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ABSTRACT
Traffic matrices are required inputs for many IP network manage-
ment tasks: for instance, capacity planning, traffic engineering and
network reliability analysis. However, it is difficult to measure these
matrices directly, and so there has been recent interest in inferring
traffic matrices from link measurements and other more easily mea-
sured data. Typically, this inference problem is ill-posed, as it in-
volves significantly more unknowns than data. Experience in many
scientific and engineering fields has shown that it is essential to
approach such ill-posed problems via “regularization”. This paper
presents a new approach to traffic matrix estimation using a regular-
ization based on “entropy penalization”. Our solution chooses the
traffic matrix consistent with the measured data that is information-
theoretically closest to a model in which source/destination pairs are
stochastically independent. We use fast algorithms based on mod-
ern convex optimization theory to solve for our traffic matrices. We
evaluate the algorithm with real backbone traffic and routing data,
and demonstrate that it is fast, accurate, robust, and flexible.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring; C.2.5 [Computer-Communications Net-
works]: Local and Wide-Area Networks—Internet

General Terms
Measurement, Performance

Keywords
Traffic Matrix Estimation, Information Theory, Minimum Mutual
Information, Regularization, Traffic Engineering, SNMP.

1. INTRODUCTION
A point-to-pointtraffic matrixgives the volume of traffic between

origin/destination pairs in some network. Traffic matrices are re-
quired inputs for many IP network management tasks: for instance,
capacity planning, traffic engineering and network reliability analy-
sis. However, it is difficult to measure these matrices directly, and so
there is interest in inferring traffic matrices from link load statistics
and other more easily measured data [24, 23, 3, 16, 28].

Traffic matrices may be estimated or measured at varying levels
of detail [15]: between Points-of-Presence (PoPs) [16], routers [28],
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links, or even IP prefixes [8]. The finer grained traffic matrices are
generally more useful, for example, in the analysis of the reliability
of a network under a component failure. During a failure, IP traffic
is rerouted to find the new path through the network, and one wishes
to test if this would cause a link overload anywhere in the network.
Failure of a link within a PoP may cause traffic to reroute via al-
ternate links within the PoP without changing the inter-PoP routing.
Thus to understand failure loads on the network we must measure
traffic at a router-to-router level. In general, the inference problem is
more challenging at finer levels of detail, the finest so far considered
being router-to-router.

The challenge lies in the ill-posed nature of the problem: for a
network withN ingress/egress points we need to estimate theN2

origin/destination demands. At a PoP levelN is in the tens, at a
router levelN may be in the hundreds, at a link levelN may be tens
of thousands, and at the prefix levelN may be of the order of one
hundred thousand. However, the number of pieces of information
available, the link measurements, remains approximately constant.
One can see the difficulty — for largeN the problem becomes mas-
sively underconstrained.

There is extensive experience with ill-posed linear inverse prob-
lems from fields as diverse as seismology, astronomy, and medical
imaging [1, 2, 17, 18, 26], all leading to the conclusion that some
sort of side information must be brought in, producing a result which
may be good or bad depending on the quality of this information.
All of the previous work on IP traffic matrix estimation has incor-
porated prior information: for instance, Vardi [24] and Tebaldi and
West [23] assume a Poisson traffic model, Cao et al. [3] assume
a Gaussian traffic model, Zhang et al. [28] assume an underlying
gravity model, and Medina et al. [16] assume a logit-choice model.
Each method is sensitive to the accuracy of this prior: for instance,
[16] showed that the methods in [24, 23, 3] were sensitive to their
prior assumptions, while [28] showed that their method’s perfor-
mance was improved if the prior (the so called gravity model) was
generalized to more accurately reflect realistic routing rules.

In contrast, this paper starts from a regularization formulation of
the problem drawn from the field of ill-posed problems, and derives
a prior distribution that is most appropriate to this problem. Our
prior assumes source/destination independence, until proven other-
wise by measurements. The method then blends measurements with
prior information, producing the reconstruction closest to indepen-
dence, but consistent with the measured data. The method proceeds
by solving an optimization problem that is understandable and in-
tuitively appealing. This approach allows a convenient implemen-
tation using modern optimization software, with the result that the
algorithm is very efficient.

We test the estimation algorithm extensively on network traffic
and topology data from an operational backbone ISP. The results
show that the algorithm is fast, and accurate for point-to-point traffic
matrix estimation. We also test the algorithm on topologies gener-
ated through the Rocketfuel project [21, 14, 22] to resemble alter-
native ISPs, providing useful insight into where the algorithm will



work well. One interesting side result is that there is a relationship
between the network traffic and topology that is beneficial in this
estimation problem. We also test the sensitivity of the algorithm
to measurements errors, demonstrating that the algorithm is highly
robust to errors, and missing data in the traffic measurements.

Our approach also allows us to address the problem of estimating
point-to-multipoint demand matrices. As shown in [8], point-to-
point traffic matrices are not always enough for applications. Under
some failures the traffic may actually change its origin and desti-
nation; its network entry and exit points. The point-to-point traffic
matrix will be altered, because the point-to-point traffic matrix de-
scribes the “carried” load on the network between two points. The
demand matrix, which describes the “offered” load for an IP net-
work, is point-to-multipoint. To understand this, consider a packet
entering a backbone ISP through a customer link, destined for an-
other backbone ISP’s customer. Large North-American backbone
providers typically are connected at multiple peering points. Our
packet could reach its final destination through any of these peering
links; the actual decision is made through a combination of Bor-
der Gateway Protocol (BGP) and Interior Gateway Protocol (IGP)
routing protocols. If the normal exit link fails, then the routing pro-
tocols would choose a different exit point. In a more complicated
scenario, the recipient of the packet might be multi-homed — that
is, connected to more than one ISP. In this case the packet may exit
the first ISP through multiple sets of peering links. Finally, even sin-
gle homed customers may sometimes be reached through multiple
inter-AS (Autonomous System) paths.

Given the complexity and ill-posed nature of the point-to-multipoint
problem, one is tempted to throw his arms in the air and say: “we
cannot solve the point-to-multipoint problem with link level data;
we need better information (for instance from Netflow [8]).” This
paper shows, however, that by adopting the regularization approach
above it is possible to make some progress towards solving this
problem. We cannot estimate demand matrices at the ideal level
of detail (prefix level), because the data at our disposal (SNMP link
loads) cannot distinguish prefixes. However, the operational reali-
ties of large networks make a simplification to router level practical,
and useful. Using these simplifications we present a method for
estimating the point-to-multipoint demand matrices, though in this
paper we only test these implicitly to make the results more directly
comparable to previous work.

An advantage of the approach used in this paper is that it also
provides some insight into alternative algorithms. For instance, the
simple gravity model of [28] is equivalent to complete independence
of source and destination, while the generalized gravity model cor-
responds to independence conditional on source and destination link
classes. Furthermore, the algorithm of [28] is a first-order approx-
imation of the algorithm presented here, explaining the success of
that algorithm, and suggesting that it also can be extended to mea-
sure point-to-multipoint demand matrices. Our method opens up
further opportunities for extensions, given the better understanding
of the importance of prior information about network traffic and how
it can be incorporated into the process of finding traffic matrices. For
instance, an appealing alternative prior generation procedure is pro-
posed in [16] (this idea is suggested in [16] but the mechanism to
do so is not explored). Alternatively, the Bayesian method of [23]
can be placed into the optimization framework here, with a different
penalty function, as could the methods of [24, 3].

Finally, we examine some alternative measurement strategies that
could benefit our estimates. We examine two possibilities: the first
(suggested in [16]) is to make direct measurements of some rows of
the traffic matrix, the second is to measure local traffic matrices as
suggested in [25]. Both result in improvements in accuracy, how-
ever, we found in contrast to [16] that the order in which rows of the
traffic matrix are included does matter — adding rows in order of
the largest row sum first is better than random ordering.

