
Fast Organization of Large Photo Collections
using CUDA

Tim Johnson, Pierre Fite-Georgel, Rahul Raguram, Jan-Michael Frahm

University of North Carolina at Chapel Hill, Department of Computer Science

Abstract. In this paper, we introduce a system for the automatic or-
ganization of photo collections consisting of millions of images down-
loaded from the Internet. To our knowledge, this is the first approach
that tackles this problem exclusively through the use of general-purpose
GPU computing techniques. By leveraging the inherent parallelism of
the problem and through the use of efficient GPU-based algorithms, our
system is able to effectively summarize datasets containing up to three
million images in approximately 16 hours on a single PC, which is orders
of magnitude faster compared to current state of the art techniques. In
this paper, we present the various algorithmic considerations and design
aspects of our system, and describe in detail the various steps of the pro-
cessing pipeline. Additionally, we demonstrate the effectiveness of the
system by showing results for a variety of real-world datasets, ranging
from the scale of a single landmark, to that of an entire city.

Fig. 1. A subset of the iconic images automatically found by our system, for the Berlin
dataset.



2 Johnson, Fite-Georgel, Raguram, Frahm

1 Introduction

Organizing Internet photo collections is an important task for many computer
vision applications. For instance, partitioning a large set of photographs into
clusters of similar images allows for more efficient post-processing tasks, such
as structure from motion [1, 2]. In addition, the organization of images into se-
mantically consistent groups can also greatly enhance the browsing experience1.
For the summarization strategy described in this paper, we define “similar” im-
ages as those which represent the same scene or landmark, taken from nearby
vantage points, and under similar lighting conditions. Given these groupings of
similar images, we then automatically extract a small subset of representative
or iconic images that represent dominant aspects of the scene, and thus provide
a concise visual summary of the dataset. This approach lends itself naturally to
a hierarchical organization of the dataset into a form that is suitable both for
3D reconstruction as well as browsing.

With the ever-increasing abundance of images on the Internet, photo col-
lections for a single search term now yield datasets on the order of millions of
images – for example, a query for Rome on the photo sharing website Flickr
yields approximately 3.4 million images. To operate on massive datasets of this
form within a reasonable time-frame, it thus becomes essential to develop effi-
cient algorithms that are capable of elegantly scaling to Internet-scale datasets.
This is a particularly important consideration, given that the amount of digital
information is predicted to increase exponentially in the years to come2. In this
paper, we introduce an efficient method for the automatic organization of large
scale photo collections ranging from several tens of thousands of images (the
scale of a single landmark) to millions of images (representing an entire city).
To our knowledge, this is the first system that runs completely on the GPU and
scales to datasets on the order of millions of images.

In the following sections of the paper, we present previous work leading up to
our approach (Section 2), followed by a high-level overview of our system (Section
3). We then provide an in-depth look at each step of the pipeline along with a
discussion of important implementation details and design decisions (Section 4).
The paper concludes with a presentation of results on three challenging real-
world datasets (Section 5).

2 Previous Work

Organizing large scale photo collections has been of interest to many researchers
in recent years [3, 4, 1, 5, 6, 2]. The various approaches can be broadly classified
into two categories: the first group uses two-view geometric constraints between
images to determine similarity, while the second category uses appearance cues,
or constraints from object/scene recognition to measure image similarity. The

1 For instance, tag clusters on Flickr: http://www.flickr.com/photos/tags/berlin/clusters/
2 http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-

universe.pdf



Fast Organization of Large Photo Collections using CUDA 3

notable departures from this classification are the approaches introduced in [1]
and [2], which are hybrid approaches combining both appearance and geometric
constraints to perform scene summarization, reconstruction and recognition. The
method presented in this paper is similar in spirit to the approach of [1], but
scales each of the techniques used to the true scale of internet photo collections,
as in [2]. However, in addition to [2], we also propose a way to parallelize the
computationally expensive two-view geometric verification step on the GPU, in
addition to the appearance grouping steps.

