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ABSTRACT links, or even IP prefixes [8]. The finer grained traffic matrices are

Traffic matrices are required inputs for many IP network managegenerally more useful, for example,. in the analysis O.f the reIiabiIiFy
: : : : 8f a network under a component failure. During a failure, IP traffic

network reliability analysis. However, it is difficult to measure these 'S rerouted to find the new path through the network, and one wishes

matrices directly, and so there has been recent interest in inferrin €St if this would cause a link overload anywhere in the network.
Failure of a link within a PoP may cause traffic to reroute via al-

traffic matrices from link measurements and other more easily me - L . . : .
sured data. Typically, this inference problem is ill-posed, as it in- ernate links within the_PoP without changing the inter-PoP routing.
volves significantly more unknowns than data. Experience in man hu_s to understand failure loads on the netwo_rk we must measure
scientific and engineering fields has shown that it is essential t§affic atarouter-to-router level. In general, the inference problem is
approach such ill-posed problems via “regularization”. This papefn°re challenging at finer levels of detail, the finest so far considered
presents a new approach to traffic matrix estimation using a regulape_'l_nhg roatehr-to-rolqter.. the il d nat fth blem: f
ization based on “entropy penalization”. Our solution chooses the elf a.tﬁ?\?‘? es |n/ el -pos_et nature Od ) e p:_o ?en;\iﬁ ora
traffic matrix consistent with the measured data that is information€ V.VO/:j th' i |n%ress egresitpon;spwle \;‘éel‘.a . Otﬁs |tma te
theoretically closest to a model in which source/destination pairs ar8”gt'n les 'Ur{fa lon bematf;] Sh da q 0 te b I|<sl 'r\‘M e ertl)s,ta a
stochastically independent. We use fast algorithms based on mo&‘-}f‘:her eved ma)(/j et't';] e ?.n Ir(\alsfls’ a abln feth ma:jy efens
ern convex optimization theory to solve for our traffic matrices. Weﬁ dou?iat?l S and aH e pre Ixthe magy efo the or fe_r? onet_
evaluate the algorithm with real backbone traffic and routing data undred thousand. However, the number of pieces of Information
and demonstrate that it is fast. accurate. robust. and flexible. available, the link measurements, remains approximately constant.
' ' ' One can see the difficulty — for larg€ the problem becomes mas-

Categories and Subject Descriptors sively underconstrained. _ o

T There is extensive experience with ill-posed linear inverse prob-
C.2.3 [Computer-Communications Networkg: Network Opera-  |ems from fields as diverse as seismology, astronomy, and medical
tions—network monitoringC.2.5 [Computer-Communications Net- imaging [1, 2, 17, 18, 26], all leading to the conclusion that some

works]: Local and Wide-Area Networks+rternet sort of side information must be brought in, producing a result which
may be good or bad depending on the quality of this information.
General Terms All of the previous work on IP traffic matrix estimation has incor-
Measurement, Performance porated prior information: for instance, Vardi [24] and Tebaldi and
West [23] assume a Poisson traffic model, Cao et al. [3] assume
Keywords a Gaussian traffic model, Zhang et al. [28] assume an underlying

. . . . . o gravity model, and Medina et al. [16] assume a logit-choice model.
Traffic Matrix Estimation, Information Theory, Minimum Mutual Each method is sensitive to the accuracy of this prior: for instance,

Information, Regularization, Traffic Engineering, SNMP. [16] showed that the methods in [24, 23, 3] were sensitive to their
prior assumptions, while [28] showed that their method’s perfor-
1. INTRODUCTION mance was improved if the prior (the so called gravity model) was

A point-to-pointtraffic matrixgives the volume of traffic between generalized to more accurately reflect realistic routing rules.
origin/destination pairs in some network. Traffic matrices are re- In contrast, this paper starts from a regularization formulation of
quired inputs for many IP network management tasks: for instancethe problem drawn from the field of ill-posed problems, and derives
capacity planning, traffic engineering and network reliability analy-a prior distribution that is most appropriate to this problem. Our
sis. However, itis difficult to measure these matrices directly, and s@rior assumes source/destination independence, until proven other-
there is interest in inferring traffic matrices from link load statistics wise by measurements. The method then blends measurements with
and other more easily measured data [24, 23, 3, 16, 28]. prior information, producing the reconstruction closest to indepen-

Traffic matrices may be estimated or measured at varying levelglence, but consistent with the measured data. The method proceeds
of detail [15]: between Points-of-Presence (PoPs) [16], routers [28]by solving an optimization problem that is understandable and in-

tuitively appealing. This approach allows a convenient implemen-

tation using modern optimization software, with the result that the
Permission to make digital or hard copies of all or part of this work for @lgorithm is very efficient. _ ) i
personal or classroom use is granted without fee provided that copies are We test the estimation algorithm extensively on network traffic
not made or distributed for profit or commercial advantage and that copiend topology data from an operational backbone ISP. The results
bear this notice and the full citation on the first page. To copy otherwise, toshow that the algorithm is fast, and accurate for point-to-point traffic
republish, to post on servers or to redistribute to lists, requires prior specifianatrix estimation. We also test the algorithm on topologies gener-
permission and/or a fee. ated through the Rocketfuel project [21, 14, 22] to resemble alter-

SIGCOMM'03 August 25-29, 2003, Karlsruhe, Germany. native ISPs, providing useful insight into where the algorithm will
Copyright 2003 ACM 1-58113-735-4/03/000855.00.



work well. One interesting side result is that there is a relationshipbe extended in a number of ways, for instance to compute point-to-
between the network traffic and topology that is beneficial in thismultipoint demand matrices. The results show that it is important
estimation problem. We also test the sensitivity of the algorithmto add appropriate prior information. Our prior information is based

to measurements errors, demonstrating that the algorithm is highlgn independence-until-proven-otherwise, which is plausible, com-
robust to errors, and missing data in the traffic measurements. putationally convenient, and results in accurate estimates.

Our approach also allows us to address the problem of estimating The paper begins in Section 2 with some background: definitions
point-to-multipoint demand matrices. As shown in [8], point-to- of terminology and descriptions of the types of data available. Sec-
point traffic matrices are not always enough for applications. Undetion 3 describes the regularization approach used here, and our al-
some failures the traffic may actually change its origin and desti-gorithm, followed by Section 4, the evaluation methodology, and
nation; its network entry and exit points. The point-to-point traffic Section 5, which shows the algorithm’s performance on a large set
matrix will be altered, because the point-to-point traffic matrix de- of measurements from an operational tier-1 ISP. Section 6 exam-
scribes the “carried” load on the network between two points. Thenes the algorithm’s robustness to errors in its inputs, and Section 7
demand matrixwhich describes the “offered” load for an IP net- shows the flexibility of the algorithm to incorporate additional in-
work, is point-to-multipoint. To understand this, consider a packetformation. We conclude the paper in Section 8.
entering a backbone ISP through a customer link, destined for an-
other backbone ISP’s customer. Large North-American backbon@. BACKGROUND
providers typically are connected at multiple peering points. Our
packet could reach its final destination through any of these peerin@.l Network
links; the actual decision is made through a combination of Bor- An IP network is made up of routers and adjacencies between
der Gateway Protocol (BGP) and Interior Gateway Protocol (IGP)those routers, within a single AS or administrative domain. It is nat-
routing protocols. If the normal exit link fails, then the routing pro- ural to think of the network as a set of nodes and links, associated
tocols would choose a different exit point. In a more complicatedwith the routers and adjacencies, as illustrated in Figure 1. We re-
scenario, the recipient of the packet might be multi-homed — thafer to routers and links that are wholly internal to the network as
is, connected to more than one ISP. In this case the packet may ex@ackboneRouters (BRs) and links, and refer to the other&Edge
the first ISP through multiple sets of peering links. Finally, even sin-Routers (ERs) and links.
gle homed customers may sometimes be reached through multiple One could compute traffic matrices with different levels of ag-
inter-AS (Autonomous System) paths. gregation at the source and destination end-points, for instance, at

