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ABSTRACT

We prove that for every proper minor-closed class I of graphs there exists a constant c

such that for every integer n the class I includes at most n!cn graphs with vertex-set

{1, 2, . . . , n}. This answers a question of Welsh.
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1. INTRODUCTION

All graphs in this paper are finite and simple. A graph is a minor of another if the first

can be obtained from a subgraph of the second by contracting edges and deleting resulting

loops and parallel edges. A lower ideal is a class of graphs closed under isomorphism and

taking minors, and it is called proper if it is not the class of all graphs. We say that a class

C of graphs is small if there exists a constant c such that the number of graphs in C with

vertex-set [n] := {1, 2, . . . , n} is at most n!cn for all integers n ≥ 1. Our goal is to answer

a question of Welsh [4] by proving the following theorem.

(1.1) Every proper lower ideal of graphs is small.

The question was motivated by the work of McDiarmid, Steger and Welsh [2] on

random planar graphs. It turns out that their results hold for more general classes than

planar graphs, namely those that are small and “addable” (but not necessarily closed under

taking minors). McDiarmid, Steger and Welsh define a class C of graphs to be addable if

(a) a graph G is in C if and only if each component of G is in C; and (b) for each graph

G ∈ C, if u and v are vertices in distinct components of G then the graph obtained from G

by adding an edge joining u and v is also in C. For instance, if H is a 2-connected graph,

then the class F of all graphs with no minor isomorphic to H is addable. By Theorem (1.1)

the class F is small, and hence the results of McDiarmid, Steger and Welsh apply to F .

Let us give a brief overview of the results of [2]. If C is a non-empty class of graphs

and n is a positive integer, then we denote by Cn the set of graphs in C with vertex-set

[n]. Theorem 3.3 of [2] states that if C is a non-empty class of graphs which is small and

addable, then there is a finite constant c > 0 such that (|Cn|/n!)1/n → c as n → ∞.

Theorem 4.2 of [2] says that if C includes the star on k + 1 vertices, then there exists a

constant d such that, letting ak = d/(ck(k + 2)!), for all sufficiently large integers n the

probability that a graph in Cn, selected uniformly at random, has fewer than akn vertices

of degree k is at most e−akn. This is, in fact, an immediate corollary of the more general

Theorem 4.1, where the same conclusion is established for the number of “appearances”

of arbitrary connected graphs in graphs from Cn. As a final example of the many results

obtained in [2] let us mention that Theorem 5.1, even though stated for planar graphs
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only, actually shows that the probability that a graph in Cn has an isolated vertex is at

least a1e
−1 + o(1).

2. PROOF OF THEOREM (1.1)

By a result of Kostochka [1] and Thomason [3] for every integer t ≥ 2 there exists a least

constant αt such that every graph with no Kt minor has average degree at most αt.

(2.1) For every integer t ≥ 3, every graph on n ≥ 1 vertices with no Kt minor has at

most αt
tn complete subgraphs.

Proof. The lemma clearly holds for t = 3, because every graph with no K3 minor is a

forest and α3 = 2. We proceed by induction on n + t. Assume that the lemma holds for

n+ t−1, and let G be a graph on n vertices with no Kt minor. We may assume that G has

no isolated vertices, for otherwise the lemma follows by induction. Each vertex v ∈ V (G)

is in at most αt−1
t−1deg(v) complete subgraphs, and hence G has at most

∑

v∈V (G)

αt−1
t−1deg(v) ≤ αt−1

t−1αtn ≤ αt
tn

non-null complete subgraphs. Since at least one complete subgraph was counted twice, the

lemma follows.

A vertex v of a graph G is a clone if G has a vertex u 6= v with the same neighborhood

as v. In that case we say that v is a clone of u.

(2.2) For every integer t ≥ 3 there exists a constant d such that every graph G with no

Kt minor has a set S ⊆ V (G) of size at least |V (G)|/d such that every vertex in S has

degree at most d and either is a clone or is adjacent to a vertex of degree at most d.

Proof. Let t ≥ 3 be fixed, let α := αt, and let d satisfy d ≥ (αt + α + 1)(α + 1) + 1. We

claim that d satisfies the conclusion of the theorem. To see that, let G be a graph on n

vertices with no Kt minor. Let X be the set of all vertices of G that have degree at least d.

Since the sum of the degrees of vertices of G is at most αn, we see that |X| ≤ αn/d. Let
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Y be the set of all vertices of V (G)−X that are adjacent to another vertex of V (G)−X.

If |Y | ≥ n/d, then Y satisfies the conclusion of the lemma, and so we may assume that

|Y | < n/d. Let Z = V (G) − X − Y ; then every neighbor of a vertex in Z belongs to X.

In particular, no two vertices in Z are adjacent. Let Z ′ be a maximal subset of Z such

that for every vertex z ∈ Z ′ there exists a different pair of distinct nonadjacent neighbors

a(z), b(z) of z such that {a(z), b(z)} 6= {a(z′), b(z′)} whenever z, z′ ∈ Z ′ are distinct. Let

H be the graph obtained from G[X ∪ Y ] by adding the edge a(z)b(z) for all z ∈ Z ′. Since

G, and hence H, has no Kt minor, we deduce that |Z ′| ≤ α|X ∪ Y |. The choice of Z ′

implies that the neighborhood of every vertex of Z − Z ′ is a complete subgraph of H.

By Lemma (2.1) there are at most αt|X ∪ Y | distinct such neighborhoods, and so all but

possibly αt|X ∪ Y | vertices of Z − Z ′ have degree at most d and are clones. But

|Z| − |Z ′| − αt|X ∪ Y | ≥ n − |X ∪ Y | − α|X ∪ Y | − αt|X ∪ Y |

≥ (1 − (αt + α + 1)(α + 1)/d)n ≥ n/d

by the choice of d, as desired.

We are now ready to prove Theorem (1.1). Let I be a proper lower ideal. Since I is

proper there exists an integer t such that Kt 6∈ I. Let d be as in Lemma (2.1). We say

that a vertex v of a graph G is good if it has one of the properties of Lemma (2.2); that

is, if it has degree at most d and either it is a clone or is adjacent to a vertex of degree at

most d. Then every graph in I has a set of good vertices of size at least |V (G)|/d. Let K

be the set of all graphs G ∈ I with vertex-set [n] for some n such that vertex n is good.

Let us recall that In denotes the set of all graphs in I with vertex-set [n].

Let c = d(32d + 1); we will prove by induction on n that |In| ≤ n!cn. This is clearly

true for n = 0, and so we may assume that the assertion holds for n−1. By counting pairs

(G, i) in two different ways, where G ∈ In and i ∈ [n] and using Lemma (2.2) we deduce

that |In| ≤ d|Kn|. We wish to define a mapping φ : Kn → [n − 1] × In−1. To that end let

G ∈ Kn. Then there exists a vertex i ∈ [n − 1] of degree at most d such that either n is a

clone of i, or n is adjacent to i. In the former case we define φ(G) = (i, G\n), and in the

latter case we put φ(G) = (i, G′), where G′ is the graph obtained from G by contracting

the edge with ends i and n and deleting the resulting parallel edges. Then the inverse
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image of every element of [n − 1] × In−1 has at most 1 + 32d elements. (More precisely,

one plus the number of ways to split a vertex of degree at most 2d into two vertices.) It

follows that

|In| ≤ d|Kn| ≤ d(1 + 32d)(n − 1)(n − 1)!cn−1 ≤ n!cn,

as desired. This completes the proof of Theorem (1.1).
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