
Copyright 2007 ICONIX Software Engineering, Inc. 1

ICONIX Process:
Use Case Driven Object Modeling

Copyright 2007 ICONIX Software Engineering, Inc. 2

The goal. Driving a good O-O
software design from use cases.

Copyright 2007 ICONIX Software Engineering, Inc. 3

ICONIX Process:
Use Case Driven Object Modeling

•  Introduction
•  The 10,000 foot view
•  ICONIX Process Roadmap
•  The 1000 foot view
•  Summary

Copyright 2007 ICONIX Software Engineering, Inc. 4

Introduction

•  The difference between Theory and Practice
•  Disambiguation – the key to use case driven

development
•  Getting from use cases to code
•  The ICONIX UML core subset

Copyright 2007 ICONIX Software Engineering, Inc. 5

The difference between Theory
and Practice…

•  In theory, there is no difference between
theory and practice. In practice there is.

•  In practice, UML is TOO BIG.
•  In practice, there’s never enough time for

modeling.
•  ICONIX Process is a streamlined approach

that helps you get from use cases to code
quickly, using a UML core subset.

Copyright 2007 ICONIX Software Engineering, Inc. 6

Disambiguation…the key to use case
driven development

In theory, abstract use cases are good. In
practice, they’re vague and ambiguous.

Copyright 2007 ICONIX Software Engineering, Inc. 7

Key features of ICONIX Process

•  Avoids analysis paralysis
•  Core subset streamlines use of UML
•  High degree of traceability

Copyright 2007 ICONIX Software Engineering, Inc. 8

We’d like to get from Point A to
Point B, as quickly as possible

Copyright 2007 ICONIX Software Engineering, Inc. 9

Defining a UML core subset

•  The ICONIX Core Subset helps us to avoid
analysis paralysis.

•  We’ll work backwards from code to
determine which parts of the UML we really
need.

•  Then we’ll leave everything else out.
•  But feel free to use any other UML diagrams

that you might have a specific need for.
•  Less is more. 4 diagrams are better than 14.

Copyright 2007 ICONIX Software Engineering, Inc. 10

Working backwards from code

Let’s assume that we’ve done a little prototyping, and
started to write some use cases.
But code is our desired destination.

Copyright 2007 ICONIX Software Engineering, Inc. 11

OOAD, oversimplified

•  2 fundamental questions.
•  OBJECT DISCOVERY: What are all the

objects?
•  BEHAVIOR ALLOCATION: How are the

functions mapped across the objects?
•  When we know what classes we need, what

the software functions are, and have mapped
the functions onto the classes, we’re a long
way towards understanding the design.

Copyright 2007 ICONIX Software Engineering, Inc. 12

Before we get to code, though...

We need a complete set of classes, with
accompanying attributes and methods.

We show this information on design-level class
diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 13

Design-Level Class Diagrams

Our design-level class diagrams define the structure of
our code.

Copyright 2007 ICONIX Software Engineering, Inc. 14

Before we have classes with
attributes and methods, though...

BEHAVIOR ALLOCATION:

We make decisions about which classes are
responsible for which methods while we are
drawing sequence diagrams.

So, we need to draw a sequence diagram for
each use case.

Copyright 2007 ICONIX Software Engineering, Inc. 15

Sequence Diagrams

We allocate methods to classes as we draw sequence
diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 16

Before we do sequence diagrams,
though...

We need unambiguous use case text.
We need to have a good idea about which
objects will be participating in each use case,
and what functions the system will perform as a
result of user actions.

We identify participating objects, and the
software functions that we need for a use case,
during robustness analysis.

Copyright 2007 ICONIX Software Engineering, Inc. 17

Robustness Diagrams

OBJECT DISCOVERY: We discover new objects,
identify functions, and add attributes to classes, as we
draw robustness diagrams. We also disambiguate the
use cases.

Copyright 2007 ICONIX Software Engineering, Inc. 18

Abstract, technology-free use cases
are vague, ambiguous, incomplete

Copyright 2007 ICONIX Software Engineering, Inc. 19

Robustness diagrams help us
disambiguate the use cases

DISAMBIGUATION: We describe system usage in the
context of the object model.

This means that we don’t write abstract, vague,
ambiguous use cases that we can’t design from.