Given the complexity and ill-posed nature of the point-to-multipoinhe level of PoP to PoP, or router to router, or link to link [15]. In
problem, one is tempted to throw his arms in the air and say: “wethis paper, we are primarily interested in computing router to router
cannot solve the point-to-multipoint problem with link level data; traffic matrices, which are appropriate for a number of network and
we need better information (for instance from Netflow [8])." This traffic engineering applications, and can be used to construct more
paper shows, however, that by adopting the regularization approadhighly aggregated traffic matrices (e.g. PoP to PoP) using topology
above it is possible to make some progress towards solving thighformation [15]. We may further specify the traffic matrix to be
problem. We cannot estimate demand matrices at the ideal levéletween BRs, by aggregating up to this level.
of detail (prefix level), because the data at our disposal (SNMP link
loads) cannot distinguish prefixes. However, the operational reali-
ties of large networks make a simplification to router level practical,
and useful. Using these simplifications we present a method for
estimating the point-to-multipoint demand matrices, though in this
paper we only test these implicitly to make the results more directly
comparable to previous work.

An advantage of the approach used in this paper is that it also
provides some insight into alternative algorithms. For instance, the
simple gravity model of [28] is equivalent to complete independence
of source and destination, while the generalized gravity model cor-
responds to independence conditional on source and destination link
classes. Furthermore, the algorithm of [28] is a first-order approx-
imation of the algorithm presented here, explaining the success of
that algorithm, and suggesting that it also can be extended to mea-
sure point-to-multipoint demand matrices. Our method opens up Figure 1: IP network components and terminology
further opportunities for extensions, given the better understanding
of the importance of prior information about network traffic and how  |n addition, it is helpful for IP networks managed by Internet Ser-
it can be incorporated into the process of finding traffic matrices. Folice Providers (ISPs) to further classify the edge links. We cate-
instance, an appealing alternative prior generation procedure is prgyorize the edge links intaccesdinks, connecting customers, and
posed in [16] (this idea is suggested in [16] but the mechanism tgeeringlinks, which connect other (non-customer) autonomous sys-
do so is not explored). Alternatively, the Bayesian method of [23]tems. A significant fraction of the traffic in an ISPiiger-domain
can be placed into the optimization framework here, with a differentand is exchanged between customers and peer networks. Today traf-
penalty function, as could the methods of [24, 3]. ~ficto peer networks is largely focused on dedicated peering links, as

Finally, we examine some alternative measurement strategies thafustrated in Figure 1. Under the typical routing policies imple-
could benefit our estimates. We examine two possibilities: the firsinented by large ISPs, very little traffic will transit the backbone
(suggested in [16]) is to make direct measurements of some rows gfom one peer to another. Transit traffic between peers may reflect
the traffic matrix, the second is to measure local .trafflc matrices ag temporary step in network consolidation following an ISP merger
suggested in [25]. Both result in improvements in accuracy, how-or acquisition, but should not occur under normal operations.
ever, we found in contrast to [16] that the order in which rows of the  |n large IP networks, distributed routing protocols are used to
traffic matrix are included does matter — adding rows in order ofpyild the forwarding tables within each router. It is possible to pre-
the largest row sum first is better than random ordering. dict the results of these distributed computations from data gathered

To summarize, this paper demonstrates a specific tool that workgom router configuration files, or a route monitor such as [19]. In
well on large scale point-to-point traffic matrix estimation, and canour investigation, we employ a routing simulator such as in [7] that

Peering Links

IP Network Backbone

Access Links

Customers




makes use of this routing information to compute a routing matrix.wherep(y;|x;) is the probability thal” = y; conditional onX =

We also simulate load balancing across multiple shortest paths. z;. H(Y|X) can be thought of as the uncertainty remaining about
Y given that we are informed of the outcomeXf Notice that the

2.2 Traffic Data joint entropy ofX andY can be shown to be

In IP networks today, link load measurements are readily avail- HIX.Y) = H(X)+ H(V|X 5
able via the Simple Network Management Protocol (SNMP). SNMP (X,Y) (X) + H(Y]X). ©)
is unique in that it is supported by essentially every device in an IP\Ve can also define the Shannon information
network. The SNMP data that is available on a device is defined
in a abstract data structure known as a Management Information I(Y]X) = H(Y) — H(Y[X), (6)

Base (MIB). An SNMPpoller periodically requests the appropriate yhjch therefore represents the decrease in uncertainty abfatn
SNMP MIB data from a router (or other device). Since every routermeasyrement ok, or the information that we gain abobit from
maintains a cyclic counter of the number of bytes transmitted and rexy  The information is symmetrid (X |Y) = I(Y|X) and so we
ceived on each of its interfaces, we can obtain basic traffic statisticgap refer to this as theutual informationof X andY’, and write
for the entire network with little additional infrastructure (a poller). asI(X,Y). Note that/ (X, Y’) > 0, with equality if and only ifX

The properties of data gathered via SNMP are important for theynqy” are'independent — wheki andY” are independent gives
implementation of a useful algorithm — SNMP data has many lim- ;¢ o additional information aboi.
itations. Data may be lost in transit (SNMP uses unreliable UDP e mytual information can be written in a number of ways, but
transport; copying to our research archive may also introduce 10SSheare we write it
Data may be incorrect (through poor router vendor implementa- (@)
tions). The sampling interval is coarse (in our case 5 minutes). _ pr,y) _
Many of the typical problems in SNMP data may be mitigated by HX,Y) = Zp(w’ v)logs p(x)p(y) Kpellpe xpy), (D
using hourly traffic averages (of five minute data), and we shall use Y
this approach. The problems with the finer time-scale data makevhere K'(f||g) = >, filog(fi/g:) is the Kullback-Leibler diver-
time-series approaches to traffic matrix estimation more difficult. gence of f with respect tog, a well-known measure of distance

We use flow level data in this paper for validation purposes. Thispetween probability distributions.
data is collected at the router which aggregates traffic by IP source Discrete Entropy is frequently used in coding because the entropy
and destination address, and port numbers. This level of granularityy (X) gives a measure of the number of bits required to code the
is sufficient to obtain a real traffic matrix [8], and in the future suchvalues of X. That is, if we had a large number of randomly-
measurement may provide direct traffic matrix measurements, bujenerated instanceX;, X», ..., X,, and needed to represent this
at present limitations in vendor implementations prevent collectiorstream as compactly as possible, we could represent this stream us-
of this data from the entire network. ing onlyn H (X) bits, using entropy coding as practiced for example

. in various standard commercial compression schemes.

