ICONIX Process:
Use Case Driven Object Modeling

Dynamic

i Bl =

GUI Storyboard Use (J’*Sb Sequence

Model [Ll agram
N e 8—_2 ’

Robustness Dmgmm

Test Plans

Static

e e AL

Demain Updated
Model Domain Model Class Model

Copyright 2007 ICONIX Software Engineering, Inc. 1

The goal. Driving a good O-0O
software design from use cases.

-

Use Case
Model

How do we get from use cases to code?

Copyright 2007 ICONIX Software Engineering, Inc.

ICONIX Process:
Use Case Driven Object Modeling

e

 |ntroduction
The 10,000 foot view
ICONIX Process Roadmap

The 1000 foot view
Summary

Copyright 2007 ICONIX Software Engineering, Inc. K

Introduction
o

The difference between Theory and Practice

Disambiguation — the key to use case driven
development

Getting from use cases to code
The ICONIX UML core subset

Copyright 2007 ICONIX Software Engineering, Inc. 4

The difference between Theory

and Practice...
ﬂ

 |In theory, there is no difference between
theory and practice. In practice there is.

* |In practice, UML is TOO BIG.

* |In practice, there’ s never enough time for
modeling.

* |CONIX Process is a streamlined approach
that helps you get from use cases to code
quickly, using a UML core subset.

Copyright 2007 ICONIX Software Engineering, Inc. 5

Disambiguation...the key to use case
driven development

a3

In theory, abstract use cases are good. In
practice, they’ re vague and ambiguous.

X X

Programmer

AN /

rite abstract, «invokes» Read vague,
technology-free ambiguous use
use cases cases

Copyright 2007 ICONIX Software Engineering, Inc. 6

Key features of ICONIX Process
e

* Avoids analysis paralysis
» Core subset streamlines use of UML
* High degree of traceability

Copyright 2007 ICONIX Software Engineering, Inc. 7

We d like to get from Point A to
Point B, as quickly as possible

!

Use Case
Model

How do we get from use cases to code?

Copyright 2007 ICONIX Software Engineering, Inc.

Defining a UML core subset

.

 The ICONIX Core Subset helps us to avoid
analysis paralysis.

« We' Il work backwards from code to
determine which parts of the UML we really
need.

« Then we’ Il leave everything else out.

« But feel free to use any other UML diagrams
that you might have a specific need for.

 Less is more. 4 diagrams are better than 14.

Copyright 2007 ICONIX Software Engineering, Inc. 9

Working backwards from code
-

Let’ s assume that we’ ve done a little prototyping, and
started to write some use cases.

But code is our desired destination.

Copyright 2007 ICONIX Software Engineering, Inc. 10

OOAD, oversimplified

2 fundamental questions.

« OBJECT DISCOVERY: What are all the
objects?

« BEHAVIOR ALLOCATION: How are the
functions mapped across the objects?

 When we know what classes we need, what
the software functions are, and have mapped
the functions onto the classes, we’ re a long
way towards understanding the design.

Copyright 2007 ICONIX Software Engineering, Inc. 11

Before we get to code, though...
o

We need a complete set of classes, with
accompanying attributes and methods.

We show this information on design-level class
diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 12

Design-Level Class Diagrams
-

Our design-level class diagrams define the structure of
our code.

Copyright 2007 ICONIX Software Engineering, Inc. (K

Before we have classes with
attributes and methods, though...

e

BEHAVIOR ALLOCATION:

We make decisions about which classes are
responsible for which methods while we are
drawing sequence diagrams.

So, we need to draw a sequence diagram for
each use case.

Copyright 2007 ICONIX Software Engineering, Inc. 14

Sequence Diagrams

We allocate methods to classes as we draw sequence
diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 15

Before we do sequence diagrams,

though...
#

We need unambiguous use case text.

We need to have a good idea about which
objects will be participating in each use case,
and what functions the system will perform as a
result of user actions.

We identify participating objects, and the
software functions that we need for a use case,
during robustness analysis.

Copyright 2007 ICONIX Software Engineering, Inc. 16

Robustness Diagrams

OBJECT DISCOVERY: We discover new objects,
identify functions, and add attributes to classes, as we
draw robustness diagrams. We also disambiguate the
use cases.

Copyright 2007 ICONIX Software Engineering, Inc. 17

Abstract, technology-free use cases
are vague, ambiguous, incomplete

a3

X

Programmer

/

rite abstract, «invokes» Read vague,
technology-free ambiguous use
use cases cases

Copyright 2007 ICONIX Software Engineering, Inc. 18

Robustness diagrams help us
disambiguate the use cases

—

DISAMBIGUATION: We describe system usage in the
context of the object model.

This means that we don’t write abstract, vague,
ambiguous use cases that we can’ t design from.

Instead, we need to write use case text that references
the names of objects in the problem domain.

We also reference the names of "boundary
objects” (screens) explicitly in the use case text.

Copyright 2007 ICONIX Software Engineering, Inc. 19

First, though...
*

We need to identify the main abstractions that
are present in the problem domain.

In other words, we need a domain model.

We show our domain model on class diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 20

Domain Model

Copyright 2007 ICONIX Software Engineering, Inc.

21

Refining our class diagrams

.

We'll continuously refine our analysis level class
diagrams (our domain model) as we explore the
behavior of the system in more and more detalil
during analysis and design.

This will ultimately result in our design-level
class diagrams, which we can code from.