Instead, we need to write use case text that references
the names of objects in the problem domain.

We also reference the names of "boundary
objects“ (screens) explicitly in the use case text.

Copyright 2007 ICONIX Software Engineering, Inc. 20

First, though...

We need to identify the main abstractions that
are present in the problem domain.

In other words, we need a domain model.

We show our domain model on class diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 21

Domain Model

Copyright 2007 ICONIX Software Engineering, Inc. 22

Refining our class diagrams

We'll continuously refine our analysis level class
diagrams (our domain model) as we explore the
behavior of the system in more and more detail
during analysis and design.

This will ultimately result in our design-level
class diagrams, which we can code from.

Copyright 2007 ICONIX Software Engineering, Inc. 23

The ICONIX UML Core Subset

Copyright 2007 ICONIX Software Engineering, Inc. 24

Break

•  Good news: we don’t have to cover the
other 10 UML diagram types (state diagrams,
activity diagrams, communication diagrams,
component diagrams, deployment diagrams,
timing diagrams….) before break

•  Better news: we don’t have to cover them
after break, either

Copyright 2007 ICONIX Software Engineering, Inc. 25

The 10,000 foot view

•  Each diagram answers a question.
•  Use Cases: What are the users doing?
•  Domain Models: What are the objects in the real

world?
•  Robustness Diagrams: What objects participate

in each use case?
•  Sequence Diagrams: How do the objects

collaborate with each other?

Copyright 2007 ICONIX Software Engineering, Inc. 26

Use Cases: What are the users
doing?

Use case driven means that user requirements
are “king.” The use cases drive everything else
within the approach.

Copyright 2007 ICONIX Software Engineering, Inc. 27

Working from the outside in

“Outside in” means working from the user
requirements inward.

Copyright 2007 ICONIX Software Engineering, Inc. 28

Elements of use case modeling

•  Use storyboards to help define the use cases.

•  Actors and Use Cases

•  Basic and Alternate Courses of Action

Name

Copyright 2007 ICONIX Software Engineering, Inc. 29

Domain Models: What are the
objects in the real world?

•  Identify real-world (problem domain) objects
•  Identify “is” and “has” relationships
•  This is where reuse comes from

Copyright 2007 ICONIX Software Engineering, Inc. 30

Working from the inside out

“Inside out” means working from the domain
objects outward.

Copyright 2007 ICONIX Software Engineering, Inc. 31

Identify relationships between
objects

•  Associations

•  Generalizations

•  Aggregations

•  Associations as classes (link classes)

Company Person

Shape Circle

Department Company

Copyright 2007 ICONIX Software Engineering, Inc. 32

Robustness Analysis: What objects
participate in each use case?

•  Draw an “object picture” of the use case
•  Use the boundary/control/entity stereotypes

Boundary class Control class
(Controller)

Entity class

Copyright 2007 ICONIX Software Engineering, Inc. 33

Robustness Analysis

•  Closes gap between “what” and “how”
•  Disambiguation + Object Discovery
•  Do a robustness diagram for each use case
•  Client/server, N-tier, MVC

Copyright 2007 ICONIX Software Engineering, Inc. 34

Closing the gap between
“what” (analysis) and
“how” (design)

Mind the gap: Many projects fail while trying to cross
this what/how gap.

Copyright 2007 ICONIX Software Engineering, Inc. 35

Disambiguation + Object Discovery

Copyright 2007 ICONIX Software Engineering, Inc. 36

Do a robustness diagram for each
use-case

•  Directly traceable to user-approved
prototypes and courses of action

•  System performance characteristics defined
by interactions between distributed objects

•  Technical architecture important at this level

Copyright 2007 ICONIX Software Engineering, Inc. 37

Client/Server, N-Tier, MVC

•  Boundary/control/entity can be used to
describe client/server architectures

•  GUI
•  Logic
•  Repository

•  Also N-tier and MVC architectures.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

Copyright 2007 ICONIX Software Engineering, Inc. 38

Sequence Diagrams: How do the objects
collaborate with each other?

•  Allocation of behavior to specific objects
•  Message passing between objects
•  Traceable back to the use case description

Copyright 2007 ICONIX Software Engineering, Inc. 39

Behavior allocation is done on
sequence diagrams

•  Used to help allocate behavior among
boundary, control, and entity objects--in other
words, to answer the question: Which class
does an operation belong in?

