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ABSTRACT
Consider a pollster who wishes to collect private, sensitive
data from a number of distrustful individuals. How might
the pollster convince the respondents that it is trustwor-
thy? Alternately, what mechanism could the respondents
insist upon to ensure that mismanagement of their data is
detectable and publicly demonstrable?

We detail this problem, and provide simple data submis-
sion protocols with the properties that a) leakage of private
data by the pollster results in evidence of the transgression
and b) the evidence cannot be fabricated without break-
ing cryptographic assumptions. With such guarantees, a
responsible pollster could post a “privacy-bond”, forfeited
to anyone who can provide evidence of leakage. The respon-
dents are assured that appropriate penalties are applied to
a leaky pollster, while the protection from spurious indict-
ment ensures that any honest pollster has no disincentive to
participate in such a scheme.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; K.4.1 [Computers and So-
ciety]: Public Policy Issues—Privacy

General Terms
Security

Keywords
Privacy, Data collection

1. INTRODUCTION
We study the problem of a pollster who wishes to col-

lect private information from individuals of a population.
Such information can have substantial value to the pollster,
but the pollster is faced with the problem that participa-
tion levels and accuracy of responses drop as the subject
matter becomes increasingly sensitive. Individuals are, un-
derstandably, unwilling to provide accurate sensitive data to
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an untrustworthy pollster who is unable to make concrete
privacy assurances.

The same problem affects individuals who are compelled
to provide sensitive data to an untrusted party. Examples
such as the census and medical data highlight cases where
individuals are compelled to accuracy, either through law or
the threat of poor treatment, but the absence of “privacy
oversight” leaves many uncomfortable. What mechanisms
can be used to assure individuals that poor privacy discipline
can be caught and publicly demonstrated?

We stress that this problem is different from the question
of how the pollster or data collector can manage data to pre-
serve privacy. Privacy preserving data mining research has
blossomed of late and gives many satisfying answers to this
question [1]. Instead, the problem we consider is that indi-
viduals may not trust the pollster to apply quality privacy
protection, either because the pollster has poor privacy dis-
cipline, poor security, or simply because it is selling data on
the side. Published research on privacy preserving data min-
ing demonstrates techniques for use by a benevolent pollster,
but gives no assurances to individuals who are not convinced
of the benevolence of the pollster.

The focus of this paper is a mechanism for submitting
data to an untrustworthy pollster, such that a) leakage of
private data can be caught and publicly demonstrated, and
b) if private data are not leaked, the probability of present-
ing evidence of a leak is arbitrarily small. We stress that
both of these properties are critical; the individuals must be
protected from a bad pollster as much as the pollster must
be protected from fraudulent accusations.

We make a distinction between private, personally identi-
fying data, and non-identifying data (such as, for example, a
noisy average computed over aggregated respondents’ data).
Our schemes ensure that leakage of private data by the poll-
ster is detected (and punished). But some of our schemes al-
low the pollster to publish aggregated, non-identifying data.
This is not a limitation of our schemes, but rather a use-
ful feature, since publication of non-identifying aggregated
data is typically permitted and useful. Formal definitions of
private and non-identifying data are given in section 2.

1.1 Overview of Existing Solutions
Much research has gone into the design of data analysis

mechanisms that attempt to minimize the amount of sensi-
tive information leaked. However compelling these solutions
may be, their value is greatly diminished in the absence of
any guarantee that they are being applied properly. They
do give substantial value when the pollster is trusted, e.g.,
when the pollster and individuals from whom data are col-



lected belong to the same organization, or when the pollster
has legal rights to the data of the individuals.

There are several techniques to address the problem of
an untrustworthy pollster, with varying features and draw-
backs. Randomized response [23, 3] is a method in which
respondents pre-sanitize their own data by randomly alter-
ing it before submission. For example, when asked to reveal
their gender, an individual could flip a coin with bias p < 1/2
and alter her response if the coin comes up heads. So long as
the parameters of the pre-sanitization (p, and any additional
details of the pre-sanitization process) are understood, many
analyses accommodate this sort of perturbation. However,
the noise levels introduced can be quite substantial. In some
contexts, e.g., medical histories, the introduction of noise is
simply a non-option; one does not want to accidentally mis-
report the absence of a peanut allergy.

Another approach is the use of trusted third parties, and
their emulation through secure function evaluation [24, 13].
In this case, the data are collected by a trusted third party,
and the untrusted pollster is only permitted to ask the trusted
party certain questions of the data. The drawback of this
approach is that the existence of a trusted third party is a
substantial assumption, and the computational overhead in-
volved in removing this assumption through secure function
evaluation can be significant.

A third approach is to anonymize the data before sub-
mission, so that one cannot correlate sensitive features with
individual identities. Mix networks [7, 19] allow respondents
to submit data to the pollster anonymously. Unfortunately,
anonymity is not feasible in many practical contexts. Mix
networks can only be used to submit data that do not con-
tain personally identifiable information (PII), so that the
data themselves do not disclose information about the iden-
tity of the submitter. Whether a particular datum serves as
PII depends entirely on the context, and it is rarely safe to
assume that a particular parcel of data will not be disclosive
when presented publicly.

In addition, or as an alternative to the deployment of
privacy-preserving techniques, one may consider methods
of detecting or discouraging leaks of sensitive information.
This self-enforcement approach has been explored in the
literature, mostly in the context of digital rights manage-
ment [4, 6, 10, 15, 17]. The cryptographic schemes pro-
posed in these papers deter a user, or a coalition of users,
from sharing access to digital content by making such be-
havior traceable or by conditioning shared access to content
on sharing some sensitive data, such as credit card numbers.

