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Abstract

It is possible to combine multiple proba-
bilistic models of the same data by multi-
plying the probabilities together and then
renormalizing. This is a very eÆcient way
to model high-dimensional data which si-
multaneously satis�es many di�erent low-
dimensional constraints. Each individual
expert model can focus on giving high prob-
ability to data vectors that satisfy just one
of the constraints. Data vectors that satisfy
this one constraint but violate other con-
straints will be ruled out by their low proba-
bility under the other expert models. Train-
ing a product of models appears diÆcult be-
cause, in addition to maximizing the proba-
bilities that the individual models assign to
the observed data, it is necessary to make
the models disagree on unobserved regions
of the data space: It is �ne for one model to
assign a high probability to an unobserved
region as long as some other model assigns
it a very low probability. Fortunately, if
the individual models are tractable there is
a fairly eÆcient way to train a product of
models. This training algorithm suggests a
biologically plausible way of learning neural
population codes.

Introduction

Given several di�erent generative models of
the same data, a common way to combine
them is to use a mixture in which the com-
bined probability distribution is a weighted
arithmetic mean of the individual distribu-
tions. This is equivalent to assuming an
overall generative model in which each data
vector is generated by �rst choosing one of
the individual generative models and then
allowing that individual model to generate
a data vector. Combining models by form-

ing a mixture is attractive because it is easy
to �t mixtures of tractable models to data
using EM or gradient ascent and, if the in-
dividual models di�er a lot, the mixture is
likely to be a better �t to the true distribu-
tion of the data than a random choice among
the individual models.

Unfortunately, mixture models are very
ineÆcient in high-dimensional spaces. Con-
sider, for example, the manifold of face im-
ages. It takes about 35 real numbers to
specify the shape, pose, expression and illu-
mination of a face and, under good viewing
conditions, our perceptual systems produce
a sharp posterior distribution on this 35-
dimensional manifold. This cannot be done
using a mixture of models each of which is
tuned in the 35-dimensional space because
mixing always makes distributions vaguer
and each model must already be broadly
tuned in order to cover the 35-dimensional
space.

An alternative way to combine many indi-
vidual expert models is to multiply the prob-
abilities together and renormalize. Prod-
ucts of Experts (PoE) have the advantage
that they can produce much sharper dis-
tributions than the individual expert mod-
els. For example, each model can constrain
di�erent dimensions in a high-dimensional
space and their product will then constrain
all of the dimensions (see �gure 1). For mod-
eling handwirtten digits, one low-resolution
model can generate images that have the
approximate overall shape of the digit and
other more local models can ensure that
small image patches contain segments of
stroke with the correct �ne structure. For
modeling sentences, one expert can ensure
that the tenses agree and another can ensure
that there is number agreement between the
subject and verb.



Fitting a PoE to data appears diÆcult be-
cause it is necessary to compute the deriva-
tives of the partition function that is used
in the renormalization. As we shall see,
however, these derivatives can often be esti-
mated very easily.

Learning products of experts

We consider individual expert models for
which it is tractable to compute the deriva-
tive of the log probability of a data vec-
tor with respect to the parameters of the
model. This includes mixtures of Gaussians,
mixtures of a Gaussian and a uniform, and
many other popular models including hid-
den markov models and linear dynamical
systems. We combine n individual expert
models as follows:

p(dj�1:::�n) =
�mpm(dj�m)P
i�mpm(cij�m)

(1)

where d is a data vector in a discrete space,
�m is all the parameters of individual model
m, pm(dj�m) is the probability of d under
model m, and i is an index over all possible
vectors in the data space. For continuous
data spaces the sum is replaced by the ap-
propriate integral.
For an individual expert to �t the data

well it must give high probability to the ob-
served data and it must waste as little prob-
ability as possible on the rest of the data
space. A PoE can �t the data well even if
each expert gives high probability to unob-
served regions of the data space provided
the experts disagree on which unobserved
regions are probable.
To �t a PoE to a set of observed iid data

vectors 1, we need to compute the derivative
of the log likelihood of each observed vector,
d, under the PoE. This is given by:

@ log p(dj�1:::�n)

@�m
=

@ log pm(dj�m)

@�m

�
X
i

p(cij�1:::�n)
@ log pm(cij�m)

@�m
(2)

The second term on the RHS of Eq. 2
is just the expected derivative of the log
probability of an expert on fantasy data, c,
that is generated from the PoE. So, assum-
ing that each of the individual experts has

1For time series models, d is a whole sequence.

