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Abstract Accurate vision-aided inertial navigation depends on proper cal-
ibration of the relative pose of the camera and the inertial measurement
unit (IMU). Calibration errors introduce bias in the overall motion estimate,
degrading navigation performance - sometimes dramatically. However, ex-
isting camera-IMU calibration techniques are difficult, time-consuming and
often require additional complex apparatus. In this paper, we formulate the
camera-IMU relative pose calibration problem in a filtering framework, and
propose a calibration algorithm which requires only a planar camera calibra-
tion target. The algorithm uses an unscented Kalman filter to estimate the
pose of the IMU in a global reference frame and the 6-DoF transform between
the camera and the IMU. Results from simulations and experiments with a
low-cost solid-state IMU demonstrate the accuracy of the approach.

1 Introduction

Many mobile robotics tasks require a robot to accurately estimate its pose,
or position and orientation in a reference frame, over time. Recent work has
shown that visual and inertial sensors, in combination, can provide very ac-
curate pose estimates [1,2]. This makes them ideal for use in environments
where global pose information, from e.g. GPS, is either unavailable or unre-
liable.

In particular, progress in the fabrication of micro-electrical mechanical sys-
tems has led to the development of reliable, low-cost Inertial Measurement
Units (IMUs). An IMU typically consists of three orthogonal, single-axis ac-
celerometers and three orthogonal angular rate gyroscopes. Solid-state IMUs
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are designed for use in a ‘strapdown’ configuration, with the accelerometers
and gyroscopes fixed to a common chassis and not actively gimbaled to main-
tain a fixed orientation [3]. The change in pose of a strapdown IMU can, in
theory, be determined by double-integrating the accelerometer outputs over
time, using rate information from the gyroscopes to determine orientation.
In reality, inertial sensors are subject to low-frequency drift, and therefore
some form of aiding is normally required to maintain the integrity of the pose
information.

When a camera is used for aiding (in vision-aided inertial navigation, or V-
INS), it is important that the relative pose of the sensors be accurately known
so that measurements can be properly fused. Errors in the estimated rotation
or translation between the camera and the IMU will introduce unmodeled
biases in the pose estimate — over time, these biases can cause the overall pose
error to grow without bound. For applications in which accuracy is important,
calibration is therefore a necessity. However, existing calibration techniques
are time-consuming, and require the use of additional apparatus [4].

In this paper, we formulate the camera-IMU relative pose calibration prob-
lem in a filtering framework, and use the constraints imposed by rigid body
dynamics to solve for the transform between the sensor reference frames. If
the sensors are rigidly attached to the same platform, then any change in the
orientation of one sensor is accompanied by an equivalent change in the orien-
tation of the other sensor, measured in the appropriate sensor-specific frame.
Likewise, the length of the moment arm between the sensors determines how
the two may move in relation to each other.

To solve for the six degrees-of-freedom (6-DoF') relative pose, we record
measurements from the IMU and images from the camera while the camera
views a planar calibration target. We track known target points, and use this
information in an unscented Kalman filter (UKF) to estimate the transform
between the sensors. Our choice of the UKF is motivated by its superior per-
formance compared to the extended Kalman filter (EKF) for many nonlinear
problems. The calibration algorithm also provides a measure of the uncer-
tainty associated with the relative pose estimate (i.e. a covariance matrix),
and can therefore be easily integrated with other estimators.

2 Related Work

Vision-aided inertial navigation is an active research area in robotics [5]. The
complimentary frequency response and noise characteristics of cameras and
IMUs make the sensors suitable for use in combination to accurately estimate
the ego-motion of a robot over time [6]. Advances in computing hardware have
recently enabled the development of practical, online V-INS systems [2, 7].
For vehicle applications, an initial alignment procedure is usually carried
out to determine the orientation of the IMU in the vehicle navigation frame.
The absolute positioning information required for alignment can be obtained

Revised Sept. 21, 2010



Fast Relative Pose Calibration for Visual and Inertial Sensors 3

from e.g. a GPS receiver [8]. Similarly, for V-INS, it is important to know
the relative alignment between the camera and the IMU, and the relative
translation between the sensors, so that measurements from both devices
can be correctly fused in the navigation frame.

Several visual-inertial calibration techniques have been proposed in the
literature. Lang and Pinz [9] uses a constrained nonlinear optimization algo-
rithm to solve for the rotation between a camera and an IMU. The camera is
mounted on a tripod and manually rotated while gyroscope data is recorded.
By measuring the relative angle to several external markers viewed in the
camera image, and comparing these values with the integrated gyro outputs,
the algorithm determines the rotation which best aligns the sensor frames.
The approach ignores the relative translation between the sensors, however.