Finally, one might draw a comparison between our work
and the process of tainting data, wherein submitters in-
troduce an identifiable tracer into their submissions. One
primitive example would be to encode a nonce into the least
significant bits of a submission. Should the submitter see
this tracer attached to their data again, they are assured
that the information must have originated from the poll-
ster. However convincing such a scheme might be to the
individual, who may now severe communications with the
pollster, it does little to convince the public that the poll-
ster has done anything wrong. A public demonstration of
the tainted data only confirms that either the pollster or
the individual leaked the data, and does not preclude the
possibility that the individual is setting up the pollster.

Existing schemes to watermark or fingerprint data [5, 2],
including a publicly verifiable scheme [21], are designed for

a setting where one data-holder manages access to its in-
formation, which is typically some large relational database
or a digital movie. These techniques are not applicable in
a distributed scenario, where the data are contributed by
many individual participants.

1.2 Overview of Our Techniques
At the heart of our approach is the assumed presence

of opportunistic third parties that we will call the bounty
hunters, who listen for leaks of private information and as-
semble a case against the pollster. The bounty hunters par-
ticipate in the data collection, pretending to be simple re-
spondents (in fact, they may be). However, rather than fol-
lowing the cryptographic protocol for data submission, they
submit “baits”, whose decrypted contents provably cannot
be determined without access to a secret held by the poll-
ster. A bounty hunter herself does not know the contents
of the data she submits. Since the pollster is the only indi-
vidual capable of decrypting and examining the submitted
bit, any report of the actual data in this message must come
from the pollster, and thereby incriminates the pollster of
leaking private data. Collaboration between bounty hunters
is allowed, but not necessary. A single bounty hunter can
produce evidence that incriminates a dishonest pollster who
leaks private data.

The technical details we must discuss are the data sub-
mission process that allows respondents to submit data to
the pollster, and the indictment process, in which a case is
made by one or several bounty hunters against a pollster
who leaked private data. There are several desirable prop-
erties of the indictment process, foremost that leakage of
private data, even probabilistically, results in a viable case
and that non-leakage cannot result in a viable case with high
probability. These details are examined in Section 5.

1.3 Paper Outline
We begin in Section 2 with a discussion of the model,

and several preliminary definitions and assumptions that
will form the basis of our approach. Moreover, we detail
several cryptographic primitives and the properties we take
advantage of. In Section 3 we describe a simple approach
for the case where the pollster uses the data collected from
respondents only for internal consumption, and need not be
able to publish any information about it (not even sanitized
non-identifying information). Section 4 outlines a submis-
sion protocol based on randomized response, which adds the
property that every submission serves as bait but introduces
some uncertainty into the submitted data. Section 5 de-
scribes an approach that allows submission of precise data,
but introduces the need for an interactive indictment pro-
cess. Schemes from Sections 4 and 5 permit limited public
disclosure of analysis of the pollster’s data if the pollster fol-
lows specific sanitization policies. Finally, in Section 6 we
conclude with a summary of the results, as well as promising
directions for future investigation.

2. MODEL
We start by introducing some terminology and describing

the players in our data collection processes. First, there is a
pollster, who is interested in collecting bits from a large col-
lection of respondents. The pollster may also publish aggre-
gated poll results, as long as doing so does not compromise
the privacy of any respondent.
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Figure 1: The pollster collects data from respondents. A number of bounty hunters, hidden among the
respondents, submit baits. The pollster cannot distinguish baits from the data submitted by respondents.
A privacy breach, or leak, occurs if the pollster releases private data. Baits allow bounty hunters to offer
publicly verifiable evidence of a privacy breach.

The respondents have a vested interest in the privacy of
their bits, and are assumed interested in participating in
a protocol that enforces privacy. To this end, the pollster
offers some form of bounty, which it must forfeit if a privacy
violation is uncovered. The bounty could be explicit in the
form of a bond, or implicit in the form of penalties imposed
if privacy is violated.

Lurking among the respondents are some number of bounty
hunters, who masquerade as one or more respondents and
attempt to ensnare the pollster in a privacy violation. The
bounty hunters submit baits, which the pollster cannot dis-
tinguish from legitimate data, and hope to learn from the
pollster specific information about their baits that will con-
stitute evidence of a privacy violation. If a bounty hunter
uncovers a privacy violation, this evidence can be presented
to claim the bounty. We say that our scheme offers self-
enforcing privacy, since it is in the best interest of the poll-
ster to preserve the privacy of the data collected from re-
spondents.

Defining privacy. A self-enforcing data collection scheme
ensures that a pollster who publishes sensitive data must for-
feit a bounty. At the same time, the data collection scheme
would ideally allow the pollster to publish aggregated poll
results, as long as these results do not compromise the pri-
vacy of any respondent. Unfortunately, we do not how to
define and enforce these properties in a strictly complemen-
tary way, i.e., in such a way that any publication of the poll-
ster is classified as either safe or helping the bounty hunter.
Instead, we introduce two notions of privacy:

• Privacy breach. A privacy breach, formally defined
below along the lines of a classical compromise [16], is a
clear violation of privacy. It amounts to the pollster re-
leasing information that makes it possible to guess the
sensitive bits confided by the respondents with a suc-
cess probability non-negligibly greater than 1/2 with-

out using any auxiliary information. A privacy breach
can be thought of as a lower-bound on the privacy that
the pollster must offer the respondents. We will prove
that our schemes ensure that a privacy breach with
certain parameters allows a bounty hunter to claim
the bounty.