The first work that performed 3D reconstruction of landmarks from inter-
net photo collections containing a few thousand images was the Photo Tourism
system [4]. This method yields high-quality reconstruction results with the help
of exhaustive pairwise image matching and global bundle adjustment after in-
serting each new view. Both of these steps are computationally prohibitive on
large scale datasets as the exhaustive matching grows exponentially and is no
longer practical given contaminated real-world photo collections. To improve
the performance of their system, Snavely et al. [7] find skeletal sets of images
from the collection, whose reconstruction provides a good approximation to a
reconstruction involving all the images. One remaining limitation of this work
is that it still requires the exhaustive computation of all two-view relationships
in the dataset as a prerequisite. Most recently, Agarwal et al. [5] address this
computational challenge by using a computing cluster with up to 500 cores in
order to process larger datasets. Similar to our system, the work in [5] uses im-
age recognition techniques such as approximate nearest neighbor search [8] and
query expansion [9] to reduce the number of candidate relations from the full
exhaustive set. However, in contrast to Agarwal et al., our system uses a single
PC, thereby achieving an even higher effective processing rate. The main source
of the computational advantage we achieve is through the cascaded application
of appearance and geometric constraints. By first using computationally cheaper
2D appearance cues, we identify consistent clusters of images that are likely to
be spatially related. In turn, this leads to an overall decrease in the number of
candidates to be considered for pairwise registration.

Our main goal in this work is to leverage the computing power of the GPU in
order to develop a high performance system capable of efficiently organizing large
image collections. Strong and Gong present such a system in [10, 11], however our
system differs in that it does not require a training step. Our system also scales to
millions of images, whereas theirs scales to only thousands. Computation of gist
vectors on the GPU has been introduced in [12], however their results for large
datasets were extrapolated from results on smaller datasets. Our paper presents
results that were collected from actual runs on datasets of millions of images.
To our knowledge, this is the first attempt that implements certain algorithms
(binary code generation, RANSAC) on the GPU. In addition to these, since we
operate on binary vectors, we have also developed a k-medoids implementation
for the GPU, as an alternative to existing k-means implementations [13, 14].



4 Johnson, Fite-Georgel, Raguram, Frahm

Finally, for the geometric verification step, we make use of SiftGPU, a publicly
available GPU implementation of SIFT extraction and matching3.

3 System Overview

In this section, we present a brief description of the main components of our sys-
tem. At a high-level, the system operates in a hierarchical manner, using both
2D image appearance cues as well as 3D scene geometry in order to solve the
task of partitioning images from large Internet photo collections into clusters
of similar photographs. The input to the system is a raw Internet photo collec-
tion, downloaded using keyword searches on Flickr. It has been observed [15]
that these collections can often be significantly contaminated, with a substan-
tial fraction of the images being semantically unrelated to the query. Thus, our
system has been designed with a view towards being robust to the significant
amount of clutter present in community photo collections. The downloaded im-
ages are then subjected to several algorithms in a pipeline, first enforcing a loose
grouping of the images based on 2D appearance cues, and subsequently refining
the initial partitioning using stricter 3D constraints. This procedure allows for
the efficient processing of very large datasets, since the more computationally
demanding geometric verification steps are carried out only on smaller subsets
of images that are already grouped together by similarity. The end result is a
clustering where each image within a cluster is similar in geometric structure,
vantage point, and color. The main steps in the pipeline are outlined below.

– Global Descriptor Extraction (Sec. 4.1): In order to cluster images
based on similarity, we first need to compute feature vectors for each image.
We choose to compute gist descriptors [16] for each image, which has been
shown to effectively capture perceptual similarity and has been used to re-
trieve structurally similar scenes [17]. We combine the gist descriptor with
low resolution color descriptions of the image to produce a 368 dimensional
feature vector for each image.

– Conversion to Binary Codes (Sec. 4.2): To efficiently store the feature
vectors on the GPU, we compress them into binary codes. The compressed
representation allows all of the data to be simultaneously stored on the GPU,
which significantly reduces the amount of data transfer necessary between
device and host during the clustering step.

– Clustering on the Binary Codes (Sec. 4.3): Given a set of compressed
descriptor vectors, we cluster the dataset with a parallel implementation of
the k-medoids algorithm [18]. This provides a rough grouping of the dataset
into clusters that are similar in global appearance. In addition, this step also
filters out a large fraction of unrelated images, since these fall into small and
isolated clusters.