a tractable derivative, the only diÆculty in
estimating the derivative of the log proba-
bility of the data under the PoE is generat-
ing correctly distributed fantasy data. This
can be done in various ways. For discrete
data it is possible to use rejection sampling:
Each expert generates a data vector inde-
pendently and this process is repreated un-
til all the experts happen to agree. This is
typically very ineÆcient. A Markov chain
Monte Carlo method that uses Gibbs sam-
pling is typically much more eÆcient. In
Gibbs sampling, each variable draws a sam-
ple from its posterior distribution given the
current states of the other variables. Given
the data, the hidden states of all the experts
can always be updated in parallel because
they are conditionally independent. If the
individual experts have the property that
the components of the data vector are condi-
tionally independent given the hidden state
of the expert, it is also possible to update
all of the components of the data vector in
parallel given the hidden states of all the
experts. So Gibbs sampling can alternate
between parallel updates of the hidden and
visible variables. To get an unbiased esti-
mate of the gradient for the PoE it is nec-
essary for the Markov chain to converge to
the equilibrium distribution, but in practice
very brief Gibbs sampling works remarkably
well for reasons discussed at the end of the
paper.

A simple example

PoE's should work very well on data distri-
butions that can be factorized into a product
of lower dimensional distributions. This is
demonstrated in �gure 1. There are 15 \uni-
gauss" experts each of which is a mixture of
a uniform and a single, axis-aligned Gaus-
sian. In the �tted model, each tight data
cluster is represented by the intersection of
two Gaussians which are elongated along
di�erent axes. Using a conservative learn-
ing rate, the �tting required 2,000 updates
of the parameters, but a single Gibbs iter-
ation was suÆcient to estimate the deriva-
tives on the fantasy data. For each update of
the parameters, the following computation
is performed on every observed data vector:

1. Given the data, d, calculate the poste-
rior probability of selecting the Gaus-
sian rather than the uniform in each



Figure 1: Each dot is a datapoint. The data
has been �tted with a product of 15 experts.
The ellipses show the one standard deviation
contours of the Gaussians in each expert.
The experts are initialized with randomly
located, circular Gaussians that have about
the same variance as the data. The �ve un-
needed experts remain vague, but the mix-
ing proportions of their Gaussians remain
high.

expert and compute the �rst term on
the RHS of Eq. 2.

2. For each expert, stochastically select
the Gaussian or the uniform according
to the posterior. Compute the normal-
ized product of the selected Gaussians,
which is itself a Gaussian, and sample
from it is used to get a \reconstructed"
vector in the data space.

3. Compute the negative term in Eq. 2
using the reconstructed vector as c.

Logarithmic opinion pools

The idea of combining the opinions of mul-
tiple di�erent expert models by using a
weighted average in the log probability do-
main is far from new (Genest and Zidek,
1986), but research has focussed on how
to �nd the best weights for combining ex-
perts that have already been learned sepa-
rately rather than training the experts co-
operatively. The geometric mean of a set
of probability distributions has the attrac-
tive property that its Kullback-Liebler di-
vergence from the true distribution, P , is
smaller than the average of the Kullback-
Liebler divergences of the individual distri-
butions, Q:

Figure 2: 300 datapoints generated by pro-
longed Gibbs sampling from the 15 experts
�tted in �gure 1. The Gibbs sampling
started from a random point in the range of
the data and used 25 parallel iterations with
annealing. Notice that the �tted model gen-
erates data at the grid point that is missing
in the real data.
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When all of the individual models are iden-
tical, Z = 1. Otherwise, Z is less than one
and the di�erence between the two sides of
(3) is � logZ. This makes it clear that the
bene�t of combining experts comes from the
fact that they make logZ small by disagree-
ing on unobserved data.

Learning a population code

A PoE can also be a very e�ective model
when each expert is quite broadly tuned on
every dimension and precision is obtained by
the intersection of a large number of experts.
Figure 3 shows what happens when experts
of the type used in the previous example are
�tted to 100-dimensional synthetic images
that contain edges. The edges varied in their
orientation, position, and the intensities on
each side of the edge. The intensity pro�le
across the edge was a sigmoid. Each expert
also learned a variance for each pixel and
although these variances varied, individual
experts did not specialize in a small subset
of the dimensions. Given an image, about
half of the experts have a high probability
of picking their Gaussian rather than their



Figure 3: The means of all the 100-
dimensional Gaussians in a product of 40 ex-
perts, each of which is a mixture of a Gaus-
sian and a uniform. The PoE was �tted to
10� 10 images that each contained a single
intensity edge. The experts have been or-
dered by hand so that qualitatively similar
experts are adjacent.

uniform. The products of the chosen Gaus-
sians are excellent reconstructions of the im-
age. The experts at the top of �gure 3 look
like edge detectors in various orientations,
positions and polarities. Many of the ex-
perts further down have even symmetry and
are used to locate one end of an edge. They
each work for two di�erent sets of edges that
have opposite polarities and di�erent posi-
tions. Again, a single Gibbs iteration was
suÆcient for learning.