• Differential privacy [12]. Differential privacy is a
quantifiable definition of privacy-preserving function-
ality. We will show that our schemes ensure that a poll-
ster who preserves differential privacy for some range
of parameters cannot lose his bounty.

As noted above, there exists a “gap” between a privacy
breach and differential privacy. In other words, the pollster
may release data that violate differential privacy, but do not
lead to a privacy breach.

2.1 Privacy Breach
It is important to formally describe what we mean by

a breach of privacy, so that we can argue that we protect
against such breaches. One appealing definition is that the
pollster should not release specific information about re-
spondents to other entities. However, such breaches will
not generally be detectable, as the pollster could easily re-
lease the sensitive information to parties that will not them-
selves pass on the information, and the breach will not be
detectable without their help. Instead, we will focus on
breaches that are detectable, i.e. breaches for which the in-
formation released by the pollster finds its way back to the
individuals who submitted that information, or agents act-
ing on their behalf. Our focus on detectable breaches is
justified by our assumption that the bounty hunters play an
active role in monitoring the pollster and looking for data
leaks. Naturally, the pollster should not be able to tell the
bounty hunters from other agents interested in obtaining the
pollster’s data.



It will be critical that the respondents are able to identify
a privacy breach as such. One example would be seeing one’s
private data made available, though less direct observations,
such as for example being contacted on one’s cell phone by
a solicitor, can lead to similar conclusions.

Formally, we consider a model where the data received by
the pollster are encoded as an n-bit vector v = {v1, . . . , vn}.
Note that the values received by the pollster may not be
known by the respondents.

Definition 2.1. A (ℓ, ǫ)-privacy breach exists when ℓ in-
dices i1, . . . , iℓ are identified such that any assignment of
vi1 ,. . . ,viℓ

consistent with the information published by the
pollster agrees with v on at least 1/2 + ǫ-fraction of the en-
tries.

2.2 Differential Privacy
A natural question that arises in the presence of a posted

privacy bond is whether the pollster can analyze and release
any properties of the private data collected from respon-
dents. Might it be that all useful functions reveal too much
about the structure of baits so that the bond must be for-
feited as soon as the pollster publishes any information at
all about the data collected?

In this section, we introduce ǫ-differential privacy, a natu-
ral definition of privacy proposed in [11, 12]. We argue that
the pollster can publish the results of any analysis that pre-
serves differential privacy, without incurring a substantial
risk of having to forfeit the bounty. Indeed, the chance of
producing evidence of a privacy breach against a pollster is
exponentially small if the pollster releases only information
that preserves differential privacy.

Definition 2.2. A randomized function f over data sets
gives ǫ-differential privacy if for any two data sets X1 and
X2, which differ in at most one point, and S ⊆ Range(f),

Pr[f(X1) ∈ S] ≤ exp(ǫ) × Pr[f(X2) ∈ S].

In our application, the output of the function f is the in-
formation that the pollster releases about the data. The
definition of differential privacy ensures that this informa-
tion is not substantially affected by a respondent’s presence
in (or absence from) the data. Intuitively, if all the informa-
tion published by the pollster preserves differential privacy,
a bounty hunter cannot learn the data of any respondent
and thus can also not learn information about any bait. We
will use this property to show that publication of the results
of analyses that preserve ǫ-differential privacy do not give
bounty hunters enough information about baits to success-
fully claim the bounty with non-negligible probability.

Differential privacy is discussed in more detail in [11, 12],
in which methods are presented for performing several com-
mon data analyses in a way that preserves differential pri-
vacy. Examples include histogram computations such as
OLAP, as well as more algorithmic analyses such as Prin-
cipal Components Analysis, k-means clustering, perceptron
classification, and ID3 decision trees construction.

We stress that our data collection schemes are not bound
to ǫ-differential privacy. This definition of privacy was cho-
sen only to demonstrate that the privacy of our mechanisms
can coexist with non-trivial data analyses. Differential pri-
vacy is among the stronger definitions of privacy, and is
therefore easier to accommodate. Differential privacy is ap-
plied in Section 5.

2.3 Cryptographic Building Blocks
The approaches we present make use of cryptography to

ensure that certain information is concealed from respon-
dents, and that other information can be presented irrefutably.
We now detail some of the cryptographic primitives that we
use and their properties.

Secure channels. In our schemes, respondents will submit
to the pollster data encrypted with homomorphic public-key
encryption schemes, such as ElGamal or RSA. These en-
cryption schemes naturally do not provide chosen-ciphertext
security. It is thus imperative that these public-key cipher-
texts be submitted over a secure channel, such as TLS. In
fact, it is easy to demonstrate that the security of respon-
dents’ submissions is compromised if our schemes were used
without an additional layer of (symmetric-key) encryption.

ElGamal cryptosystem. ElGamal is a randomized public-
key encryption scheme. Let G be a group, and let g ∈ G be
a generator of a multiplicative subgroup Gq of order q where
the Decisional Diffie-Hellman problem is hard. The secret
key is an element x chosen at random from Zq. The cor-
responding public key is the value y = gx. The encryption
of a plaintext m ∈ Gq is a pair (gr, myr) for a value r cho-
sen at random in Zq. To decrypt a ciphertext (A, M), the
value m = M/Ax is computed. We will use two important
properties of ElGamal:

• Multiplicative homomorphism: Consider two El-
Gamal ciphertexts C1 = (gr, m1y

r) and C2 = (gs, m2y
s)

for plaintexts m1 and m2. The component-wise prod-
uct C1.C2 = (gr+s, m1m2y

r+s) is an ElGamal cipher-
text for m1m2.