– Geometric Verification (Sec. 4.4): Once a loose grouping of the images
has been obtained, strict geometric constraints are enforced to ensure that

3 http://www.cs.unc.edu/∼ccwu/siftgpu



Fast Organization of Large Photo Collections using CUDA 5

the images within a cluster represent the same scene or structure. This step
requires the extraction of SIFT features [19], followed by a RANSAC [20]
procedure for estimating the pairwise epipolar geometry [21, 22]. Geometri-
cally consistent images, or images that capture the same 3D structure, are
retained, while the others are discarded. This produces clean clusters that
are consistent both in terms of appearance as well as geometry.

Each of the above steps is implemented in CUDA and runs on one or multiple
GPUs. We also plan to make these implementations freely available on the web,
for use by the community.

4 Image Organization for Internet Photo Collections

In this section we introduce the details of our proposed processing pipeline. Along
with the algorithmic considerations we will discuss design decisions to ensure a
efficient use of the highly parallel GPU architecture. In particular we explore the
considerations made in regards to memory access patterns, maximizing hardware
utilization and minimizing I/O between the host and GPU.

4.1 Global Descriptor Extraction

To boost computational efficiency, we aim at compactly describing each image
with a single global image descriptor. We choose the powerful gist descriptor
proposed by Oliva and Torralba [16], which was previously shown to achieve
good results for the tasks of scene matching and retrieval [17]. The gist vector
is a description of the oriented edges in an image. It is an aggregation of image
convolutions that have been downsampled to a resolution of 4x4. Each convolu-
tion picks up edge responses at a certain orientation and scale. The convolution
kernel used in our implementation is the Gabor filter. In our implementation,
we perform a total of 20 convolutions at three different scales. The images we
convolve are greyscale thumbnails with a resolution of 128x128, and are cropped
accordingly to preserve their original aspect ratio. Performing these operations
leads to a 320-dimensional gist vector. It is also typical to augment the gist de-
scriptor with color information, usually by appending an additional vector that
carries color information. In contrast to the downsampled L*a*b color space
used to incorporate colour information as in [17], our method directly uses the
RGB representation of the image. For the task of organizing image collections,
we empirically found the two representations to perform comparably. Thus, a
4 × 4 RGB representation is then appended to the gist feature vector. The final
descriptor has 368 dimensions, stored as floats.

Computationally, the convolution with the Gabor filter and the downsam-
pling of the images are the most demanding tasks in this step. We improve GPU
utilization during the convolution step by efficiently processing the images in
batches. Since each of the input images is only of size 128×128, we combine the
processing of multiple images to achieve greater occupancy of the GPU. Images



6 Johnson, Fite-Georgel, Raguram, Frahm

are convolved in batches of 256 (determined empirically, we measure no gain
with bigger batch sizes) to reduce the number of memory transfers from host to
GPU. The images are laid out in row major order, one after the other and are
passed to the CUDA kernel for convolution.

The CUDA kernel for convolution assigns 16x16 thread blocks to compute the
convolution of some 16x16 patch of the virtual image, and each thread within a
block computes one pixel of the convolved image. Prior to dispatching the CUDA
kernel, the convolution kernel is transferred into a constant memory buffer. We
chose to use constant memory for two main reasons. First, constant memory is
cached, so reads from the buffer will be fast. Secondly, constant memory is useful
for memory accesses when each thread in a half-warp accesses the same index.
In this case, each thread reads from the same location in the convolution kernel
simultaneously, providing a slight advantage over textured memory.

Each thread block loads its corresponding image patch into shared memory.
It also needs to load in a portion of the image that borders this patch, and the
size of this portion is dependent on the size of the convolution kernel. All of
these memory loads are coalesced by carefully controlling which threads load a
particular part of the image. Once all necessary image data is loaded into shared
memory, the patches are convolved with a standard double nested loop, and the
sum is written out to global memory.

Fig. 2. Visualization of the downsampling process. It is performed in two one-
dimensional passes with transpositions after each pass.

