see Exer-
cise 17.12.)

Define the new class, the
original code is unchanged.

There is no single good solution; modifications that are easy in one style may be dif-
ficult in the other style. The choice of which style to use should be based on what the
desired properties are.
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Pattern matching

Let’s turn to a different kind of issue. One advantage of the disjoint union specification
is that pattern matching is well-supported. Suppose we wish to write an “optimizer” for
expressions based on the distributive law. We’ll specifically use the following equiva-
lences.

e1 * e2 + e1 * e3 = e1 * (e2 + e3)
e2 * e1 + e3 * e1 = e1 * (e2 + e3)

Evaluating the expression on the right is likely to be more efficient than evaluating the
left expression because e1 is computed only once.

The optimizer is a function from expressions to expressions that is intended to
preserve the result of evaluation. Here is how we might implement it.

let rec optimize = function
Add (e1, e2) ->

(match optimize e1, optimize e2 with
Mul (a, b), Mul (c, d)

| Mul (b, a), Mul (d, c) when a = c ->
Mul (a, Add (b, d))

| e1, e2 ->
Add (e1, e2))

| If (e1, e2, e3) ->
If (optimize e1, optimize e2, optimize e3)

| · · ·

Implementing a similar operation with objects is more difficult. We specifically wish
to consider cases where the subexpressions of an object of type add_exp have type
mul_exp. However, the class add_exp is defined so that its subexpressions are of type
exp, and otherwise there is no way to determine what they are. The general problem is
an instance of narrowing, discussed previously in Section 14.9.

One solution is to define an explicit type of descriptions for the various kinds of
objects. For example, the description of a mul_exp might be Mul (e1, e2), where e1
and e2 are the subexpressions. In addition, we must add a describe method to each of
the different expression classes.

type ’a description =
Mul of ’a * ’a

| Other

class virtual exp =
object (’self)

method virtual eval : int env -> int
method virtual optimize : exp
method describe : exp description = Other

end

class add_exp (e1 : #exp) (e2 : #exp) =
object (self : ’self)

inherit exp
method eval env = e1#eval env + e2#eval env
method optimize =

let e1 = e1#optimize in
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let e2 = e2#optimize in
match e1#describe, e2#describe with

Mul (a, b), Mul (c, d)
| Mul (b, a), Mul (d, c) when a = c ->

new mul_exp a (new add_exp b d)
| _ ->

new add_exp e1 e2
end;;

class mul_exp (e1 : #exp) (e2 : #exp) =
object (self : ’self)

method eval env = e1#eval env * e2#eval env
method optimize = new mul_exp e1#optimize e2#optimize
method describe = Mul (e1, e2)

end

The type definitions in this example reflect the fact that we want only to implement the
specifications based on the distributive law. If we expect to do general optimizations,
it may be useful to describe all of the different kinds of expressions, so that the type
’a description contains a case for each of the different kinds of expressions.

Of course, if we did, we would find that the type ’a description would be nearly
equivalent to the union type exp, and we would find that the object-oriented implemen-
tation contains a fragment of the alternative implementation.

One might argue that the object-oriented style of implementation is pointless be-
cause, in the end, it might still require implementing a fragment based on the “standard”
functional representation. However, this is not the case. There are many good reasons
to use objects, and the choice of style is based on the needs of the specific project.

One of the principal reasons why functional constructs appear in object-oriented
programs is because OCaml is a functional programming language. Regardless of
stylistic preferences, proficient OCaml programmers use the best tools possible, and
this means using the constructs that are appropriate to the problem at hand. In some
cases, this may mean traditional functional programming; in others, it may require ex-
treme object-oriented programming. The beauty of OCaml is that one is not forced
into a particular methodology, be it imperative, functional, object-oriented, or some-
thing else. Nearly any approach you might take in another language, you can take in
OCaml—and, most likely, do it better.
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17.5 Exercises
Exercise 17.1 The restriction about free type variables applies only to non-private
method types. Which of the following definitions are legal? For those that are legal,
give their types. For those that are not legal, explain why.

1. class c1 = object val x = [] end;;

2. class c2 = object val x = ref [] end;;

3. class c3 x = object val y = x end

4. class c4 x = object val y = x method z = y end

5. class c5 x = object val y = x + 1 method z = y end

6. class c6 (x : ’a) = object constraint ’a = int method y = x end;;

Exercise 17.2 Write an imperative version of a polymorphic map. A newly-created
map should be empty. The class should have the following type.

class [’a, ’b] imp_map : (’a -> ’a -> ordering) ->
object

method find : ’a -> ’b
method insert : ’a -> ’b -> unit

end

Exercise 17.3 Reimplement the polymorphic map class from page 221 so that the class
takes no arguments, and compare is a virtual method. Define a specific class int_map
where the keys have type int with the usual ordering.

Exercise 17.4 In the class type definition [’a] tree on page 225, the method add has
type ’a -> ’a tree. What would happen if we defined the class type as follows?

class type [’a] self_tree =
object (’self)

method add : ’a -> ’self
method mem : ’a -> bool

end

Exercise 17.5 In the implementations for the [’a] node and [’a] leaf classes in
Section 17.2, the function compare is threaded through the class definitions. Imple-
ment a functor MakeTree, specified as follows.

type ordering = Smaller | Equal | Larger

module type CompareSig = sig
type t
val compare : t -> t -> ordering

end;;

class type [’a] tree =
object (’self)

method add : ’a -> ’a tree
method mem : ’a -> bool

end;;
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module MakeTree (Compare : CompareSig)
: sig val empty : Compare.t tree end =

struct · · · end

Exercise 17.6 Instead of defining a class type class type [’a] tree, we could have
specified it as a virtual class like the following.

class virtual [’a] virtual_tree =
object (self : ’self)

method virtual add : ’a -> ’a virtual_tree
method virtual mem : ’a -> bool

end;;

Are there any advantages or disadvantages to this approach?