Lobo and Dias [4] describes a camera-IMU calibration procedure in which
the relative orientation and relative translation between the sensors are deter-
mined independently. First, the rotational offset of the camera frame relative
to the IMU frame is found by rotating the sensors using a pendulum unit
while the camera views a planar calibration target. The relative translation
is then determined by spinning the camera and the IMU on a turntable,
while positioning the IMU such that its measured horizontal acceleration is
zero. A drawback of the technique is that separately calibrating the relative
rotation and translation decouples the estimates and therefore ignores any
correlations that exist between the parameters.

Our technique, in contrast, does not require additional apparatus beyond
a camera calibration target, provides a measure of the uncertainty associated
with the transform, and can be used online to quickly re-calibrate the relative
pose between the sensors if either the camera or the IMU is repositioned.

3 Calibration Algorithm

The goal of the calibration procedure is to accurately determine the 6-DoF
rigid body transform between the camera optical center and the translation
and rotation center of the IMU. We describe our system model below, and
then briefly discuss our implementation of the unscented Kalman filter. Three
separate reference frames are considered:

1. the camera frame {C}, with its origin at the optical center of the camera
and with the z-axis aligned with the optical axis of the lens,

2. the IMU frame {I}, with its origin at the center of the IMU body, in which
linear accelerations and angular rates are measured, and

3. the global frame {G}, with its origin at the upper left-hand corner of the
calibration target.
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Fig. 1: Global, {G}, IMU, {I}, and camera, {C}, reference frames. The trans-
form from the IMU frame to the global frame is defined by the (“pr, ¥ ©)
translation and rotation pair. The (unknown) transform from the camera
frame to the IMU frame is defined by the (pc, 5©) translation and rotation
pair.

The global frame is an inertial frame and serves as an absolute reference for
both the camera and the IMU.! Figure 1 illustrates the relationship between
the frames.

3.1 System Description

Our approach uses an UKF to simultaneously estimate the pose of the IMU
in the global frame and position and orientation of the camera relative to the
IMU. The 21 x 1 system state vector is:

_[GAT G@T G T WwWI wWI I.T I oT1T
x=[“p] §© vi by b, ‘rg c07]

(1)
where “py is the position of the IMU in the global frame, $© = [a 8 'y]T
is the vector of roll, pitch and yaw Euler angles which define the orientation
of the IMU frame with respect to the global frame, “vy is the linear velocity

1 In fact, the global frame is not strictly an inertial frame, since it is attached to the surface
of the rotating Earth. However, the effects of the Earth’s rotation are very small over the
calibration time interval, and we therefore ignore them.

Revised Sept. 21, 2010



Fast Relative Pose Calibration for Visual and Inertial Sensors 5

of the IMU in the global frame, and b, and b, are the accelerometer and
gyroscope biases, respectively. The remaining entries, ‘re and é@, define
the position and orientation of the camera frame relative to the IMU frame.
These values are parameters, or static quantities, which we seek to estimate
as part of the calibration process. Recent work by Mirzaei and Roumeliotis
[10] has shown that the system is fully observable given camera and IMU
measurements alone.

3.1.1 Process Model

The filter process model is driven by the IMU linear acceleration and angular
velocity measurements. IMU accelerometer and gyroscope biases are modeled
as Gaussian random walk processes driven by the white noise vectors ng,, and
ng,, [11]. The accelerometer and gyroscope measurements are assumed to be
corrupted with zero-mean Gaussian noise vectors n, and ng, respectively.
The time evolution of the system state is described by:

fO=T({0)w (2)
“pr="Cvi “1=C(7O) a; - “g (3)

b = N, by = ng., (4)
The = 0341 éé):OBXI (5)

where T is the Euler kinematical matrix which relates the rate of change of
the Euler angles to the IMU angular velocity, C is a direction cosine matrix
and “g is the gravity vector in the global frame. The vectors ‘a; and ‘w are
the linear acceleration and angular velocity, respectively, of the IMU in the
IMU frame. These values are related to the measured IMU linear acceleration,
a,,, and angular velocity, w,,, by:

a,, =‘a;+b, +n, = CT(¥©)(“a; + “g) + b, + n, (6)
wm =Tw+b, +n, (7)
After each IMU measurement, the state is propagated forward in time until

the next camera or IMU update using fourth-order Runge-Kutta integration
of Equations 2 through 5 above.