Before the next convolution is performed, the current convolved images are
downsampled to reduce the amount of storage necessary. Downsampling is per-
formed on the virtual image, and care is taken to ensure that sub-image bound-
aries within the virtual image are preserved. Downsampling is performed in two
one-dimensional passes over the virtual image. The thread blocks, accordingly,
are 1-dimensional. Since each thread block outputs one downsampled pixel, the
size of each thread block is determined by the level of downsampling.

The downsampling kernel essentially performs a sum reduction along a con-
tiguous portion of the image, with a final division to achieve an average value
over its portion of the image. Each thread block outputs its result to global
memory buffer in a transposed fashion, so that the next pass can read in the
image in a set of coalesced memory accesses. After two passes the virtual image
has been downsampled in both the x and y directions, and the result remains in
the row-major storage format. See Figure 2 for a pictorial explanation.



Fast Organization of Large Photo Collections using CUDA 7

Intuitively, the extracted gist descriptors describe the viewpoint, through the
edge structure, and the illumination, by means of the subsampled image, of the
scene. These gist vectors can thus be leveraged to roughly group together similar
images, as outlined in subsequent sections.

4.2 Conversion to Binary Codes

To group together similar images, we would like to perform a clustering proce-
dure on the gist vectors. However, there are some important memory limitations
that must be overcome in order to achieve good performance. In order to achieve
efficient clustering on the GPU, we require that all feature vectors fit into the
GPU memory. Given today’s GPU memory limitations, we could only fit about
600K to 700K of the 368 dimensional descriptors into the GPU memory, which
is significantly smaller than the dataset sizes that we seek to operate on. Pro-
cessing the dataset in batches would require a large number of transfers between
host and device for each iteration of the clustering algorithm, thus leading to
significant overhead. To overcome this limitation, we compress each feature vec-
tor into a string of binary numbers, known as a binary code. The particular
compression technique we implemented is based on the method of [23]. Since
we would like to retain the appearance relationships of the gist vectors, these
vectors are compressed in such a way that the Hamming distance between the
resulting binary codes approximates the Euclidean distance between the original
feature descriptors. Each bit of the code describes on which side of a randomly
generated hyper-plane the original GIST descriptor is located. This method of
compression has been compared to a simpler locality sensitive hashing method
in [2], and it has been shown to preserve feature vector distances sufficiently.
The ability to choose the number of bits in our binary codes provides flexibil-
ity for the clustering step. We may decrease the number of bits if we wish to
manage GPU memory more conservatively, or we may increase the number of
bits if we wish to approximate the feature vectors more accurately. To ensure
high computational performance, our technique employs the highly optimized
CUBLAS library, with the exception of a kernel for converting float vectors into
binary strings. This kernel dispatches 1-dimensional thread blocks of length 32,
and each thread block produces one unsigned integer of output by performing a
bitwise OR reduction on 32 bits. The reduction represents the sgn of 32 floats.
For Berlin, using a 512-bit binary code scheme reduces the storage requirement
of the features from 3.7GB to 164MB.

4.3 Clustering

Once the binary codes have been generated we can cluster them using a par-
allel implementation of k-medoids. Similar to k-means, the standard k-medoids
algorithm [18] takes n features as input, and outputs k clusters. It differs from
k-means in that the cluster centers are the most central data elements of the
respective clusters, instead of the mean of the cluster center. This accommo-
dates our binary representation of the image descriptors for which the mean is



8 Johnson, Fite-Georgel, Raguram, Frahm

not meaningful. Since the Hamming distance of our binary codes approximates
the Euclidean distance of the original gist descriptors, our k-medoids implemen-
tation uses this as the distance metric. K-medoids consists of iterations of an
assignment step and update step. It is initialized by randomly selecting k distinct
binary codes as cluster centers, or medoids. During the assignment step, each
binary code is associated with the closest medoid by Hamming distance. In the
update step, the binary code that minimizes the sum of distances to all other
codes in its cluster becomes the new medoid center. We define convergence as
the number of medoid changes falling below a defined threshold (we use 0.01k).

