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We present an algorithm for large-scale document clustering of biological text, obtained from

Medline abstracts. The algorithm is based on statistical treatment of terms, stemming, the idea

of a ‘go-list’, unsupervised machine learning and graph layout optimization. The method is
flexible and robust, controlled by a small number of parameter values. Experiments show that
the resulting document clusters are meaningful as assessed by cluster-specific terms. Despite
the statistical nature of the approach, with minimal semantic analysis, the terms provide a
shallow description of the document corpus and support concept discovery.

1. Introduction

The vast accumulation of electronically available textua information has raised new
challenges for information retrieval technology. The problem of content analysis

was first introduced in the late 60’s [1]. Since then, a number of approaches have
emerged in order to exploit free-text information from a variety of sources [2, 3].

In the fields of Biology and Medicine, abstracts are collected and maintained in
Medline, a project supported by the U.S. National Library of Medicine (NLM)
Medline constitutes a valuable resource that allows scientists to retrieve articles of
interest, based on keyword searches. This query-badednation retrieval is
extremely useful but it only allows a limited exploitation of the knowledge available
in biological abstracts.

Query-based retrieval is useful for content-focused querying [4], where searches
pre-suppose that the end-user is familiar with the subject at hand or that they would
know precisely what keywords should be used to search for particular items. This,
however, is rarely the case, especially in rapidly changing fields such as molecular
biology and medicine, where subjects can be extremely complex: there are many
synonym terms, new connections are constantly discovered between previously
unrelated subjects and review articles are outdated very quickly. In these situations,
query-based retrieval usually results in many hours of confusing and misleading
searches.

* http://www.nlm.nih.gov/
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Put in another way, the traditional query-based information retrieval from
Medline is less useful when specific and substantial information is necessary in a
very short period of time and without the need to read through all the retrieved
articles, extracted from a series of searches. In order to exploit successfully this vast
amount of textual information, there is an imperative need to find elegant and
accurate ways of extracting the desirable biological knowledge.

At the other extreme of the spectrum in text processing, information extraction
allows the most sophisticated use of syntactic and semantic analysis, providing
extensive ‘understanding’ of free text by statistical and algorithmic approaches [5].
However, these procedures usually require complex software systems, with low
precision and recall, a predefined ontology for the domain of discourse and various
metrics that may be limited in scope and scale.

An intermediate stage of text analysis invohdsgument clustering, where
similar documents are detected on the basis of their sharing of particular, meaningful
terms [6]. The problem can be stated as follows: given an arbitrary set of documents
X, return an optimal set of clusters Y that contain these documents, plus the features
Z,, for each document i in cluster Y. The advantages of document clustering include
the small set of heuristics employed, a minimum amount of semantic analysis and its
reliance on simple statistical measures.

This generic approach to extract knowledge that is embedded in textual
information is provided byinsupervised machine learning [7]. In this approach, a
set of instances containing a number of features are fed into clustering algorithms
that generate optimal classification schemes which maximally describe the data, in
terms of clusters, decision trees and the like. In this context, the unsupervised
machine learning approach has also been definecbasept discovery’ [8] or (the
much harder problem of) oftology induction’, where classifications are
automatically derived from vast amounts of data.

There has been a growing interest in biological text processing during the past
few years [9], mostly focusing on two general areas: the detection and extraction of
relations [10-12] and the detection of keywords [13-15]. Herein, we approach the
problem of biological text processing from a different perspective, by applying
document clustering using term co-occurrence. The procedure uses terms to
associate documents, while the end result is also the detection of the most significant
keywords that yield the document clusters. From this perspective, our approach
relates mostly to keyword extraction although relations are also recorded in the form
of term co-occurrence. The only previous attempt for document clustering of
biological text has been developed by NLM for the ‘neighbors’ utility [16].

This approach has wider implications, because of its general applicability to a
number of text analysis problems. Currently, one of the central problems in
bioinformatics is the issue of data retrieval and integration. Despite an influx of
molecular data in the form of sequences, structures, transcription profiles etc., the



Pacific Symposium on Biocomputing 6:384-395 (2001)

real body of biological knowledge comes in the form of abstracts, and soon in the
form of publication repositories, such as PubMed Central” and BioMed Central’.
Medline abstracts provide a basis for experimentation with text analysis, in a highly
complex, heterogeneous and constantly changing information landscape. The
challenge for bioinformatics is to transform and integrate automatically and reliably
large volumes of both molecular and textual information, to provide prototypes for
the next-generation of database systems that will support biological research. The
ultimate criterion for the performance of these systems is whether they generate
desirable information that is not obtainable otherwise.