• Re-encryption. Let (gr, myr) denote an encryption
of a plaintext m. Let s be a random value in Zq. The
pair (gr+s, myr+s) is also an encryption of m. The new
pair is called a re-encryption of the first ciphertext.
Note that a ciphertext can be re-encrypted without
knowledge of m or of the secret key x.

Proof of plaintext knowledge (KPT). Let E(m) =
(gr, myr) be an encryption generated by a prover. The
prover can prove to a verifier that she knows the plaintext
m by proving that she knows logg(gr). This can be done
with a protocol by Schnorr [22]. The protocol can be made
non-interactive with the Fiat-Shamir heuristic. We denote
an instance of this protocol for an ElGamal ciphertext C as
KPT (C).

Proof of correct decryption (PCD) [8]. A prover proves
to an honest verifier that an ElGamal ciphertext (C, M) de-
crypts to a plaintext m. The proof consists of showing that
logg(y) = logC(M/m) = x without leaking any information
about the secret key x. We denote an instance of this pro-
tocol to prove correct decryption of an ElGamal ciphertext
C as PCD(C).

Proof of correct re-encryption (PCR) [8]. A prover
proves to an honest verifier that an ElGamal ciphertext
(gs, mys) is a re-encryption of a ciphertext (gr, myr) with-
out leaking any other information. The proof consists of
showing that logg(gs/gr) = logy((mys)/(myr)) = s − r,
without leaking any information about the value s− r. The
computational cost of this protocol is 2 modular exponen-
tiations for the prover and 4 modular exponentiations for



the verifier. We denote an instance of this protocol to prove
that an ElGamal ciphertext C2 is a re-encryption of C1 as
PCR(C1  C2).

Discrete logarithm proof systems [9]. An efficient zero-
knowledge proof can be constructed for any monotone boolean
formula whose atoms consist of the protocols to prove plain-
text knowledge (KPT), correct decryption (PCD) or correct
re-encryption (PCR).

Verifiable mixing [14, 18]. Let L = {(Ai, Mi)} and L′ =
{(A′

i, M
′
i)} be two lists of ElGamal ciphertexts. A verifi-

able mixing protocol allows a prover to prove to an honest
verifier the existence of a permutation π and a sequence
of exponents γj such that (A′

j , M
′
j) = (Aπ(j)g

γj , Mπ(j)y
γj ),

without leaking any information about π or the values γj .
Given n input ciphertexts, the computational cost of the
most efficient verifiable mixing protocol [14] is 6n modular
exponentiations for the prover and 6n modular exponentia-
tions for the verifier.

3. SELF-ENFORCING PRIVACY WITH NO
RELEASE OF DATA

In this section, we present a scheme that allows the poll-
ster to collect data from respondents, but not to release any
information about the data collected.

The scheme is structured as follows. The pollster com-
mits to a secret binary string by publishing encryptions of
the bits of the secret string under a randomized public-key
encryption scheme, such as ElGamal, which is homomorphic
and allows for re-encryption of ciphertexts. Each time a re-
spondent submits a bit, she has a choice of either submitting
an encrypted bit of her own data or preparing a bait by re-
encrypting any of the pollster’s secret bits. The pollster
decrypts all the ciphertexts received and thus recovers the
data submitted by respondents. Since the pollster cannot
distinguish baits from regular submissions, some baits will
unavoidably be decrypted if the pollster leaks a substantial
fraction of the data. Decrypted baits reveal some of the bits
of the pollster’s secret string. Once enough of the secret bits
are known to the injured parties, they can claim the bounty
by proving knowledge of the secret string.

In this section and throughout the paper, we assume that
respondents are labelled with unique identifiers P1, . . . , Pn.

Setup. The pollster outputs public parameters for a public-
key encryption scheme E that is semantically secure under
re-encryption and has a multiplicative homomorphism. In
what follows, we use ElGamal. The public parameters are a
group G and a generator g ∈ G of a multiplicative subgroup
Gq of order q in which the Decisional Diffie-Hellman problem
is hard.

Commitment to the bounty. Let k be a security param-
eter (e.g., k = 160). The pollster chooses a k-bit secret value
β = b1 . . . bk. The pollster outputs E(gbi) for i = 1, . . . , k
and proves that these ciphertexts are well-formed by show-
ing that each ciphertext decrypts either to g0 or g1. This
is done with a (disjunctive) discrete logarithm proof sys-
tem consisting of two proofs of correct decryption (see sec-
tion 2.3). Using the multiplicative homomorphism of E,

the pollster computes
Qk

i=1 E(gbi)2
i

= E(gβ). The pollster
then decrypts this value, proves correct decryption with the
protocol PCD(E(gβ)) described in section 2.3, and outputs

the commitment gβ . A bounty is then offered to anyone who
recovers the secret value β.

Data submission. In the data submission step, a respon-
dent sends to the pollster either one true bit of data, or a
bait.

• Sending one true bit of data. To send a bit b ∈
{0, 1} to the pollster, a respondent Pi computes the
randomized ciphertext E(gb) and sends the resulting
value to the pollster over a secure channel (e.g. using
TLS). Recall that the encryption scheme E is seman-
tically secure, so that it is computationally impossible
to learn any information about the bit b from the (ran-
domized) ciphertext E(gb).

• Sending a bait. To send a bait to the pollster, the
respondent chooses a random index r ∈ {1, . . . , k},
re-encrypts the ciphertext E(gbr ) and sends the re-
encrypted ciphertext to the pollster over a secure chan-
nel.