•  Show detailed interactions between objects
over time

•  Object interactions follow the use case text

Copyright 2007 ICONIX Software Engineering, Inc. 40

Sequence diagram notation

«create»

setItinerary(i)

actor

method

message

boundary
object

entity
object

Copyright 2007 ICONIX Software Engineering, Inc. 41

Building a sequence diagram is much easier
when we’ve done robustness analysis

Copyright 2007 ICONIX Software Engineering, Inc. 42

Break

•  Next, we’ll introduce a step-by-step roadmap
you can follow. The roadmap covers:

•  Requirements Definition
•  Analysis and Preliminary Design
•  Detailed Design
•  Implementation and testing

Copyright 2007 ICONIX Software Engineering, Inc. 43

ICONIX Process Roadmap

•  Requirements Definition
•  Analysis and Preliminary Design
•  Detailed Design
•  Implementation

Copyright 2007 ICONIX Software Engineering, Inc. 44

Requirements Definition
(Collaborative Session + Lab 1)

Copyright 2007 ICONIX Software Engineering, Inc. 45

Analysis and Preliminary Design

Copyright 2007 ICONIX Software Engineering, Inc. 46

Detailed Design

Copyright 2007 ICONIX Software Engineering, Inc. 47

Implementation

Copyright 2007 ICONIX Software Engineering, Inc. 48

The 1000 foot view

•  Requirements Definition
•  An in depth look at domain modeling
•  An in depth look at use cases
•  Requirements Review
•  An in depth look at robustness analysis
•  Preliminary Design Review
•  An in depth look at sequence diagrams
•  Critical Design Review
•  Implementation

Copyright 2007 ICONIX Software Engineering, Inc. 49

Requirements Definition – Top 10

•  10. Use a modeling tool that supports linkage and traceability
between requirements and use cases.

•  9. Link requirements to use cases by dragging and dropping.
•  8. Avoid dysfunctional requirements by separating functional

details from your behavioral specification.
•  7. Write at least one test case for each requirement.
•  6. Treat requirements as first-class citizens in the model.
•  5. Distinguish between different types of requirements.
•  4. Avoid the “big monolithic document” syndrome.
•  3. Create estimates from the use case scenarios, not from the

functional requirements.
•  2. Don’t be afraid of examples when writing functional

requirements.
•  1. Don’t make your requirements a technical fashion statement.

Copyright 2007 ICONIX Software Engineering, Inc. 50

An in depth look at domain modeling

•  An example domain model
•  Aggregation and Generalization
•  Finding domain objects by

grammatical inspection.
•  Domain classes aren’t tables
•  Domain Modeling Top 10

Copyright 2007 ICONIX Software Engineering, Inc. 51

An example domain model

Copyright 2007 ICONIX Software Engineering, Inc. 52

Aggregation (has) and Generalization (is)

Copyright 2007 ICONIX Software Engineering, Inc. 53

Finding domain objects by
grammatical inspection

•  1. The bookstore will be web based initially, but it must have a
sufficiently flexible architecture that alternative front-ends may be
developed (Swing/applets, web services, etc.)

•  2. The bookstore must be able to sell books, with orders accepted
over the Internet.

•  3. The user must be able to add books into an online shopping cart,
prior to checkout.

•  a. Similarly, the user must be able to remove items from the shopping
cart.

•  4. The user must be able to maintain wish lists of books that he or she
wants to purchase later.

•  5. The user must be able to cancel orders before they’ve shipped.
•  6. The user must be able to pay by credit card or purchase order.

Copyright 2007 ICONIX Software Engineering, Inc. 54

Domain classes aren’t tables

Copyright 2007 ICONIX Software Engineering, Inc. 55

Domain Modeling – Top 10

•  10. Focus on real-world (problem domain) objects.
•  9. Use generalization (is-a) and aggregation (has-a) relationships to show how

the objects relate to each other.
•  8. Limit your initial domain modeling efforts to a couple of hours.
•  7. Organize your classes around key abstractions in the problem domain.
•  6. Don’t mistake your domain model for a data model.
•  5. Don’t confuse an object (which represents a single instance) with a database

table (which contains a collection of things).
•  4. Use the domain model as a project glossary.
•  3. Do your initial domain model before you write your use cases, to avoid name
•  ambiguity.
•  2. Don’t expect your final class diagrams to precisely match your domain model,

but there should be some resemblance between them.
•  1. Don’t put screens and other GUI-specific classes on your domain model.