2.3 Information Theory Entropy has also been advocated as a tool in the estimation of

Information theory is of course a standard tool in communicationsprobabilities. Simply put, thenaximum entropy principlstates that
systems [12], but a brief review will set up our terminology. We we should estimate an unknown probability distribution by enumer-
begin with basic probabilistic notation: we defipg (z) to mean  ating all the constraints we know it must obey on ‘physical’ grounds,
the probability that a random variabl€ is equal tox. We shall ~ and searching for the probability distribution that maximizes the en-
typically abuse this notation (where it is clear) and simply write tropy subject to those constraints. It is well known that the proba-
p(z) = px(z). Suppose for sake of discussion tiatandY are  bility distributions occurring in many physical situations can be ob-

independent random variables, then tained by the maximum entropy principle. Heuristically, if we had
no prior information about a random variah}, our uncertainty
p(z,y) = p(x)p(y), (1)  aboutX is at its peak, and therefore we should choose a distribu-

. e . . . tion for X which maximizes this uncertainty, or the entropy. In the
i.e. the joint distribution is the product of its marginals. This can beaqe \where we do have information about the variable, usually in the
equivalently written using the conditional probability form of some set of mathematical constraifitsthen the principle
p(zly) = pl). ) states that we should maximize the entrdgyX |C') of X condi-

tional on consistency with these constraints. That is, we choose the
In this paper we shall typically use, rather than the standard randorgolution which maintains the most uncertainty while satisfying the
variablesX andY, S and D, the sourceS and the destinatio constraints. The principle can also be derived directly from some
of a packet (or bit). Thup(d|s) is the conditional probability of a ~ simple axioms which we wish the solution to obey [20].

packet (bit) exiting the network d@) = d, given that it entered at .
S = s, andp(d) is the unconditional probability of a packet (bity 2.4 lll-Posed Linear Inverse Problems

goingtoD =d. Many scientific and engineering problems have to solve inference
We can now define the Discrete Shannon Entropy of a discret@roblems which can be posed as follows. We observe gathich
random variableX taking valuesc; as are thought to follow a system of linear equations
H(X) = =" p(x:)log, p(x:), @3) y =A%, (®)

where then by 1 vectory contains the data, and theby 1 vector
gf contains unknowns to be estimated. The mattits ann by p
matrix. In many cases of interest> n, and so there is no unique
solution to the equations. Such problems are callggbsed linear

The entropy is a measure of the uncertainty about the outcome

X. For instance, ifX = z; with certainty, then” (X) = 0, and

H(X) takes its maximum value whexXi is uniformly distributed — o ;

that is, when the uncertainty about its value is greatest. inverse problemsin addition, frequently the data are noisy, so that
We can also define the conditional entropy of one random variabld IS more accurate to write

Y with respect to anotheX by y = Ax + z. 9)

HY|X)=— Zp(xi) Zp(yi|$i) log, p(yilzs),  (4)  Inthatcase any reconstruction procedure needs to remain stable un-
7 9 der perturbations of the observations. In our cgsare the SNMP



link measurements is the traffic matrix written as a vector, ald  close to thex we are trying to estimate. For a fuller discussion of
is the routing matrix. shrinkage estimation, see for example [13, 6]. For now, simply note
There is extensive experience with ill-posed linear inverse probthat shrinkage of a very high-dimensional estimand towards a cho-
lems from fields as diverse as seismology, astronomy, and medicakn point can be helpful. Note that no Bayesian assumption is being
imaging [1, 2, 17, 18, 26], all leading to the conclusion that somemade here: whatever the underlying estimand may be, shrinkage is
sort of side information must be brought in, producing a reconstrucan improvement, regardless of our prior beliefs about which vectors
tion which may be good or bad depending on the quality of the priorx are plausible. The key assumption is that we are trying to estimate
information. Many such proposals solve the minimization problem a vector with many components, all affected by noise.

min [[y — Ax|3 + A*J (%), (10)
3. REGULARIZATION OF THE TRAFFIC

where where| - |2 denotes thel, norm, A > 0 is a regulariza-

tion parameter, and(x) is a penalization functional. Proposals of ESTIMATION PROBLEM USING MINI-
this kind have been used in a wide range of fields, with consider- MUM MUTUAL INFORMATION

able practical and theoretical success when the data matched the aSThe problem of inference of the end-to-end traffic matrix is mas-

sumptions leading to the method, and the regularization functionaly o\ ‘i nosed because there are so many more routes than links in
matched the properties of the estimand. These are generally calledl, o ok In this section, we develop a regularization approach us-
strategies for regularization of ill-posed problerfisr a more gen- ing a penalty that seems well-adapted to the structure of actual traf-

eral description of regularization see [11]). fic matrices, and which has some appealing information-theoretic

A general approach to deriving $UCh regularization ideas is theétructure. Effectively, among all traffic matrices agreeing with the
Bayesian approach (such as used in [23]), where we model the e nk measurements, we choose the one that minimizes the mutual

tlm.a.mdg as bemg drawn at .random from a so.-call.ed prior” prob- information between the source and destination random variables.
ability _dlstrlbgtlon \.N'th o_Iensny:r(x) and the nois is taken as a Under this criterion, absent any information to the contrary, we
Gaussian white noise with variane&. Then the so-called posterior  4s5me that the conditional probabilitg]s) that a source sends
probability densityp(x|y) has its maximunx at the solution of traffic to a destinatiow is the same ag(d), the probability that the
(11) network as a w_ho_le sends packets or bytes to destir]dti&_here

are strong heuristic reasons why the largest-volume links in the net-

Comparing this with (10) we see that penalized least-squares prof§?0rk should obey this principle —they are so highly aggregated that

lems as giving the most likely reconstructions under a given model?heg in;]uitiVﬁIy Shhméld beh@ge similarly to tlhe ne_nNk?rIi_ai ? Wh|°|e' .
Thus the method of regularization has a Bayesian interpretation, ag- " the other hand, as evidence accumulates in the link-level statis-
suming Gaussian noise and assumii{g) = log w(x). We stress tics, the conditional probabilities are adapted to be consistent with
that there should be a good match between the regularization fundl€ link-level statistics in such a way as to minimize the mutual in-
tional J and the properties of the estimand — that is, a good choic ormation between the source and destination random variables.
of prior distribution. The penalization in (10) may be thought of as Trf]rl_s_Mlnlmum Mutual Inrormatéon_(Ml\l/ll) crlter(ljon is well-suited
expressing the fact that reconstructions are very implausible if the{. €fficient computation. It can be implemented as a convex opti-
have large values of (-). ization problem; in effect one simply adds a minimum weighted
Regularization can help us understand approaches such as tHfiirOPY term to the usual least-squares lack of fit criterion. There
of Vardi [24] and Cao et al. [3], which treat this as a maximum &€ several widely-available software packages for solving this opti-
likelihood problem where the are independent random variables Mization problem, even on very large scale problems; some of these
following a particular model. In these cases they use the model t§2ckages can take advantages of the sparsity of routing matrices.

form a penalty function which measures the distance from the model ] ] ) )
by considering higher order moments of the distributions. 3.1 Traffic-Matrix Estimation

: : : Let N (s, d) denote the traffic volume going from sourcto des-
2.5 Sh”r_]kage E_Stlmat_lon o ] _tinationd in a unit time. Note thaiV (s, d) is unknown to us; what
An alternative reasoning behind regularization is that in estimattan be known is the traffi#’(/) on link I. Let A(s, d; 1) denote the
ing large numbers of parameters (as in the problem above), ‘shrinkouting matrix, i.e. A(s, d; 1) gives the fraction of traffic frons to

ing’ an otherwise valid estimates towards a special point results inj which crosses link (and which is zero if the traffic on this route
substantial reductions in mean-squared error. As a simple exampl@oes not use this link at all). The link-level traffic counts are

suppose we have noisy data= x+z, wherey, x andz are alln x 1
vectors. We wish to recover the vectorwherez represents Gaus-
sian white noiseV (0, 1). The raw data componengs are unbiased
minimum variance estimators of the corresponding components
of the estimandk, so it is tempting to believe that is the optimal ) ) )
estimate of. In fact, if n is large, it is possible to do substantially WhereL is the set of backbone links. We would like to recover the
better than using. We should instead solve the penalized problem traffic matrix N (s, d) from the link measurement(1), but this is
R the same as solving the matrix equation (8), wheris a vector
min [y — x||3 + A?||x||3, (12)  containing the traffic count&(l), x is a vectorization of the traffic
* matrix, andA is the routing matrix.A is a matrix which is#L by
where) = [o7 is @ measure of the dataset’s size in mean-squaré#5 x #D), where there argt L link measurementsiS sources,

(or rather its reciprocal). The solution is a compromise between ﬁ_and#D destinations.

delity to the measured dageand closeness to the origin, and has the

simple formx* = L, y. This reconstruction is obtained simply by 3.2 The Independence Model

‘shrinking’ the raw datay towards zero. It turns out that for large We propose thinking abouY (s, d) in probabilistic terms, so that
this shrunken estimator is always better than the ‘obvious’ unbiased a network carriesV end-to-end packets (or bits) total within a unit
estimatey, in the sense that it always has a lower mean-squared etime then the number of packets sent from sourt®destination,
ror. This qualitative conclusion remains true if we shrink towards N (s, d) say, is a random variable with meah p(s, d), with p(s, d)
some other fixed point, though it is better to shrink towards a pointhe joint probability that a randomly chosen one of ffi@ackets (or

min ||y — Ax||3 + 2 - 0” log 7(x).