3.1.2 Measurement Model

As the sensor beam moves through space, the camera captures images of
known points on the calibration target. The points are tracked using the
KLT feature tracker [12], after each image has been rectified to remove lens
distortions. Projections of the target points in the camera images can be
used to determine the absolute position and orientation of the camera in the
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global frame. In our case, the measurement residuals consist of the differ-
ence between the observed positions of the target points and their predicted
positions.

We use an ideal projective (pinhole) camera model, and assume that the
intrinsic calibration parameters of the camera and lens are known. Measure-
ment z; is the projection of target point p;, at position Cppi in the camera
frame, onto the image plane:

T
“pp, = |ui| =CT((O)CT(FO) (°pp, — “p1) —CT((O)rc  (8)
_ZZ
Ui— 3 , x} Xz
zi=| | =hxTpp)tmi=1 4w v =K i/ 9)
[ 7
] 1 1

where [u;, vi]T is the vector of observed image coordinates, K is the 3 x 3
camera intrinsic calibration matrix, and 7; is a Gaussian measurement noise
vector. The initial position of the camera with respect to the target is deter-
mined using an iterative least squares computation. We use a homography-
based check and a RANSAC procedure to remove outliers due to tracking
errors.

3.2 Unscented Filtering

The UKF [13] captures the mean and covariance of a probability distribution
with a set of deterministically-selected sample points called sigma points,
which lie on the covariance contours of the N-dimensional state space. To
update the system state, the UKF generates a set of 2V + 1 sigma points —
each point is propagated through the (nonlinear) system process and mea-
surement models to compute the posterior state mean and covariance. This
approach is attractive because it avoids many of the problems that can re-
sult from linearization (in, e.g., the EKF), and has third-order accuracy for
Gaussian error distributions. An additional benefit of the UKF is that it does
not require the computation of Jacobian matrices.

The most straightforward implementation of the UKF augments the state
vector and state covariance matrix with process and measurement noise com-
ponents. In our case, we stack the IMU bias and noise vectors to form a 12 x 1
process noise vector, and add a 2 X 1 camera measurement noise vector, pro-
ducing an augmented 35 x 1 system state vector. Computing the sigma points
requires a matrix square root, which is found by Cholesky decomposition. The
individual sigma points are then propagated through the process model and
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combined in a weighted average to generate an updated state mean and state
covariance matrix.

When a measurement arrives (i.e. in our case, an observation of one of
the corners of the calibration target projected into the camera image plane),
we determine the predicted measurement value by propagating each sigma
point through the (nonlinear) measurement function. We then perform a
state update by computing the Kalman gain matrix and the a posteriori
state vector and state covariance matrix.

4 Simulation Studies

In order to examine the performance of the calibration algorithm, we ini-
tially performed a series simulation studies with ground truth available. We
modeled a sensor beam, 50 c¢m in length, moving through space according to
accurate rigid body kinematics. Simulated IMU updates occurred at a rate
of 60 Hz, while camera images arrived at 30 Hz; these update rates match
those of the actual hardware used for the experiments described in Section
5. The process noise for the simulated IMU was the same as the estimated
noise for the IMU available in our laboratory.

During each simulation, the sensor beam moved along a rotating, spiral
trajectory to excite the full six degrees of rotational and translational free-
dom. We constrained the beam trajectory to ensure that all points on the
calibration target remained visible throughout the entire simulation run.

For each simulated camera image, we projected the known target points
into the image plane and added Gaussian noise with a standard deviation of
1.0 pixels in the v and v directions to the image coordinates. The simulated
camera had a horizontal field of view of 45° and a resolution of 640 x 480
pixels.

Results from one simulation trial are shown in Figure 2 and Table 1;
although the data is for a single trial only, these results are typical of the
majority of our simulations. For the trial indicated, the initial translation
error was five centimeters along each axis and the initial rotation error was
eight degrees in all three axes (roll, pitch and yaw).

The plots in Figure 2 show rapid convergence of the orientation estimates,
although there is a small residual error in the pitch value. For the translation,
the Y and Z axes estimates also converge, although more slowly, to the
approximate true values, and the error remains within the 30 bounds for the
entire simulation. The X axis error, in contrast, converges very slowly, and
has a residual bias of approximately 1.27 cm, or 25% of the initial error. This
suggests that, for the given beam trajectory, the X offset of the camera is
only weakly observable. We are currently investigating this issue.
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Fig. 2: State error and 3¢ bounds for the camera-IMU translation (left) and
rotation (right) estimates over the simulation time interval of 25 seconds. The
initial position error for the camera relative to the IMU was [-5.0, -5.0, 5.0]
cm in the X, Y and Z directions, and the initial orientation error was [-8.0,
8.0, 8.0] degrees in roll, pitch and yaw.