Copyright 2007 ICONIX Software Engineering, Inc. 56

An in depth look at use cases

•  Write an event/response
description that covers both
sides of the user/system
dialogue

•  Storyboard the UI
•  Factor out commonality

using <invokes> and
<precedes>

•  Use Cases vs. Algorithms
•  3 Magic Questions
•  Do’s and Don’ts
•  Use Cases – Top 10

Copyright 2007 ICONIX Software Engineering, Inc. 57

Write an event/response description that covers
both sides of the user/system dialogue

Copyright 2007 ICONIX Software Engineering, Inc. 58

Storyboard the UI

Copyright 2007 ICONIX Software Engineering, Inc. 59

Factor out commonality using
<invokes> and <precedes>

Copyright 2007 ICONIX Software Engineering, Inc. 60

Use case diagram stereotypes as a
cure for insomnia

Copyright 2007 ICONIX Software Engineering, Inc. 61

Use cases vs. algorithms

Copyright 2007 ICONIX Software Engineering, Inc. 62

Lunch

•  After lunch we’ll do a collaborative session
and develop the domain model, then create a
use case package for each lab team, and
draw the initial use case diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 63

Colllaborative Session

•  Draw the domain model
•  Create a use case package for each lab team
•  Create use case diagrams for each team
•  Assign team members

Copyright 2007 ICONIX Software Engineering, Inc. 64

Use Case Do’s and Don’ts

•  Don’t: write pseudocode
•  Don’t: write a flowchart in text form
•  Don’t: forget that non-technical people will

have to understand your use case
•  Do: write in the style of a user guide
•  Do: name participating domain objects
•  Do: name the screens

Copyright 2007 ICONIX Software Engineering, Inc. 65

Use Cases – 3 Magic Questions

•  What happens?
•  And then what happens?
•  What else might happen?

Copyright 2007 ICONIX Software Engineering, Inc. 66

Use Cases – Top 10

•  10. Follow the two-paragraph rule.
•  9. Organize your use cases with actors and use case diagrams.
•  8. Write your use cases in active voice.
•  7. Write your use case using an event/response flow, describing

both sides of the user/system dialogue.
•  6. Use GUI storyboards, prototypes, screen mockups, etc.
•  5. Remember that your use case is really a runtime behavior

specification.
•  4. Write the use case in the context of the object model.
•  3. Write your use cases using a noun-verb-noun sentence

structure.
•  2. Reference domain classes by name.
•  1. Reference boundary classes (e.g., screens) by name.

Copyright 2007 ICONIX Software Engineering, Inc. 67

Lab – writing use cases

•  Write the first draft use cases
•  Follow the Top 10 rules
•  Expect them to be a little vague and

ambiguous, but try your best to avoid it.
•  The remaining ambiguity will be removed

during the next lab (robustness analysis)

Copyright 2007 ICONIX Software Engineering, Inc. 68

Requirements Review

Copyright 2007 ICONIX Software Engineering, Inc. 69

Requirements Review – Top 10

•  10. Make sure your domain model describes at least 80% of the most important
abstractions (i.e., real-world objects) from your problem domain, in nontechnical language
that your end users can understand.

•  9. Make sure your domain model shows the is-a (generalization) and has-a (aggregation)
relationships between the domain objects.

•  8. Make sure your use cases describe both basic and alternate courses of action, in active
voice.

•  7. If you have lists of functional requirements (i.e., “shall” statements), make sure these are
not absorbed into and “intermangled” with the active voice use case text.

•  6. Make sure you’ve organized your use cases into packages and that each package has at
least one use case diagram.

•  5. Make sure your use cases are written in the context of the object model.
•  4. Put your use cases in the context of the user interface.
•  3. Supplement your use case descriptions with some sort of storyboard, line drawing,

screen mockup, or GUI prototype.
•  2. Review the use cases, domain model, and screen mockups/GUI prototypes with end

users, stakeholders, and marketing folks, in addition to more technical members of your
staff.