To summarize, this paper demonstrates a specific tool that works
well on large scale point-to-point traffic matrix estimation, and can

be extended in a number of ways, for instance to compute point-to-
multipoint demand matrices. The results show that it is important
to add appropriate prior information. Our prior information is based
on independence-until-proven-otherwise, which is plausible, com-
putationally convenient, and results in accurate estimates.

The paper begins in Section 2 with some background: definitions
of terminology and descriptions of the types of data available. Sec-
tion 3 describes the regularization approach used here, and our al-
gorithm, followed by Section 4, the evaluation methodology, and
Section 5, which shows the algorithm’s performance on a large set
of measurements from an operational tier-1 ISP. Section 6 exam-
ines the algorithm’s robustness to errors in its inputs, and Section 7
shows the flexibility of the algorithm to incorporate additional in-
formation. We conclude the paper in Section 8.

2. BACKGROUND

2.1 Network
An IP network is made up of routers and adjacencies between

those routers, within a single AS or administrative domain. It is nat-
ural to think of the network as a set of nodes and links, associated
with the routers and adjacencies, as illustrated in Figure 1. We re-
fer to routers and links that are wholly internal to the network as
BackboneRouters (BRs) and links, and refer to the others asEdge
Routers (ERs) and links.

One could compute traffic matrices with different levels of ag-
gregation at the source and destination end-points, for instance, at
the level of PoP to PoP, or router to router, or link to link [15]. In
this paper, we are primarily interested in computing router to router
traffic matrices, which are appropriate for a number of network and
traffic engineering applications, and can be used to construct more
highly aggregated traffic matrices (e.g. PoP to PoP) using topology
information [15]. We may further specify the traffic matrix to be
between BRs, by aggregating up to this level.

Peer A

Peer B

Peering Links

Access Links

Peers

Customers

IP Network Backbone

Figure 1: IP network components and terminology

In addition, it is helpful for IP networks managed by Internet Ser-
vice Providers (ISPs) to further classify the edge links. We cate-
gorize the edge links intoaccesslinks, connecting customers, and
peeringlinks, which connect other (non-customer) autonomous sys-
tems. A significant fraction of the traffic in an ISP isinter-domain
and is exchanged between customers and peer networks. Today traf-
fic to peer networks is largely focused on dedicated peering links, as
illustrated in Figure 1. Under the typical routing policies imple-
mented by large ISPs, very little traffic will transit the backbone
from one peer to another. Transit traffic between peers may reflect
a temporary step in network consolidation following an ISP merger
or acquisition, but should not occur under normal operations.

In large IP networks, distributed routing protocols are used to
build the forwarding tables within each router. It is possible to pre-
dict the results of these distributed computations from data gathered
from router configuration files, or a route monitor such as [19]. In
our investigation, we employ a routing simulator such as in [7] that



makes use of this routing information to compute a routing matrix.
We also simulate load balancing across multiple shortest paths.

2.2 Traffic Data
In IP networks today, link load measurements are readily avail-

able via the Simple Network Management Protocol (SNMP). SNMP
is unique in that it is supported by essentially every device in an IP
network. The SNMP data that is available on a device is defined
in a abstract data structure known as a Management Information
Base (MIB). An SNMPpoller periodically requests the appropriate
SNMP MIB data from a router (or other device). Since every router
maintains a cyclic counter of the number of bytes transmitted and re-
ceived on each of its interfaces, we can obtain basic traffic statistics
for the entire network with little additional infrastructure (a poller).

The properties of data gathered via SNMP are important for the
implementation of a useful algorithm — SNMP data has many lim-
itations. Data may be lost in transit (SNMP uses unreliable UDP
transport; copying to our research archive may also introduce loss).
Data may be incorrect (through poor router vendor implementa-
tions). The sampling interval is coarse (in our case 5 minutes).
Many of the typical problems in SNMP data may be mitigated by
using hourly traffic averages (of five minute data), and we shall use
this approach. The problems with the finer time-scale data make
time-series approaches to traffic matrix estimation more difficult.

We use flow level data in this paper for validation purposes. This
data is collected at the router which aggregates traffic by IP source
and destination address, and port numbers. This level of granularity
is sufficient to obtain a real traffic matrix [8], and in the future such
measurement may provide direct traffic matrix measurements, but
at present limitations in vendor implementations prevent collection
of this data from the entire network.

2.3 Information Theory
Information theory is of course a standard tool in communications

systems [12], but a brief review will set up our terminology. We
begin with basic probabilistic notation: we definepX(x) to mean
the probability that a random variableX is equal tox. We shall
typically abuse this notation (where it is clear) and simply write
p(x) = pX(x). Suppose for sake of discussion thatX andY are
independent random variables, then

p(x, y) = p(x)p(y), (1)

i.e. the joint distribution is the product of its marginals. This can be
equivalently written using the conditional probability

p(x|y) = p(x). (2)

In this paper we shall typically use, rather than the standard random
variablesX andY , S andD, the sourceS and the destinationD
of a packet (or bit). Thusp(d|s) is the conditional probability of a
packet (bit) exiting the network atD = d, given that it entered at
S = s, andp(d) is the unconditional probability of a packet (bit)
going toD = d.

We can now define the Discrete Shannon Entropy of a discrete
random variableX taking valuesxi as

H(X) = −
X

i

p(xi) log2 p(xi), (3)

The entropy is a measure of the uncertainty about the outcome of
X. For instance, ifX = x1 with certainty, thenH(X) = 0, and
H(X) takes its maximum value whenX is uniformly distributed —
that is, when the uncertainty about its value is greatest.

We can also define the conditional entropy of one random variable
Y with respect to anotherX by

H(Y |X) = −
X

j

p(xi)
X

i

p(yi|xi) log2 p(yi|xi), (4)

wherep(yi|xi) is the probability thatY = yi conditional onX =
xi. H(Y |X) can be thought of as the uncertainty remaining about
Y given that we are informed of the outcome ofX. Notice that the
joint entropy ofX andY can be shown to be

H(X, Y ) = H(X) + H(Y |X). (5)

We can also define the Shannon information

I(Y |X) = H(Y )−H(Y |X), (6)

which therefore represents the decrease in uncertainty aboutY from
measurement ofX, or the information that we gain aboutY from
X. The information is symmetric,I(X|Y ) = I(Y |X) and so we
can refer to this as themutual informationof X andY , and write
asI(X, Y ). Note thatI(X, Y ) ≥ 0, with equality if and only ifX
andY are independent — whenX andY are independentX gives
us no additional information aboutY .

The mutual information can be written in a number of ways, but
here we write it

I(X, Y ) =
X
x,y

p(x, y) log2

p(x, y)

p(x)p(y)
= K(px,y||px × py), (7)

whereK(f ||g) =
P

i fi log(fi/gi) is the Kullback-Leibler diver-
gence off with respect tog, a well-known measure of distance
between probability distributions.

Discrete Entropy is frequently used in coding because the entropy
H(X) gives a measure of the number of bits required to code the
values ofX. That is, if we had a large numbern of randomly-
generated instancesX1, X2, . . . , Xn and needed to represent this
stream as compactly as possible, we could represent this stream us-
ing onlynH(X) bits, using entropy coding as practiced for example
in various standard commercial compression schemes.