Copyright 2007 ICONIX Software Engineering, Inc. 22

The ICONIX UML Core Subset

Dynamic

i Bl =

GUI Storyboard Use (Jaob Sequence

Model [Llac ram
N e 8—_2 ’

Robustness Dmgmm

Test Plans

Static

e e AL

Domain Updated -
Model Domain Model Class Model

Copyright 2007 ICONIX Software Engineering, Inc. 23

Break
B

- Good news: we don’t have to cover the
other 10 UML diagram types (state diagrams,
activity diagrams, communication diagrams,
component diagrams, deployment diagrams,
timing diagrams....) before break

« Better news: we don’t have to cover them
after break, either

Copyright 2007 ICONIX Software Engineering, Inc. 24

The 10,000 fooft view

—

 Each diagram answers a question.
 Use Cases: What are the users doing?

 Domain Models: What are the objects in the real
world?

 Robustness Diagrams: What objects participate
in each use case?

+ Sequence Diagrams: How do the objects
collaborate with each other?

Copyright 2007 ICONIX Software Engineering, Inc. 25

Use Cases: What are the users

doing?
-

Use case driven means that user requirements
are “king.” The use cases drive everything else

within the approach.

What are the users doing?

What are the objects in the real-world?

Copyright 2007 ICONIX Software Engineering, Inc. 26

Working from the outside Iin
-

“Outside in” means working from the user
requirements inward.

Copyright 2007 ICONIX Software Engineering, Inc. 27

Elements of use case modeling
-

» Use storyboards to help define the use cases.

What are the users doing?

omain
Usa Case Model Object
[Jacobson) Model
[Rumbaugh)

What are the objects in the real-world?

o
« Actors and Use Cases

 Basic and Alternate Courses of Action

Copyright 2007 ICONIX Software Engineering, Inc. 28

Domain Models: What are the

objects in the real world?
- D

* |dentify real-world (problem domain) objects
- Identify “is” and “has” relationships
* This is where reuse comes from

What are the users doing?

What are the objects in the real-world?

Copyright 2007 ICONIX Software Engineering, Inc. 29

Working from the inside out
-

“Inside out” means working from the domain
objects outward.

system a system b

e

system ¢ system d

Copyright 2007 ICONIX Software Engineering, Inc. K10

Identify relationships between

3

objects
 Associations Person
 (eneralizations Circle

Company

Shape

Aggregations Department

Company

Copyright 2007 ICONIX Software Engineering, Inc.

Associations as classes (link classes) =—==

I

31

Robustness Analysis: What objects
participate in each use case?
ﬂ

« Draw an “object picture” of the use case
« Use the boundary/control/entity stereotypes

@ 0 @

Boundary class Control class Entity class
(Controller)

Copyright 2007 ICONIX Software Engineering, Inc. 32

Robustness Analysis

%
Closes gap between “what” and “how”
Disambiguation + Object Discovery

Do a robustness diagram for each use case
Client/server, N-tier, MVC

Copyright 2007 ICONIX Software Engineering, Inc. 33

Closing the gap petween
“what” (analysis) and
“how” (design)

What
(analysis)

Mind the gap: Many projects fail while trying to cross
this what/how gap.

Copyright 2007 ICONIX Software Engineering, Inc. 34

Disambiguation + Object Discovery
D

Complete?
Correct?

All alternate courses covered?
N All functions identified?
/ Where does the data come from?

Add new classes as needed.

Object discovery is dnven by \U/ Assign attributes to classes.
analyzing the use cases.

The domain model evolves into a detailed static model.
This evolution is driven by working through the use cases.

Copyright 2007 ICONIX Software Engineering, Inc. 35

Do a robustness diagram for each

use-case
o

 Directly traceable to user-approved
prototypes and courses of action

« System performance characteristics defined
by interactions between distributed objects

* Technical architecture important at this level

Copyright 2007 ICONIX Software Engineering, Inc. 36

Client/Server, N-Tier, MVC
o

* Boundary/control/entity can be used to

describe client/server architectures

- GUI
* Logic
* Repository

* Also N-tier and MVC architectures.

Copyright 2007 ICONIX Software Engineering, Inc. 37

Sequence Diagrams: How do the objects
collaborate with each other?
ﬂ

 Allocation of behavior to specific objects
« Message passing between objects
e Traceable back to the use case description

Copyright 2007 ICONIX Software Engineering, Inc. 38

Behavior allocation is done on
sequence diagrams

e

» Used to help allocate behavior among
boundary, control, and entity objects--in other
words, to answer the question: \Which class
does an operation belong in”?

« Show detailed interactions between objects
over time

* Object interactions follow the use case text

Copyright 2007 ICONIX Software Engineering, Inc. 39

Sequence diagram notation

ﬂ

boundary entity
ackr object object
message
i () -
«create»
method I []
setltinerary(i)

Copyright 2007 ICONIX Software Engineering, Inc. 40

Building a sequence diagram is much easier
when we’ve done robustness analysis

Use case text is refined during robustness analysis
and reviewed during the preliminary design review.

%@ -~

Basic and
Model Alternate
Courses
of Action
Robustness
Diagram
1. Copy the use case text to
% the left margin of the

sequence diagram.

2. Add the entity objects.
3. Add the boundary objects.

Sequence
Diagram

4. Work through the controllers, one at a time, and

figure out how to allocate the behavior among the
collaborating objects.

The user requirements are always visible
as we work through the design of the system.