Exercise 17.7 Which of the following class definitions are legal? Explain your an-
swers.

1. class [+’a] cl (x : ’a) =
object (self : ’self)

val f : ’a -> unit = fun x -> ()
method value : unit -> ’a = fun () -> x

end

2. class [+’a] cl =
object (self : ’self)

method f : ’a -> unit = fun x -> ()
end

3. class [+’a] cl =
object (self : ’self)

method private f : ’a -> unit = fun x -> ()
end

4. class [+’a] cl =
object (self : ’a)

method copy : ’a = {< >}
end

5. class [-’a] cl (x : ’a) =
object (self : ’self)

val mutable y = x
method f x = y <- x

end;;

6. class foo = object end
class [’a] cl (x : ’a) =

object
constraint ’a = #foo
method value : #foo = x

end

7. class foo = object end
class [-’a] cl (x : #foo as ’a) =

object
method value : #foo = x

end
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Exercise 17.8 Consider the following class definitions.

class [’a] alt_animal_pair1 (p : ’a) =
object (self : ’self)

constraint ’a = (’b, ’b) #pair
constraint ’b = #animal
method sleep =

let a1, a2 = p#value in
a1#sleep; a2#sleep

end;;

class [’a] alt_animal_pair2
(a1 : ’b) (a2 : ’c) =
object (self : ’self)

inherit [’b, ’c] pair a1 a2
constraint ’a = ’b * ’c
constraint ’b = #animal
constraint ’c = #animal
method sleep =

a1#sleep; a2#sleep
end;;

1. The type variable ’b is not a type parameter of alt_animal_pair1. Why is the
definition legal?

2. Is the type [’a] alt_animal_pair1 covariant, contravariant, or invariant in ’a?

3. Suppose we have a class cat that is a subtype of animal. What is the type of the
following expression?

new alt_animal_pair2 (new dog "Spot") (new cat "Fifi");;

4. What happens if the line constraint ’a = ’b * ’c is left out of the class defi-
nition for alt_animal_pair2?

5. What if the line is replaced with constraint ’a = ’b -> ’c?

6. In principle, is it ever necessary for a class to have more than one type parameter?

Exercise 17.9 In the object implementation of the evaluator in Figure 17.3, the method
eval takes an environment of exact type int env. Suppose we try to change it to the
following definition.

class type exp =
object (’self)

method eval : int #env -> int
end

class int_exp (i : int) : exp =
object (self : ’self)

method eval (_ : int #env) = i
end;;
· · ·

1. The new type definition is accepted, but the class definition int_exp is rejected.
How can it be fixed?

2. Are there any advantages to the new definition?

Exercise 17.10 Consider the following class definition.
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# class type [’a] c1 = object method f : c2 -> ’a end
and c2 = object method g : int c1 end;;

class type [’a] c1 = object constraint ’a = int method f : c2 -> ’a end
and c2 = object method g : int c1 end

Unfortunately, even though the class type [’a] c1 should be polymorphic in ’a, a type
constraint is inferred that ’a = int. The problem is that polymorphic type definitions
are not polymorphic within a recursive definition.

1. Suggest a solution to the problem, where class type c1 is truly polymorphic.

2. The following definition is rejected.

# class type [’a] c1 = object method f : c2 -> ’a end
and c2 = object method g : ’a. ’a c1 -> ’a end;;

Characters 79-94:
and c2 = object method g : ’a. ’a c1 -> ’a end;;

^^^^^^^^^^^^^^^
This type scheme cannot quantify ’a :
it escapes this scope.

The problem arises from the same issue—the class [’a] c1 is not polymorphic
within the recursive definition, so the type ’a. ’a c1 -> ’a is rejected.

Suggest a solution to this problem.

Exercise 17.11 As discussed in Section 17.4, one problem with object-oriented im-
plementations is that adding a new functionality to a class hierarchy might require
modifying all the classes in the hierarchy. Visitor design patterns are one way in which
this problem can be addressed.

A visitor is defined as an object with a method for each of the kinds of data. For
the type exp, a visitor would have the following type.

class type visitor =
object (’self)

method visit_int : int_exp -> unit
method visit_var : var_exp -> unit
method visit_add : add_exp -> unit
method visit_if : if_exp -> unit
method visit_let : let_exp -> unit

end;;

The class type exp is augmented with a method accept : visitor -> unit that
guides the visitor through an expression, visiting every subexpression in turn. Here
is a fragment of the code.

class type exp =
object (’self)

method eval : int env -> int
method accept : visitor -> unit

end;;

class int_exp (i : int) =
object (self : ’self)

method eval (_ : int env) = i
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method accept visitor = visitor#visit_int (self :> int_exp)
end

class add_exp (e1 : #exp) (e2 : #exp) =
object (self : ’self)

method eval env = e1#eval env + e2#eval env
method accept visitor =

visitor#visit (self :> add_exp);
e1#accept visitor;
e2#accept visitor

end
· · ·

1. One problem with this approach is the order of definitions. For example, the
class type visitor refers to the class add_exp, which refers back to the visitor
type in the definition of the method accept.

(a) We could simplify the types. Would the following definition be acceptable?

class type exp =
object (’self)

method eval : int env -> int
method accept : visitor -> unit

end

and visitor =
object (’self)

method visit_int : exp -> unit
method visit_var : exp -> unit
· · ·

end

(b) What is a better way to solve this problem?

2. The class type visitor has one method for each specific kind of expression.
What must be done when a new kind of expression is added?