Data collection. The pollster receives ElGamal cipher-
texts from respondents. Since ElGamal is semantically se-
cure under re-encryption, the pollster cannot distinguish
true bits from baits. The pollster then decrypts all cipher-
texts C = E(gbi) and recovers the corresponding plaintexts.
Only well-formed plaintexts (i.e. those that decrypt to g0

or g1) are tallied. Malformed plaintexts are discarded.

3.1 Claiming the Bounty
Honest pollster. This scheme does not allow the poll-
ster to publish anything about the data collected. We show
first that corrupt respondents cannot fraudulently claim the
bounty of an innocent pollster. If the pollster leaks no in-
formation about data collected from respondents, claiming
the bounty is equivalent to recovering the value β from the
commitment gβ . Since the discrete logarithm problem is as-
sumed hard in the group G generated by g, this problem
is computationally intractable. Thus corrupt respondents
cannot wrongly claim the bounty of an innocent pollster.

Dishonest pollster. We consider next a dishonest pollster,
and show that the bounty can be recovered if the pollster
publishes data that result in a privacy breach. Let us start
with a simple example. If the pollster leaks ℓ < k baits, re-
spondents can recover the secret β in time 2(k−ℓ)/2 using the
technique of [20] and present β as evidence of the pollster’s
misbehavior to claim the bounty. Note that the verification
process is non-interactive: the correctness of β is verified
against the commitment gβ , without communicating with
the pollster. The correctness of the bounty is also publicly
verifiable without the involvement of the pollster.

More generally, let us consider a pollster who publishes
data that result in a privacy breach. For example, the
pollster may leak the data collected from respondents with
noise added. The following proposition shows that a privacy
breach allows bounty hunters to recover all the bits of the
pollster’s secret with high probability.

Proposition 3.1. Consider a pollster who commits a (ℓ, ǫ)-
privacy breach. Recall that k denotes the size of the pollster’s
secret. Let 0 < α < 1 denote the fraction of baits among
the bits submitted by respondents and bounty hunters. If
ℓ > k/(αǫ2), the bounty hunters can (with high probability)
reconstruct the secret β with no computational effort.



Proof. Let us denote the data received by the pollster
as an n-bit vector v = {v1, . . . , vn}. By definition, an (ℓ, ǫ)-
privacy breach means that a set of ℓ indices i1, . . . , iℓ is iden-
tified such that any assignment of vi1 ,. . . ,viℓ

consistent with
the information published by the pollster agrees with v on
at least 1/2 + ǫ-fraction of the entries.

Among the values vi1 ,. . . ,viℓ
, the number of baits is αℓ.

Now let us consider a bit bi of the pollster’s secret β. The
number of baits in vi1 ,. . . ,viℓ

that are re-encryptions of the
bit bi is αℓ/k. By definition of a privacy breach, each of
these baits is correct with probability greater than 1/2 + ǫ.
If a majority of these αℓ/k values are 0, we conclude that
bi = 0 (and otherwise bi = 1).

Let X be a random variable defined by the sum of the
αℓ/k baits that are re-encryptions of the bit bi. According
to the Chernoff bound,

Pr[X < αℓ/(2k)] < e−(αℓ/k)(1/2+ǫ)(1−1/(1+2ǫ))2/2.

The probability of error is thus small if ℓ = O(k/(αǫ2)).
This concludes the proof.

Let us consider a numerical example. If the pollster com-
mits to a 160-bit secret (k = 160) and leaks correct bits with
probability 1/2 + ǫ, where ǫ = 1/4, and if the respondents
submit a bait with probability α = 10%, then 12, 800 bits
are required to recover β with modest computational effort
(240 modular exponentiations).

We stress that this scheme is secure for the pollster only
if it releases no information whatsoever about the data col-
lected. The following example illustrates the danger for the
pollster of releasing even seemingly innocuous data.

Consider a pollster who intends to publish the noisy gen-
der majority for each ZIP code in the survey. For appropri-
ately chosen parameters of the noise, this information can
be disclosed without a privacy breach. Still, the scheme de-
scribed in this section does not allow for the safe release of
this information.

Indeed, an unscrupulous bounty hunter may create suffi-
ciently many false identities in a given ZIP code area, and
let all these identities submit as baits re-encryptions of the
same secret bit of the pollster’s secret. The bounty hunter
may succeed in biasing the results of the poll so that the
noisy majority will be equal to the value of this secret bit
with high probability. Repeating this attack will eventually
allow the bounty hunter to learn all the bits of the pollster’s
secret and claim the bounty.

In the rest of this paper, we propose improved schemes
that will allow the pollster to safely release sanitized non-
identifying information about the data collected.

4. SELF-ENFORCING PRIVACY AND RAN-
DOMIZED RESPONSE.

The scheme described in the previous section requires dif-
ferent processes for submitting true answers and baits. It
calls for proactive bounty hunters, who may have an incen-
tive to create multiple fake identities that crowd out real
contributors and compromise the poll’s validity.

In this section, we propose a different scheme based on
the concept of randomized response, where each response is
a bait and the role of bounty hunters in the survey is strictly
passive.

4.1 Basic Scheme With Randomized Response
Setup. The pollster outputs public parameters for an El-
Gamal encryption scheme denoted E. As in section 3, we
denote g ∈ G the generator of a multiplicative subgroup Gq

of order q in which the Decisional Diffie-Hellman problem is
hard.