Copyright 2007 ICONIX Software Engineering, Inc. 41

Break
a3

« Next, we’ Il introduce a step-by-step roadmap
you can follow. The roadmap covers:

* Requirements Definition

* Analysis and Preliminary Design
» Detailed Design

* Implementation and testing

Copyright 2007 ICONIX Software Engineering, Inc. 42

ICONIX Process Roadmap
e

Requirements Definition
Analysis and Preliminary Design
Detailed Design

Implementation

Copyright 2007 ICONIX Software Engineering, Inc. 43

Requirements Definition

(Collaborative Session + Lab 1)
- D

Requirements Analysis

Gather information about
dentify real-world
nain objects

Put the domain
oby

Identify use cases, and
put them on use case
agrams

Organize t
logically into g
Capture this informationin
kage diagram

Allocate fur
uirements

Milestone 1: Requirements Revi

Copyright 2007 ICONIX Software Engineering, Inc. 44

nalysis and Preliminary Design
-

Milestones 1: Requirements Review

Perform robustness
analysis:

For each use

Disambiguate the
first-draft use case text

ldentify a first cut of
objects that
accomplish each
scenario

Update your
meodel as you

" '-————————————————————————————d'.

i
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
i
I
I
I
I
I
I
I
I
I
!

Finish updating the
analysis-|
diagr

Milestone 2: Preliminary Design Review

Copyright 2007 ICONIX Software Engineering, Inc. 45

Deftailed Design

Prliminary Design Re

Spiit the nan modelinto
as many class diagrams as
neaded

) saquence
jrams

objects

sautomagic»
Update class
diagrams with new
attnbutes and

design to
ensure it satisfies all
the requirements

Milesta Critcal Design Review

Copyright 2007 ICONIX Software Engineering, Inc.

46

Implementation

Milestone 3: Critical Design Review

erator to create for you

Generats your
unitt=st stubs
from the
robustness
diagram
controllers

Synchronze the design vath the
in preparation for the next
se or iteration

Copyright 2007 ICONIX Software Engineering, Inc.

47

The 1000 foot view

* Requirements Definition

* An in depth look at domain modeling

* An in depth look at use cases

« Requirements Review

* An in depth look at robustness analysis
* Preliminary Design Review

* An in depth look at sequence diagrams
 Critical Design Review

* Implementation

Copyright 2007 ICONIX Software Engineering, Inc.

48

Requirements Definition — Top 10
3

* 10. Use a modeling tool that supports linkage and traceability
between requirements and use cases.

« 9. Link requirements to use cases by dragging and dropping.

« 8. Avoid dysfunctional requirements by separating functional
details from your behavioral specification.

« 7. Write at least one test case for each requirement.

* 6. Treat requirements as first-class citizens in the model.
« 5. Distinguish between different types of requirements.

« 4. Avoid the “big monolithic document” syndrome.

3. Create estimates from the use case scenarios, not from the
functional requirements.

« 2. Don’ t be afraid of examples when writing functional
requirements.

1. Don’ t make your requirements a technical fashion statement.

Copyright 2007 ICONIX Software Engineering, Inc. 49

An in depth look at domain modeling

* An example domain model
« Aggregation and Generalization

« Finding domain objects by
grammatical inspection.

« Domain classes aren’ t tables
« Domain Modeling Top 10

Copyright 2007 ICONIX Software Engineering, Inc. 50

An example domain model

Line ltem

Editonal Reader
Review Review

Master
Book
Catalog

Book
Catalog

Copyright 2007 ICONIX Software Engineering, Inc.

Aggregation (has) and Generalization (is)
D

Payment
Type

Order

Copyright 2007 ICONIX Software Engineering, Inc. Sy

Finding domain objects by
grammatical inspection

e

1. The bookstore will be web based initially, but it must have a
sufficiently flexible architecture that alternative front-ends may be
developed (Swing/applets, web services, etc.)

« 2. The bookstore must be able to sell books, with orders accepted
over the Internet.

« 3. The user must be able to add books into an online shopping cart,
prior to checkout.

* a. Similarly, the user must be able to remove items from the shopping
cart.

4. The user must be able to maintain wish lists of books that he or she
wants to purchase later.

5. The user must be able to cancel orders before they’ ve shipped.
6. The user must be able to pay by credit card or purchase order.

Copyright 2007 ICONIX Software Engineering, Inc. 53

Domain classes aren’t tables
B B

Domain

<>

Object + findByk() : Object
+ findByCategory() : Collection

read data
from...

(E----------

Table

«column» id:
«column» category:

<t

Copyright 2007 ICONIX Software Engineering, Inc.

Domain Modeling — Top 10
* 10. Focus on real-world (problem domain) objects.

« 9. Use generalization (is-a) and aggregation (has-a) relationships to show how
the objects relate to each other.

« 8. Limit your initial domain modeling efforts to a couple of hours.
« 7. Organize your classes around key abstractions in the problem domain.
« 6. Don’ t mistake your domain model for a data model.

« 5.Don’ t confuse an object (which represents a single instance) with a database
table (which contains a collection of things).

* 4. Use the domain model as a project glossary.

* 3. Do your initial domain model before you write your use cases, to avoid name

« ambiguity.

« 2. Don’ t expect your final class diagrams to precisely match your domain model,
but there should be some resemblance between them.

1. Don’ t put screens and other GUI-specific classes on your domain model.

Copyright 2007 ICONIX Software Engineering, Inc. 55

An In depth look at use cases

* Write an event/response
description that covers both
sides of the user/system
dialogue

« Storyboard the Ul

* Factor out commonality
using <invokes> and
<precedes>

« Use Cases vs. Algorithms
« 3 Magic Questions

« Do’sandDon’ts

« Use Cases - Top 10

Copyright 2007 ICONIX Software Engineering, Inc. 56

Write an event/response description that covers
both sides of the user/system dialogue

T g

User (Outside) System {Inside)

Copyright 2007 ICONIX Software Engineering, Inc. o7

Storyboard the Ul

Internet Bookstore - Edit Shopping Cart

ltems in Your Sho
Domain Driven Design E

-1

Copyright 2007 ICONIX Software Engineering, Inc. 58

Factor out commonality using
<invokes> and <precedes>

Copyright 2007 ICONIX Software Engineering, Inc.