T(1)=>_ A(s,d;l)N(s,d), VI€L, (13)
s,d



bits) goes froms to d. We consider the marginal probabilities erage. There may be some links for which it is not, but the MMI
method specifically allows for correction to these (see below).

ps(s) = Zp(s, d), (14) Suppose we adopt a Bayesian viewpoint, assigning aniori
d probabilityr (p) to the traffic matrixp that is proportional ta =/ (®),
po(d) = Zp(s d) (15) Then we are saying we regard agpriori implausible those traffic

matrices where much higher compression is possible based on joint
source-destination pairs as compared to compression of sources and
the chance that a randomly-chosen packet (bit) enters the netwoidestinations separately. Each bit saved reduces quiori likeli-
ats, and the chance that a randomly chosen packet (bit) departs abod by about a factar/2.
d, respectively. We can expand this notation to measure sets:

psp(QeQa) = > > (16) 3.3 Regularization Method

We propose now to reconstruct traffic matrices by adopting the

*€Qs d€Qq regularization prescription (10) with the regularization functional
for all sets of source and destination lins, Q., and similarly for ~ J(p) = I(S, D). Translating (10) into traffic-matrix notation, we
the marginal probabilitiep; andp,. seek to solve

We letS be the random variable obtained looking at the source 9
of a random packet (or bit), and I1& denote the destination. Sup- 9
pose for sake of discussion thétand D are independent random Mminimize T(l)— N> A(s,d;l)p(s,d) | +N*I(S, D),
variables. Then (2) means that, given that a packet (bit) originates at l s,d
S = s, itis no more likely to go taD = d than would a randomly- (18)

chosen packet (bit) originating anywhere in the network. For net- Recalling the Bayesian interpretation of regularization, we are

works containing a few extremely high volume links carrying very saying that we want a traffic matrix which is a tradeoff between

large fractions of the packets, the assumption (2) should work welmatching the observed link traffic counts and havangriori plausi-

for the very largest circuits, since they have been so highly aggrebility, where our measure of plausibility, as just explained, involves

gated that their behavior may be very similar to the network as d@he ‘anomalous compressibility’ of source-destination pairs. The

whole. traffic matrix obtained as the solution to this optimization will be a
Note that the independence of source and destination is equivalenbmpromise between two terms based on the sizg e@fhich is a

to the simplegravity modelwhich has been discussed in the Internet proxy for the noise level in our measurements. Note that

measurement community; the model has the form

N(s,d) ~ ConstN (s)N(d) 17) Zp s,d)log (‘; ((131) = K(p(s,d)||p(s)p(d)), (19)

where N (s) is the traffic entering at, and N (d) is the traffic ex-

iting atd. While there is experience with the gravity model above whereK (-||-) again denotes the Kullback-Leibler divergence. Here

and some success in its application, it is also known that it give®(s)p(d) represents the gravity model, afd(-||-) can be see as a

results that are not as accurate as may be obtained using additiordistance between probability distributions, so that we can see (18)

information [16, 28]. as having an explicit tradeoff between fidelity to the data and de-
Section 2 suggests that regularization is a way of using prior inviation from the independence/gravity model. Note also that the

formation in conjunction with link measurements to help decideKullback-Leibler divergence is the negative of the relative entropy

which traffic matrices from the set satisfying (8) are more plausibleof p(s, d) with respect tg(s)p(d), and so this method also has an

We propose using a regularization functional that uses the indepernrterpretation as a maximum entropy algorithm.

dence/gravity model as a point of departure, but which considers Both terms in the above tradeoff are convex functionals of the

other models as well. Recall from our discussion of informationtraffic matrixp. Hence, for each given, they can be rewritten in

theory that independence of source and destination is tantamount tmnstrained optimization form:

the statement that the mutual information vanishgsS, D) = 0.

Recall also thaf (S, D) > 0. It follows that the penalty functional minimize K (p(s, d)||p(s)p(d)) subject to

on traffic matriceg (s, d), given by (20)

I(p) = 1(5.D), SUT) = N5, 4 Als, ds Dpls, d))* < 3

hasJ(T) > 0 with equality if and only ifS andD are independent. Herex? = x*()\) is chosen appropriately so that the solution of
This functional has an interpretation in terms of the compressthis problem and the prewous one are the same, at the given value

ibility of addresses in IP headers. Suppose we have a large numbef X. The problem is saying: among all traffic matrices adequately

of IP headers — abstracted to be simply source/destination addresscounting for the observed link counts, find the one closest to the

pairs(s;,d;),i = 1,..., N. We want to know: what is the minimal gravity model. It can also be viewed as saying: shrink away from
number of bits requwed (per header) to represent the source desthe observed link counts towards the gravity model.
nation pair. It turns out that this is jusf(S) + H(D) — I(S, D). Thinking heuristically, we are trying to estimate a very large num-

Now if we simply applied entropy compression to tBeand D; ber of unknowns, so shrinkage towards the gravity model can be ex-
streams separately, we would pa§(S) + H (D) bits per header pected to be error-reducing, providing it is performed appropriately
to represent headers. Hence the functiof(@, D) measures the (as here). Based on the experience of statisticians with shrinkage
number of bits of additional compression possible beyond the sepastimation, it seems that we can expect this procedure to provide
rate compression of source and destination based on traditional eat least some improvement in mean-squared error even though the
tropy compression. This extra compression is possible because gfavity model assumption may not be valid.

special dependencies that make IP messages more likely to go in If the noise level in the data is small, of course, then the solu-
certain source/destination pairs than we would have expected by irtion will not be allowed to be very close to the gravity model. In
dependence. In fact measurementstbfS) and H(D) (on real  the limit, as the noise level goes to zero, we obtain the solution by
datasets described below) are typically around 5, wh(l& D) is minimizing K (p(s, d)||p(s)p(d)) subject to the constraints (13). In
very small, typically around 0.1. This suggests that the indepeneffect we are looking for the most nearly independent version of
dence assumption is a reasonable fit to the real data, at least on gus, d) subject to generating the observed traffic statistics.



Note that in all these optimization problems, there are additionaB.5 Inter-domain Routing
constraints (on any probability distribution) such as non-negativity, 351 Zero Transit Traffic

normalization, and (14) and (15). We leave all these implicit. ’ )
The above algorithm assumes that independence of source and
34 A|gorithm destination is a reasonable starting model. However, there are good

The problem we attack in this paper is the BR-to-BR traffic ma-62S0ns we may want to modify this starting model. In real back-

trix. While this problem is an order of magnitude more complex bone ISPs, routing is typically asymmetric due to hot-potato rout-
ng — traffic from the customer edge to peers will be sent to the

than a PoP-to-PoP traffic matrix, a router-to-router traffic matrix isf‘ o . e . g )
absolutely necessary for many network engineering tasks. A Popl€arest” exit point, while traffic in peer networks will do likewise
to-PoP traffic matrix is useful when designing a network from scratchESulting in a different pattern for traffic from peering to customers.
but typically, in a real network changes are incremental, and so w Iso there should be no traffic transiting the network from peer to
need to see how these changes affect traffic at the router level. W€ [28]- Both factors demand departures from pure independence.
use techniques from [28] to reduce the size of the problem initially, Su_p_pose_we assume there is zero transit tr_affl_c. We suggest that
by removing redundant information, and a large number of trafficconditional independenaaf source and destinatiogiven appropri-

matrix elements that we know to be zero from routing information, 2t€ Side informatiorwill be more accurate than pure independence.