Entropy has also been advocated as a tool in the estimation of
probabilities. Simply put, themaximum entropy principlestates that
we should estimate an unknown probability distribution by enumer-
ating all the constraints we know it must obey on ‘physical’ grounds,
and searching for the probability distribution that maximizes the en-
tropy subject to those constraints. It is well known that the proba-
bility distributions occurring in many physical situations can be ob-
tained by the maximum entropy principle. Heuristically, if we had
no prior information about a random variableX, our uncertainty
aboutX is at its peak, and therefore we should choose a distribu-
tion for X which maximizes this uncertainty, or the entropy. In the
case where we do have information about the variable, usually in the
form of some set of mathematical constraintsC, then the principle
states that we should maximize the entropyH(X|C) of X condi-
tional on consistency with these constraints. That is, we choose the
solution which maintains the most uncertainty while satisfying the
constraints. The principle can also be derived directly from some
simple axioms which we wish the solution to obey [20].

2.4 Ill-Posed Linear Inverse Problems
Many scientific and engineering problems have to solve inference

problems which can be posed as follows. We observe datay which
are thought to follow a system of linear equations

y = Ax, (8)

where then by 1 vectory contains the data, and thep by 1 vector
x contains unknowns to be estimated. The matrixA is ann by p
matrix. In many cases of interestp > n, and so there is no unique
solution to the equations. Such problems are calledill-posed linear
inverse problems. In addition, frequently the data are noisy, so that
it is more accurate to write

y = Ax + z. (9)

In that case any reconstruction procedure needs to remain stable un-
der perturbations of the observations. In our case,y are the SNMP



link measurements,x is the traffic matrix written as a vector, andA
is the routing matrix.

There is extensive experience with ill-posed linear inverse prob-
lems from fields as diverse as seismology, astronomy, and medical
imaging [1, 2, 17, 18, 26], all leading to the conclusion that some
sort of side information must be brought in, producing a reconstruc-
tion which may be good or bad depending on the quality of the prior
information. Many such proposals solve the minimization problem

min
x
‖y −Ax‖22 + λ2J(x), (10)

where where‖ · ‖2 denotes theL2 norm, λ > 0 is a regulariza-
tion parameter, andJ(x) is a penalization functional. Proposals of
this kind have been used in a wide range of fields, with consider-
able practical and theoretical success when the data matched the as-
sumptions leading to the method, and the regularization functional
matched the properties of the estimand. These are generally called
strategies for regularization of ill-posed problems(for a more gen-
eral description of regularization see [11]).

A general approach to deriving such regularization ideas is the
Bayesian approach (such as used in [23]), where we model the es-
timandx as being drawn at random from a so-called ‘prior’ prob-
ability distribution with densityπ(x) and the noisez is taken as a
Gaussian white noise with varianceσ2. Then the so-called posterior
probability densityp(x|y) has its maximum̂x at the solution of

min
x
‖y −Ax‖22 + 2 · σ2 log π(x). (11)

Comparing this with (10) we see that penalized least-squares prob-
lems as giving the most likely reconstructions under a given model.
Thus the method of regularization has a Bayesian interpretation, as-
suming Gaussian noise and assumingJ(x) = log π(x). We stress
that there should be a good match between the regularization func-
tionalJ and the properties of the estimand — that is, a good choice
of prior distribution. The penalization in (10) may be thought of as
expressing the fact that reconstructions are very implausible if they
have large values ofJ(·).

Regularization can help us understand approaches such as that
of Vardi [24] and Cao et al. [3], which treat this as a maximum
likelihood problem where thex are independent random variables
following a particular model. In these cases they use the model to
form a penalty function which measures the distance from the model
by considering higher order moments of the distributions.

2.5 Shrinkage Estimation
An alternative reasoning behind regularization is that in estimat-

ing large numbers of parameters (as in the problem above), ‘shrink-
ing’ an otherwise valid estimates towards a special point results in
substantial reductions in mean-squared error. As a simple example,
suppose we have noisy datay = x+z, wherey, x andz are alln×1
vectors. We wish to recover the vectorx, wherez represents Gaus-
sian white noiseN(0, 1). The raw data componentsyi are unbiased
minimum variance estimators of the corresponding componentsxi

of the estimandx, so it is tempting to believe thaty is the optimal
estimate ofx. In fact, if n is large, it is possible to do substantially
better than usingy. We should instead solve the penalized problem

min
x
‖y − x‖22 + λ̂2‖x‖22, (12)

whereλ̂ = n
‖y‖22

is a measure of the dataset’s size in mean-square

(or rather its reciprocal). The solution is a compromise between fi-
delity to the measured datay and closeness to the origin, and has the
simple formx̂∗ = 1

1+λ
y. This reconstruction is obtained simply by

‘shrinking’ the raw datay towards zero. It turns out that for largen
this shrunken estimator is always better than the ‘obvious’ unbiased
estimatey, in the sense that it always has a lower mean-squared er-
ror. This qualitative conclusion remains true if we shrink towards
some other fixed point, though it is better to shrink towards a point

close to thex we are trying to estimate. For a fuller discussion of
shrinkage estimation, see for example [13, 6]. For now, simply note
that shrinkage of a very high-dimensional estimand towards a cho-
sen point can be helpful. Note that no Bayesian assumption is being
made here: whatever the underlying estimand may be, shrinkage is
an improvement, regardless of our prior beliefs about which vectors
x are plausible. The key assumption is that we are trying to estimate
a vector with many components, all affected by noise.

3. REGULARIZATION OF THE TRAFFIC
ESTIMATION PROBLEM USING MINI-
MUM MUTUAL INFORMATION

The problem of inference of the end-to-end traffic matrix is mas-
sively ill-posed because there are so many more routes than links in
a network. In this section, we develop a regularization approach us-
ing a penalty that seems well-adapted to the structure of actual traf-
fic matrices, and which has some appealing information-theoretic
structure. Effectively, among all traffic matrices agreeing with the
link measurements, we choose the one that minimizes the mutual
information between the source and destination random variables.

Under this criterion, absent any information to the contrary, we
assume that the conditional probabilityp(d|s) that a sources sends
traffic to a destinationd is the same asp(d), the probability that the
network as a whole sends packets or bytes to destinationd. There
are strong heuristic reasons why the largest-volume links in the net-
work should obey this principle — they are so highly aggregated that
they intuitively should behave similarly to the network as a whole.

On the other hand, as evidence accumulates in the link-level statis-
tics, the conditional probabilities are adapted to be consistent with
the link-level statistics in such a way as to minimize the mutual in-
formation between the source and destination random variables.

This Minimum Mutual Information (MMI) criterion is well-suited
to efficient computation. It can be implemented as a convex opti-
mization problem; in effect one simply adds a minimum weighted
entropy term to the usual least-squares lack of fit criterion. There
are several widely-available software packages for solving this opti-
mization problem, even on very large scale problems; some of these
packages can take advantages of the sparsity of routing matrices.

3.1 Traffic-Matrix Estimation
Let N(s, d) denote the traffic volume going from sources to des-

tinationd in a unit time. Note thatN(s, d) is unknown to us; what
can be known is the trafficT (l) on link l. Let A(s, d; l) denote the
routing matrix, i.e.A(s, d; l) gives the fraction of traffic froms to
d which crosses linkl (and which is zero if the traffic on this route
does not use this link at all). The link-level traffic counts are

T (l) =
X

s,d

A(s, d; l)N(s, d), ∀l ∈ L, (13)

whereL is the set of backbone links. We would like to recover the
traffic matrixN(s, d) from the link measurementsT (l), but this is
the same as solving the matrix equation (8), wherey is a vector
containing the traffic countsT (l), x is a vectorization of the traffic
matrix, andA is the routing matrix.A is a matrix which is#L by
(#S ×#D), where there are#L link measurements,#S sources,
and#D destinations.