•  1. Structure the review around our “eight easy steps to a better use case”

Copyright 2007 ICONIX Software Engineering, Inc. 70

An in depth look at robustness
analysis

•  An example robustness diagram
•  Nouns are objects, verbs are

functions
•  Linking your use cases to the

object model and to the GUI
•  Rules for robustness analysis
•  Don’t forget the controllers
•  Closing the gap between what

and how
•  Disambiguation + Object

Discovery

Copyright 2007 ICONIX Software Engineering, Inc. 71

An example robustness diagram

Copyright 2007 ICONIX Software Engineering, Inc. 72

Nouns are objects, verbs are functions

Copyright 2007 ICONIX Software Engineering, Inc. 73

Linking your use cases to the object
model, and to the GUI

Copyright 2007 ICONIX Software Engineering, Inc. 74

Rules for robustness analysis

Copyright 2007 ICONIX Software Engineering, Inc. 75

Don’t forget the controllers

Copyright 2007 ICONIX Software Engineering, Inc. 76

Closing the gap between
“what” (analysis) and
“how” (design)

Mind the gap: Many projects fail while trying to cross
this what/how gap.

Copyright 2007 ICONIX Software Engineering, Inc. 77

Disambiguation + Object Discovery

Copyright 2007 ICONIX Software Engineering, Inc. 78

Object Discovery

Copyright 2007 ICONIX Software Engineering, Inc. 79

Domain objects sit between the
screens and the DBMS

Copyright 2007 ICONIX Software Engineering, Inc. 80

Robustness diagrams should reflect
Technical Architecture

Copyright 2007 ICONIX Software Engineering, Inc. 81

Robustness Analysis – Top 10

•  10. Paste the use case text directly onto your robustness diagram.
•  9. Take your entity classes from the domain model, and add any that are missing.
•  8. Expect to rewrite (disambiguate) your use case while drawing the robustness diagram.
•  7. Make a boundary object for each screen, and name your screens unambiguously.
•  6. Remember that controllers are only occasionally real control objects; they are typically

logical software functions.
•  5. Don’t worry about the direction of the arrows on a robustness diagram.
•  4. It’s OK to drag a use case onto a robustness diagram if it’s invoked from the parent use

case.
•  3. The robustness diagram represents a preliminary conceptual design of a use case,
•  not a literal detailed design.
•  2. Boundary and entity classes on a robustness diagram will generally become object

instances on a sequence diagram, while controllers will become messages.
•  1. Remember that a robustness diagram is an “object picture” of a use case, whose

purpose is to force refinement of both use case text and the object model.

Copyright 2007 ICONIX Software Engineering, Inc. 82

Lab – robustness analysis

•  Suggestion: draw the robustness diagrams
on paper first, because you’ll be fixing the
use case text while you do this. After you’ve
cleaned up the use cases, copy your
robustness diagram into the tool.

•  Don’t forget to update the domain model with
new objects and with attributes.

•  Always drag entity classes from the domain
model.

Copyright 2007 ICONIX Software Engineering, Inc. 83

Preliminary Design Review

Copyright 2007 ICONIX Software Engineering, Inc. 84

Preliminary Design Review – Top 10

•  10. For each use case, make sure the use case text matches the robustness
diagram, using the highlighter test.

•  9. Make sure that all the entities on all robustness diagrams appear within the
updated domain model.

•  8. Make sure that you can trace data flow between entity classes and screens.
•  7. Don’t forget the alternate courses, and don’t forget to write behavior for each

of them when you find them.
•  6. Make sure each use case covers both sides of the dialogue between user and

system.
•  5. Make sure you haven’t violated the syntax rules for robustness analysis,
•  4. Make sure that this review includes both nontechnical (customer, marketing

team, etc.) and technical folks (programmers).
•  3. Make sure your use cases are in the context of the object model and in the

context of the GUI.
•  2. Make sure your robustness diagrams (and the corresponding use case text)

don’t attempt to show the same level of detail that will be shown on the
sequence diagrams (i.e., don’t try to do detailed design yet).