Commitment. The pollster chooses k bits b1, . . . , bk inde-
pendently at random from a biased distribution that assigns
weight p to ‘0’ and weight 1−p to ‘1’, for some 1/2 < p < 1.
Let β denote the integer whose binary representation is
b1, . . . , bk. The pollster outputs E(gbi) for i = 1, . . . , k. The
pollster proves that the values bi’s are well-formed and are
drawn from the correct distribution by applying to the set
E(gbi) a permutation that reorders the bits in increasing
order (all the bits 0 come before the bits 1). The pollster
proves correct application of the permutation with one of
the verifiable mixing protocols reviewed in section 2.3. Fi-
nally, the pollster provably decrypts the outputs of the mix,
which allows everyone to verify that the key bits contain
the correct proportion of 0’s and 1’s. The value p should
be p > 1/2 for randomized response to make sense, but also
p < 1 to protect the bounty. For example, the pollster can
choose p = 2/3. Next, using the multiplicative homomor-

phism of E, the pollster computes E(gβ) =
Qk

i=1 E(gbi)2
i

.
The pollster then provably decrypts this value and outputs
gβ . The bounty is placed on the value β.

Data submission. Let b denote the bit to be submitted
by a respondent. The respondent chooses a random index
i ∈ {1, . . . , k}. If b = 0, the respondent sends to the poll-
ster a re-encryption of the ciphertext E(gbi). If b = 1, the
respondent uses the multiplicative homomorphism of ElGa-
mal to compute the ciphertext E(g1−bi) = E(g)/E(gbi) and
sends this ciphertext to the pollster over a secure channel.
Let C denote the ElGamal ciphertext sent to the pollster.

The respondent must also submit a proof of correct oper-
ation. The respondent gives a proof to the pollster of the
following discrete-log system (see section 2.3):� k_

i=1

PCR
�
E(gbi) C

��
∨
� k_

i=1

PCR
�
E(g)/E(gbi) C

��
.

According to [9], the cost of this proof is 6k − 1 modu-
lar exponentiations for the prover (the respondent) and 6k
modular exponentiations for the verifier (the pollster). The
purpose of this proof it to prevent respondents from cheat-
ing by submitting non-randomized replies that would carry
more weight than randomized ones.

Data collection and Claiming the bounty. These steps
are exactly as in section 3.

It is natural to compare this approach with the simpler
randomized response schemes described in the introduction,
in which the respondents pre-randomize their own data. The
values submitted in our scheme have no greater statistical fi-
delity than in the simpler scheme. The important distinction
is that, in our scheme, the interests of the pollster are aligned
with the privacy concerns of the participants: a value p close
to one gives very accurate answers but puts the bounty at
risk. The privacy of the individuals is not a result of choos-
ing p close to 1/2, as in classical randomized response, but
inherent for all values of p.



4.2 Variant that Allows Release of Some Data
The data collected from respondents are most useful when

the pollster is able to analyze it and can act on the analyses
(or even publish the results of the analyses) without fear of
forfeiting the bounty (as long as the results of the analyses
do not compromise the privacy of respondents). While the
scheme of section 4.1 ensures that privacy breaches are pun-
ished, the pollster would also like assurances about what
sort of behavior (or publication) is allowed, based on the
data collected. If the publication of certain data is allowed,
because it poses no threat to the privacy of respondents, the
publication of that data should not allow a bounty hunter
to successfully claim the bounty.

When the pollster performs queries over the bits submit-
ted by the respondents, it is in fact performing queries over
bits of its own secret. Publishing the results of such queries
raises the concern that the pollster may accidentally reveal
information about its secret bits. The pollster would like to
restrict itself to queries that guarantee the “privacy” of its
own secret, so that it runs no risk of having to forfeit the
bounty. The property desired by the pollster is the same
as ǫ-differential privacy for respondent data: the distribu-
tion over results should not be substantially affected by the
modification of one of the pollster’s secret bits.

To achieve this property, we propose a simple variant of
the data submission protocol of section 4.1. Recall from
section 4.1 that the pollster outputs k ciphertexts E(gbi) for
i = 1, . . . , k in the commitment step. Intuitively, the goal of
the variant presented here is to prevent one respondent (or
a set of colluding respondents) from all submitting the same
ciphertext E(gbi). We achieve this with the following data
submission protocol:

1. The pollster re-encrypts the ciphertexts E(gbi) for i =
1, . . . , k and permutes them according to a permuta-
tion π chosen uniformly at random and known only
to the pollster. The pollster outputs the permuted set
E(gbπ(i)) for i = 1, . . . , k.

2. Let b denote the bit to be submitted by a respondent.
The respondent chooses a random index j ∈ {1, . . . , k}.
Let i denote the value (not known to the respondent)
such that j = π(i). If b = 0, the respondent computes
a re-encryption of the ciphertext E(gbπ(i)). If b = 1,
the respondent uses the multiplicative homomorphism
of ElGamal to compute the ciphertext E(g1−bπ(i)) =
E(g)/E(gbπ(i)). Either way, let C denote the cipher-
text computed by the respondent. The respondent
sends the pollster a commitment to C.

3. The pollster reveals the permutation π and proves cor-
rect mixing in step 1 (see section 2.3 for details on how
that is done). If the verification fails, the respondent
aborts the data submission process.

4. The respondent outputs C, together with a proof of
a discrete-log system that shows that C is either a
re-encryption of E(gbπ(i)) or of E(g)/E(gbπ(i)), as in
section 4.1.

5. The pollster checks C against the commitment received
in step 2, and checks the discrete-log proof system. If
both are correct, the bit from the respondent is ac-
cepted.