Use case diagram stereotypes asa 4
cure for insomnia

The extending use case must define extension points where it may be extended, but the extended use
cases must remain independent of the extending use cases, whereas including use cases do not define
extension points even though their behavior is extended by the included use case. which is simiilar to use
cases using generalization, which also do not define extension points but their behavior is not extended by
the included use case per se it’'s overridden. as opposed 1o preceding use cases. which must take place in
their entirety before the child use case begins. The extends arrow WIUST be draven from the extended use
case to the extending use case Iin an analogous fTashion to a generalization arrowvw being drawvwn from the sub-
class toward its parent class. while an includes arroww is ALWAYS dravwn from the including use case to the
included use case in an analogous fashion to an aggaregation arrow being dravwn from the aggregate class to
the classes being aggregated. You may consider both includes and extends to be subitypes of invokes (dthat is
to say. invokes includes extends and invokes also includes includes, but includes does not include invokes.
nor does extends include invokes). with the distinction being all that stuff about extension points and whether
the extended use case knowws about the use case that's extending it or not. ITf you think of a use case as a
fragment of a user guide, as opposed to thinking of it as a classifier. which is, of course, how it is Tormally
defined within the UNML. yvou may discover that the difference between having extension points or simply
including the use case Into which you will be branching is not particularly significant, in which case a simple
invokes may suffice and you don't have to worry about which way yvou should drawvw the arrovw on the diagram
since the extends arrow points in the opposite direction from the includes arrowvy, in a simiilar manner to hows
a generalization and an agaregation arrowvr are drawvwn in opposite directions. more specifically the extends
arrovw MUST be drav a1 from the extended use case 1o the extending use case Iin an analogous fTashion to
a generalization arrow being drawvwn from the subclass toward its parent class, while an includes arrow is
dravwn from the including use case to the Iincluded use case Iin an analogous fashion to an aggaregation arrowvw
being dravwn from the aggregate class to the classes being aggregated. The bottom up-arrowvw convention for
extends being analogous to generalization may cause confusion between generalization and extends. espe-
cially among Java programmers, to whom extends already means generalization. (Extends is a subtype of
invokes, so you could say that extends extends invokes: but here we're using extends Iin the generalization
sense. not in the UML extends sense, so it's an extension of the extended OO0 termincoclogy: but to say that
extends extends extends [but not a UNMIL extends] would be extending the truth.) Additionally., when non-
technical personnel are asked to reviewvw the use cases, they occasionally experience consternation while
attempting to Tolloww the arrowvws on the use case diagrams. since some arrows point from the invoking use
case to the invoked use case., while others point from the invoked use se back towvward the invoking use
case. This problem is generally indicative of a lack of UNIL training among nontechnical personnel and is
readily solved by forcing all users and marketing folks to attend a three-day “UNL for nontechnical person-
nel” workshop. which will educate them on these subtle yet critically important features of UNVIL . Precedes.
on the other hand. is a somewhat different stereotype than includes. invokes. or extends, in that it simply
indicates a temporal precedence: that is to say it is occasifornral/fy usetul to indicate on a use case diagram
that use case A needs to happen BEFORE use case B (i.e., there is temporal precedence in which A MUST
OCCUR before B). Neither of the standard UNML use case diagram stereotypes (... neither includes nor
extends) provides a convenient mechanism for expressing this concept of temporal precedence (despite the
Tact that showing temporal precedence is often more useful than showing whether the invoked use case has

Copyright 2007 ICONIX Software Engineering, Inc. 60

Use cases vs. algorithms

“___~ Use Case

Dialogue between user and system
Event/response sequence
Basic/alternate courses

Multiple participating objects

User and Svstem

N Algorithm

“Atomic” computation
Series ol steps

One step ol a use case
Operation on a class

All System

Copyright 2007 ICONIX Software Engineering, Inc. 61

Lunch

a3
« After lunch we’ Il do a collaborative session
and develop the domain model, then create a

use case package for each lab team, and
draw the Initial use case diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 62

Colllaborative Session

o

Draw the domain model
Create a use case package for each lab team
Create use case diagrams for each team

Assign team members

Copyright 2007 ICONIX Software Engineering, Inc. 63

Use Case Do’s and Don’ts

« Don’ t: write pseudocode
« Don’ t: write a flowchart in text form

« Don’ t: forget that non-technical people will
have to understand your use case

« Do: write in the style of a user guide
* Do: name participating domain objects
* Do: name the screens

Copyright 2007 ICONIX Software Engineering, Inc. 64

Use Cases — 3 Magic Questions

ﬂ

* What happens?
* And then what happens?

« What else might happen?

Copyright 2007 ICONIX Software Engineering, Inc. 65

Use Cases - Top 10
* 10. Follow the two-paragraph rule.

« 9. Organize your use cases with actors and use case diagrams.
« 8. Write your use cases in active voice.

« 7. Write your use case using an event/response flow, describing
both sides of the user/system dialogue.

« 6. Use GUI storyboards, prototypes, screen mockups, etc.

« 5. Remember that your use case is really a runtime behavior
specification.

« 4. Write the use case in the context of the object model.

« 3. Write your use cases using a noun-verb-noun sentence
structure.

2. Reference domain classes by name.
1. Reference boundary classes (e.g., screens) by name.

Copyright 2007 ICONIX Software Engineering, Inc. 66

Lab — writing use cases

* Write the first draft use cases
* Follow the Top 10 rules

* Expect them to be a little vague and
ambiguous, but try your best to avoid it.