As defined, the visitor pattern is not very useful because the classes do not provide
any additional information about themselves. Suppose we add a method explode that
presents the contents of the object as a tuple. Here is a fragment.

class type exp = object · · · end
and visitor = object · · · end

and int_exp_type =
object (’self)

inherit exp
method explode : int

end

and add_exp_type =
object (’self)

inherit exp
method explode : exp * exp
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end
· · ·

3. Since the method explode exposes the internal representation, it isn’t really nec-
essary for the accept methods to perform the recursive calls. For example, we
could make the following definition, and assume that the visitor will handle the
recursive calls itself.

class add_exp (e1 : #env) (e2 : #env) : add_exp_type =
object (self : ’self)

method eval env = e1#eval env + e2#eval env
method accept visitor = visitor#visit_add (self :> add_exp_type)
method explode = e1, e2

end

What are the advantages of this approach? What are its disadvantages?

4. Another approach is, instead of passing the objects directly to the visitor, to pass
the exploded values as arguments. Here is the new visitor type definition.

class type visitor =
object (’self)

method visit_int : int -> unit
method visit_add : exp -> exp -> unit
· · ·

end

What are the advantages of this approach? What are its disadvantages?

5. Write a visitor to print out an expression.

The visitors we have specified are imperative. It is also possible to write pure visitors
that compute without side-effects. The visitor has a polymorphic class type parameter-
ized over the type of values it computes. As discussed in Exercise 17.10, a recursive
definition does not work, so we break apart the recursive definition.

class type [’a, ’exp] pre_visitor =
object (’self)

method visit_int : int -> ’a
method visit_var : string -> ’a
method visit_add : ’exp -> ’exp -> ’a
method visit_if : ’exp -> ’exp -> ’exp -> ’a
method visit_let : string -> ’exp -> ’exp -> ’a

end;;

class type exp =
object (’self)

method eval : int env -> int
method accept : ’a. (’a, exp) pre_visitor -> ’a

end

class type [’a] visitor = [’a, exp] pre_visitor
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6. Rewrite the class definitions to implement the new accept methods.

7. Write an evaluator as a pure visitor eval_visitor. The eval_visitor is not
allowed to call the method eval, and it is not allowed to use assignment or any
other form of side-effect.

Exercise 17.12 We also stated in Section 17.4 that one problem with the traditional
functional representation is that it is hard to add a new case to a union, because each of
the functions that operate on the data must also be updated.

One way to address this is through the use of polymorphic variants, discussed in
Section 6.5. Polymorphic variants can be defined as “open” types that can be later
extended. For the evaluator example, here is how we might define the initial type of
expressions.

type ’a exp1 = ’a constraint ’a =
[> ‘Int of int
| ‘Var of string
| ‘Add of ’a * ’a
| ‘If of ’a * ’a * ’a
| ‘Let of string * ’a * ’a ]

The type ’a exp is an open type that includes at least the cases specified in the type
definition. The type of an evaluator is defined as follows, where the module Env is
defined on page 236.

type ’a evaluator = int Env.t -> ’a -> int

1. Write an evaluator (of type ’a exp evaluator).

We can extend the type of expressions by adding an additional constraint that specifies
the new kinds of expressions. For example, this is how we might add products as a
kind of expression.

type ’a exp2 = ’a
constraint ’a = ’a exp1
constraint ’a = [> ‘Mul of ’a * ’a ]

The next step is to define an evaluator of type ’a exp2 evaluator. However, we don’t
want to reimplement it completely—we would like to be able to re-use the previous
implementation. For this, we need a kind of “open recursion.” Let’s define a pre-
evaluator as a function of the following type. That is, a pre-evaluator takes an evaluator
as an argument for computing values of subterms.

type ’a pre_evaluator = ’a evaluator -> ’a evaluator

let pre_eval1 eval_subterm env = function
‘Add (e1, e2) -> eval_subterm env e1 + eval_subterm env e2

| · · ·

The function has type pre_eval1 : ’a exp1 pre_evaluator.

2. Write the complete definition of pre_eval1.
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3. Write a function make_eval that turns a pre-evaluator into an evaluator. Hint:
this is a kind of “fixpoint” definition, explored in Exercise ??.

val make_eval : ’a pre_evaluator -> ’a evaluator

4. The pre-evaluator pre_eval2 : ’a exp2 pre_evaluator can be implemented
as follows.

let pre_eval2 eval_subterm env = function
‘Mul (e1, e2) -> eval_subterm env e1 * eval_subterm env e2

| e -> pre_eval1 eval_subterm env e

Implement the evaluator eval2 : ’a exp2 evaluator in terms of pre_eval2.
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Syntax

Whenever learning a new language it is useful to have a guide to the language’s syn-
tax. The OCaml reference manual describes the syntax using a context-free grammar.
The syntax we give here uses the same format, and it also serves as an index into the
book, listing the pages where specific syntactical features are introduced. The OCaml
language is still evolving; you should consider the reference manual to be the author-
itative definition. However, it is likely that the syntax here will be very similar to the
one you are using.

.1 Notation
The grammar is specified in standard notation called Backus-Naur Form (BNF), where
a grammar consists of a start symbol, a set of nonterminal symbols, a set of ter-
minal symbols, and a set of productions. The terminal symbols represent the basic
words of input, like keywords, numbers, special symbols, etc. A production the form
s ::= s1s2 · · · sn, where s is a nonterminal, and s1s2 · · · sn is a sequence of symbols.
For example, the following production says, informally, that an expression can be a
conditional that starts with the keyword if, following by an expression, followed by
the keyword then, etc.

expression ::= if expression then expression else expression

We write terminal symbols in a fixed-width font if, and nonterminals in a slanted font
expression.

By convention, a vertical bar on the right hand side of a production is shorthand for
multiple productions. The following two grammars are equivalent.

Short form Meaning
d ::= 0 | 1 d ::= 0

d ::= 1

For brevity, we’ll also use meta-notation for some kinds of repetition. We use Greek
letters for sequences of symbols.
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Description Meta-notation
Optional (zero or one) [[β]]?