3.2 The Independence Model
We propose thinking aboutN(s, d) in probabilistic terms, so that

if a network carriesN end-to-end packets (or bits) total within a unit
time then the number of packets sent from sources to destinationd,
N(s, d) say, is a random variable with meanN ·p(s, d), with p(s, d)
the joint probability that a randomly chosen one of theN packets (or



bits) goes froms to d. We consider the marginal probabilities

pS(s) =
X

d

p(s, d), (14)

pD(d) =
X

s

p(s, d), (15)

the chance that a randomly-chosen packet (bit) enters the network
at s, and the chance that a randomly chosen packet (bit) departs at
d, respectively. We can expand this notation to measure sets:

pS,D(Qs, Qd) =
X

s∈Qs

X

d∈Qd

p(s, d), (16)

for all sets of source and destination linksQs, Qd, and similarly for
the marginal probabilitiesps andpd.

We let S be the random variable obtained looking at the source
of a random packet (or bit), and letD denote the destination. Sup-
pose for sake of discussion thatS andD are independent random
variables. Then (2) means that, given that a packet (bit) originates at
S = s, it is no more likely to go toD = d than would a randomly-
chosen packet (bit) originating anywhere in the network. For net-
works containing a few extremely high volume links carrying very
large fractions of the packets, the assumption (2) should work well
for the very largest circuits, since they have been so highly aggre-
gated that their behavior may be very similar to the network as a
whole.

Note that the independence of source and destination is equivalent
to the simplegravity modelwhich has been discussed in the Internet
measurement community; the model has the form

N(s, d) ≈ ConstN(s)N(d) (17)

whereN(s) is the traffic entering ats, andN(d) is the traffic ex-
iting at d. While there is experience with the gravity model above
and some success in its application, it is also known that it gives
results that are not as accurate as may be obtained using additional
information [16, 28].

Section 2 suggests that regularization is a way of using prior in-
formation in conjunction with link measurements to help decide
which traffic matrices from the set satisfying (8) are more plausible.
We propose using a regularization functional that uses the indepen-
dence/gravity model as a point of departure, but which considers
other models as well. Recall from our discussion of information
theory that independence of source and destination is tantamount to
the statement that the mutual information vanishes:I(S, D) = 0.
Recall also thatI(S, D) ≥ 0. It follows that the penalty functional
on traffic matricesp(s, d), given by

J(p) ≡ I(S, D),

hasJ(T ) ≥ 0 with equality if and only ifS andD are independent.
This functional has an interpretation in terms of the compress-

ibility of addresses in IP headers. Suppose we have a large number
of IP headers — abstracted to be simply source/destination address
pairs(si, di), i = 1, . . . , N . We want to know: what is the minimal
number of bits required (per header) to represent the source desti-
nation pair. It turns out that this is justH(S) + H(D) − I(S, D).
Now if we simply applied entropy compression to theSi andDi

streams separately, we would payH(S) + H(D) bits per header
to represent headers. Hence the functionalI(S, D) measures the
number of bits of additional compression possible beyond the sepa-
rate compression of source and destination based on traditional en-
tropy compression. This extra compression is possible because of
special dependencies that make IP messages more likely to go in
certain source/destination pairs than we would have expected by in-
dependence. In fact measurements ofH(S) and H(D) (on real
datasets described below) are typically around 5, whileI(S, D) is
very small, typically around 0.1. This suggests that the indepen-
dence assumption is a reasonable fit to the real data, at least on av-

erage. There may be some links for which it is not, but the MMI
method specifically allows for correction to these (see below).

Suppose we adopt a Bayesian viewpoint, assigning ana priori
probabilityπ(p) to the traffic matrixp that is proportional to2−J(p).
Then we are saying we regard asa priori implausible those traffic
matrices where much higher compression is possible based on joint
source-destination pairs as compared to compression of sources and
destinations separately. Each bit saved reduces oura priori likeli-
hood by about a factor1/2.

3.3 Regularization Method
We propose now to reconstruct traffic matrices by adopting the

regularization prescription (10) with the regularization functional
J(p) = I(S, D). Translating (10) into traffic-matrix notation, we
seek to solve

minimize
X

l

0
@T (l)−N

X

s,d

A(s, d; l)p(s, d)

1
A

2

+ λ2I(S, D),

(18)
Recalling the Bayesian interpretation of regularization, we are

saying that we want a traffic matrix which is a tradeoff between
matching the observed link traffic counts and havinga priori plausi-
bility, where our measure of plausibility, as just explained, involves
the ‘anomalous compressibility’ of source-destination pairs. The
traffic matrix obtained as the solution to this optimization will be a
compromise between two terms based on the size ofλ, which is a
proxy for the noise level in our measurements. Note that

I(S, D) =
X

d,s

p(s, d) log
p(s, d)

p(s)p(d)
= K(p(s, d)||p(s)p(d)), (19)

whereK(·||·) again denotes the Kullback-Leibler divergence. Here
p(s)p(d) represents the gravity model, andK(·||·) can be see as a
distance between probability distributions, so that we can see (18)
as having an explicit tradeoff between fidelity to the data and de-
viation from the independence/gravity model. Note also that the
Kullback-Leibler divergence is the negative of the relative entropy
of p(s, d) with respect top(s)p(d), and so this method also has an
interpretation as a maximum entropy algorithm.

Both terms in the above tradeoff are convex functionals of the
traffic matrixp. Hence, for each givenλ, they can be rewritten in
constrained optimization form:

minimizeK(p(s, d)||p(s)p(d)) subject to
P

l(T (l)−N
P

s,d A(s, d; l)p(s, d))2 ≤ χ2.
(20)

Hereχ2 = χ2(λ) is chosen appropriately so that the solution of
this problem and the previous one are the same, at the given value
of λ. The problem is saying: among all traffic matrices adequately
accounting for the observed link counts, find the one closest to the
gravity model. It can also be viewed as saying: shrink away from
the observed link counts towards the gravity model.

Thinking heuristically, we are trying to estimate a very large num-
ber of unknowns, so shrinkage towards the gravity model can be ex-
pected to be error-reducing, providing it is performed appropriately
(as here). Based on the experience of statisticians with shrinkage
estimation, it seems that we can expect this procedure to provide
at least some improvement in mean-squared error even though the
gravity model assumption may not be valid.

If the noise level in the data is small, of course, then the solu-
tion will not be allowed to be very close to the gravity model. In
the limit, as the noise level goes to zero, we obtain the solution by
minimizingK(p(s, d)||p(s)p(d)) subject to the constraints (13). In
effect we are looking for the most nearly independent version of
p(s, d) subject to generating the observed traffic statistics.



Note that in all these optimization problems, there are additional
constraints (on any probability distribution) such as non-negativity,
normalization, and (14) and (15). We leave all these implicit.

3.4 Algorithm
The problem we attack in this paper is the BR-to-BR traffic ma-

trix. While this problem is an order of magnitude more complex
than a PoP-to-PoP traffic matrix, a router-to-router traffic matrix is
absolutely necessary for many network engineering tasks. A PoP-
to-PoP traffic matrix is useful when designing a network from scratch,
but typically, in a real network changes are incremental, and so we
need to see how these changes affect traffic at the router level. We
use techniques from [28] to reduce the size of the problem initially,
by removing redundant information, and a large number of traffic
matrix elements that we know to be zero from routing information.
This processing does not improve accuracy, but does speed up later
computations.

To make the exact formulation explicit, we define

xi = N(si, di), (21)

yj = traffic counts= T (lj), (22)

gi = N(si)N(di), (23)

where

N = total traffic in network (24)

N(si) = total traffic originating atsi (25)

N(di) = total traffic departing atdi (26)

and we define the column vectorsx, andy with elementsxi andyi,
respectively. Our formulation is

minx

(
||y −Ax||2 + λ2

X
i: gi>0

xi

N
log

ţ
xi

gi

ű)

subject toxi ≥ 0.

(27)

Note thatgi = 0 if and only if the traffic at the source or destination
is zero, and soxi = 0. The additional constraints on the marginal
distributions are satisfied by supplementing the routing matrix, and
measurements to ensure that they include these constraints.