Table 1: Results from one simulation trial. The initial absolute error for the
estimate of the camera-IMU transform is shown on the first line of the table.
The error in the estimate after the simulation has run for 25 seconds is shown
on the second line.

Error | X (cm) Y (cm) Z (cm) Roll (°) Pitch (°) Yaw (°)
Initial 5.00 5.00 5.00 8.00 8.00 8.00
Final 1.27 0.19 0.05 0.04 0.56 0.01

5 Experiments

To verify the accuracy of our calibration algorithm with real hardware, we
performed several experiments in our laboratory using a calibration test rig.
The rig consists of a 60 cm long sensor beam, with an IMU mounted near
one end and a camera near the other. For the experiments, we placed the
beam approximately two meters in front of a wall-mounted planar camera
calibration target, such that the entire target was visible in the camera image
plane.

At the start of each experimental trial, we initialized the filter by holding
the beam stationary while recording measurements from the IMU and im-
ages from the camera. We then manually rotated and translated the beam,
while ensuring that the calibration target remained within the camera’s field
of view. The camera-IMU transform parameters were initialized using hand
measurements of the relative position and orientation of the sensors. A sub-
set of 100 images acquired during the visual-inertial procedure were used to
calibrate the camera intrinsic parameters.
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5.1 Hardware

Our camera is a black and white Flea model from Point Grey Research, with a
resolution of 640 x 480 pixels, mated to a 4 mm Navitar lens (58° horizontal
field of view). We capture images from the camera at 30 Hz. The IMU is
a 3DM-G model manufactured by Microstrain, which provides angular rate
and linear acceleration updates at approximately 60 Hz. The planar camera
calibration target is 1.0 m x 0.8 m in size; each white or black square is 104
mm on a side. For the experiments described here, the target was mounted
on a wall and the vertical edges of the calibration squares were aligned with
the local gravity vector.

5.2 Results

In this section, we present results, shown in Figure 3 and Table 2, from a
single experiment; we selected results which are typical of those obtained
across multiple trials. Although we measured the relative pose of the sensors
by hand, and therefore did not have high-quality ground truth available, we
observed a decrease in the residuals for the pixel reprojection error over time,
indicating that the calibration was accurate.

The duration of the experiment was approximately 90 seconds, excluding
60 seconds of setup time to initialize the IMU accelerometer and gyroscope
biases in the filter. Of the 2706 images captured, the entire calibration target
was visible in all except 22 frames — we simply discarded these frames.

The results from the experiment are generally in good agreement with
those from the simulation. We observed that a larger residual uncertainty
remains for the camera offset along the X axis relative to the IMU. This again
is possibly due to the trajectory followed by the beam during the experiment —
we varied the beam’s position in the X direction less than in other directions.
Also, solid-state MEMS-based IMUs such as the 3DM-G exhibit inherently
high drift rates, which may also contribute to the poorer outcome for the X
offset.

6 Conclusions and Future Work

We presented an online camera-IMU relative pose calibration algorithm,
which can be used to accurately determine the 6-DoF transform between the
sensors. The algorithm employs an unscented Kalman filter to estimate the
relative pose of the sensors and the motion of the IMU over time. This online
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Table 2: Results for one experimental trial.

X £+ 30 (cm) Y + 30 (cm) Z £ 30 (cm)
Initial 2.00 + 6.00 55.00 £ 9.00 5.00 £+ 6.00
Final 4.08 £ 0.54 49.8 £ 0.30 0.59 £ 0.32

Roll £ 30 (°) Pitch £ 30 (°) Yaw £ 30 (°)
Initial 90.00 £ 6.00 3.00 £ 6.00 -88.00 £ 6.00
Final 89.42 £ 0.10 2.32 £ 0.16 -84.54 £ 0.08

approach is considerably easier than other published calibration methods,
and does not require turntables or other complex apparatus. Additionally,
our technique enables rapid re-calibration when the positions of the sensors
must be changed (e.g. for operation in different environments).

There are several directions for future work. We are currently investigating
the effect of the beam’s trajectory on calibration accuracy and convergence
time, in order to define trajectories which rapidly produce accurate calibra-
tion results. We are also working with stereo cameras and applying structure-
from-motion algorithms to estimate the locations of landmark points as part
of the calibration procedure. This will allow us to fully calibrate the relative
pose of the stereo cameras and the IMU without the need for the calibra-
tion target. This work is part of an ongoing project to develop automated
calibration methods for our aerial, aquatic and humanoid robot platforms.
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Fig. 3: (a) Estimated relative camera translation during experimental trial.
(b) Estimated relative camera rotation during experimental trial.
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