Repetition (zero or more) [[β]]∗

Repetition (one or more) [[β]]+

Repetition with separator [[β]]∗(sep=α)

Repetition with separator and optional terminator [[β]]∗(sep=α]

Repetition with separator and optional prefix [[β]]∗[sep=α)

Choice [[α|β]]
Character choice [[a|b|c]]
Inverted character choice [[∧a|b|c]]
Character range [[0..9]]

When the meta-brackets enclose a single symbol [[s]]+, we will often omit them, writing
s+ instead.

To summarize the repetition forms, a superscript ·∗ means zero or more repetitions,
a superscript ·+ means zero or more, and a superscript ·? means zero or one. A subscript
·(sep=s) means that the repetitions are separated by a symbol s. The subscript ·(sep=s]

means that the final element is optionally followed by the separator; and ·[sep=s) means
that separator can also be used as a prefix to each element.

Choice is allowed, in [[α|β]] the alternatives are α and β. When used with charac-
ters, a leading “hat” [[∧a|b|c]] means any character in the ASCII character set except a,
b, or c. A character range [[c1..c2]] includes all characters with ASCII codes between
c1 and c2, inclusive.

For some examples, consider the following hypothetical grammar.

e ::= [[0..9|_]]+
| ( [[ e ]]+(sep=,) )

| [ [[ e ]]∗(sep=;] ]

The following table lists some sentences, where we use the term “legal” to mean that
the sentence is in the language of this hypothetical grammar.

Legal sentences Illegal sentences
( 0, 1, 72_134 ) ( )
[ ] [;]
[ 3; 2; 6 ] [3 2; 6]
[ 14; 55; 237; ]

The syntax of OCaml can be placed into several categories: expressions, type expres-
sions, structure expressions, structure types, module expressions and types, and class
expressions and types. We’ll cover each of these, but first it is useful to describe the
terminal symbols.

.2 Terminal symbols (lexemes)
The terminal symbols are the “words” that make up a program, including keywords,
numbers, special symbols, and other things.
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.2.1 Whitespace and comments
Whitespace includes the following characters: space, tab, carriage return, newline, and
form feed. When it occurs outside of character and string literals, whitespace is used to
separate the terminal symbols, but is otherwise ignored. Whitespace within character
and string literals is treated as a constant.

Comments begin with the two-character sequence (* and end with the two-
character sequence *). Comments are treated as whitespace. The text within a com-
ment is mostly unrestricted. However, comments may be nested, and comment delim-
iters that occur within text that appears like a string or character literal are ignored. The
reason for this is to allow arbitrary OCaml code to be commented simply by enclosing
it in comment delimiters without requiring additional editing.

The following comments are properly delimited.

(* This is (* a nested *) comment *)
(* let a = (* b in *) c *)
(* let a = "a delimiter (* in a string" in b *)

The following lines are not properly terminated comments.

(* This is not a (* nested comment *)
(* let a = "a delimiter" (* "in a string" in b *)

.2.2 Keywords
The following table lists the keywords in OCaml.

Keyword Page
and 19
as 31, 56
assert 92
asr 6
begin 17
class 179
constraint 157
do 62
done 62
downto 62
else 10
end 17
exception 87
external
false 9
for 62
fun 16
function 30
functor 145

Keyword Page
if 10
in 15
include 130
inherit 184
initializer 164
land 6
lazy 73
let 15
lor 6
lsl 6
lsr 6
lxor 6
match 29
method 155
mod 6
module 125
mutable 78, 161
new 180
object 155

Keyword Page
of 49
open 117
or 10
private 165
rec 18
sig 127
struct 125
then 10
to 62
true 9
try 88
type 49
val 114, 155
virtual 198
when 31
while 62
with 29

The following symbols are also keywords.
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Keyword Page
!= 9
# 163
& 10
&& 10
’ 37
( 17
) 17
* 6
+ 6
, 41
- 6
-. 7
-> 16
. 77

Keyword Page
.. 156
: 38
:: 42
:= 61
:> 166
; 42, 61
;; 5
< 9
<- 80, 79, 80, 162
= 9
> 9
>]
>} 159
? 21

Keyword Page
??
[ 42
[< 55
[> 55
[| 80
] 42
_ 32
‘ 55
{ 77
{< 159
| 29
|] 80
~ 55

.2.3 Prefix and infix symbols
Prefix and infix symbols are special identifiers that start with a special character, and
include a sequence of operator characters.

infixSymbol ::= [[=|<|>|@|^|||&|+|-|*|/|$|%]]operatorChar∗

prefixSymbol ::= [[!|?|~]]operatorChar∗

operatorChar ::= [[!|$|%|&|*|+|-|.|/|:|<|=|>|?|@|^|||~]]

.2.4 Integer literals
Integers can be specified in several radixes and sizes. An integer has four possible
parts:

1. an optional leading minus sign (default nonnegative);

2. an optional radix specifier: 0x for hexadecimal, 0o for octal, or 0b for binary
(default decimal);

3. a sequence of digits that may contain optional non-leading underscores _ (the
underscores are ignored);

4. an optional size specifier: l for int32, L for int64, or n for nativeint (default
int).

integerLiteral ::= (page 6)
| -? [[0..9]][[0..9|_]]∗[[l|L|n]]?
| -? 0[[x|X]][[0..9|a..f|A..F]][[0..9|a..f|A..F|_]]∗[[l|L|n]]?
| -? 0[[o|O]][[0..7]][[0..7|_]]∗[[l|L|n]]?
| -? 0[[b|B]][[0..1]][[0..1|_]]∗[[l|L|n]]?
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.2.5 Floating-point literals
Floating-point numbers are written in decimal. A floating-point literal has four possible
parts.

1. an optional leading minus sign (default nonnegative);

2. a non-empty sequence of decimal digits;

3. a decimal point followed by an optional sequence of decimal digits;

4. an exponent e followed by a sequence of decimal digits.