A malicious respondent may attempt to skew the distri-
bution of the indices π(i) by not completing step 4. To
ensure a near-uniform distribution (with statistical distance
from the uniform less than 1/k), the pollster should use a
random index if the submission protocol is aborted after the
permutation π is revealed.

Now consider ǫ-differential privacy as applied to the re-
spondent data. If the information released by the pollster
preserves ǫ-differential privacy for the respondents, then the
distribution over its outputs does not change substantially
(as a function of ǫ) if any respondent changes its submit-
ted value. Let si denote the number of respondents from a
query set S whose submission is a re-encryption of bit bi.
Since a change in the value of the secret bit bi results in a
change of at most si values, any computation that preserves
ǫ-differential privacy for the respondents’ data also preserves
(ǫni)-differential privacy for bit bi of the pollster’s secret.

Theorem 4.1. An ǫ-differential privacy query over the
set S increases the probability of the bounty being claimed by
at most exp(ǫ2(1 − p)k maxi si).

Proof. Consider the probability that the bounty hunter
succeeds in identifying the (1 − p)k secret locations i for
which bi = 1, taken first over the randomness in the selec-
tion of the locations, and then over the randomness given
by ǫ-differential privacy. Take c = 2(1 − p)k maxi si as the
largest number of respondents whose received data would
change as a result of an arbitrary change in the (1−p)k loca-
tions of non-zero bits. The bounty hunter’s distribution over
guesses is conditioned on the locations chosen, but differen-
tial privacy guarantees that no guess increases in probability
by more than a factor of exp(ǫc). We can therefore remove
the bounty hunter’s dependence on the actual location at
the cost of a factor of exp(ǫc).

We have

Pr
location

Pr
guess

[guess = location | location]

≤ Pr
location

Pr
guess

[guess = location] exp(ǫc)

= exp(ǫc)/

 
k

(1 − p)k

!
.

The final step follows from the observation that no mat-
ter the distribution over the guess, the uniform distribution
over the actual location makes the probability one over the
number of possible locations.

While this may seem like a substantial increase in the
probability that the bounty is claimed, one must keep in
mind that the probability of forfeiting the bounty before
any information is released is 1/

�
k

(1−p)k

�
. If the query is

independent of the distribution of respondents,
P

i:bi=1 si is

unlikely to greatly exceed (1 − p)‖S‖.
If the query is permitted to depend on the distribution,

perhaps because the respondents themselves pose the ques-
tions in an attempt to trap the pollster, then

P
i:bi=1 si

could be as large as ‖S‖, but even in this case the pollster
can still choose ǫ and k to yield meaningful results.

4.3 A Stronger Bound for Sum Queries
In the case where the query is independent of the assign-

ment of respondents to bits, we can occasionally prove a
stronger bound for the scheme of section 4.2. Consider the



query that counts the number of respondents from S whose
bit is set. If the pollster were to change the location of one
of its non-zero bits, the total sum would change by at most
the difference in the sums for the two locations. If the dis-
tribution of respondents is uniform, this difference can be
substantially smaller than the sums themselves, improving
substantially on the bound above. The following lemma is a
standard balls-and-bins argument of the number of balls in
a bin tightly concentrated around its expected value. As a
corollary, the lemma implies that the difference between the
number of balls in two bins is likely to be small compared
to the total number of the balls in both bins, which corre-
sponds to the change in a sum-query’s answer if the location
of a non-zero bit changes.

Lemma 4.2. Letting si be the random variable denoting
the number of respondents in bin i, with probability at least
1 − δ, for all i we have (si − µ)2 ≤ 4(s/k) ln(k/δ), provided
that δ > exp(−s/k).

Letting d be the change in the value of the sum above, an
identical change can be attained by changing the values of d
respondents. If the pollster maintains ǫ-differential privacy
for the respondents, the pollster is assured of ǫd-differential
privacy for the location of each of its non-zero bits, even
though substantially more than d respondents may live at
each location.

Theorem 4.3. For any counting query that is indepen-
dent of the distribution of respondents to bins that maintains
ǫ-differential privacy of the respondents data with probabil-
ity at least 1− δ the probability of a bounty being claimed is
at most exp(4ǫ(1−p)k

p
(s/k) ln(k/δ))/

�
k

(1−p)k

�
, which van-

ishes for large enough k.

Proof. We start with the observation that for each of the
k possible locations for the set bits, the number of positive
and negative respondents are within c′ = 2

p
(s/k) ln(k/ǫ) of

their mean, with probability at least 1 − ǫ. Conditioned on
this event holding, changing the location of the (1−p)k bits
results in a change of at most c = 2(1− p)kc′ to the sum. A
change of c to the sum could be caused by the alteration of
as many respondents data, but ǫ-differential privacy ensures
that the probability of no event should increase by more
than a factor of exp(ǫc) due to such a change. The proof
follows in a form identical to that of Theorem 4.1.

5. A DIFFERENT SCHEME THAT ALLOWS
SOME RELEASE OF DATA

In this section, we propose another scheme that allows
the pollster to release information about the data collected
as long as it does not violate the privacy of any non-trivial
fraction of respondents. In a nutshell, our scheme works
as follows. The bounty hunter prepares encryptions of un-
known bits and submit them as baits. Should the pollster
leak information about these bits, the bounty hunter indicts
the pollster by presenting the bits and a proof of the baits’
validity in order to claim the bounty. After the indictment,
the onus is on the pollster to refute the accusation, which
can be achieved by proving that sufficiently many bits de-
crypt to different values than alleged by the bounty hunter.