2. Methods

In our method presented here, Medline abstracts are selected, processed through a
successive number of steps and re-structured to obtain the optimal number of terms
that would associate large numbers of biological documents into some coherent and
meaningful groups, potentially representing the biological role of particular

molecules and processes.
We have devised the following ten-step protocol:

1

A set of abstracts K is selected from Medline using some informed query-

based information retrieval. Keywords that are pertinent to a biological

process or a single species are used to focus subsegquent processing on a
specific document set. The set is saved in ‘Medline’ format.

The selected abstracts are parsed and only the fields ‘UID’ (unique Medline
identifier) and ‘AB’ (abstract body) are retained. The MeSH terms are not
used, because we have found that they are not always up-to-date and may
not reflect the contents of particular document sets. The set of terms S at
this step is quite large and redundant, because many documents contain
similar terms.

To eliminate common English words, one commonly used strategy in text
analysis is the generation of a so-called ‘stop-list’ [17]. Due to the complex
character of the document sets returned by arbitrary queries (from step 1), it
was not possible to produce a well-defined stop-list. Instead, we have
employed the TF.IDF family of metrics, a well-known term weighting
scheme [4, 18]. We have used the following variant ¥g,(N,/n), where

w, is the weight of term i in the document, idithe frequency of term i in a
reference set L, and is the number of documents in L that term i occurs
in. The reference set used was the British National Corpus (BNC)

? http://pubmedcentral.nih.gov/
* http://www.biomedcentral.com
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collection®. Terms that appear frequently in a document (TF = Term
Frequency), but rarely in the reference set (IDF = Inverse Document
Freguency) are more likely to be specific to the document. At this stage, al
non-al phanumeric symbols are deleted and al characters are converted into
low case: terms may thus be composed by more than one English words.

4. Terms with a high TF.IDF value (typically more than 15) or absent from
the BNC collection (for which TF.IDF is not applicable) are retained for
further processing. Common English words are thus eliminated. The cut-off
value p was decided after extensive experimentation and evaluation with
various datasets. The set of terms T at this step is also redundant, but
reduced considerably, depending on the TF.IDF threshold.

5. All terms from a set of documents (abstracts) are then combined, their
frequencies in the query set are counted and the most frequently occurring
unique terms are retained. The cut-off threshold o here is typically 1% of
the document number K, e.g. for 1,000 abstracts, unique terms that occur at
least 10 times are kept for further processing. This step ensures that
infrequent terms are eliminated, even if they have a high TF.IDF score, to
facilitate clustering. We define the resulting set of terms U as a ‘go-list’.
This set contains a non-redundant set of terms that are present in the set of
abstracts K and satisfy the above mentioned criteria.

6. The go-list is subjected to a simple stemming procedure. This operation
eliminates suffixes from related terms and results in a non-redundant list of
terms [1]. Stemming is performed as follows: terms that are less than five
characters long are kept intact (short terms usually represent gene or
protein names). Longer terms are compared to each other with a simple
string match: when they share a common string, their two last characters
are eliminated. Thus, the resulting set of terms V contains terms that share
a common root. Synonym weighting [1] was not used, because of the
unavailability of a number of synonyms especially for genes and proteins,
as well as a continuing influx of new biological terms.

7. The stemmed go-list is then combined with the set of abstracts to generate a
file suitable for the subsequent clustering step. Each abstract is represented
by a simple bit vector, where the presence or absence of a term in the go-
list is marked by a 1 or 0O, respectively. The length of the vécisrequal
to the size of the stemmed go-list V. Typically, the lengtii & around
300 bits (representing terms), depending on the size of K (number of
abstracts). Notice that the original set of terms S is reduced significantly at
this stage (see Table 1 for an example).

* ftp://ftp.itri.bton.ac.uk/pub/bnc/all.num.o5
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The fixed-length array bit vector representation of the abstracts (and their

term contents) is then used as input for the unsupervised machine learning

step. We have used SGI's MineSet™ data mining softwanea 2-
processor SGI Octane workstation with 256 MB of memory. We deployed
the well-known k-means unsupervised clustering algorithm using a variety
of parameter values and multiple iterations. The visualization engine of
MineSet™ was also used to interact with the data and the results. Terms
that are found to co-occur in a large number of abstracts provide the signal
for the machine learning algorithm to discover groups of related abstracts.
Using terms as characters for the clustering procedure not only generates
sets of related abstracts but the very same terms actually characterize the
content of the obtained clusters. Thus, the method is a combination of
document clustering and concept discovery. Evidently, other machine
learning methods are possible at this step.