A decimal point or exponent is required, but both are not necessary.

floatLiteral ::= -? decimal . _decimal? exponent (page 7)
| -? decimal exponent
| -? decimal . _decimal?

_decimal ::= [[0..9|_]]+
decimal ::= [[0..9]][[0..9|_]]∗

exponent ::= [[e|E]][[-|+]]?decimal

.2.6 Character literals
Characters are delimited by single quotes. A literal can be a single ASCII character, or
it can be an escape sequence.

charLiteral ::= ’normalChar’ (page 8)
| ’escapeChar’

normalChar ::= [[∧’|\]]
escapeChar ::= \n (newline)

| \r (carriage return)
| \t (tab)
| \b (backspace)
| \ space (space)
| \\ (backslash)
| \’ (single quote)
| \" (double quote)
| \ddd (decimal code ddd)
| \xhh (hexadecimal code hh)

d ::= [[0..9]]
h ::= [[0..9|a..f|A..F]]

.2.7 String literals
A string is a sequence of characters delimited by double quotes.

stringLiteral ::= "stringChar∗" (page 8)
stringChar ::= normalStringChar | escapeChar

normalStringChar ::= [[∧’|"|\]]
There is no practical limit on the length of string literals.
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.2.8 Identifiers
Identifiers come in two kinds, distinguished by the case of the first letter: a lident is
an identifier that starts with a lowercase letter or an underscore _, and Uident is an
identifier starting with an uppercase letter.

lident ::= [[a..z|_]][[a..z|A..Z|0..9|_|’]]∗ (page 15)
Uident ::= [[A..Z]][[a..z|A..Z|0..9|_|’]]∗

Accented letters from the ISO Latin 1 set are also allowed (not shown in this grammar).
There is no practical limit on identifier length.

.2.9 Labels
Labels are used for labeled parameters and arguments. A label starts with a tilde ~ (for
a required argument), or a question mark ? (for an optional argument), followed by a
lowercase identifier, followed by a colon.

label ::= ~lident: (page 21)
optlabel ::= ?lident:

.2.10 Miscellaneous
The program may also contain line number directives in C-preprocessor style.

lineNumber ::= #[[0..9]]+stringLiteral?

Line number directives affect the reporting of warnings and errors, but otherwise they
behave as whitespace.

.3 Names
The reference manual uses the term identifier to refer to the string of characters that
spells out a name. A name is used to refer to some construct in the language, like a
value, a constructor, etc. There are two kinds of identifiers, those that begin with a
lowercase letter, and those that begin in uppercase. There are many kinds of names,
classified by what they refer to.

.3.1 Simple names
A value is the result of evaluating an expression. The values include num-
bers, characters, strings, functions, tuples of values, variant values (elements of a
union), and objects. A valueName is the name that can occur in a let-expression
let valueName = expression. A value name is a lident or an operator name enclosed
in parentheses.
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valueName ::= lident (page 15)
| ( [[prefixSymbol|infixSymbol|infixOther]] ) (page 20)

infixOther ::= * | = | or | & | := | mod | land
| lor | lxor | lsl | lsr | asr

There are several other kinds of names, all of them are either lowercase or uppercase
identifiers. The capitalization of the nonterminal names corresponds to the capitaliza-
tion of the name.

Language construct nonterminal case
Constructor ConstructorName ::= Uident
Polymorphic variants VariantName ::= Uident
Exceptions ExceptionName ::= Uident

Type constructors typeName ::= lident
Labels labelName ::= lident
Record fields fieldName ::= lident

Classes className ::= lident
Methods methodName ::= lident
Object fields objectFieldName ::= lident

Modules ModuleName ::= Uident
Module types ModuleTypeName ::= Uident|lident

.3.2 Path names
Certain kinds of names can be qualified using module path prefix. For example,
the name List.map is the name of the function map in the List module. A module
path is simply a list of module names separated by a period. We’ll also use a form
OptModulePathPrefix where the final module is followed by a period.

modulePath ::= [[ModuleName]]+(sep=.)

optModulePathPrefix ::= [[ModuleName.]]∗

The qualified names are as follows.

valuePath ::= optModulePathPrefix valueName
ConstructorPath ::= optModulePathPrefix ConstructorName

field ::= optModulePathPrefix fieldName
classPath ::= optModulePathPrefix className

When a type is named, the module path may also contain functor applications.

extendedModulePath ::=
ModuleName

| extendedModulePath.ModuleName
| extendedModulePath(extendedModulePath)

optExtendedModulePathPrefix ::= [[extendedModulePath.]]?
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Types can use an extended prefix.

typePath ::=
optExtendedModulePathPrefix typeName

moduleTypePath ::=
optExtendedModulePathPrefix ModuleTypeName
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.4 Expressions
There are many kind of expressions in the language.

expression ::=
valuePath

| constant
| ( expression ) (page 17)
| begin expression end (page 17)
| (expression : typeExpression) (page 38)
| [[expression]]+(sep=,) (page 41)
| ConstructorName expression (page 49)
| ‘VariantName expression (page 55)
| expression :: expression (page 42)
| [ [[expression]]∗(sep=;] ] (page 42)
| [| [[expression]]∗(sep=;] |] (page 80)
| { [[fieldName = expression]]+(sep=;] } (page 77)
| { expression with [[fieldName = expression]]+(sep=;] } (page 78)
| expression [[argument]]+ (page 17)
| prefixSymbol expression (page 6)
| expression infixSymbol expression (page 6)
| expression . fieldPath (page 77)
| expression . fieldPath <- expression (page 79)
| expression .( expression ) (page 80)
| expression .( expression ) <- expression (page 80)
| expression .[ expression ] (page 80)
| expression .[ expression ] <- expression (page 80)
| expression; expression (page 61)
| if expression then expression else expression (page 10)
| while expression do expression done (page 62)
| for valueName = expression [[to|downto]] expression (page 62)

do expression done
| match expression with patternMatching (page 29)
| try expression with patternMatching (page 88)
| function patternMatching (page 30)
| fun multipleMatching (page 16)
| let rec? [[letBinding]]+