The bottleneck of the k-medoids algorithm is the computation of the Ham-
ming distance matrices for all clusters. Distance matrices are computed in both
the assignment and the update stage. In the assignment stage, an n× k matrix
is computed. In the update step, k smaller matrices are computed, one for each
cluster. The dimension of each matrix is square and equal to the number of
elements in that cluster. Fortunately, this computation is highly parallelizable.
Our kernel for computing the distance matrix dispatches as many 16x16 thread
blocks as needed to cover the full distance matrix. Each thread computes one en-
try of the distance matrix, and does so by processing 32 bits of the binary codes
at a time. This way, each thread block only requires 128 bytes of shared memory
at any given time. An overview of the clustering can be found in Algorithm 1.

Algorithm 1 K-Medoids
for i=1 to k do

randomly assign medoid[i] to a binary code

end for

repeat

for i=1 to n do

compute distance of ith binary code to medoids in parallel

do parallel min-reduce to assign binary code i to closest medoid

end for

for i=1 to k do

compute distance matrix between all elements of cluster i

do parallel sum-reduce over rows of distance matrix

do parallel min-reduce of result to find new cluster center

end for

until converged

4.4 Geometric Verification

The initial clusters provided by k-medoids may contain still images which are
close in the compressed gist space, but they still may be visually or geometrically
inconsistent as shown in Figure 3. Given that the desired output of our system
only consists of clusters of images which have captured a consistent geometrical
scene structure, we perform a final step to remove inconsistent images. This is



Fast Organization of Large Photo Collections using CUDA 9

performed by selecting the first r images of each cluster (the medoid and the
images closest to it) and estimating the epipolar geometry of each image pair
within those r images. If any image has less than ρ inliers (we use ρ = 18 in all our
experiments), they are replaced with the next closest image. Similarly, to [1] this
process is repeated until r consistent images are found, or the cluster is rejected.
In order to prevent extensive computation for large but inconsistent clusters, we
reject a cluster if no consistent set has been found after 3r different images have
been tested. When a cluster has been verified, the image with the most inliers
over the set of r images is declared as the most representative view: the iconic.
Afterwards, all remaining images are verified against the chosen iconic.

To compute the two-view geometry, we first extract SIFT [19] features using
the efficient CUDA SiftGPU implementation. We limit the maximum number
of extracted features to 4000 in the interest of computational efficiency. Follow-
ing this, we compute pairwise putative matches using the CUBLAS library to
perform fast matrix multiplication, followed by a distance ratio test to identify
likely correspondences. The putative matches are then verified by estimating the
fundamental matrix using the 7-point algorithm [24] in a RANSAC framework
[20], both of which have been implemented in our system, using CUDA.

Algorithm 2 CUDA QR Decomposition Kernel

{Given A, compute matrices Q and R such that A = Q*R}
shared float *sR, *sQ

load A into sR, sQ = I
for k=1 to min(rows-1, cols) do

compute kth Householder reflector in serial

apply reflector to sR, sQ in parallel

end for

write sR, sQ to global memory

Due to the randomized nature of memory access patterns in RANSAC, im-
plementing RANSAC efficiently on the GPU presents the challenge of achieving
coalesced memory accesses. That is, nearby threads access nearby locations in
memory. To overcome this, we push N random samples of 7 points onto the
GPU, where N is the maximum number of iterations of RANSAC, set to 1024
in our experiments. This way, coalesced reads from memory can still reflect ran-
domized reads of the data. These randomized reads of the data are used as input
to the 7-point fundamental matrix estimator.

Estimating the fundamental matrix requires finding solutions to the funda-
mental matrix constraint x′TFx = 0, where x and x′ represent corresponding
points across two views. At least seven of these constraints are required to solve
for the fundamental matrix [24], so we randomly select 7 correspondences, which
define a system of equations. The null space of this system of equations defines
the fundamental matrix. To find the null space, we develop a QR decomposi-
tion algorithm in CUDA using Householder reflections. The pseudocode for our



10 Johnson, Fite-Georgel, Raguram, Frahm

Fig. 3. An example cluster output from k-medoids on the Tower Bridge dataset. Note
the inconsistent images near the bottom.

algorithm is shown in Algorithm 2. Since each thread block decomposes a sep-
arate matrix, our CUDA kernel only works for small matrices. This is not a
problem, as the system of linear equations is represented by a 7x9 matrix. The
QR decomposition works by solving for one column of R at a time, and multiple
columns cannot be solved simultaneously. However, all elements in one column
can be solved simultaneously. Multiple blocks can be dispatched simultaneously,
allowing for fast QR decompositions of multiple matrices.