* The remaining ambiguity will be removed
during the next lab (robustness analysis)

Copyright 2007 ICONIX Software Engineering, Inc. 67

Requirements Review

Requirements °,
‘Review - %

mmp |]

Model | »o—g:g
\)Flobu

stness Diagram

Copyright 2007 ICONIX Software Engineering, Inc.

Requirements Review — Top 10

e

* 10. Make sure your domain model describes at least 80% of the most important
abstractions (i.e., real-world objects) from your problem domain, in nontechnical language
that your end users can understand.

* 9. Make sure your domain model shows the is-a (generalization) and has-a (aggregation)
relationships between the domain objects.

- 8. Make sure your use cases describe both basic and alternate courses of action, in active
voice.

- 7. If you have lists of functional requirements (i.e., “shall” statements), make sure these are
not absorbed into and “intermangled” with the active voice use case text.

« 6. Make sure you’ ve organized your use cases into packages and that each package has at
least one use case diagram.

« 5. Make sure your use cases are written in the context of the object model.
* 4. Put your use cases in the context of the user interface.

« 3. Supplement your use case descriptions with some sort of storyboard, line drawing,
screen mockup, or GUI prototype.

« 2. Review the use cases, domain model, and screen mockups/GUI prototypes with end
users, stakeholders, and marketing folks, in addition to more technical members of your
staff.

1. Structure the review around our “eight easy steps to a better use case”

Copyright 2007 ICONIX Software Engineering, Inc. 69

An in depth look at robustness
analysis

* An example robustness diagram

« Nouns are objects, verbs are
functions

« Linking your use cases to the
object model and to the GUI

* Rules for robustness analysis
« Don’ t forget the controllers

* Closing the gap between what
and how

« Disambiguation + Object
Discovery

Copyright 2007 ICONIX Software Engineering, Inc. 70

An example robustness diagram

AN
BASIC COURSE:
The user clicks the login link from
any of a number of pages: the
system displays the login page. Display login page
The user enters their usemame
and password and clicks Submit.
The system checks the master
account list to see if the user
account exists. If it exists. the
system then checks the
password. The system retrieves
the account information, starts an
authenticated session, and
redisplays the previous page with
a welcome message.

Enter username and
password

Login page click submit

ALTERNATE COURSES:

User forgot the password: The
user clicks the What's my Does account exist?
Password? link. The system
prompts the user for their
username if not already entered,
retrieves the accountinfo, and
emails the user their password.

Invalid account: The system
displays a message saying that

Copyright 2007 ICONIX Software Engineering, Inc.

Nouns are objects, verbs are functions
D

nouns (objects) verb {(action)

/NN

O O O

Boundary Entity object Controller
object

Copyright 2007 ICONIX Software Engineering, Inc. 72

Linking your use cases to the object
model, and to the GUI

a3

Domain Classes

Software Functions

Copyright 2007 ICONIX Software Engineering, Inc.

Rules for robustness analysis

Allowed

Copyright 2007 ICONIX Software Engineering, Inc. 74

Don’t forget the controllers

—~ a0

Actor talking—" Display page ~‘ '\)
Boundary to — - S

to Controller
_—— Boundary Search Page

-

Wish Lift Page
B DUI.F dary

Actor talking
to Entity™ to Entity
Entity to

N _————Entity

Start Pag=", Robustness Broken Rules | robustness Rukes |
=ror (Actor talkirg to Enticy (Associsbion)): Actors may not tdk to enticy objects
- error (Ackor talking to Corbroler (Assad)3 Actors may ot talk to contrallers
- aror (Boundary bo Erkky [Assooation)): Boundary obyecks may mok talcbo erbby object
i - error (Boundary to %l(lld\ (Qssociation)): Fullli-fy objects may not tak to other leluler.rul; ects
MYRS CDOO[- error {Erkby to Entity {Associozion: Entitv obiecks may rot tak ta cber enticy obijects
vabhdation conrplete - S errce(s), 0 warring(s

Copyright 2007 ICONIX Software Engineering, Inc

Closing the gap petween
“what” (analysis) and
“how” (design)

What
(analysis)

Mind the gap: Many projects fail while trying to cross
this what/how gap.

Copyright 2007 ICONIX Software Engineering, Inc. 76

Disambiguation + Object Discovery
D

Complete?
Correct?

All alternate courses covered?
N All functions identified?
/ Where does the data come from?

Add new classes as needed.

Object discovery is dnven by \U/ Assign attributes to classes.
analyzing the use cases.

The domain model evolves into a detailed static model.
This evolution is driven by working through the use cases.

Copyright 2007 ICONIX Software Engineering, Inc. 77

Object Discovery

DISCOVER NEW CLASSES
ASSIGN ATTRIBUTES TO CLASSES

—

Repeat for each use case, until the
Domain model has evolved into a static model

Copyright 2007 ICONIX Software Engineering, Inc. 78

Domain objects sit between the
screens and the DBMS

Copyright 2007 ICONIX Software Engineering, Inc. 79

Robustness diagrams should reflect
Technical Architecture

Spring Bookstore .
Dispatcher JSPs Eresentatlon
S |.“- h

N
Controllers Bookstore Input
Controllers Validators Web/
Application
N

Server

(Interfaces) (Beans/POJOs)

JDBC DAO Database
Implementations

E "‘ ”
DAOs Domain Model
(

Copyright 2007 ICONIX Software Engineering, Inc. 80

Robustness Analysis — Top 10
* 10. Paste the use case text directly onto your robustness diagram.