(sep=and)
in expression (page 15)
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expression ::= · · ·
| new classPath (page 180)
| object classBody end (page 155)
| expression # methodName (page 163)
| objectFieldName (page 155)
| objectFieldName <- expression (page 162)
| (expression :> typeExpression) (page 166)
| (expression : typeExpression :> typeExpression) (page 166)
| {< [[objectFieldName = expression]]+(sep=;] >} (page 159)
| assert expression (page 92)
| lazy expression (page 73)

An argument to an application can be labeled.

argument ::= expression
| ~labelName (page 21)
| ~labelName: expression
| ?labelName (page 21)
| ?labelName: expression

A pattern-matching is a list of cases separated by vertical bars. A leading vertical bar
is optional. Each case can be conditioned on a predicate when expression.

patternMatching ::= [[ pattern [[ when expression ]]? -> expression ]]+
[sep=|)

A multipleMatching is used for fun and let expressions, which allow multiple param-
eters.

multipleMatching ::= parameter+ [[ when expression ]]? -> expression
letBinding ::= pattern = expression

| valueName parameter∗ [[: typeExpression]]? = expression

Parameters can be labeled, and they allow only limited pattern matching, not a full case
analysis.

parameter ::=
pattern

| ~labelName (page 21)
| ~(labelName [[: typeExpression]]?)
| ~labelName: pattern
| ?labelName (page 21)
| ?(labelName [[: typeExpression]]? [[= expression]]?)
| ?labelName: pattern
| ?labelName: (pattern [[: typeExpression]]? [[= expression]]?)
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.4.1 Patterns
A pattern is a template that is used for matching.

pattern ::= (page 29)
_ (page 32)

| valueName
| constant
| pattern as valueName (page 31)
| (pattern : typeExpression)
| pattern | pattern (page 31)
| ConstructorPath pattern? (page 50
| ‘VariantName pattern? (page 55)
| #typeName
| [[pattern]]+(sep=,) (page 41)
| { [[fieldPath = pattern]]+(sep=;] } (page 78)
| [ [[pattern]]+(sep=;] ] (page 42)
| pattern :: pattern (page 42)
| [| [[pattern]]+(sep=;] |] (page 80)

.4.2 Constants
The constant expressions include literals and simple constructors.

constantExpression ::= integerLiteral
| floatLiteral
| charLiteral
| stringLiteral
| ConstructorPath
| ‘VariantName
| true
| false
| []
| ()

.4.3 Precedence of operators
The following table lists the operator precedences from highest to lowest. The prece-
dence of operator symbols is determined the longest prefix in the following table. For
example, an operator **@@ would have the precedence of **, but an operator *@@ would
have the precedence of *.
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Operator Associativity
~, ?, ! none
., .[, .( none
function and constructor application, assert, lazy left
-, -. (when used as a unary operator) none
**, lsl, lsr, asr left
*, /, %, mod, land, lor, lxor left
+, - left
:: right
@, ^ right
<, <=, =, ==, !=, <>, >=, > and other infixSymbol not listed left
&, && left
or, || left
, none
<-, := right
if none
; right
fun, function, let, match, try none
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.5 Type expressions
Type expressions have the following grammar. Note that there are no type expressions
for records and disjoint unions; those types must be named in a type definition before
they can be used.

typeExpression ::=
_

| ’lident (page 37)
| ( typeExpression )

| [[ ?? labelName: ]]? typeExpression -> typeExpression (page 16)
| [[typeExpression]]+(sep=*)

| typePath
| typeExpression typePath (page 37)
| ( [[typeExpression]]+(sep=,) ) typePath (page 37)
| typeExpression as ’lident (pages 56, 157)
| variantType
| < [[methodType]]∗(sep=;] > (page 155)
| < [[methodType]]∗(sep=;); .. > (page 156)
| # classPath (page 189)
| typeExpression # classPath (page 221)
| ( [[typeExpression]]+(sep=,) ) # classPath

Methods (and record fields) can have polymorphic type.

methodType ::= methodName : polyTypeExpression (page 197)
polyTypeExpression ::= [[[[ ’lident]]+ . ]]? typeExpression

Types for polymorphic variants have several form that depending whether the type is
exact, open, or closed.

variantType ::= (page 55)
[ [[variantTagType]]+

[sep=|)
]

| [> [[variantTagType]]∗
[sep=|)

]

| [< [[variantTagIntersectionType]]∗
[sep=|)

]

variantTagType ::= typeExpression
| ‘variantName [[of typeExpression]]?

variantTagIntersectionType ::= typeExpression
| ‘variantName [[of [[typeExpression]]+

(sep=&)
]]?

The precedences of the type operators is given in the following table, from highest
precedence to lowest.

Operator Associativity
Application typeExpression typePath none
* none
-> right
as none

Copyright © Jason Hickey 263 Draft. Do not redistribute.



.6. TYPE DEFINITIONS APPENDIX . SYNTAX

.6 Type definitions
A type definition associates a type name with a type expression, forming an abbrevia-
tion; or it defines a record type or disjoint union; or it does both. Type definitions can
be recursive; the type name being defined is always bound within its own definition.
Mutually recursive types are separated with the keyword and.

typeDefinition ::= type [[typeDef]]+
(sep=and)

typeDef ::= typeParameters? typeName
[[= typeExpression]]?