•  1. Follow our “six easy steps” to a better preliminary design

Copyright 2007 ICONIX Software Engineering, Inc. 85

An in-depth look at sequence diagrams

•  An example Sequence Diagram
•  Sequence diagramming: 4 steps
•  Add behavior to the classes
•  Boundaries become View

classes
•  Controllers usually become

operations
•  Assigning operations to classes
•  Sequence diagrams – Top 10

Copyright 2007 ICONIX Software Engineering, Inc. 86

An example Sequence Diagram

Copyright 2007 ICONIX Software Engineering, Inc. 87

Sequence diagramming: 4 steps

Copyright 2007 ICONIX Software Engineering, Inc. 88

Add behavior to the classes

Copyright 2007 ICONIX Software Engineering, Inc. 89

Boundaries become View classes

Copyright 2007 ICONIX Software Engineering, Inc. 90

Controllers usually become operations

Copyright 2007 ICONIX Software Engineering, Inc. 91

Assigning operations to classes

Copyright 2007 ICONIX Software Engineering, Inc. 92

Sequence Diagrams – Top 10

•  10. Understand why you’re drawing a sequence diagram, to get the most out of
it.

•  9. Do a sequence diagram for every use case, with both basic and alternate
courses on the same diagram.

•  8. Start your sequence diagram from the boundary classes, entity classes,
actors, and use case text that result from robustness analysis.

•  7. Use the sequence diagram to show how the behavior of the use case (i.e., all
the controllers from the robustness diagram) is accomplished by the objects.

•  6. Make sure your use case text maps to the messages being passed on the
sequence diagram. Try to line up the text and message arrows.

•  5. Don’t spend too much time worrying about focus of control.
•  4. Assign operations to classes while drawing messages. Most visual modeling

tools support this capability.
•  3. Review your class diagrams frequently while you’re assigning operations to

classes, to make sure all the operations are on the appropriate classes.
•  2. Prefactor your design on sequence diagrams before coding.
•  1. Clean up the static model before proceeding to the CDR.

Copyright 2007 ICONIX Software Engineering, Inc. 93

What is a “quality” class?

•  Coupling: should be loosely coupled with
other classes

•  Cohesion: should be highly cohesive
•  Sufficiency: does it do enough?
•  Completeness: does it cover all the relevant a

abstractions?
•  Primitiveness: stick to basic operations

Copyright 2007 ICONIX Software Engineering, Inc. 94

Parameterized and
Instantiated Classes

•  Parameterized, or generic, classes serve as
templates for other classes (C++ templates)

•  Essential for application framework
development; within UML, framework is
architectural pattern that provides extensible
template

•  Used for container classes (sets, lists, trees)
•  Instantiated classes represent specific

instances of parameterized classes

Copyright 2007 ICONIX Software Engineering, Inc. 95

An instantiated class is a specific
instance of a parameterized class

// template Queue class with 2 instances
template <class Item> //Item is the formal parameter
class Queue {
……. }
Queue <int> intQueue; //Int is the actual parameter
Queue <displayItem*> ItemQueue;

Copyright 2007 ICONIX Software Engineering, Inc. 96

Design patterns

 Component

Operation()
Add(Component)

Remove(Component)
GetChild(int)

Client

Leaf

Operation()

Component

Operation()
Add(Component)

Remove(Component)
GetChild(int)

children

Copyright 2007 ICONIX Software Engineering, Inc. 97

Lab – Sequence diagrams and detailed
class diagrams

•  Install the Agile/ICONIX add-in
•  Use the add-in to generate skeleton

sequence diagrams, and to generate test
case diagrams

•  Allocate behavior to classes while drawing
the sequence diagrams, using a
responsibility-driven approach

•  Keep checking the class diagrams as you
draw messages on the sequence diagrams.

Copyright 2007 ICONIX Software Engineering, Inc. 98

Critical Design Review

Copyright 2007 ICONIX Software Engineering, Inc. 99

Critical Design Review

•  10. Make sure the sequence diagram matches the use case text.
•  9. Make sure (yes, again) that each sequence diagram accounts for both basic

and alternate courses of action.
•  8. Make sure that operations have been allocated to classes appropriately.
•  7. Review the classes on your class diagrams to ensure they all have an

appropriate set of attributes and operations.
•  6. If your design reflects the use of patterns or other detailed implementation

constructs, check that these details are reflected on the sequence diagram.
•  5. Trace your functional (and nonfunctional) requirements to your use cases and

classes to ensure you have covered them all.
•  4. Make sure your programmers “sanity check” the design and are confident

that they can build it and that it will work as intended.
•  3. Make sure all your attributes are typed correctly, and that return values and

parameter lists on your operations are complete and correct.
•  2. Generate the code headers for your classes, and inspect them closely.
•  1. Review the test plan for your release.