Once the fundamental matrices have been generated, they must be evaluated
against the entire set of correspondences. This data is stored on a GPU buffer,
and we test the Sampson distance for each correspondence against a predefined
threshold to identify inliers. We use the adaptive stopping criterion, where the
number of iterations is updated based on the highest inlier ratio observed so far.

5 Results

In this section, we present results on three challenging real-world datasets. The
experiments were run on a 2 Intel Xeon processor machine (8 available cores),
with 50GB RAM and 4 Nvidia GTX 295 GPUs (8 GPU cores). The sift ex-
traction, gist computation and RANSAC modules utilize all 8 GPUs, while the
binary compression and clustering steps use 1 GPU, since multiple GPUs would
require significant I/O between devices (eg., in the computation of the distance
matrix). The number of clusters in k-medoids was chosen to be 10% of the
dataset size, capped at a maximum of 100,000 centers.

The three datasets presented in this paper – Notre Dame (90,196 images),
Tower Bridge (137,073 images), and Berlin (2,704,448 images) – were downloaded
using keyword searches on Flickr. Figure 3 shows an example cluster output from



Fast Organization of Large Photo Collections using CUDA 11

Fig. 4. The same cluster as in Fig. 3 after it has passed through geometric verification.
Note how the inconsistent images have been removed.

k-medoids for the Tower Bridge dataset. Note that at this stage, only appearance-
based cues have been employed. While the cluster demonstrates a appreciable
degree of visual similarity, there exist incorrect images that are consistent in
appearance, but that do not depict the same scene. Enforcing tighter geometric
constraints helps “clean-up” these clusters, as shown in Figure 4.

Figures 5 shows a subset of 120 iconic images for the Notre Dame dataset.
It can be seen that this provides a concise summary of the “popular” aspects
and viewpoints of the landmark. These iconic images can then be used to seed a
structure-from-motion system, since they capture a variety of different camera
locations covering the scene. Thus, the process of 3D reconstruction may be
initialized using just a small, representative subset of the dataset, thus allowing
for the processing of massive image collections. In addition, the iconic images can
be used as the top level of a hierarchical browsing system, where each iconic may
in turn be expanded to show all the images within the corresponding cluster,
which are very similar in appearance and geometry to the iconic of interest. If
desired, an additional level in the browsing hierarchy may be formed by grouping
together iconic images into related “components” as in [1], thereby providing a
three-level organization of the image collection.

To demonstrate some of the advantages of a GPU-based approach, we com-
pared the performance of the proposed GPU RANSAC algorithm versus a very
high performance real-time robust estimation technique called ARRSAC [25].
For this experiment, 50 random clusters were selected from the Berlin dataset
and geometric verification was performed as outlined in Section 4.4. The results
are tabulated in Table 1 for varying numbers of CPU and GPU cores. It can
be seen from the table that the use of GPU-RANSAC for the geometric veri-
fication step results in a 2-8% improvement in speed, compared to ARRSAC.
While this is not a large speedup, it should be noted that ARRSAC is a highly
optimized framework, whereas our brute force implementation leaves much room
for optimization.



12 Johnson, Fite-Georgel, Raguram, Frahm

Number of CPU/GPU cores Geometric verification timing (seconds)
ARRSAC GPU-RANSAC

1/1 155.38 152.40
4/4 38.5802 36.8281
8/8 28.299 25.892

Table 1. Geometric verification performance: ARRSAC vs. our GPU-RANSAC. Tim-
ings were collected for different numbers of CPU and GPU cores used simultaneously.

Dataset # Iconics # Images Gist Binary Clustering Geom
Registered Code Verif.

Notre Dame 3,566 27,496 87s 0.79s 20.4s 42min 8s
Tower Bridge 5,479 47,146 138s 1.29s 26.2s 59min 46s
Berlin 13,612 133,634 1hr 1min 28.9s 30min 46s 14hr 27min
Table 2. Summary statistics and timings for each processing step in the pipeline.