[[= typeRepresentation]]?

typeConstraint∗

typeParameters ::= typeParameter
| ( [[typeParameter]]+(sep=,) )

typeParameter ::= ’lident (page 37)
| + ’lident (page 228)
| - ’lident (page 228)

A typeRepresentation is the definition of a record type or a disjoint union.

typeRepresentation ::= [[constructorDecl]]+
[sep=|)

(page 49)
| { [[fieldDecl]]+(sep=;] } (page 77)

constructorDecl ::= constructorName [[ of [[typeExpression]]+(sep=*)]]
?

fieldDecl ::= mutable? fieldName : polyTypeExpression

A type definition can include any number of type constraints.

typeConstraint ::= constraint ’lident = typeExpression (page 157)
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APPENDIX . SYNTAX .7. STRUCTURE ITEMS AND MODULE EXPRESSIONS

.7 Structure items and module expressions
A structItem is an item that can occur in a module definition (within a struct · · · end
block), or in an implementation file. A moduleExpression represents a module.

structItem ::=
let rec? [[letBinding]]+

(sep=and)
(page 15)

| external valueName : typeExpression = stringLiteral+

| typeDefinition
| exceptionDefinition (page 87)
| classDefinition (page 179)
| classTypeDefinition (page 180)
| module ModuleName moduleParameter∗ (page 125)

[[: moduleType]]? = moduleExpression
| module type ModuleTypeName = moduleType (page 127)
| open modulePath (page 117)
| include moduleExpression (page 130)

moduleExpression ::=
struct [[ structItem ;;?]]∗ end (page 125)

| functor moduleParameter -> moduleExpression (page 145)
| moduleExpression (moduleExpression) (page 139)
| ( moduleExpression )
| ( moduleExpression : moduleType )

moduleParameter ::=
( ModuleName : moduleType ) (page 139)

Exceptions definitions are similar to disjoint unions.

exceptionDefinition ::= (page 87)
exception constructorName [[of [[typeExpression]]+(sep=*)]]

?

| exception constructorName = constructorPath
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.8. SIGNATURE ITEMS AND MODULE TYPES APPENDIX . SYNTAX

.8 Signature items and module types
A sigItem is an item that can occur in a module type definition (within a sig · · · end
block), or in an interface file. A moduleTypeExpression represents the type of a module.

sigItem ::=
val valueName : typeExpression (page 114)

| external valueName : typeExpression = stringLiteral+

| typeDefinition
| exception constructorDecl (page 87)
| classSpecification (page 180)
| classTypeDefinition (page 180)
| module ModuleName moduleParameter∗ : moduleType (page 125)
| module type ModuleTypeName [[= moduleType]]? (page 127)
| open modulePath (page 117)
| include moduleExpression (page 130)

moduleType ::=
moduleTypePath

| sig [[sigItem ;;?]]∗ end (page 127)
| functor moduleParameter -> moduleType (page 145)
| moduleType with [[moduleConstraint]]+

(sep=and)
(page 141)

| ( moduleType )

moduleConstraint ::= (page 141)
type typeParameters? typePath = typeExpression

| module modulePath = extendedModulePath
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APPENDIX . SYNTAX .9. CLASS EXPRESSIONS AND TYPES

.9 Class expressions and types
Objects, class expressions, and class types are discussed in chapters 14–17.

classExpression ::=
classPath

| [ [[typeExpression]]+(sep=,) ] classPath (page 221)
| ( classExpression )
| ( classExpression : classType )
| classExpression argument+ (page 181)
| fun parameter+ -> classExpression (page 181)
| let rec? [[letBinding]]+

(sep=and)
in classExpression (page 181)

| object selfBinder? classField∗ end (page 155)

classField ::=
inherit classExpression [[as valueName]]? (page 184)

| val mutable? objectFieldName
[[: typeExpression]]? = expression (page 155)

| val mutable? virtual objectFieldName : typeExpression (page 198)
| method private? methodName (page 165)

parameter∗ [[: typeExpression]]? = expression
| method private? methodName

: polyTypeExpression = expression
| method private? methodName : polyTypeExpression
| constraint typeExpression = typeExpression (page 157)
| initializer expression (page 164)

selfBinder ::=
(pattern [[: typeExpression]]?) (page 163)
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.9. CLASS EXPRESSIONS AND TYPES APPENDIX . SYNTAX

.9.1 Class types

classType ::=
[[[[ ?? labelName:]]? typeExpression ->]]∗ classBodyType

classBodyType ::=
classPath

| [ [[typeExpression]]+(sep=,) ] classPath
| object selfType? classItemType∗ end

classItemType ::=
inherit classType (page 186)

| val mutable? virtual? objectFieldName : typeExpression (page 155)
| method private? virtual? methodName : polyTypeExpression (page 197)
| constraint typeExpression = typeExpression (page 157)

selfType ::=
( typeExpression )
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Index

* integer multiplication, 6
*. floating-point multiplication, 7
+ integer addition, 6
+. floating-point addition, 7
, (for tuples), 41
- integer subtraction, 6
~- negation, 6
~-. floating-point negation, 7
-. floating-point subtraction, 7
-> in functions, 16
.

compilation units, 112
record projection, 77

.() array subscripting, 80

.. (in an object type), 156

.[] string subscripting, 9, 80
/ integer division, 6
/. floating-point division, 7
:: cons, 42
:= assignment, 61
:> object coercion, 166
;

list element separator, 42
record field separator, 77
sequencing, 61

< comparison, 9
<-

array field assignment, 80
object field assignment, 162
record field assignment, 79
string assignment, 9, 80

<: relation, 168
<= comparison, 9
<> comparison, 9
= comparison, 9
== comparison, 9
> comparison, 9