« 9. Take your entity classes from the domain model, and add any that are missing.
+ 8. Expect to rewrite (disambiguate) your use case while drawing the robustness diagram.
« 7. Make a boundary object for each screen, and name your screens unambiguously.

+ 6. Remember that controllers are only occasionally real control objects; they are typically
logical software functions.

« 5. Don’t worry about the direction of the arrows on a robustness diagram.

« 4.1t s OK to drag a use case onto a robustness diagram if it’ s invoked from the parent use
case.

« 3. The robustness diagram represents a preliminary conceptual design of a use case,
* not a literal detailed design.

* 2. Boundary and entity classes on a robustness diagram will generally become object
instances on a sequence diagram, while controllers will become messages.

« 1. Remember that a robustness diagram is an “object picture” of a use case, whose
purpose is to force refinement of both use case text and the object model.

Copyright 2007 ICONIX Software Engineering, Inc. 81

Lab — robustness analysis
a3

e Suggestion: draw the robustness diagrams
on paper first, because you’ Il be fixing the
use case text while you do this. After you’ ve
cleaned up the use cases, copy your
robustness diagram into the tool.

« Don’ t forget to update the domain model with
new objects and with attributes.

* Always drag entity classes from the domain
model.

Copyright 2007 ICONIX Software Engineering, Inc. 82

Preliminary Design Review

T

»Hmum

sthoss Dlagram

Copyright 2007 ICONIX Software Engineering, Inc.

Preliminary Design Review — Top 10

e

 10. For each use case, make sure the use case text matches the robustness
diagram, using the highlighter test.

* 9. Make sure that all the entities on all robustness diagrams appear within the
updated domain model.

« 8. Make sure that you can trace data flow between entity classes and screens.

« 7. Don’ tforget the alternate courses, and don’ t forget to write behavior for each
of them when you find them.

« 6. Make sure each use case covers both sides of the dialogue between user and
system.

« 5. Make sure you haven’ t violated the syntax rules for robustness analysis,

* 4. Make sure that this review includes both nontechnical (customer, marketing
team, etc.) and technical folks (programmers).

« 3. Make sure your use cases are in the context of the object model and in the
context of the GUI.

« 2. Make sure your robustness diagrams (and the corresponding use case text)
don’ t attempt to show the same level of detail that will be shown on the
sequence dlagrams (i.e., don’ t try to do detailed design yet).

1. Follow our “six easy steps to a better preliminary design

Copyright 2007 ICONIX Software Engineering, Inc. 84

An in-depth look at sequence diagrams

* An example Sequence Diagram
« Sequence diagramming: 4 steps
* Add behavior to the classes

« Boundaries become View NI
classes

« Controllers usually become
operations

» Assigning operations to classes
* Sequence diagrams — Top 10

|
= Lo

o

’0_83 Dlagram !
|

|

|

|

Copyright 2007 ICONIX Software Engineering, Inc. 85

An example Sequence Diagram

Actor

LY
-~

+ Y
s ~
s *
P Y
P .
A

Customer Search Page Search Catalog
! | Results Page :

—t

onSearch{} '
’ 1
validateSearchPhrase |

searchByAuthor)

‘addToShopplingCart) _ ;| Pass conttrol to i
T "L | Add to Shopping | |

Cart usa case

o
L

Messags/Mathod/

Copyright 2007 ICONIX Software Engineering, Inc.

Sequence diagramming: 4 steps

Enmures that the

recuired system

behmdor Is always Thig Is whors the
vinibie pa you dew real deaiyn thinking

Copyright 2007 ICONIX Software Engineering, Inc. 87

Add behavior to the classes

Copyright 2007 ICONIX Software Engineering, Inc. 88

Boundaries become View classes

B
Robustness] Discover lots of these...
Analysis J

Bound ary Object

Added to the 'solution
space' class diagram,
the Boundary Objec
becomes...

Y

N\ incontext with the
Sequence of the design...
Diagramming

o

'View' Class
= Or ASP/JSP

Copyright 2007 ICONIX Software Engineering, Inc.

Controllers usually become operations
D

Robustness
Analysis Discover lots of these...

COnt'tOIler

Assign each controller as
Sequence ' .
; °q . one or more operations on... Domain
Diagramming Cliats

Copyright 2007 ICONIX Software Engineering, Inc. 90

Assigning operations to classes

«antity=
CustomerReview

«boundary-- «boundary =

rating: int
HomePage BookDetailScreen -

reviewText: String

+ display(: void + display() : vad

setRating(int) : void
setReviewText(String) :
valdate(list) : void

«entity» . «boundary »
CustomerSession WriteReviewScreen

+ isUserlLoggedIni : boolean display() : vad
showValidationErrarsilist) : vad

«boundary»
LoginScreen

«entitys= + display(: void «entity»
BookC ollection PendingReviewsQueue

+ addiCustomerReview) : void

«boundary»
ConfirmationScreen

+ display() : void

«entity-
Book

+ synopsis: String
+ title: String

Copyright 2007 ICONIX Software Engineering, Inc.

Sequence Diagrams — Top 10
o

« 10. Understand why you’ re drawing a sequence diagram, to get the most out of
it.

* 9. Do a sequence diagram for every use case, with both basic and alternate
courses on the same diagram.

« 8. Start your sequence diagram from the boundary classes, entity classes,
actors, and use case text that result from robustness analysis.

« 7. Use the sequence diagram to show how the behavior of the use case (i.e., all
the controllers from the robustness diagram) is accomplished by the objects.

« 6. Make sure your use case text maps to the messages being passed on the
sequence diagram. Try to line up the text and message arrows.

« 5. Don’ t spend too much time worrying about focus of control.