Initializing the experts

An eÆcient way to initialize a PoE is to train
each expert separately, forcing the experts
to di�er by giving them di�erent training
cases or by training them on di�erent sub-
sets of the data dimensions, or by using dif-
ferent model classes for the di�erent experts.
Once each expert has been initialized sep-

arately, the individual probability distribu-
tions need to be raised to a fractional power
to create the initial PoE. This is not nec-
essarily easy because when the probabilities
assigned by an expert model are softened
they need to be renormalized which involves
summing over the entire data space. For-
tunately, an expert does not really need to
assign a probability to a data vector. So
long as the expert assigns a positive num-
ber to each data vector, this number can be
normalized to create a probability and since
the normalization is the same on both real
and fantasy data, the derivative of the log
normalization term cancels out. When the
experts are being trained cooperatively, the
only real requirement on each expert is that
it be easy to compute the derivative (with
respect to the expert's parameters) of the
log of the number that it assigns to a vector
in the data space.

Comparison with directed

acyclic graphical models

Inference in a PoE is trivial because the
experts are individually tractable and the
hidden states of di�erent experts are condi-
tionally independent given the data. This
makes them relevant as models of biologi-
cal perceptual systems, which must be able
to do inference very rapidly. Alternative ap-
proaches based on directed acyclic graphical
models su�er from the \explaining away"
phenomenon. When such graphical mod-
els are densely connected exact inference is
intractable, so it is necessary to resort to
implausibly slow iterative techniques for ap-
proximate inference (Saul and Jordan, 1998)
or to use crude approximations that ignore
explaining away during inference and rely
on the learning algorithm to �nd represen-
tations for which the shoddy inference tech-
nique is not too damaging (Hinton et al.,
1995).
Unfortunately, the ease of inference in

PoE's is balanced by the diÆculty of gen-
erating fantasy data. This can be done
trivially in one ancestral pass in a directed
acyclic graphical model but requires an it-
erative procedure such as Gibbs sampling in
a PoE. If, however, brief Gibbs sampling is
suÆcient for learning, the diÆculty of gen-
erating unbiased fantasy data is not a major
problem.
In addition to the ease of inference that



results from the conditional independence
of the experts given the data, PoE's have a
more subtle advantage over generative mod-
els that work by �rst choosing values for the
latent variables and then generating a data
vector from these latent values. If such a
model has a single hidden layer and the la-
tent variables have independent prior distri-
butions, there will be a strong tendency for
the posterior values of the latent variables
to be approximately marginally independent
after the model has been �tted to data. Any
lack of marginal independence can be viewed
as a coding ineÆciency if the data is com-
municated by �rst specifying the states of
the latent variables under an (inappropri-
ate) independent prior and then specifying
the data given the hidden values. For this
reason, there has been little success with at-
tempts to learn such generative models in a
greedy bottom-up way. With PoE's, how-
ever, even though the experts have indepen-
dent priors the latent variables in di�erent
experts will be marginally dependent: They
can have high mutual information even for
fantasy data generated by the PoE itself. So
after the �rst hidden layer has been learned
greedily there may still be lots of statisti-
cal structure in the latent variables for the
second hidden layer to capture.

PoE's and Boltzmann machines

The Boltzmann machine learning algorithm
(Hinton and Sejnowski, 1986) is theoreti-
cally elegant but it is very slow in net-
works with interconnected hidden units and
it su�ers from strange e�ects in which the
weights are driven away from regions in
which the learning signal has zero mean but
high variance. In an unsupervised Boltz-
mann machine with one visible layer, one
hidden layer, and no intralayer connections,
the probability of generating a visible vector
is proportional to the product of the proba-
bilities that the visible vector would be gen-
erated by each of the hidden units acting
alone. This type of Boltzmann machine is
therefore a PoE with one expert per hidden
unit.