This processing does not improve accuracy, but does speed up Iat%fqore specifically, suppose we have available as side information,
e source and destination class (access or peering). We would then

computations. o ; g
To make the exact formulation explicit, we define model the probabilities of a packet (bit) arriving atand depart-
' ing atd as conditionally independegtven the class of arrival and

xi = N(si,dy), (21) destination link In Appendix A we show that this results in the fol-
y, = traffic counts= T'(l;), (22) lowing model, assumingl and P> are the sets of access and peering
links, respectively.
9i = N(s:i)N(di), (23) © oo
) rey (L= ps(P) — pp(P))
(A) pp(A) ’
where reeEe forse A,de A,
N = total traffic in network (24) ps,p(s,d) = ps(s)ERLY, forse Pde A, (28)
N(s;) = totaltraffic originating at; (25) sz((fs))pD(d)’ forse A,d € P,
S
N(d;) = total traffic departing at; (26) 0, fors € P,d € P.
and we define the column vectatsandy with elementse; andy;, to which we can naturally adapt the algorithm above (by modifying
respectively. Our formulation is gi). We note that the algorithm is then ‘shrinking’ the observed
data in the direction, not of a pure gravity model, but a realistic
; ; modification of it.
minz{|YAx||2+)\2 Z %log & } - o
it 9;>0 gi (27)  3.5.2 Point to Multipoint
subject taz; > 0. As noted in the introduction a point-to-point traffic matrix is not

suitable for all applications. Sometimes we need a point-to-multipoint
Note thatg; = 0 if and only if the traffic at the source or destination demand matrix, for instance, when we want to answer questions
is zero, and sa@; = 0. The additional constraints on the marginal about the impact of link failures outside the backbone, e.g. “would
distributions are satisfied by supplementing the routing matrix, and peering link failure cause an overload on any backbone links?” In
measurements to ensure that they include these constraints. this case, traffic would reroute to an alternate exit point, changing

This penalized least-squares formulation has been used in solfh€ point-to-point traffic matrix in an unknown way. However, the
ing many other ill-posed problems, and so there exist publicly avail-point-to-multipoint demand matrix would remain constant.
able software in Matlab (such as routine MaxEnt in Per Christian Ideally such a matrix would be at the prefix level, but a number
Hansen's Inverse Problems Toolbox [9, 10]) to solve small-scaledf operational realities make an approximation to router level useful
variants of such problems. Our problems are, however, large in scaf@r many engineering tasks. The first such reality is that backbone
and not suited to such basic implementations. The problem of solvoetworks that exchange large traffic volumes are connected by pri-
ing such large-scale traffic matrices is only possible if we can exploitvate peering links as opposed to Internet Exchange Points. This al-
one of the main properties of routing matrices: they are very spars®ws us to see the proportion of traffic going to each individual peer
— the proportion of exact zero entries in each column and row igising only SNMP link measurements, so we can partition traffic per
overwhelming. Accordingly, we use PDSCO [5], a MATLAB pack- Peer. The second such reality is that the BGP policies across a set
age developed by Michael Saunders of Stanford University, whictPf peering links to a single peer are typically the same. Therefore,
has been highly optimized to solve problems with sparse matricethe decision as to which peering link to use as the exit point is made
A. PDSCO has been used (see e.g. [5]) to solve problems of then the basis of shortest IGP distance. This distance is computed
order 16,000 by 256,000 efficiently. We have found that its perfor-at the link level, as opposed to BGP policies, which can act at the
mance is very good (taking no more than a few seconds) even on tH¥efix level. While we cannot test that this property is true for all
largest problems we consider here. large ISPs (and in general it is not always true even on the network

In principle, the choice of\ depends on the noise level in the from which we have measurements), the methodology above does
measurements, but in our results below we show that the results af®t need this, because the algorithm above only uses this as a prior,
insensitive to this parameter, and so its exact choice isn’t important0 be corrected through the use of link (and other) information.

An interesting point is that if one were to have additional infor- The step required to generate a point-to-multipoint demand ma-
mation such as used in the choice model of [16] then this couldfiX requires consideration of the control ISPs have over interdomain
also be incorporated by conditioning the initial mod®) p (s, d) routing. Interdomain routing gives an ISP little control over where
on this information (for an example of this type see Section 3.5)lraffic enters their network, so we shall not make any changes to
This would amount to a kind of shrinkage, this time not towards the(28) for access-to-access, and peering-to-access traffic. However, a
gravity model, but instead towards a model incorporating more sid@rovider has considerable control over where traffic will leave their
information. Alternatively, such information could be included in network across the peering edge. Traffic destined for a particular
the constraints underlying the optimization (as shown in Section 7)P€er may be sent on any of the links to that peer.



The result is that we must modify (28) for access-to-peer traffic.it can provide aconsistentlata set that is as realistic as practically
We do so by not specifying which link in the set of links to peer possible. Below we provide an overview of this methodology, fol-
i (i.e. P;) is used for traffic leaving the network to peerWe can  lowed by a summary of the performance metrics we use.
do this formally by not specifyings,p(s,d) for s € A,d € P but . )
ratherps,p (s, P;) for all peersi. This simple point-to-multipoint 4.1 Validation Methodology

model can then be used in the estimation through using The approach of [28] used sampled flow level data, and topology
ps(s) and routing information as derived from [7]. Flow level data con-
ps,p(s, P;) = pp(F;), (29) tains details of numbers of packets and bytes transferred between
ps(4) source and destination IP addresses, and also gives information such

for s € A, in place of the access-to-peering equation from (28).2s the interface at which the traffic entered our network. Combining

We do not determine the exit point in the estimates. The algorithnthese datasets one may derive a traffic matrix [8].
can then proceed by minimizing the mutual information of the final _The resulting traffic matrix in our experiments covers around 80%
distribution with respect to (28) and (29). The exit points are im-Of the real network traffic (including all the peering traffic) on the
plicit in the routing matrix used in the optimization (27), but are left real topology of a large operational tier-1 ISP. Following [28], we
undetermined in the estimate, and can therefore be fixed only whegompute the traffic matrices on one hour time scales to deal with
applied to a particular problem. some limitations of the measurements. Given Fhese traffic matrices
We should also note that this is a quite general extension. We us@hd the network topology and routing information, we only need a
it here on sets of peering linkg;, but in a network with different ~ consistent set of link load measurements to proceed. .
policies, we can partition the peering links in some different fash- [28] solves the problem of providing a consistent set of traffic,
ion (even through a non-disjoint partition) to reflect some particularfopology and link measurement data as follows. Simulate the net-

idiosyncrasies in routing policy. work routing using the available topology and routing information.
From this we may compute a routing matek, and then derive a
3.6 Re|ati0nship to Previous A|gorithms set of link measuremengs from (8). Thus the traffic matrix, the

The work in this paper presents a general framework, within whic/iouting matrixA and the measured link loagsare all consistent.
We can then perform the estimation procedure to comguiténe

we can place a number of alternative methods for estimating IP traf: P - .
fic matrices. For instance, by taking a linear approximation to thelraffic matrix estimate.