This penalized least-squares formulation has been used in solv-
ing many other ill-posed problems, and so there exist publicly avail-
able software in Matlab (such as routine MaxEnt in Per Christian
Hansen’s Inverse Problems Toolbox [9, 10]) to solve small-scale
variants of such problems. Our problems are, however, large in scale
and not suited to such basic implementations. The problem of solv-
ing such large-scale traffic matrices is only possible if we can exploit
one of the main properties of routing matrices: they are very sparse
— the proportion of exact zero entries in each column and row is
overwhelming. Accordingly, we use PDSCO [5], a MATLAB pack-
age developed by Michael Saunders of Stanford University, which
has been highly optimized to solve problems with sparse matrices
A. PDSCO has been used (see e.g. [5]) to solve problems of the
order 16,000 by 256,000 efficiently. We have found that its perfor-
mance is very good (taking no more than a few seconds) even on the
largest problems we consider here.

In principle, the choice ofλ depends on the noise level in the
measurements, but in our results below we show that the results are
insensitive to this parameter, and so its exact choice isn’t important.

An interesting point is that if one were to have additional infor-
mation such as used in the choice model of [16] then this could
also be incorporated by conditioning the initial modelPS,D(s, d)
on this information (for an example of this type see Section 3.5).
This would amount to a kind of shrinkage, this time not towards the
gravity model, but instead towards a model incorporating more side
information. Alternatively, such information could be included in
the constraints underlying the optimization (as shown in Section 7).

3.5 Inter-domain Routing
3.5.1 Zero Transit Traffic

The above algorithm assumes that independence of source and
destination is a reasonable starting model. However, there are good
reasons we may want to modify this starting model. In real back-
bone ISPs, routing is typically asymmetric due to hot-potato rout-
ing — traffic from the customer edge to peers will be sent to the
“nearest” exit point, while traffic in peer networks will do likewise
resulting in a different pattern for traffic from peering to customers.
Also there should be no traffic transiting the network from peer to
peer [28]. Both factors demand departures from pure independence.

Suppose we assume there is zero transit traffic. We suggest that
conditional independenceof source and destination,given appropri-
ate side information, will be more accurate than pure independence.
More specifically, suppose we have available as side information,
the source and destination class (access or peering). We would then
model the probabilities of a packet (bit) arriving ats and depart-
ing atd as conditionally independentgiven the class of arrival and
destination link. In Appendix A we show that this results in the fol-
lowing model, assumingA andP are the sets of access and peering
links, respectively.

pS,D(s, d) =

8
>>>>><
>>>>>:

pS(s)
pS(A)

pD(d)
pD(A)

(1− pS(P )− pD(P )),

for s ∈ A, d ∈ A,

pS(s) pD(d)
pD(A)

, for s ∈ P, d ∈ A,
pS(s)
pS(A)

pD(d), for s ∈ A, d ∈ P,

0, for s ∈ P, d ∈ P.

(28)

to which we can naturally adapt the algorithm above (by modifying
gi). We note that the algorithm is then ‘shrinking’ the observed
data in the direction, not of a pure gravity model, but a realistic
modification of it.

3.5.2 Point to Multipoint
As noted in the introduction a point-to-point traffic matrix is not

suitable for all applications. Sometimes we need a point-to-multipoint
demand matrix, for instance, when we want to answer questions
about the impact of link failures outside the backbone, e.g. “would
a peering link failure cause an overload on any backbone links?” In
this case, traffic would reroute to an alternate exit point, changing
the point-to-point traffic matrix in an unknown way. However, the
point-to-multipoint demand matrix would remain constant.

Ideally such a matrix would be at the prefix level, but a number
of operational realities make an approximation to router level useful
for many engineering tasks. The first such reality is that backbone
networks that exchange large traffic volumes are connected by pri-
vate peering links as opposed to Internet Exchange Points. This al-
lows us to see the proportion of traffic going to each individual peer
using only SNMP link measurements, so we can partition traffic per
peer. The second such reality is that the BGP policies across a set
of peering links to a single peer are typically the same. Therefore,
the decision as to which peering link to use as the exit point is made
on the basis of shortest IGP distance. This distance is computed
at the link level, as opposed to BGP policies, which can act at the
prefix level. While we cannot test that this property is true for all
large ISPs (and in general it is not always true even on the network
from which we have measurements), the methodology above does
not need this, because the algorithm above only uses this as a prior,
to be corrected through the use of link (and other) information.

The step required to generate a point-to-multipoint demand ma-
trix requires consideration of the control ISPs have over interdomain
routing. Interdomain routing gives an ISP little control over where
traffic enters their network, so we shall not make any changes to
(28) for access-to-access, and peering-to-access traffic. However, a
provider has considerable control over where traffic will leave their
network across the peering edge. Traffic destined for a particular
peer may be sent on any of the links to that peer.



The result is that we must modify (28) for access-to-peer traffic.
We do so by not specifying which linkd in the set of links to peer
i (i.e. Pi) is used for traffic leaving the network to peeri. We can
do this formally by not specifyingpS,D(s, d) for s ∈ A, d ∈ P but
ratherpS,D(s, Pi) for all peersi. This simple point-to-multipoint
model can then be used in the estimation through using

pS,D(s, Pi) =
pS(s)

pS(A)
pD(Pi), (29)

for s ∈ A, in place of the access-to-peering equation from (28).
We do not determine the exit point in the estimates. The algorithm
can then proceed by minimizing the mutual information of the final
distribution with respect to (28) and (29). The exit points are im-
plicit in the routing matrix used in the optimization (27), but are left
undetermined in the estimate, and can therefore be fixed only when
applied to a particular problem.

We should also note that this is a quite general extension. We use
it here on sets of peering linksPi, but in a network with different
policies, we can partition the peering links in some different fash-
ion (even through a non-disjoint partition) to reflect some particular
idiosyncrasies in routing policy.

3.6 Relationship to Previous Algorithms
The work in this paper presents a general framework, within which

we can place a number of alternative methods for estimating IP traf-
fic matrices. For instance, by taking a linear approximation to the
log function in the Kullback-Leibler information distance informa-
tion and exploiting the fact that

P
x[f(x)− g(x)] = 0 we get

K(f ||g) ≈
X

x

f(x)

ů
f(x)− g(x)

g(x)

ÿ
−

X
x

[f(x)− g(x)]

=
X

x

"
f(x)− g(x)p

g(x)

#2

. (30)

From this we can see that the MMI solution may be approximated
by using a quadratic distance metric (with square root weights) as
was applied in [28]. This explains the success of that approach, as
well as the need to use square root weights for best performance.
The conditional independence of Section 3.5 explains the use of the
generalized gravity model as an initial condition in [28].

The quadratic optimization is convenient, because it can be sim-
ply solved using the Singular Value Decomposition (SVD) [28],
with non-negativity enforced by a second step using Iterative Pro-
portional Fitting (IPF) [3]. In this paper we will compare the perfor-
mance of the pure MMI approach, its quadratic approximation, and
the previous method (referred to here as SVD-IPF), and we see that
the approximation works well in the cases considered. We defer the
comparison with maximum likelihood approaches ([24, 3, 16]) to
future work, because scaling these methods to the size of problem
described here requires additional techniques (for instance see [4,
27]) that have only recently been developed.

The point of interest here is that the MMI principle above pro-
duces (an approximation of) the algorithm previously derived from
an initial gravity model solution. However in the case of the MMI
solution, the principle precedes practice — that is, the decision to
regularize with respect to a prior is not an arbitrary decision, but a
standard step in ill-posed estimation problems. The close approxi-
mation has a practical impact in that we can use the fact that [28] al-
ready demonstrated that the conditional independence of Section 3.5
to be a better prior than complete independence. We use this fact
here by using (28) and (29) in the remainder of the paper.