Inference is tractable in this restricted ar-
chitecture because the states of the hidden
units are conditionally independent given
the data. The PoE learning algorithm is
exactly equivalent to the Boltzmann learn-
ing algorithm in this case. Consider the

derivative of the log probability of the data
with respect to the weight wij between a
visible unit i and a hidden unit j. Us-
ing the notation from Hinton and Sejnowski
(1986), the �rst term on the RHS of Eq 2
is < sisj >

+ � < sisj >
j� and the second

term is < sisj >� � < sisj >j�, where
< sisj >

j�, which cancels out, denotes the
expected value of sisj when the visible units
are unclamped and their states are being de-
termined solely by the single expert whose
only hidden unit is j.

One major advantage of a PoE over a
Boltzmann machine is that the individual
experts can be much more complex than
a single, symmetrically connected hidden
unit. This makes it possible to take ad-
vantage of the tractability of quite compli-
cated experts (like hidden markov models)
each of which can capture a lot of structure.
Furthermore, each expert can be initialised
sensibly, so the PoE learning algorithm can
start from a logarithmic opinion pool of sen-
sible experts.

Why one Gibbs iteration works

In the absence of a single convincing argu-
ment that shows why one Gibbs iteration
is enough we will have to rely on a prod-
uct of four less convincing arguments. First,
simulations show that it works. In addition
to the simulations described above that use
unigauss experts, simulations have been run
in which each expert is a mixture of many
Gaussians or each expert is a Boltzmann
machine with one hidden unit. In all simula-
tions, a single Gibbs iteration was suÆcient.

The second argument relies on the fact
that, in high-dimensional datasets, the data
nearly always lies on, or close to, a much
lower dimensional, smoothly curved mani-
fold. The PoE needs to �nd parameters that
make a sharp ridge of log probability along
the low dimensional manifold. By starting
with a point on the manifold and ensuring
that this point has higher log probability
than the typical reconstructions from the la-
tent variables of all the experts, the PoE en-
sures that the probability distribution has
the right local curvature. It is possible that
the PoE will accidentally assign high prob-
ability to other distant and unvisited parts
of the data space, but this is unlikely if the
log probabilty surface is smooth and if both
its height and its local curvature are con-



strained at the data points. It is possible to
�nd and eliminate such points by perform-
ing prolonged Gibbs sampling without any
data, but this is just a way of improving the
learning and not an essential part of it.
The third argument is that the individual

experts will still behave quite sensibly even
if the estimate of the derivative of the sec-
ond term in Eq. 2 is just random noise. In
this case, the derivative of the �rst term will
force each expert to model the data and the
random noise will simply make the experts
di�er randomly rather than in a more useful
and systematic way.

The fourth argument is that a single
Gibbs iteration will be a move in the direc-
tion of the equilibrium distribution and so
it will tend to produce the right sign for the
whole RHS of Eq. 2 even if the magnitude
is a lot smaller.

Discussion

There have been previous attempts to learn
representations by adjusting parameters to
cancel out the e�ects of brief iteration in a
recurrent network (Hinton and McClelland,
1987; Seung, 199?), but these were not for-
mulated as approximate gradient descent in
a full generative model.

PoE's have been presented as an unsuper-
vised technique. They can also be used for
classi�cation by comparing the log proba-
bilities under separate, class-speci�c PoE's.
The normalization term in Eq. 1 is unknown
but the di�erence in the log normalization
terms of two PoE's is a single number which
can easily be estimated. A PoE in which
each of the 100 experts was a Boltzmann
machine with a single hidden unit learned an
excellent model of a thousand 16� 16 real-
valued images of the digit 2. The images,
from the USPS Cedar ROM, were normal-
ized but highly variable in style. The PoE
learned localised features that yielded al-
most perfect reconstructions. Another PoE
was trained on a thousand 3's and the two
models were then used to label 200 sepa-
rate test images. Each test image was repre-
sented by two coordinates which were its un-
normalized log probabilities under the two
models. Using the maximum margin 2-D
linear separator on the training data, there
were only two errors on test data and both
were extremely close to the decision bound-
ary.

It is also possible to de�ne each expert to
be a conditional probability model that pro-
duces a probability distribution over output
vectors when given an input vector. If each
expert has latent variables, the PoE learning
algorithm can be applied.
PoE's seem to be particularly promising

for sequential data because they allow each
expert to use a tractable but fairly power-
ful model. Even for static images, it would
be worth exploring the use of sophisticated
but tractable individual experts. For exam-
ple, each expert could be a tree-structured
Gaussian belief net. The product of many
experts that used di�erent trees would then
provide a proper probabilistic image model
that would eliminate block boundary arti-
facts. The belief nets could �rst be trained
separately and then trained together as a
PoE.
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