* 4. Assign operations to classes while drawing messages. Most visual modeling
tools support this capability.

« 3. Review your class diagrams frequently while you’ re assigning operations to
classes, to make sure all the operations are on the appropriate classes.

2. Prefactor your design on sequence diagrams before coding.
1. Clean up the static model before proceeding to the CDR.

Copyright 2007 ICONIX Software Engineering, Inc. 92

What is a “quality " class?
o

« Coupling: should be loosely coupled with
other classes

» Cohesion: should be highly cohesive
« Sufficiency: does it do enough?

« Completeness: does it cover all the relevant a
abstractions?

* Primitiveness: stick to basic operations

Copyright 2007 ICONIX Software Engineering, Inc. 93

Parameterized and
Instantiated Classes
a3

« Parameterized, or generic, classes serve as
templates for other classes (C++ templates)

» Essential for application framework
development; within UML, framework is
architectural pattern that provides extensible
template

« Used for container classes (sets, lists, trees)

 |nstantiated classes represent specific
Instances of parameterized classes

Copyright 2007 ICONIX Software Engineering, Inc. 94

An instantiated class is a specific
instance of a parameterized class

/[template Queue class with 2 instances
template <class ltem> //Item is the formal parameter
class Queue {

Queue <int> intQueue; //Int is the actual parameter
Queue <displayltem*> ltemQueue,;

Copyright 2007 ICONIX Software Engineering, Inc. 95

Design patterns

Operation()

: Add(Component)
emove(Component)

GetChild(int)

e

Operation() @ —
Add(Component) [egllieiEl
Remove(Component)
GetChild(int)

Copyright 2007 ICONIX Software Engineering, Inc. 96

Lab — Sequence diagrams and detailed
class diagrams

a3

* Install the Agile/ICONIX add-in

* Use the add-in to generate skeleton
sequence diagrams, and to generate test
case diagrams

* Allocate behavior to classes while drawing
the sequence diagrams, using a
responsibility-driven approach

« Keep checking the class diagrams as you
draw messages on the sequence diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 97

Critical Design Review

[T

Model . /@gg

Robustness Dlagram

Copyright 2007 ICONIX Software Engineering, Inc.

i

]

Code
Tests

Critical Design Review

10. Make sure the sequence diagram matches the use case text.

9. Make sure (yes, again) that each sequence diagram accounts for both basic
and alternate courses of action.

8. Make sure that operations have been allocated to classes appropriately.

7. Review the classes on your class diagrams to ensure they all have an
appropriate set of attributes and operations.

6. If your design reflects the use of patterns or other detailed implementation
constructs, check that these details are reflected on the sequence diagram.

5. Trace your functional (and nonfunctional) requirements to your use cases and
classes to ensure you have covered them all.

4. Make sure your programmers “sanity check” the design and are confident
that they can build it and that it will work as intended.

3. Make sure all your attributes are typed correctly, and that return values and
parameter lists on your operations are complete and correct.

2. Generate the code headers for your classes, and inspect them closely.
1. Review the test plan for your release.

Copyright 2007 ICONIX Software Engineering, Inc. 99

Implementation

* Implementation
» Tracing Requirements R

lobustness Diagram

 Unit Test

 Code Review and
Model Update

Copyright 2007 ICONIX Software Engineering, Inc. 100

Implementation — Top 10
o

« 10. Be sure to drive the code directly from the design.

« 9. If coding reveals the design to be wrong in some way, change
it. But also review the process.

« 8. Hold regular code inspections.
« 7. Always question the framework’ s design choices.
« 6. Don’ tlet framework issues take over from business issues.

« 5. If the code starts to get out of control, hit the brakes and
revisit the design.

« 4. Keep the design and the code in sync.
« 3. Focus on unit testing while implementing the code.

« 2. Don’ t overcomment your code (it makes your code less
maintainable and more difficult to read).

« 1. Remember to implement the alternate courses as well as the
basic courses.

Copyright 2007 ICONIX Software Engineering, Inc. 101

Tracing requirements

Sequence
Diagram

Functional

Fu n.ctional Requirements
Requirements

Class
Diagram

Copyright 2007 ICONIX Software Engineering, Inc.

Unit Testing — Top 10

o

10. Adopt a “testing mind-set” wherein every bug found is a victory and not a
defeat. If you find (and fix) the bug in testing, the users won’t find it in the
released product.

9. Understand the different kinds of testing, and when and why you’ d use each
one.

8. When unit testing, create one or more unit tests for each controller on each
robustness diagram.

7. For real-time systems, use the elements on state diagrams as the basis for
test cases.

6. Do requirement-level verification (i.e., check that each requirement you have
identified is accounted for).

5. Use a traceability matrix to assist in requirement verification.
4. Do scenario-level acceptance testing for each use case.

3. Expand threads in your test scenarios to cover a complete path through the
appropriate part of the basic course plus each alternate course in your scenario

testing.
2. Use a testing framework like JUnit to store and organize your unit tests.
1. Keep your unit tests fine-grained.

Copyright 2007 ICONIX Software Engineering, Inc. 103

Code Review and Model Update — Top 10
o

* 10. Prepare for the review, and make sure all participants have read
the relevant review material prior to the meeting.

« 9. Create a high-level list of items to review, based on the use cases.
« 8. If necessary, break down each item in the list into a smaller checklist.
7. Review code at several different levels.

« 6. Gather data during the review, and use it to accumulate boilerplate
checklists for future reviews.

« 5. Follow up the review with a list of action points e-mailed to all people
involved.

* 4. Try to focus on error detection during the review, not error correction.

« 3. Use an integrated code/model browser that hot-links your modeling
tool to your code editor.