log function in the Kullback-Leibler information distance informa- vioiirtn:)étw: dgoglngfstgi\s/v Eafpe&;st;% %’;ﬁgﬂiggggrﬁf?{#ﬂfgg@;ﬂg}
tion and exploiting the fact that . [f(z) — g(x)] = 0 we get testing traffic n'1atrices. However, this method does not explicitly

z) — gz validate point-to-multipoint traffic matrices. We compute the point-
K(fllg) ~ > f(x) % > f @) — g(@)] to-multipoint traffic matrix, and then collapse this down to a point-
© g z to-point traffic matrix for comparison with the real traffic matrix.
f(@) — g(x) 2 The result is an implicit validation of the multipoint estimates.
= Z EASPANEASlA (30) The validation approach allows us to work with a problem for
z { g(z) which we know the “ground truth” — the real traffic matrix. It can

F hi hat the MMI soluti b . (ﬁlso be extended in several different ways. For example, it allows
rom this we can see that the MMI solution may be approximatecd,,q 14 take a traffic matrix and apply it on an arbitrary topology, for
by using a quadratic distance metric (with square root weights) ag,gtance a simulated network such as a star, or a measured topology

8ich as those produced by Rocketfuel [21, 14]. Thus we can gain

well as the need to use square root weights for best performanCg,qight into the effect of different topologies on the performance

The conditional independence of Section 3.5 explains the use of th the algorithm. We may also introduce controlled measurement
generalized gravity model as an initial condition in [28].

Th drati timization i ient. b i be si errors to assess the algorithm’s robustness, or simulate alternative
€ quadratic optimization IS convenient, because It can be SiMg e 45 rements to see their impact in a rigorous manner.

ply solved using the Singular Value Decomposition (SVD) [28],

with non-negativity enforced by a second step using Iterative Pro-4 2  Performance Metrics
portional Fitting (IPF) [3]. In this paper we will compare the perfor- hi basi hods f . d
mance of the pure MMI approach, its quadratic approximation, and_ !N this paper we use two basic methods for assessing and compar-
the previous method (referred to here as SVD-IPF), and we see tht9 the results. The first method is to estimate the relative error (that

the approximation works well in the cases considered. We defer th&: the aver;_ge of the ‘"l"bSOIUte varl]ue of thz erro;ls,dr_elatlvelto trr:e

comparison with maximum likelihood approaches ([24, 3, 16]) to2verage traffic matrix element). The second method is to plot the

future work, because scaling these methods to the size of proble umulative Distribution Function (CDF) of the errors relative to the

described here requires additional techniques (for instance see [#/€rage traffic matrix element. However, many elements of a router
27]) that have only recently been developed. t0 router traffic matrix are zero due to routing constraints, and these

The point of interest here is that the MMI principle above pro- constrained elements are easy to estimate. This results in a large
duces (an approximation of) the algorithm previously derived fromNUMber of entries to the traffic matrix with near zero error. To more
an initial gravity model solution. However in the case of the MMI accurately indicate the errors on the positive elements we separate
solution, the principle precedes practice — that is, the decision t he zero and non-zero elements and compute their eorrors separately.
regularize with respect to a prior is not an arbitrary decision, but a' € €rors on the zero elements are very small (99% of the errors
standard step in ill-posed estimation problems. The close approxg' Pelow 1%), and so we shall not display these separately here.
mation has a practical impact in that we can use the fact that [28] al¥Vé Shall report the relative errors of the positive elements.
ready demonstrated that the conditional independence of Section 3.5
to be a better prior than complete independence. We use this fah. PERFORMANCE
here by using (28) and (29) in the remainder of the paper. In this section, we first examine the algorithm’s sensitivity to the

choice of)\, and then compare the accuracy of different algorithms.
4. EVALUATION METHODOLOGY

In this paper, we apply the traffic matrix benchmarking method-5.1 ~ Sensitivity to the Choice of\
ology developed in [28] to real Internet data to validate different The choice of the parameter determines how much weight is
algorithms. One major advantage of the methodology in [28] is thagiven to independence, versus the routing constraint equations. In
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Figure 2: The relative errors for the quadratic and MMI algorithms for a given value of .

our experiments, we find that the algorithm’s performance is notepresenting the majority of June 2002, and covering all days of the
sensitive to the choice of. Figure 2 shows the relative error in the week, and times of day. Figure 3 shows the CDF of the relative
estimates for varying. Figure 2 (a) and (b) show the results for the errors for the three methods. We can see that their performance is
guadratic and MMI algorithms respectively, for a single-hour dataalmost identical. The mean relative error is 11.3%. Furthermore,
set given different levels of error in the input measurements (se@ote that more than 80% of the traffic matrix elements have errors
below for details of the introduced measurement errors). Figure 2 (cless than 20%. The CDFs for individual data sets are very similar,
and (d) show the average results over a month of data. but generally less smooth. All three algorithms are remarkably fast,
Most notably, in each graph there is a distinct region where thedelivering the traffic matrix in under six seconds. The fastest algo-
curves are all quite flat, and that this region is largely the same rerithm is SVD-IPF, which is about twice as fast as MMI, the slowest
gardless of the error level. Thus the choice\a$ insensitive to the  one. We also compare the three algorithms for robustness. The re-
level of noise in the measurements, and it is easy to choose a goailts are very similar, and are omitted here in the interest of brevity.
value. We choose a value from the middle of the insensitive range, Note also that [28] showed a number of additional performance
A = 0.01 throughout the rest of the paper, as this performed well,metrics for the SVD-IPF algorithm (which we can see has very sim-
not just in the average (which one can see from Figure 2 (c) and (d))lar performance to the MMI and quadratic algorithms). Those re-
but also in the worst case. The impact of choosing a single value ddults indicated that not only are the errors on the flows reasonable,
A, rather than the optimal value for each case is shown in Table lbut also that the errors on the largest flows are small, and that the
The table shows for varying levels of error (or noise) in the inputerrors are stable over time (an important feature if the results are to
measurements the reduction in accuracy due to the use of aixedbe used to detect network events).
rather than the optimal value. The table presents two measures: the

maximum and average accuracy reduction over all of the data sets. 100
Note that in the worst case the MMI algorithm is only a few per-
cent worse for not using the optimal value)o&nd typically is very 90f
close to optimal. The quadratic algorithm is marginally more sensi- ol
tive to the correct choice of. ”
?u 701
accuracy reduction 5 s0f
algorithm | noise A | maximum| average s
MMI 0% | 0.01 16%| 0.3% g %
MMI 1% | 0.01 1.6% 0.3% £ a0
MMI 5% | 0.01 1.4% | 0.3% g
MMI 10% | 0.01 2.9% 1.5% a
quadratic| 0% | 0.01 1.9% 0.4% 20} ,
quadratic| 1% | 0.01 1.7%| 0.4% 10l — g"\')"D'_lpF |
quadratic| 5% | 0.01 1.9%| 0.3% - - quadratic
quadratic | 10% | 0.01 3.7% 1.7% % o 5 = s 100
relative error

Table 1: Impact of choosing a fixed value of\ rather than the
optimal value. The table shows for the two algorithms, and vari-
ous levels of noise in the measurements, the impact of choosing a .
fixed value of A compared to the optimal value. The table shows 5.3  Topological Impact

Figure 3: A comparison of the relative errors for the methods.

the worst case and the average reduction in accuracy. In this section, we investigate the impact of different topologies
. . on the performance of the algorithm. We use the ISP maps collected
5.2 Comparison of Algorithms by Rocketfuel [21, 14, 22]. Since we also need IGP weights, we

We now apply the three algorithms described above (MMI, quad-use the maps for three North American networks (Sprint, Abovenet,
ratic optimization, and SVD-IPF) to the problem of computing a and Exodus), for which the IGP weights have been estimated by
BR-to-BR traffic matrix, in order to compare their performance. TheRocketfuel. Note that these are not real weights from the networks
results below are based on 506 data sets from the ISP in questioaf interest, but a set consistent with observed routing.