4. EVALUATION METHODOLOGY
In this paper, we apply the traffic matrix benchmarking method-

ology developed in [28] to real Internet data to validate different
algorithms. One major advantage of the methodology in [28] is that

it can provide aconsistentdata set that is as realistic as practically
possible. Below we provide an overview of this methodology, fol-
lowed by a summary of the performance metrics we use.

4.1 Validation Methodology
The approach of [28] used sampled flow level data, and topology

and routing information as derived from [7]. Flow level data con-
tains details of numbers of packets and bytes transferred between
source and destination IP addresses, and also gives information such
as the interface at which the traffic entered our network. Combining
these datasets one may derive a traffic matrix [8].

The resulting traffic matrix in our experiments covers around 80%
of the real network traffic (including all the peering traffic) on the
real topology of a large operational tier-1 ISP. Following [28], we
compute the traffic matrices on one hour time scales to deal with
some limitations of the measurements. Given these traffic matrices
and the network topology and routing information, we only need a
consistent set of link load measurements to proceed.

[28] solves the problem of providing a consistent set of traffic,
topology and link measurement data as follows. Simulate the net-
work routing using the available topology and routing information.
From this we may compute a routing matrixA, and then derive a
set of link measurementsy from (8). Thus the traffic matrixx, the
routing matrixA and the measured link loadsy are all consistent.
We can then perform the estimation procedure to computex̂, the
traffic matrix estimate.

Part of the goal of this paper is to extend understanding of pre-
vious methods, and so we apply the pre-existing methodology for
testing traffic matrices. However, this method does not explicitly
validate point-to-multipoint traffic matrices. We compute the point-
to-multipoint traffic matrix, and then collapse this down to a point-
to-point traffic matrix for comparison with the real traffic matrix.
The result is an implicit validation of the multipoint estimates.

The validation approach allows us to work with a problem for
which we know the “ground truth” — the real traffic matrix. It can
also be extended in several different ways. For example, it allows
one to take a traffic matrix and apply it on an arbitrary topology, for
instance a simulated network such as a star, or a measured topology
such as those produced by Rocketfuel [21, 14]. Thus we can gain
insight into the effect of different topologies on the performance
of the algorithm. We may also introduce controlled measurement
errors to assess the algorithm’s robustness, or simulate alternative
measurements to see their impact in a rigorous manner.

4.2 Performance Metrics
In this paper we use two basic methods for assessing and compar-

ing the results. The first method is to estimate the relative error (that
is, the average of the absolute value of the errors, relative to the
average traffic matrix element). The second method is to plot the
Cumulative Distribution Function (CDF) of the errors relative to the
average traffic matrix element. However, many elements of a router
to router traffic matrix are zero due to routing constraints, and these
constrained elements are easy to estimate. This results in a large
number of entries to the traffic matrix with near zero error. To more
accurately indicate the errors on the positive elements we separate
the zero and non-zero elements and compute their errors separately.
The errors on the zero elements are very small (99% of the errors
are below 1%), and so we shall not display these separately here.
We shall report the relative errors of the positive elements.

5. PERFORMANCE
In this section, we first examine the algorithm’s sensitivity to the

choice ofλ, and then compare the accuracy of different algorithms.

5.1 Sensitivity to the Choice ofλ
The choice of the parameterλ determines how much weight is

given to independence, versus the routing constraint equations. In
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Figure 2: The relative errors for the quadratic and MMI algorithms for a given value of λ.

our experiments, we find that the algorithm’s performance is not
sensitive to the choice ofλ. Figure 2 shows the relative error in the
estimates for varyingλ. Figure 2 (a) and (b) show the results for the
quadratic and MMI algorithms respectively, for a single-hour data
set given different levels of error in the input measurements (see
below for details of the introduced measurement errors). Figure 2 (c)
and (d) show the average results over a month of data.

Most notably, in each graph there is a distinct region where the
curves are all quite flat, and that this region is largely the same re-
gardless of the error level. Thus the choice ofλ is insensitive to the
level of noise in the measurements, and it is easy to choose a good
value. We choose a value from the middle of the insensitive range,
λ = 0.01 throughout the rest of the paper, as this performed well,
not just in the average (which one can see from Figure 2 (c) and (d)),
but also in the worst case. The impact of choosing a single value of
λ, rather than the optimal value for each case is shown in Table 1.
The table shows for varying levels of error (or noise) in the input
measurements the reduction in accuracy due to the use of a fixedλ
rather than the optimal value. The table presents two measures: the
maximum and average accuracy reduction over all of the data sets.

Note that in the worst case the MMI algorithm is only a few per-
cent worse for not using the optimal value ofλ and typically is very
close to optimal. The quadratic algorithm is marginally more sensi-
tive to the correct choice ofλ.

accuracy reduction
algorithm noise λ maximum average
MMI 0% 0.01 1.6% 0.3%
MMI 1% 0.01 1.6% 0.3%
MMI 5% 0.01 1.4% 0.3%
MMI 10% 0.01 2.9% 1.5%
quadratic 0% 0.01 1.9% 0.4%
quadratic 1% 0.01 1.7% 0.4%
quadratic 5% 0.01 1.9% 0.3%
quadratic 10% 0.01 3.7% 1.7%

Table 1: Impact of choosing a fixed value ofλ rather than the
optimal value. The table shows for the two algorithms, and vari-
ous levels of noise in the measurements, the impact of choosing a
fixed value ofλ compared to the optimal value. The table shows
the worst case and the average reduction in accuracy.

5.2 Comparison of Algorithms
We now apply the three algorithms described above (MMI, quad-

ratic optimization, and SVD-IPF) to the problem of computing a
BR-to-BR traffic matrix, in order to compare their performance. The
results below are based on 506 data sets from the ISP in question,

representing the majority of June 2002, and covering all days of the
week, and times of day. Figure 3 shows the CDF of the relative
errors for the three methods. We can see that their performance is
almost identical. The mean relative error is 11.3%. Furthermore,
note that more than 80% of the traffic matrix elements have errors
less than 20%. The CDFs for individual data sets are very similar,
but generally less smooth. All three algorithms are remarkably fast,
delivering the traffic matrix in under six seconds. The fastest algo-
rithm is SVD-IPF, which is about twice as fast as MMI, the slowest
one. We also compare the three algorithms for robustness. The re-
sults are very similar, and are omitted here in the interest of brevity.

Note also that [28] showed a number of additional performance
metrics for the SVD-IPF algorithm (which we can see has very sim-
ilar performance to the MMI and quadratic algorithms). Those re-
sults indicated that not only are the errors on the flows reasonable,
but also that the errors on the largest flows are small, and that the
errors are stable over time (an important feature if the results are to
be used to detect network events).
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Figure 3: A comparison of the relative errors for the methods.

5.3 Topological Impact
In this section, we investigate the impact of different topologies

on the performance of the algorithm. We use the ISP maps collected
by Rocketfuel [21, 14, 22]. Since we also need IGP weights, we
use the maps for three North American networks (Sprint, Abovenet,
and Exodus), for which the IGP weights have been estimated by
Rocketfuel. Note that these are not real weights from the networks
of interest, but a set consistent with observed routing.



The Rocketfuel data do not contain the peering relationships of a
network, and so we are limited to using the same initial conditional
independence assumptions in our exploration of topology. This is
not a problem here because we are primarily concerned with the
impact of the internal network topology on the estimates.

The approach for testing the impact of topology is as follows. We
map locations (origins and destination in the original network) to
locations (in the Rocketfuel network) at the PoP level, and map (28)
and (29) to this new network, assuming the same peering relation-
ships, thus removing dependence on data we don’t have access to.