« 2. Keep it “just formal enough” with checklists and follow-up action
lists, but don’ t overdo the bureaucracy.

« 1. Remember that it’ s also a Model Update session, not just a Code
Review.

Copyright 2007 ICONIX Software Engineering, Inc. 104

Optional Lab
o

 (Generate code

* Install MDG Integration for Visual Studio or
Java

« EXxplore options for synchronizing model and
code

Copyright 2007 ICONIX Software Engineering, Inc. 105

Optional — Additional UML diagrams

e

« State, Activity and Collaboration Diagrams
« Component and Deployment Diagrams

Copyright 2007 ICONIX Software Engineering, Inc. 106

State, Activity and Collaboration
modeling

Copyright 2007 ICONIX Software Engineering, Inc.

How do objects behave over time?
a3

« Each object has a state machine which
represents its behavior over time

* Objects make transitions between states

- State transitions are caused by events

« State transitions cause actions and/or activities
to be executed

- State machines especially important for control
objects (controllers)

Copyright 2007 ICONIX Software Engineering, Inc. 108

State Diagrams

Initial and final states

Entry and exit actions

Activities

Guard conditions

Sequential and concurrent substates

Copyright 2007 ICONIX Software Engineering, Inc. 109

State diagram notation

- targetAt(p) [1sThreat] -

Copyright 2007 ICONIX Software Engineering, Inc. 110

Activity Diagrams
o

« Resemble flowcharts

« Useful for modeling workflows and details of
operations

* Interaction diagram looks at the objects that
pass messages; activity diagram looks at
operations passed among objects

Copyright 2007 ICONIX Software Engineering, Inc. 111

Carryovers from state diagrams

ﬂ

 activities

e actions
 transitions

* Initial/final states
* guard conditions

Copyright 2007 ICONIX Software Engineering, Inc. 112

Breaking up flows

—

alternate paths:

* branch <>

* merge
parallel flows:

» fork]
* join

Copyright 2007 ICONIX Software Engineering, Inc. 113

Collaboration Diagrams

» Collaboration diagrams show
additional information, such as
fields, parameters, and different

[hterface, Control,

kinds of messages i

* Do one for each scenario (use
case)

* 100% equivalent to sequence

l

Collaboration

d iag ra m S Diagram

Copyright 2007 ICONIX Software Engineering, Inc. 114

What do collaboration diagrams

address?
ﬂ

 How do objects communicate with each
other?

* Object visibility
 Messages

Copyright 2007 ICONIX Software Engineering, Inc. ()

How do objects communicate with
each other?
a3

* Objects communicate with each other via
messages

* Messages invoke methods on objects, which
result in actions

* Objects recognize only a fixed, predefined set of
messages

- Data contained in an object may only be modified
by methods invoked by messages

Loose coupling + high cohesion =
good modularity

Copyright 2007 ICONIX Software Engineering, Inc. 116

Object Visibility
a3
« «self» -- supplier object is part of client object
(called “field” visibility by Booch)
* «local» -- supplier object is locally declared
object in the scope of collaboration diagram

« «global» -- supplier object is global to client
object

* «parameter» -- supplier object is parameter to
some operation of client object

* Objects can be shared (i.e., an object can play
different roles within one collaboration)

Copyright 2007 ICONIX Software Engineering, Inc. 117

Messages

Simple
Synchronous
Balking
Timeout
Asynchronous

Copyright 2007 ICONIX Software Engineering, Inc. 118

Collaboration diagram notation
o

c: Client

1: «create
2: setActions (a,d,o)
| 3: «destroy»

«global»

: Transaction p: ODBCProxy

[
>

2.1: setValues(d,3,4)
2.2: setValues(a,”CO”

Copyright 2007 ICONIX Software Engineering, Inc. 119

Component Diagrams
a3

« Components are physical, replaceable parts
of a system that conform to, and provide the
realization of, interfaces.

« examples: dynamic link library (DLL), COM+
object, Enterprise Java Bean (EJB)

* Unlike classes, components are physical, not
logical, and components have operations that
are reachable only through their interfaces.

Copyright 2007 ICONIX Software Engineering, Inc. 120

Uses of component diagrams
3

* modeling source code («file» stereotype)

* modeling executable releases («executable»
stereotype)

* modeling physical databases («table»
stereotype)

« modeling adaptable system ({location} tagged
value)

Copyright 2007 ICONIX Software Engineering, Inc. 121

Component diagram notatio

signal.cpp

Copyright 2007 ICONIX Software Engineering, Inc. 122

Deployment Diagrams

a3

* A node is a physical element, which exists at
run time, that represents some computation
resource.

* This resource generally has at least some
memory; it often has processing capability.

« Components are things that participate in the

execution of a system; nodes are things that
execute components.

Copyright 2007 ICONIX Software Engineering, Inc. 123

Uses of deployment diagrams
o

* modeling embedded systems (to facilitate
communication between hardware engineers

and developers)

* modeling client/server systems (thin or fat
client?)

* modeling fully distributed systems (Internet;
CORBA/DCOM)

Copyright 2007 ICONIX Software Engineering, Inc. 124

Deployment diagram noftation

R

: kiosk «10-T Ethernet»
deploys
user.exe : RAID farm
S. SCTVET —_—
deploys
dbadmin.exe
c: console «RS-232»
deploys
config.exe

Copyright 2007 ICONIX Software Engineering, Inc. 125

For further information

e

« EMAIL: doug@iconixsw.com
« WWW: http://www.iconixsw.com
* Phone: 310-474-8482

Copyright 2007 ICONIX Software Engineering, Inc. 126