Copyright 2007 ICONIX Software Engineering, Inc. 100

Implementation

•  Implementation
•  Tracing Requirements
•  Unit Test
•  Code Review and

Model Update

Copyright 2007 ICONIX Software Engineering, Inc. 101

Implementation – Top 10

•  10. Be sure to drive the code directly from the design.
•  9. If coding reveals the design to be wrong in some way, change

it. But also review the process.
•  8. Hold regular code inspections.
•  7. Always question the framework’s design choices.
•  6. Don’t let framework issues take over from business issues.
•  5. If the code starts to get out of control, hit the brakes and

revisit the design.
•  4. Keep the design and the code in sync.
•  3. Focus on unit testing while implementing the code.
•  2. Don’t overcomment your code (it makes your code less

maintainable and more difficult to read).
•  1. Remember to implement the alternate courses as well as the

basic courses.

Copyright 2007 ICONIX Software Engineering, Inc. 102

Tracing requirements

Copyright 2007 ICONIX Software Engineering, Inc. 103

Unit Testing – Top 10

•  10. Adopt a “testing mind-set” wherein every bug found is a victory and not a
defeat. If you find (and fix) the bug in testing, the users won’t find it in the
released product.

•  9. Understand the different kinds of testing, and when and why you’d use each
one.

•  8. When unit testing, create one or more unit tests for each controller on each
robustness diagram.

•  7. For real-time systems, use the elements on state diagrams as the basis for
test cases.

•  6. Do requirement-level verification (i.e., check that each requirement you have
identified is accounted for).

•  5. Use a traceability matrix to assist in requirement verification.
•  4. Do scenario-level acceptance testing for each use case.
•  3. Expand threads in your test scenarios to cover a complete path through the

appropriate part of the basic course plus each alternate course in your scenario
testing.

•  2. Use a testing framework like JUnit to store and organize your unit tests.
•  1. Keep your unit tests fine-grained.

Copyright 2007 ICONIX Software Engineering, Inc. 104

Code Review and Model Update – Top 10

•  10. Prepare for the review, and make sure all participants have read
the relevant review material prior to the meeting.

•  9. Create a high-level list of items to review, based on the use cases.
•  8. If necessary, break down each item in the list into a smaller checklist.
•  7. Review code at several different levels.
•  6. Gather data during the review, and use it to accumulate boilerplate

checklists for future reviews.
•  5. Follow up the review with a list of action points e-mailed to all people

involved.
•  4. Try to focus on error detection during the review, not error correction.
•  3. Use an integrated code/model browser that hot-links your modeling

tool to your code editor.
•  2. Keep it “just formal enough” with checklists and follow-up action

lists, but don’t overdo the bureaucracy.
•  1. Remember that it’s also a Model Update session, not just a Code

Review.

Copyright 2007 ICONIX Software Engineering, Inc. 105

Optional Lab

•  Generate code
•  Install MDG Integration for Visual Studio or

Java
•  Explore options for synchronizing model and

code

Copyright 2007 ICONIX Software Engineering, Inc. 106

Optional – Additional UML diagrams

•  State, Activity and Collaboration Diagrams
•  Component and Deployment Diagrams

Copyright 2007 ICONIX Software Engineering, Inc. 107

State, Activity and Collaboration
modeling

Copyright 2007 ICONIX Software Engineering, Inc. 108

How do objects behave over time?