More specifically, letM : A → B denote a mapping from the
original set of locationsi ∈ A to a set of Rocketfuel locationsj ∈
B. Then the mapping of demands from one network to another is
accomplished by

xB
j =

X

i:M(i)=j

xA
i , ∀j ∈ B, (31)

and we map thegi from (23) similarly. We consider two mappings,
the first based on geographical location, which is provided in the
Rocketfuel dataset. Geographical information does not provide any
way of mapping from router to router in the new network, so we
perform our mapping at the PoP level, and therefore also perform
the estimation at this level). The second mapping is a random per-
mutation that destroys the dependency between the traffic and the
network topology.

5.3.1 Results based on geographical mapping
Figure 4 (a) shows the results of applying the MMI algorithm to

the three Rocketfuel networks, where the mapping from location to
location is done on the basis of nearest geographical equivalent1.
That is, our mapping is given by

M(i) = j, whered(i, j) ≤ d(i, k) ∀k ∈ B,

whered(i, j) is the geographic distance between PoPsi andj. The
figure also shows the PoP level results for the original ISP (the re-
sults above were for BR-to-BR traffic matrices). One can see vary-
ing levels of performance for the different topologies, but it is gen-
erally similar to or better than the performance we see in Figure 32.

Our aim here is to understand what features of the topology have
impact on the estimation algorithm, and to this end we can consider
two illustrative examples: simple 20 node star and clique topologies.
In the star, all PoPs are connected by a single hub, and in the clique,
all PoPs have direct connections to each other. We intentionally
make these control cases very simple so that we know exactly what
is going on. The results are shown in Figure 4 (b). The performance
on the star topology is poor, while on the clique the performance
is almost perfect. The results stem from the fact that in the clique
topology the link data gives us the traffic matrix. In this case, the
initial MMI estimate of the traffic matrix is almost completely over-
ridden by the information from link data. In the case of the star,
there is no additional information contributed by the link data, and
so we see how well the independence assumption performs on the
input traffic matrix.

Table 2 provides a comparison between the different networks.
The table shows, for each network, the number of North American
PoPs (excluding the degree one nodes), and the number of inter-
PoP logical links (note that multiple physical links are mapped to
a single logical link here because these represent redundant infor-
mation). The table also shows the resulting number of unknowns
(traffic matrix elements to be estimated) relative to the number of
measurements (or links), and average estimation errors. Clearly we
1When performing the PoP level mapping we exclude nodes of degree one
as these are often minor regional nodes.
2The unknowns in the Rocketfuel data, and the lack of traffic data from the
other networks mean that the convenient labels Sprint, Exodus, or Abovenet
should not be interpreted as saying that we have tested the algorithm on those
networks directly.

can see a direct relationship between the ratio of unknowns to mea-
surements, and the performance of the algorithm.

This illustrates the basis for the MMI method. It will work best
where either the conditionally independent estimate is good to start
with, or the topology has sufficiently diverse links to allow for the
results to be accurately refined. The networks measured by Rocket-
fuel appear to have such diversity.

unknowns per error (%)
Network PoPs links measurement geo. rand.
Exodus 17 58 4.69 12.58 20.07
Sprint 19 100 3.42 8.06 18.93
Abovenet 11 48 2.29 3.76 11.74
Star N 2(N − 1) N/2 = 10 24.02 24.02
Clique N N(N − 1) 1 0.18 0.18
ISP - - 3.54–3.97 10.55 -

Table 2: The table shows, for the three Rocketfuel PoP level
topologies: the number of PoPs (excluding degree one PoPs),
inter-PoP links (parallel links aggregated), and the number of
unknowns per link measurement. The table also shows the val-
ues for Star and Clique topologies withN nodes (N = 20 in
the examples), and for the original ISP. The final two columns
of the table give the performance (relative mean error) of the
MMI algorithm on each topology for the geographic and ran-
dom mappings. Note that the results for the ISP are at PoP
level, obtained by aggregation from BR-BR traffic matrices, so
the random mapping is not available.

5.3.2 Results based on random mapping
However, there is more to the problem than this. In fact it ap-

pears that there is a relationship between the network traffic, and the
network topology that benefits the performance of the algorithm.
Figure 4 (b) also shows the result of mapping the locations in the
original ISP to the Rocketfuel ISPs using a random permutation (the
figure is based on 100 random permutations of 24 data sets drawn
from one day in June). The performance under a random mapping
is worse than under a geographical mapping. The last column of
Table 2 confirms this finding.

This is interesting because, typically in large networks, regions of
the network with higher demand tend to have more connections to
the other PoPs (in the measured network the correlation coefficient
between node degree and traffic volume was 0.7). A higher degree
at a node results in more information about the corresponding row
of the traffic matrix, and thence a better estimate of this row. Good
estimates of the larger elements make it easier to estimate other ele-
ments elsewhere in the network, and so we get a better overall result.
This naturally leads to better estimates when the traffic is correlated
to the network degree, but when we perform the random mapping,
the correlation no longer holds. We shall see later that this property
has an impact on the design of network measurement infrastructure
to further improve traffic matrix estimates: it is better to put mea-
surement infrastructure in the nodes with the largest traffic volume.

Also interesting is the fact that this finding adds credibility to the
choice model idea presented in [16]. The choice model asserts that
features of the network (such as the number of links) are correlated
with the attractiveness of that node as a destination, and we can
confirm that finding here, at least with respect to the number of links.

6. ROBUSTNESS
A critical requirement for any algorithm that will be applied to

real network data is robustness. In general this refers to the sensi-
tivity of an algorithm to violations of the algorithm’s assumptions
(implicit and explicit). In the MMI method, the only assumptions
are that the MMI criteria is a reasonable approach (verified above)



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

relative error

pe
rc

en
ta

ge
 o

f d
em

an
ds

ISP 1,
Abovenet 6461,
Exodus 3967,
Sprint 1239,

(a) geographical mapping

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

relative error

pe
rc

en
ta

ge
 o

f d
em

an
ds

Abovenet 6461
Exodus 3967
Mesh 0
Sprint 1239
Star 1

(b) random mapping

Figure 4: Results on Rocketfuel, and simulated topologies.

and that the input data are correct. Network data are often error
prone, and there can be missing data, and so we must consider how
robust the algorithm is to such errors. In the following sections we
consider the impact of incorrect or missing link data, and incorrect
routing data on the MMI algorithm. Only the latter form of incorrect
input data has an important impact on the results of the algorithm.

6.1 Incorrect Link Data
Like any measurements, SNMP link data contain errors. There-

fore, we shall introduce a range of errors, and study their impact.
Comparisons with flow level data have shown that errors in either
source are not generally large, and the sources of such errors lead
one to believe that they will not be strongly correlated. Hence we
shall introduce independent Gaussian errors to the measurementsy
and compare with the zero error case. More specifically, take the er-
ror in the measurement of linki to beεi ∼ N(0, σ), whereN(0, σ)
is the normal distribution with mean 0 and standard deviationσ. We
vary σ from 0 to 0.1, with the latter corresponding to quite large
relative errors in the measurements (remember the 95th percentiles
of the normal distribution lie at±1.96σ.)

Also note that errors on access and peering links will have min-
imal impact on a BR to BR traffic matrix because the data from
access links is aggregated across many links (to form the traffic vol-
umes entering and exiting the network at a router) and so we only
consider here errors in the backbone-link traffic measurements.

Figure 5 shows the CDF of the results given different noise levels.
Clearly noise impacts the results, but note that the additional errors
in the measurements are actually smaller (for the most part) than
the introduced errors in the measurements. This is likely due to
the redundant link constraints, which provide an averaging effect to
reduce the impact of individual errors. Table 3 presents a summary.

noise level (σ) 0 0.01 0.05 0.10
relative errors 11.26% 11.63% 14.00% 18.01%

Table 3: The relative errors given a particular noise level.