The Rocketfuel data do not contain the peering relationships of @an see a direct relationship between the ratio of unknowns to mea-
network, and so we are limited to using the same initial conditionalsurements, and the performance of the algorithm.
independence assumptions in our exploration of topology. This is This illustrates the basis for the MMI method. It will work best
not a problem here because we are primarily concerned with thevhere either the conditionally independent estimate is good to start
impact of the internal network topology on the estimates. with, or the topology has sufficiently diverse links to allow for the
The approach for testing the impact of topology is as follows. Weresults to be accurately refined. The networks measured by Rocket-
map locations (origins and destination in the original network) tofuel appear to have such diversity.
locations (in the Rocketfuel network) at the PoP level, and map (28)
and (29) to this new network, assuming the same peering relatior] unknowns per]  error (%)
ships, thus removing dependence on data we don'’t have access ta. Network | PoPs links | measurement geo.| rand.
More specifically, letM : A — B denote a mapping from the [£,54us 17 53 4.69| 12.58] 20.07
original set of locationg € A to a set of Rocketfuel locations e i
B. Then the mapping of demands from one network to another is Sprint 19 100 342 8.06| 18.93

accomplished by Abovenet 11 48 2.29 3.76 | 11.74
Star N| 2v—1) N/2 =10 | 24.02| 24.02
B A .
w) = > ol Vi€B () | clique N | NN -1 1] 018 018
wME=] ISP - - 3.54-3.97| 10.55 -

and we map thg; from (23) similarly. We consider two mappings,

the first based on geographical location, which is provided in theTable 2: The table shows, for the three Rocketfuel PoP level
Rocketfuel dataset. Geographical information does not provide anyopologies: the number of PoPs (excluding degree one PoPs),
way of mapping from router to router in the new network, so weinter-PoP links (parallel links aggregated), and the number of
perform our mapping at the PoP level, and therefore also perfornainknowns per link measurement. The table also shows the val-
the estimation at this level). The second mapping is a random pemes for Star and Clique topologies with N nodes (V = 20 in
mutation that destroys the dependency between the traffic and thtae examples), and for the original ISP. The final two columns

network topology. of the table give the performance (relative mean error) of the
. . MMI algorithm on each topology for the geographic and ran-
5.3.1 Results based on geographical mapping dom mappings. Note that the results for the ISP are at PoP

Figure 4 (a) shows the results of applying the MMI algorithm to level, obtained by aggregation from BR-BR traffic matrices, so
the three Rocketfuel networks, where the mapping from location tdhe random mapping is not available.
location is done on the basis of nearest geographical equivalent

That is, our mapping is given by .
_ , o ) 5.3.2 Results based on random mapping
M(i) = j, whered(i, j) < d(i, k) Vk € B, However, there is more to the problem than this. In fact it ap-

whered(s, j) is the geographic distance between PoRsdj. The  pears thatthere is a relationship between the network traffic, and the
figure also shows the PoP level results for the original ISP (the renetwork topology that benefits the performance of the algorithm.
sults above were for BR-to-BR traffic matrices). One can see varyFigure 4 (b) also shows the result of mapping the locations in the
ing levels of performance for the different topologies, but it is gen-original ISP to the Rocketfuel ISPs using a random permutation (the
erally similar to or better than the performance we see in Figlire 3 figure is based on 100 random permutations of 24 data sets drawn

Our aim here is to understand what features of the topology hav&om one day in June). The performance under a random mapping
impact on the estimation algorithm, and to this end we can conside Worse than under a geographical mapping. The last column of
two illustrative examples: simple 20 node star and clique topologiesTable 2 confirms this finding. _
In the star, all PoPs are connected by a single hub, and in the clique, This is interesting because, typically in large networks, regions of
all PoPs have direct connections to each other. We intentionalljh® network with higher demand tend to have more connections to
make these control cases very simple so that we know exactly whahe other PoPs (in the measured network the correlation coefficient
is going on. The results are shown in Figure 4 (b). The performanc€etween node degree and traffic volume was 0.7). A higher degree
on the star topology is poor, while on the clique the performancet & node results in more information about the corresponding row
is almost perfect. The results stem from the fact that in the clique?f the traffic matrix, and thence a better estimate of this row. Good
topology the link data gives us the traffic matrix. In this case, the€stimates of the larger elements make it easier to estimate other ele-
initial MMI estimate of the traffic matrix is almost completely over- Ments elsewhere in the network, and so we get a better overall result.
ridden by the information from link data. In the case of the star, This naturally leads to better estimates when the traffic is correlated
there is no additional information contributed by the link data, andto the network degree, but when we perform the random mapping,
so we see how well the independence assumption performs on te correlation no longer holds. We shall see later that this property
input traffic matrix. has an impact on the design of network measurement infrastructure

Table 2 provides a comparison between the different networksto further improve traffic matrix estimates: it is better to put mea-
The table shows, for each network, the number of North Americarsurement infrastructure in the nodes with the largest traffic volume.
PoPs (excluding the degree one nodes), and the number of inter- Also interesting is the fact that this finding adds credibility to the
PoP logical links (note that multiple physical links are mapped tochoice model idea presented in [16]. The choice model asserts that
a single logical link here because these represent redundant infofeatures of the network (such as the number of links) are correlated
mation). The table also shows the resulting number of unknownvith the attractiveness of that node as a destination, and we can
(traffic matrix elements to be estimated) relative to the number ofonfirm thatfinding here, atleast with respect to the number of links.
measurements (or links), and average estimation errors. Clearly we
6. ROBUSTNESS

!Wwhen performing the PoP level mapping we exclude nodes of degree one A critical requirement for any algorithm that will be applied to

as these are often minor regional nodes. | net K data i bust | | thi f to th .
2The unknowns in the Rocketfuel data, and the lack of traffic data from thg €& NEWOrK data IS robusiness. In general this reters 1o the sensi-

other networks mean that the convenient labels Sprint, Exodus, or Abovendivity of an algorithm to violations of the algorithm’s assumptions
should not be interpreted as saying that we have tested the algorithm on thoénplicit and explicit). In the MMI method, the only assumptions
networks directly. are that the MMI criteria is a reasonable approach (verified above)
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Figure 4: Results on Rocketfuel, and simulated topologies.

and that the input data are correct. Network data are often error 100
prone, and there can be missing data, and so we must consider how ool
robust the algorithm is to such errors. In the following sections we
consider the impact of incorrect or missing link data, and incorrect 80f
routing data on the MMI algorithm. Only the latter form of incorrect
input data has an important impact on the results of the algorithm.
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6.1 Incorrect Link Data

Like any measurements, SNMP link data contain errors. There-
fore, we shall introduce a range of errors, and study their impact.
Comparisons with flow level data have shown that errors in either
source are not generally large, and the sources of such errors lead
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one to believe that they will not be strongly correlated. Hence we 20 . 23:?228:82 |
shall introduce independent Gaussian errors to the measuregnents 10f ~ -~ noise=0.05 T
and compare with the zero error case. More specifically, take the er- ‘ ‘ ‘ noise=0.10
ror in the measurement of linko bee; ~ N (0, 0), whereN (0, o) % 20 40 60 80 100
is the normal distribution with mean 0 and standard deviatiowWe relative error

vary o from 0 to 0.1, with the latter corresponding to quite large gigyre 5: Relative errors for MMI given measurement noise.

relative errors in the measurements (remember the 95th percentiles

of the normal distribution lie at1.96¢.) rare case where we miss multiple edge links, we need only consider
Also note that errors on access and peering links will have minmissing backbone link data.