To obtain the final set of terms W that are specific and highly descriptive
for a given cluster of documents, we employ the well-known log-odds
formula: 6, = log,(f,/f), where6, represents the preference of term i in a
document cluster j, frepresents the frequency of term i in cluster j and f
represents the frequency of term i in the total set of abstracts: 1f(i.e.

term i is as frequently found in a cluster j as in the total set),ghiereero.
Positive values of characterize terms specific to a cluster - and vice versa.
Usually, we obtain terms with a positi@value, greater than a cut-off
threshold value.

Results are visualized usingl ayout (Enright, unpublished), an

optimization and graphical display method based on graph drawing by the
force-directed placement algorithm [19, 20].

The above protocol is based on the statistical treatment of words, a minimal
amount of modifications (e.g. stemming) and clustering using unsupervised learning.
All the threshold valueg( o, 1) that have been used were optimized empirically, by
extensive experimentation, and can be set as parameters by the user. It is worth
noting that the ‘semantics’ of text have been encoded in these various steps in the
form of heuristics (e.g. short terms that are significant usually represent gene names,
thus they are not stemmed). We have not attempted to use any explicit form of word
disambiguation or devise an ontology for a specific domain. Despite that, the
performance of the system is surprisingly high (see Results). Our approach was to
keep the architecture of the system as general as possible, without encoding facts
pertinent to a specific biological process.

The precision of the system (words that are not particularly meaningful but are
present in the final clusters) is quite impressive (see Results). Recall cannot be

° http://www.sgi.com/software/mineset/
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estimated, because there is a lack of test sets for problems of this size. We, instead,
relied on extensive evaluation of various experiments. We have applied our method
to numerous datasets, and the results obtained were checked manually for
consistency. As mentioned above, the terms of the stemmed go-list play a dual role
both as features for unsupervised learning and as descriptors for the contents of the
resulting clusters.

3. Results

To evauate the reliability of our approach, we have performed various control
experiments, one of which is presented here in some detail. We have obtained an

equal number of 830 abstracts from two keyword-based queries: “(escherichia AND
pili)” and “(cerevisiae AND cdc*)", accessing all available fields in Medline. We
then merged the two sets into one, comprising 1660 abstracts. The clustering should
produce two, rather distinct, clusters, with the most significant terms standing out,
describing the two sets of abstracts with meaningful keywords. The term reduction
process is shown in Table 1 (see Methods for details).

Set of terms Step Number of terms
S 2 162,499
T 4 56,057
U 5 868
\Y; 6 633
w 9 471
p=17 c=0.01K 1=0.8

Table 1. Term reduction for the control experiment described in text.
Set of terms, Step and parameterso( 1) are described in the Methods section.

The iterative k-means clustering produces indeed two very distinct clusters,
with descriptive terms for the two rather different model species and the associated
processes, captured by our initial keyword search. Characteristic terms with high
log-oddsB values are shown in Table 2 (cut-offalue was 0.8). It is interesting to
note that many terms describe the clusters with high fidelity, and immediately imply
the nature of the cluster contents. Unsatisfactory terms (in italics) usually refer to
various species (e.g. “melanogaster”, “shigella”) or experimental techniques (e.g.
“elisa”, “precipitation”). On the other hand, terms such as “cInl” or “rad9” refer to

gene/protein names involved in these processes quite accurately. Also species-
specific terms are detected (e.g. “nucleus” for yeast and “operon&sdéberichia
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coli). Combined together, the collection of terms in this experiment provides some

shallow description of the cluster under investigation (Table 2).

Cluster 1 Cluster 2
alphafactor adherence
budding agglutination
centromere antigenic
chromatin bacteriophage
clnl chloroform
cytoskel eton conjugative
defines diarrhoea
diploid disa
fission fimbrial
gtpbinding glycoproteins
meiosis klebsiella
melanogaster morphologically
microtubules operons
nucleus pfimbriae
phosphorylation plasmidencoded
rad9 precipitation
rescues pyelonephritis
spindle serogroup
telomere shigella
tumor susceptible
ubiquitin uropathogenic
uv vaccination

Table 2. Representative terms describing two clustersin a control experiment.

For details, seetext. Italics signify unsatisfactory terms. Notice that hyphens
and other non-alphanumeric characters have been deleted.

In a more adventurous experiment, we have selected 525 abstracts from
Medline by combining an exhaustive set of abstracts containing the following terms:
“anterior-posterior AND drosophila” plus “dorsal-ventral AND drosophila”. Our go-
list contained 409 terms. The parameter values for this experimentpve®9,0 =
0.01K andt = 0.5. Our clustering procedure consistently returned three clusters.
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Each cluster refers to a set of abstracts that are related by terms that co-occur among

the different abstracts. These terms enable us to ‘label’ each cluster.