•  Each object has a state machine which
represents its behavior over time

•  Objects make transitions between states
•  State transitions are caused by events
•  State transitions cause actions and/or activities

to be executed
•  State machines especially important for control

objects (controllers)

Copyright 2007 ICONIX Software Engineering, Inc. 109

State Diagrams

•  Initial and final states
•  Entry and exit actions
•  Activities
•  Guard conditions
•  Sequential and concurrent substates

Copyright 2007 ICONIX Software Engineering, Inc. 110

State diagram notation

Idle Tracking
targetAt(p) [isThreat]

Incomplete

Testing

Waiting Command

Self-Test

Copyright 2007 ICONIX Software Engineering, Inc. 111

Activity Diagrams

•  Resemble flowcharts
•  Useful for modeling workflows and details of

operations
•  Interaction diagram looks at the objects that

pass messages; activity diagram looks at
operations passed among objects

Copyright 2007 ICONIX Software Engineering, Inc. 112

Carryovers from state diagrams

•  activities
•  actions
•  transitions
•  initial/final states
•  guard conditions

Copyright 2007 ICONIX Software Engineering, Inc. 113

Breaking up flows

alternate paths:
•  branch
•  merge
parallel flows:
•  fork
•  join

Copyright 2007 ICONIX Software Engineering, Inc. 114

Collaboration Diagrams

•  Collaboration diagrams show
additional information, such as
fields, parameters, and different
kinds of messages

•  Do one for each scenario (use
case)

•  100% equivalent to sequence
diagrams

Copyright 2007 ICONIX Software Engineering, Inc. 115

What do collaboration diagrams
address?

•  How do objects communicate with each
other?

•  Object visibility
•  Messages

Copyright 2007 ICONIX Software Engineering, Inc. 116

How do objects communicate with
each other?

•  Objects communicate with each other via
messages

•  Messages invoke methods on objects, which
result in actions

•  Objects recognize only a fixed, predefined set of
messages

•  Data contained in an object may only be modified
by methods invoked by messages

•  Loose coupling + high cohesion è
 good modularity

Copyright 2007 ICONIX Software Engineering, Inc. 117

Object Visibility

•  «self» -- supplier object is part of client object
(called “field” visibility by Booch)

•  «local» -- supplier object is locally declared
object in the scope of collaboration diagram

•  «global» -- supplier object is global to client
object

•  «parameter» -- supplier object is parameter to
some operation of client object

•  Objects can be shared (i.e., an object can play
different roles within one collaboration)

Copyright 2007 ICONIX Software Engineering, Inc. 118

Messages

•  Simple
•  Synchronous
•  Balking
•  Timeout
•  Asynchronous

Copyright 2007 ICONIX Software Engineering, Inc. 119

Collaboration diagram notation

: Transaction

c: Client

1: «create»

p: ODBCProxy

2: setActions (a,d,o)
3: «destroy»

2.1: setValues(d,3,4)
2.2: setValues(a,“CO”

«global»

Copyright 2007 ICONIX Software Engineering, Inc. 120

Component Diagrams

•  Components are physical, replaceable parts
of a system that conform to, and provide the
realization of, interfaces.

•  examples: dynamic link library (DLL), COM+
object, Enterprise Java Bean (EJB)

•  Unlike classes, components are physical, not
logical, and components have operations that
are reachable only through their interfaces.

Copyright 2007 ICONIX Software Engineering, Inc. 121

Uses of component diagrams

•  modeling source code («file» stereotype)
•  modeling executable releases («executable»

stereotype)
•  modeling physical databases («table»

stereotype)
•  modeling adaptable system ({location} tagged

value)

Copyright 2007 ICONIX Software Engineering, Inc. 122

Component diagram notation

Scheduler

----------- ---------- ---------- ---------- ---------- ----------

signal.cpp

Copyright 2007 ICONIX Software Engineering, Inc. 123

Deployment Diagrams

•  A node is a physical element, which exists at
run time, that represents some computation
resource.

•  This resource generally has at least some
memory; it often has processing capability.

•  Components are things that participate in the
execution of a system; nodes are things that
execute components.

Copyright 2007 ICONIX Software Engineering, Inc. 124

Uses of deployment diagrams

•  modeling embedded systems (to facilitate
communication between hardware engineers
and developers)

•  modeling client/server systems (thin or fat
client?)

•  modeling fully distributed systems (Internet;
CORBA/DCOM)

Copyright 2007 ICONIX Software Engineering, Inc. 125

Deployment diagram notation

: kiosk
deploys
user.exe

c: console
deploys

config.exe

s: server
deploys

dbadmin.exe

: RAID farm

«10-T Ethernet»

«RS-232»

Copyright 2007 ICONIX Software Engineering, Inc. 126

For further information

•  EMAIL: doug@iconixsw.com
•  WWW: http://www.iconixsw.com
•  Phone: 310-474-8482