Table 2 lists summary statistics for the complete pipeline operating on all
three datasets. The table lists the number of iconics found by our system for
each dataset, and it can be seen that these large datasets are efficiently reduced
to a small, representative set of iconic images. The table also lists the number of
geometrically consistent images that remain in the clusters following the robust
geometric verification step of the processing pipeline. On average, roughly 5-
35% of the images in each dataset are retained at this stage, though it must
be noted this fraction can be increased through additional stages that attempt
to match discarded images across different iconic clusters. Finally, Table 2 also
lists runtimes for each stage of the pipeline. It can be seen that our GPU-based
pipeline is able to process more than two million images in approximately 16
hours, on a single PC equipped with graphics hardware. This represents an
order of magnitude more data than current state of the art techniques [5].

6 Conclusion

This paper presents a high-performance GPU-based system for organizing large
photo collections. The system employs recognition constraints along with 3D
geometry, and exploits the underlying parallelism of the organization problem.
The system is entirely implemented on the GPU in CUDA, and is capable of
efficiently organizing massive image collections, containing millions of images, on
a single computer while still producing high-quality results. To our knowledge,
this is the first system that uses GPGPU computation to achieve the image
organization task.

References

1. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and Recognition of
Landmark Image Collections Using Iconic Scene Graphs. ECCV (2008)



Fast Organization of Large Photo Collections using CUDA 13

Fig. 5. Subset of 120 iconic images for the Notre Dame dataset. The iconics denote
dominant aspects of the scene or landmark, thus providing a concise but representative
visual summary of the dataset.



14 Johnson, Fite-Georgel, Raguram, Frahm

2. Frahm, J.M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen,
Y.H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building rome on a cloudless
day. ECCV 11 (2010)

3. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets, or
“how do i organize my holiday snaps?”. ECCV (2002) 414–431

4. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo
collections. International Journal of Computer Vision 80 (2008) 189–210

5. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a
day. ICCV (2009)

6. Berg, T.L., Berg, A.C.: Finding iconic images. The 2nd Internet Vision Workshop
at IEEE CVPR (2009)

7. Snavely, N., Seitz, S.M., Szeliski, R.: Skeletal sets for efficient structure from
motion. CVPR (2008)

8. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. JACM 45 (1998)
891–923

9. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic
query expansion with a generative feature model for object retrieval. ICCV (2007)

10. Strong, G., Gong, M.: Browsing a large collection of community photos based on
similarity on gpu. ISVC 4 (2008) 390–399

11. Strong, G., Gong, M.: Organizing and browsing photos using different feature
vectors and their evaluations. CIVR (2009) 1–8

12. Wang, Y., Feng, Z., Guo, H., He, C., Yang, Y.: Scene recognition acceleration
using cuda and openmp. ICISE (2009) 1422–1425

13. Shalom, S.A., Dash, M., Tue, M.: Efficient k-means clustering using accelerated
graphics processors. DaWaK ’08 (2008) 166–175

14. Hall, J.D., Hart, J.C.: Abstract gpu acceleration of iterative clustering (2004)
15. Kennedy, L., Chang, S.F., Kozintsev, I.: To search or to label?: Predicting the

performance of search-based automatic image classifiers. ACM MIR (2006)
16. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation

of the spatial envelope. IJCV 42 (2001) 145–175
17. Hays, J., Efros, A.A.: Scene completion using millions of photographs. SIGGRAPH

(2007)
18. Kaufman, L., Rousseeuw, P.: Finding Groups in Data An Introduction to Cluster

Analysis. Wiley Interscience, New York (1990)
19. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60

(2004) 91–110
20. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM 24 (1981)

21. Beardsley, P., Zisserman, A., Murray, D.: Sequential updating of projective and
affine structure from motion. Int. J. Computer Vision 23 (1997) 235–259

22. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle appli-
cations. Journal of Field Robotics 23 (2006)

23. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant
kernels. NIPS 22 (2009) 1509–1517

24. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Second
edn. Cambridge University Press, ISBN: 0521540518 (2004)

25. Raguram, R., Frahm, J.M., Pollefeys, M.: A comparative analysis of RANSAC
techniques leading to adaptive real-time random sample consensus. ECCV (2008)