>= comparison, 9
[| · · · |] arrays, 80
[] nil, 42
#

class types, 189
method invocation, 156

&& logical conjunction, 10
^ string concatenation, 9
{ · · · } records, 77

abstraction, 132
for modules, 127
interfaces, 111

and
in let definitions, 19
recursive modules, 129

Array module
blit, 80
length, 80

arrays, 80
as

in object types, 157
in patterns, 31

asl arithmetic shift left, 6
asr arithmetic shift right, 6
assert, 92
assertions, 92

begin, 17
binary trees, 51
bool type, 9
Buffer module, 102

cat certificates, 194
Char module

chr, 8
code, 8
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lowercase, 8
uppercase, 8

char type, 8
character strings, 8
characters

decimal code, 8
class types, 180
classes

#types, 189
constructors, 181
definitions, 179
diamond problem, 214
free type variables, 222
hiding, 187
inheritance, 183
inheritance vs. subtyping, 190
is-a, 183
late binding, 235
method override, 185
mixins, 211
multiple inheritance, 209
naming a superclass, 186
narrowing, 240
new, 180
parameterized classes, 181
polymorphic, 182, 221
polymorphic methods, 196
repeated inheritance, 214
sub- and super-classes, 183
type constraints, 187
type inference, 182
virtual, 198
virtual vs. abstract, 199

close_in, 100
close_out, 100
coercions (single vs. double), 167
comments, 5
compilation units, 109

cyclic dependencies, 112
dependency errors, 117
interfaces, 111, 112
main function, 109

compilation, separate, 112
compiling

inconsistent assumptions, 117
constraint (in object types), 157

constructor, 49
contravariant types, 168
covariant types, 168

depth-first search, 74

Euclid’s algorithm, 3
exceptions

as variants, 95
Assert_failure, 92
Failure, 90
finally, 94
for decreasing memory usage, 93
Invalid_argument, 90
Match_failure, 91
Out_of_memory, 92
Stack_overflow, 92
Sys_error, 99
to implement break, 93
unwind-protect, 94

false, 9
FIFO, see queue
file suffixes

.cmi (compiled interface), 115

.cmo (byte code), 112

.ml (compilation unit), 109

.mli (interface), 111
finally, see exceptions
float type, 7
float_of_int, 7
flush (file operation), 102
for-loop, 62
fst function, 41
fully-qualified names, 126
fun functions, 16
functions

definitions, 16
first class, 19
higher order, 19
mutually recursive, 19
recursive, 18

functors, see modules

graphs, 69
greatest common divisor, 3
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gunfighter, 180

identifiers
module, 125
record labels, 77

if conditional, 10
in_channel, 99
include

incompatible signatures, 133
module inclusion, 130

inherit, 184
inheritance, 183

diamond problem, 214
repeated, 214

input, 100
insertion sort, 85
int type, 6
int_of_float, 7
interfaces

automatically generating, 122
missing definitions, 116
omitting the .mli file, 116
type errors, 115
type mismatches, 116

invariant types, 168

Kruskal’s algorithm, 69

labeled parameters, 21
land bitwise conjunction, 6
lazy list, 73
lazy value, 73
left-nesting depth, 230
let definition, 15
let module, 128
List module

assoc, 43
map, 43
rev list reversal, 45

list type, 42
lists

doubly-linked, 65
lnot bitwise negation, 6
loops, 62
lor bitwise disjunction, 6
lsl logical shift left, 6

lsr logical shift right, 6
lxor bitwise exclusive-or, 6

match (pattern matching), 29
memoization, 67

of recursive functions, 74
minimum spanning tree, 69
mixins, 211
mod integer modulus, 6
modules, 125

abstraction, 132
for re-use, 143
functors, 139
higher-order functors, 145
include, 130
local definitions using let, 128
not first class, 128, 141
polymorphism, 141
recursive, 129, 145
sharing constraints, 134, 141
sharing constraints (modules), 141
vs. records, 151

mutable
object fields, 161
record fields, 78

narrowing, 170
negative occurrences, 231
new, 180
not logical negation, 9

object · · · end, 155
object types, 155
objects

binary methods, 160
classes, 179
coercions, 166, 226
dynamic lookup, 156
encapsulation, 156
fields, 155
functional update, 159
imperative, 161
method invocation, 156
methods, 155
mutable fields, 162
self (the current object), 163
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subtyping, 168
type, 155

ocamlc, 111
ocamldebug

backward execution, 120
ocamldebug, 118
ocamlopt, 111
of (in union types), 49
open

compilation units, 117
overuse, 118
scoping, 117
vs. #include, 118

open_in, 99
open_in_gen, 99
open_out, 99
open_out_gen, 99
out_channel, 99
output, 100

patterns
as, 31
disjunction, 31
inexhaustive, 91
when (pattern condition), 31

phase distinction, 128
pipelines, 151
polymorphism, 37
positive occurrences, 231
precedences, 10
printf, 103
pure functional programming, 62

queue
functional, 74
imperative, 64

rec
for recursive functions, 18
for recursive modules, 129

record projection, 77
records

field assignment, 79
field namespace, 79
functional update, 78

red-black trees, 53, 147

ref, 61
reference cells, 61
referential transparency, 63
row polymorphism, 156
row variables, 156

scanf, 105
scoping (lexical), 16
seek (file operation), 101
self, 163
sharing constraints, see modules
signatures, 127
snd function, 41
stderr, 99
stdin, 99
stdout, 99
Steve’s Ice Cream Parlor, 211
String module

blit, 81
length, 9, 81
sub, 9

string type, 8
strings, 80
struct, 125
structures, 125
subtyping

depth, 168
function types, 169
narrowing, 170
relation, 168
width, 168

tail recursion, 44
transformation matrices, 158
true, 9
try, 88
types

constraints, 232
list, 42
open union, 55
polymorphic variants, 55
positive occurrences, 230
records, 77
transparent, 114
tuple, 41
union, 49
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value restriction, 38
variables, 37
variance annotations, 228

unit type, 6
unwind-protect, see exceptions

val, 114
value restriction, 64
variables, 15
variance annotations, 228
virtual, 198

while-loop, 62
with (functional record update), 78
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