6.2 Missing Link Data
We next consider the impact of missing data, for instance missing

because a link was not polled over an extended interval. A few miss-
ing data points can be replaced using interpolation; trading missing
data for data with some error. Furthermore, ERs are typically con-
nected very simply to the backbone (typically by sets of redundant
links), and almost all (> 99%) of ER traffic is between the back-
bone and the edge. Thus if data are missing from a single edge link
we may estimate the corresponding traffic using measurements of
the traffic between the ER and the backbone. Thus, except in the
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Figure 5: Relative errors for MMI given measurement noise.

rare case where we miss multiple edge links, we need only consider
missing backbone link data.

Figure 6 shows the effect of missing the topN backbone links
(rated in terms of traffic on those links). The results are shown for
the 24 data sets from each of three days in June. The results show
that despite loosing the links with the largest traffic, the results are
hardly impacted at all (though the step appears because one of these
links is actually important). This suggests that there is generally
enough redundant information in the network to compensate for the
missing links (except in one case).

6.3 Incorrect Routing Data
A third source of data in which we may find errors is the rout-

ing matrix. Errors in this matrix can have a large impact on the
performance of estimation methods, because if we have errors in a
significant number of routes, this corresponds to changing many el-
ements of the matrix from 1 (in the absence of load sharing) to zero
and visa versa. However, as in all other reports on traffic matrix
estimation, we assume the routing matrix input is accurate. This as-
sumption is reasonable because there are good methods for reliably
obtaining routing information (for instance see [19]).

7. ADDITIONAL INFORMATION
One major benefit of adopting the information theoretic approach

describe here is that it provides a natural framework for including
additional information. In this section, we examine the impact of
two sources of information: (i) flow level data at some locations,
and (ii) the local traffic matrix at a router [25].
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Figure 6: The impact of missing data on the relative errors for
three days (each comprising 24 data sets).

7.1 Flow Level Data
In this section we consider the impact of having flow level data at

some locations, which gives the rows of the traffic matrix for those
locations. This inclusion was explored in [16] in a simulation. They
showed that the methods of [23, 3] provided improvements to traffic
matrix estimates roughly in proportion to the number of rows mea-
sured, but that it did not matter whether one selected the rows to be
measured randomly, or in order of largest row sum.

Flow level information can be included in our algorithm by sim-
ply including additional constraint equations. Results are presented
for three separate days of data, each consisting of twenty four, one-
hour data sets. We compare the error in the estimates as we in-
clude a variable number of known rows of the traffic matrix, both
in row sum order, and randomly. Figure 7 shows the results. In the
random-ordering case, we see an approximately linear improvement
as additional information is included, but in contrast to the results
of [16] row sum order is significantly better. In fact, once 10 rows
are included, the error for the row sum case is about half that of the
random ordered case, and this ratio improves until we have included
around half of the rows, when the error for the row sum ordered
case becomes negligible. One possible reason why these results do
not agree with [16] is that the traffic matrices used in the simulation
were not as skewed as those observed in real networks.
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Figure 7: Effect of addition of known traffic matrix rows.
Dashed lines show largest row sum ordering, and solid show
random order. There are over 60 rows in the traffic matrix.

The result is a clear win for measuring flow, or packet level data.
Such data on a fraction of the network may provide a dispropor-

tionate improvement in the estimates. The results were similar even
when errors were added to the flow level measurements, and so sam-
pled flows may also provide practical improvements.

7.2 Local Traffic Matrices
Another appealing alternative to collect additional information

with minimal cost is to collect local router traffic matrices. That
is, for the router to keep a table of traffic from in-interface to out-
interface. As shown in [25], the collection of local traffic matrices
only requires minimal changes to router hardware, and can be in-
cluded in our algorithm as constraints. Figure 8 shows the CDF
including local traffic matrices, and Table 4 shows a summary of
the results in comparison to those without local traffic information.
Notice that the results with a local traffic matrix, are not only better,
but also less sensitive to measurement errors.
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Figure 8: The result of including local traffic matrices, for vary-
ing error levels. Also included as a baseline is the zero noise,
links measurement case from Figure 3.

noise level (σ) 0 0.01 0.05 0.10
with local TM 3.06% 3.40% 5.04% 7.3%
w/o local TM 11.26% 11.63% 14.00% 18.01%

Table 4: The relative errors given a particular noise level, with
and without local traffic matrix data.

The star topology illustrates why a local traffic matrix helps. In
that case, a local traffic matrix at the hub router provides the traffic
matrix directly. In reality the network is not a star, so a large amount
of additional information is redundant. In our problem, the number
of constraints is of the order of a factor of 20 times the simple link
measurement constraints, but the number of independent constraints
is only roughly doubled. However, this redundant information is
still useful because it makes the algorithm more robust to noise in
the measurements, as seen in Table 4.

These results show that it is quite practical to improve the traffic
matrix estimates above by incorporating additional information.

8. CONCLUSION
To summarize, we present a new approach to traffic matrix es-

timation for IP networks. We demonstrate on real data that the
method has nice properties: it is fast, accurate, flexible, and robust.
In addition, this paper provides some insight into the problem of
traffic matrix estimation itself. In particular, by testing the method
on Rocketfuel topologies we provide some measure of what aspects
of a network make the problem easier or harder: estimates on more
highly meshed networks were more accurate. Further, we found that
the relationship between the traffic volumes and the topology played



a significant role in the accuracy of the estimates. Apart from this,
the method also provides additional insight into a broad range of
approaches to traffic matrix estimation.

There is still considerable work to do in this area: for instance,
the choice of priors is interesting. It is known that regularization
and shrinkage approaches improve estimates even when the prior
to which we shrink is arbitrary. However, it is also known that a
better prior results in a better estimate. While the prior used here
seems adequate, one may be able to do better (for instance by using
[16]). Other areas of future work include, understanding why the
methods are so insensitive to the value ofλ, and performing further
validations of the method, on alternate data sets (including different
traffic patterns), and direct point-to-multipoint validation.
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APPENDIX
A. CONDITIONAL INDEPENDENCE

In Section 3.5 we present a result based on conditional indepen-
dence, rather than simple independence. Zero transit traffic makes
it is more reasonable to adopt a conditionally independent model in
which the probabilities of a packet (bit) arriving ats and departing
atd given the class of arrival and destination link (peering or access)
are independent:

pS,D(s, d|S ∈ Cs, D ∈ Cd) =

pS(s|S ∈ Cs, D ∈ Cd) pD(d|S ∈ Cs, D ∈ Cd), (32)

whereCs, andCd are the source the destination’s link class, respec-
tively. We know

pS,D(s, d) = pS,D(s, d|S ∈ Cs, D ∈ Cd) pS,D(Cs, Cd) (33)

The source and destination links only depend on the class of the
source and destination respectively, so

pS(s|S ∈ Cs, D ∈ Cd) = pS(s|S ∈ Cs), (34)

pD(d|S ∈ Cs, D ∈ Cd) = pD(d|D ∈ Cd). (35)

Furthermore, from the definition of conditional probability

pS(s|S ∈ Cs) = pS(s) / pS(Cs), (36)

pD(d|D ∈ Cd) = pD(d) / pD(Cd), (37)

with the result

pS,D(s, d) =
pS(s)

pS(Cs)

pD(d)

pD(Cd)
pS,D(Cs, Cd) (38)

If the class of source and destination were independent, then (38)
would result in the independent modelpS,D(s, d) = pS(s)pD(d).
However, noting that all traffic from peering must go to access, and
likewise, all traffic to peering links comes from access, and further
that the four probabilities must add to one, we get.

pS,D(P, P ) = 0

pS,D(P, A) = p(d ∈ A|s ∈ P ) pS(P ) = pS(P )

pS,D(A, P ) = p(s ∈ A|d ∈ P ) pD(P ) = pD(P )

pS,D(A, A) = 1− pS(P )− pD(P ).

Substituting into (38) we get (28).