Setup. Let E denote a semantically secure public-key en-
cryption scheme (e.g., RSA in what follows) and let D de-
note the corresponding decryption function. The pollster

outputs public parameters for E. Let h be a hash function
and let f be another hash function whose image is the set
of ciphertexts of E. In our proof of security, we model h
and f as random oracles. In the real world the functions are
instantiated based on cryptographically strong hashes, such
as SHA-256.

Sending a bit to the pollster. To send a bit b ∈ {0, 1} to
the pollster, a respondent Pi chooses a value r such that the
least significant bit of h(Pi||r) is b. The respondent sends
Pi and E(r) to the pollster.

Decryption. Given an identifier P and a ciphertext C, the
pollster decrypts C to recover the plaintext r, then computes
the least significant bit b of h(P ||r).

Sending a bait to the pollster. To send a bait to the
pollster, the respondent chooses a random value s, computes
f(s) and sends to the pollster Pi and f(s). Notice that
neither the decryption of f(s) nor the bit recovered by the
pollster is known to the bounty hunter.

Accusing the pollster. If the pollster releases uniquely
identifiable bits, some of which can be linked to the baits,
the bounty hunter can indict the pollster. The indictment
consists of n > n0 distinct triples of the form

〈Pi, si, bi〉,

which we call exhibits. An exhibit is valid if and only if the
bit decrypted by the pollster, i.e. the least significant bit of
h(Pi||D(f(si))) is equal to bi.

The pollster can contest the indictment by demonstrating
that at least (1/2−wn)n of the alleged exhibits are invalid.
The minimum number of exhibits n0 and the exact form
of wn, which lies between 0 and 1/2 and serves to protect
the pollster, will be discussed later. The pollster proves
that an exhibit is invalid by outputting ri = D(f(si)), with
a proof of correct decryption, and demonstrating that the
least significant bit of h(Pi||ri) is not bi.

If the pollster cannot defend herself or refuses to do so, the
bounty must be forfeited. Note that this solution requires
the pollster to be online for the indictment process, but it
does not rely on a trusted third party.

Security. We note first that the reason for using RSA in
this scheme, instead of ElGamal as in previous schemes, is to
give respondents the ability to select a random valid cipher-
text for which they do not know the corresponding plaintext.
We note also that properly constructed baits are indistin-
guishable from other submissions, and encode bits that are
uncorrelated and provably unknown to the bounty hunter.
Next, we show that a pollster whose data disclosure policy
preserves ǫ-differential privacy cannot be convicted by an
over-zealous bounty hunter.

Proposition 5.1. If the data queries answered by the poll-
ster preserve ǫ-differential privacy, the probability that any
bounty hunter can claim the bounty is less than

max
n≥n0

exp(nǫ − nw2
n/2).

Proof. We will argue that for any possible set of attack
locations, a bounty hunter’s probability of successful attack
is at most exp(nǫ−nw2

n/2). Even though the bounty hunter
may choose which locations to attack based on the pollster’s
output, the bound ensures that any choice will be unlikely
to succeed.



Fix any set of n locations that a bounty hunter may at-
tempt to attack, submitting evidence of leakage from these
locations. There is a distribution over the values the bounty
hunter proposes as evidence, induced by the randomness
present in the ǫ-differential privacy mechanism. We consider
two worlds, one in which none of these bits were used in any
queries, and one in which all bits are used, the latter be-
ing the world we are concerned with. In the first world, the
attacked bits were not used in any queries, and the probabil-
ity of success for the bounty hunter is at most exp(−nw2

n/2)
by a Chernoff bound. Using a hybrid argument, we intro-
duce the bits into the query, increasing the probability of
successful attack by at most exp(ǫ) with each step. After
n steps, we arrive at the world where no bits are excluded
from the query, in which the probability of successful attack
is at most exp(nǫ − nw2

n/2).

The pollster must determine a value of ǫ that permits
sufficient utility without compromising the security of the
bounty. Safe values of ǫ in turn depend on the values n0

and wn that govern the indictment rules. These values must
be chosen to permit a sufficient level of safe disclosure. At
the same time, respondents should also insist on realistic
settings of n0 and wn to ensure that bounty hunters are
able to catch privacy leaks.

It is also worth noting that the probability that a bounty
hunter succeeds in a fraudulent claim depends only on the
number of exhibits n, and not on the total number of baits
submitted. Were this not the case, there would be a strong
incentive for bounty hunters to flood the system with baits,
corrupting the integrity of the poll.

6. CONCLUSION
We have studied three data submission protocols that pro-

vide the ability to offer publicly verifiable evidence of data
leaks. This evidence is convincing both in that actual leak-
age can be demonstrated, and in that a fraudulent indict-
ment is highly unlikely to succeed in the absence of leakage.
All three protocols assume the presence of proactive “bounty
hunters” who submit “baits” to the data collector. Baits are
indistinguishable from regular data but offer irrefutable ev-
idence of a data leak when one occurs.

Our three protocols differ in the properties they offer. The
first protocol allows for non-interactive bounty verification
and relatively exact data collection. The second protocol
uses a form of randomized response to collect data, and
allows every input to serve as a bait. The third protocol
permits the pollster to publicly disclose a limited amount of
non-identifying information about the data collected, but it
requires an interactive indictment process.

These three protocols demonstrate several desirable prop-
erties of a data collection mechanism with self-enforcing pri-
vacy. We leave open the problem of designing a protocol
that offers all these properties simultaneously. Understand-
ing which features are compatible with others, and which (if
any) are mutually exclusive, is an interesting direction for
future research.
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