The first cluster consists of 206 abstracts and contains names of genes (e.g.
antp, bithorax, ftz, wg, hunchback, distalless, engrailed, ubx, eve etc.) and other
terms related to the development DBiosophila (e.g. segmental, homeobox,
homeodomain, stripe, proximal-distal, parasegment, blastoderm etc.) This group of
abstracts is related to the process of segmentation and embryonic patterning
(reviewed in [21-23]). The most significant terms that describe the cluster
successfully refer to gene or protein domain names (e.g. homeobox) or keywords

(e.g. segmental) associated with this particular process.

The second cluster is slightly larger, containing 251 abstracts. The gene names
(e.g. pelle, notch, cactus, tld, dpp, rel, serrate etc.) and the terms (e.g. dorsalizing,
ventralspecific, gastrulation etc.) reveal that the abstracts in this cluster are related to
the embryonic dorsoventral axis specificatioiiosophila (reviewed in [24, 25]).
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Figure 1. Clusters of terms referringoosophila embryonic development.
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The number of abstracts in the third cluster is 68. This group of abstracts can be
labeled as ‘egg chamber/oocyte patterning’, as deduced by the gene names (nanos,
oskar, grk, torpedo, vasa, tgf etc.) and the terms (oocyte, maternal-effect, germline,
polarized, oogenesis etc.) that belong to this cluster (reviewed in [26, 27]). It is
interesting to note that although the initial set of abstracts was obtained with two
queries, the resulting clustering procedure using term co-occurrence produces a third
cluster, which refers to genes that are involved in the polarization of both the
anterior-posterior and the dorsal-ventral axes dubingsophila oogenesis [26-28].
Thus, the third cluster represents terms that describe the early developmental stage
of the processes represented by the other two, otherwise unrelated, document
clusters.

In summary, we have asked the question how are th®tasmphila embryonic
axes established by choosing ‘anterior-posterior’ and ‘dorsal-ventral’ using relevant
keywords. The result of this experiment is the automatic clustering of documents,
associated with descriptive terms, presented in a concise, rapid and highly non-
trivial fashion (Figure 1).

4, Discussion

It appears that term co-occurrence and the processing steps that we have
implemented generate reliable document clusters that not only associate Medline
abstracts into meaningful groups but also provide the ‘labels’ for a crude content
analysis in a rapid and reliable fashion.

The method is sufficiently flexible and parameter-based to allow the extensive
exploration of various document collections. Our data set is available on our group’s
web sité. By plugging in a different parser at step 2, various textual resources can
also be analyzed. One obvious example in the field of bioinformatics is the
annotation corpus of various sequence databases, such as SwissProt

The performance of the method is influenced by a number of factors. The CPU
requirements for the experiments described above are of the order of 1-2 hours. The
memory requirements are quite excessive, and there is a trade-off between the
number of abstracts (instances) K and the number of terms (features) W. The
feature/instance ratio may have to be reduced for very large-scale experiments.

The precision of the method appears to be high, as judged by the relatively few
terms that appear to be irrelevant in our experiments. However, accuracy metrics
such as precision and recall are not critical in document clustering, as long as the

® http://www.ebi.ac.uk/research/cgg/mining/textquest/
" http://www.expasy.ch/sprot/
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results are meaningful and provide intelligent guidance to the end-user, e.g. for more
elaborate queries or a quick summary of vast amounts of literature.

With sufficient computational resources, the method can be applied to 10-
100,000 abstracts, possibly describing a particular biological process or the biology
of a single species. For example, we envision applying document clustering to all
abstracts that refer to Drosophila development and obtain automatically an atlas of
the major groups of genes and their actions that influence the ontogeny of this model
organism.

It may very well be that there is a set of terms that have been used specifically
for certain biological species, while other terms are shared across related species. In
analogy with the terms ‘genome’ or ‘proteome’, we can define the set of terms that
refer to a particular species as the ‘conceptome’ of that species. This set of terms
may be used for comparative studies similar in spirit to comparative genomics [29].

We are in the process of scaling up our computations to perform very large-
scale experiments to test some of the above conjectures. We are particularly
interested in ontology induction experiments for the automatic classification of
proteins into functional classes [30], the discovery of new functional relationships in
protein families and data integrity checks of database annotations. The method can
also be used for query relaxation in molecular biology databases and massive
annotation of large-scale experiments, e.g. transcription profiling.
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