imal impact on a BR to BR traffic matrix because the data from Figure 6 shows the effect of missing the tdpbackbone links

access links is aggregated across many links (to form the traffic vol¢rated in terms of traffic on those links). The results are shown for

umes entering and exiting the network at a router) and so we onlyhe 24 data sets from each of three days in June. The results show

consider here errors in the backbone-link traffic measurements.  that despite loosing the links with the largest traffic, the results are
Figure 5 shows the CDF of the results given different noise levelshardly impacted at all (though the step appears because one of these

Clearly noise impacts the results, but note that the additional errorgnks is actually important). This suggests that there is generally

in the measurements are actually smaller (for the most part) thaBnough redundant information in the network to compensate for the

the introduced errors in the measurements. This is likely due tamissing links (except in one case).

the redundant link constraints, which provide an averaging effect to

reduce the impact of individual errors. Table 3 presents asummang.3 |ncorrect Routing Data

A third source of data in which we may find errors is the rout-

noise Tevel §) 0 0.01 0.05 0.10 ing matrix. Errors in this matrix can have a large impact on the
relative errors | 11.26%| 11.63%)| 14.00%] 18.01% performance of estimation methods, because if we have errors in a
) ) ) ) significant number of routes, this corresponds to changing many el-
Table 3: The relative errors given a particular noise level. ements of the matrix from 1 (in the absence of load sharing) to zero
and visa versa. However, as in all other reports on traffic matrix
6.2 Missing Link Data estimation, we assume the routing matrix input is accurate. This as-

umption is reasonable because there are good methods for reliably

We next consider the im f missin for instance missin g oo - ;
e next consider the impact of missing data, for instance miss btaining routing information (for instance see [19]).

because a link was not polled over an extended interval. A few miss-
ing data points can be replaced using interpolation; trading missin

data for data with some error. Furthermore, ERs are typically con%- ADDITIONAL INFORMATION

nected very simply to the backbone (typically by sets of redundant One major benefit of adopting the information theoretic approach
links), and almost all ¥ 99%) of ER traffic is between the back- describe here is that it provides a natural framework for including
bone and the edge. Thus if data are missing from a single edge linkdditional information. In this section, we examine the impact of
we may estimate the corresponding traffic using measurements afvo sources of information: (i) flow level data at some locations,
the traffic between the ER and the backbone. Thus, except in thand (ii) the local traffic matrix at a router [25].



14 ‘ ‘ ‘ ‘ ‘ tionate improvement in the estimates. The results were similar even
when errors were added to the flow level measurements, and so sam-

12t 1 pled flows may also provide practical improvements.
o ] 7.2 Local Traffic Matrices
_ Another appealing alternative to collect additional information
% sl ] with minimal cost is to collect local router traffic matrices. That
o is, for the router to keep a table of traffic from in-interface to out-
Z 6l | interface. As shown in [25], the collection of local traffic matrices
2 only requires minimal changes to router hardware, and can be in-

cluded in our algorithm as constraints. Figure 8 shows the CDF
including local traffic matrices, and Table 4 shows a summary of
the results in comparison to those without local traffic information.

2r e Notice that the results with a local traffic matrix, are not only better,
.~ 200206 24 but also less sensitive to measurement errors.
0 ‘ ‘ ‘ ‘ :
0 5 10 15 20 25 30

number of missing link measurements

Figure 6: The impact of missing data on the relative errors for
three days (each comprising 24 data sets).

7.1 Flow Level Data E
In this section we consider the impact of having flow level data at £
some locations, which gives the rows of the traffic matrix for those 3“3_’
locations. This inclusion was explored in [16] in a simulation. They o
showed that the methods of [23, 3] provided improvements to traffic &
matrix estimates roughly in proportion to the number of rows mea- g
sured, but that it did not matter whether one selected the rows to be g 30f —————o
measured randomly, or in order of largest row sum. 20l . no:se;0:01
Flow level information can be included in our algorithm by sim- ~ - nhoise=0.05
ply including additional constraint equations. Results are presented 10} noise=0.10 e
for three separate days of data, each consisting of twenty four, one- o ‘ ~_link measurements (zero noise)
hour data sets. We compare the error in the estimates as we in- 0 20 40 60 80 100
clude a variable number of known rows of the traffic matrix, both relative error

in row sum order, and randomly. Figure 7 shows the results. In thejgyre g: The result of including local traffic matrices, for vary-

random-ordering case, we see an approximately linear improvemefiq error levels. Also included as a baseline is the zero noise,
as additional information is included, but in contrast to the resultsjnks measurement case from Figure 3.

of [16] row sum order is significantly better. In fact, once 10 rows

are included, the error for the row sum case is about half that of the

random ordered case, and this ratio improves until we have included | noise level §) 0 0.01 0.05 0.10
around half of the rows, when the error for the row sum ordered with local TM 3.06% | 3.40% | 5.04% 7.3%
case becomes negligible. One possible reason why these results do| w/o local TM | 11.26% | 11.63%| 14.00% | 18.01%
not agree with [16] is that the traffic matrices used in the simulation

were not as skewed as those observed in real networks. Table 4: The relative errors given a particular noise level, with

and without local traffic matrix data.

“ o~ rand: 2002/06/08 . . .
——  rand: 2002/06/12 The star topology illustrates why a local traffic matrix helps. In
12r ——  rand: 2002/06/24 ] that case, a local traffic matrix at the hub router provides the traffic
-© - order: 2002/06/08 matrix directly. In reality the network is not a star, so a large amount
10} - gig:[ gggggggi 1 of additional information is redundant. In our problem, the number
_ ' of constraints is of the order of a factor of 20 times the simple link
2 gl measurement constraints, but the number of independent constraints
° is only roughly doubled. However, this redundant information is
= ol still useful because it makes the algorithm more robust to noise in
° the measurements, as seen in Table 4.
These results show that it is quite practical to improve the traffic
4 matrix estimates above by incorporating additional information.
2r ‘:‘*\\%‘ 1 8. CONCLUSION
T To summarize, we present a new approach to traffic matrix es-
% 3 10 15 20 25 30 timation for IP networks. We demonstrate on real data that the
number of known traffic matrix rows method has nice properties: it is fast, accurate, flexible, and robust.

In addition, this paper provides some insight into the problem of
traffic matrix estimation itself. In particular, by testing the method
on Rocketfuel topologies we provide some measure of what aspects
of a network make the problem easier or harder: estimates on more
The result is a clear win for measuring flow, or packet level data highly meshed networks were more accurate. Further, we found that
Such data on a fraction of the network may provide a disproporthe relationship between the traffic volumes and the topology played

Figure 7: Effect of addition of known traffic matrix rows.
Dashed lines show largest row sum ordering, and solid show
random order. There are over 60 rows in the traffic matrix.



a significant role in the accuracy of the estimates. Apart from this,
the method also provides additional insight into a broad range of
approaches to traffic matrix estimation. [21]
There is still considerable work to do in this area: for instance,

the choice of priors is interesting. It is known that regularization [22]
and shrinkage approaches improve estimates even when the prior
to which we shrink is arbitrary. However, it is also known that a 23]
better prior results in a better estimate. While the prior used heré
seems adequate, one may be able to do better (for instance by usi&gl]
[16]). Other areas of future work include, understanding why the
methods are so insensitive to the value\pind performing further |25
validations of the method, on alternate data sets (including different
traffic patterns), and direct point-to-multipoint validation. [26]
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would result in the independent model p (s, d) = ps(s)pp(d).
However, noting that all traffic from peering must go to access, and
likewise, all traffic to peering links comes from access, and further
that the four probabilities must add to one, we get.

ps,D(P,P) 0

ps,p(P,A) = p(deAlseP)ps(P) = ps(P)
ps,p(A,P) = p(s€Alde P)pp(P) = pp(P)
ps,p(A,A) = 1-ps(P)—pp(P).

Substituting into (38) we get (28).



