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Abstract

This paper presents a general technique to develop
approximation algorithms for allocation problems
with integral assignment constraints. The core of
the method is a randomized dependent rounding
scheme, called geometric rounding, which yields
termwise rounding ratios (in expectation), while
emphasizing the strong correlation between events.
We further explore the intrinsic geometric structure
and general theoretical properties of this rounding
scheme.

First we will apply the geometric rounding algo-
rithm(GRA) to solve a maximization problem, the
winner determination problem(WDP) in a single-
minded combinatorial auction. Its approximation
ratio depends only on the maximal cardinality of
the preferred bundles of players. The algorithm also
provides a similar bound for the multi-unit WDP by
integrating the rounding scheme with a bin packing
technique.

We then develop a probabilistic analysis of
the geometric rounding for minimization problems.
The application of this analysis yields the first non-
trivial approximation algorithm for the hub loca-
tion problem. It also generates simple approxima-
tion algorithms for the set cover and non-metric
uncapacitated facility location problems(UFLP).
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1. Introduction

Rounding techniques have been combined with
linear programming to approximate a variety
of combinatorial optimization problems in the
past decades. Randomized rounding, as a com-
monly used technique in the study of approx-
imation algorithms, has been studied inten-
sively since it was introduced by Raghavan
and Thompson [25]. The idea of randomized
independent rounding for 0 − 1 integer pro-
gram, i.e., rounding each fractional variable to
1 with probability equal to the fractional so-
lution of the LP relaxation, has been applied
to many discrete optimization problems with
proven performance guarantees [15, 25].

Noticing that the independent rounding
techniques may not retain well the correlations
among fractions of an optimal LP relaxation
solution, researchers have also developed sev-
eral dependent rounding methods to deal with
different optimization problems [1, 3, 4, 5, 16,
19, 14]. For example, Ageev and Sviridenko [1]
propose pipage rounding, a deterministic de-
pendent rounding scheme, for the maximum
coverage and max cut problems. Bertsimas et
al. apply dependent rounding methods to solve
various optimization problems in their seminal
work [3, 4, 5]. Essentially, the difficult part to
design a quality rounding is conserving as much
information from its LP relaxation as possible.
Moreover, most known algorithms are problem
specific: the insights derived from a particular
problem often fail to apply to others.

In an unpublished working paper Ge et
al. [14] recently proposed a new randomized
dependent rounding technique, which they call
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the geometric rounding, to solve the fixed-hub
single allocation problem(FHSAP). In this pa-
per we illustrate that this geometric rounding
scheme actually provides a general framework
to many resource allocation problems with
integral assignment constraints. We further
explore the intrinsic geometric structure and
general theoretical properties of this rounding
scheme. Then, we apply the rounding to obtain
many known as well as new results for the set
packing, winner determination, hub location,
facility location and set cover problems.

We study two main classes of problems in
this paper. One is a set of problems where
we are maximizing an objective value, includ-
ing the weighted set packing and winner deter-
mination problems. The other class involves
minimizing an objective value, including the
hub location, set cover and non-metric UFLPs.
Approximation algorithm is the main approach
in our work. A polynomial-time randomized
ρ-approximation algorithm for a minimization
problem is defined to be an algorithm that runs
in polynomial time and outputs a solution with
a cost at most ρ(≥ 1) times the optimal cost
in expectation. ρ is called approximation ra-
tio or performance guarantee. A randomized
ρ-approximation algorithm for a maximization
problem is an algorithm that recovers at least
a 1/ρ fraction of the optimal value in expecta-
tion.

In this paper we start the introduction of the
geometric rounding by considering the WDP
in a combinatorial auction. Suppose there are
n players (or bidders) and m items. Each
player is single-minded, i.e., player j is inter-
ested precisely in a subset Sj of items. The
utility of set T for him is defined to be v(Sj)
if Sj ⊆ T and to be zero otherwise. We call
Sj the preferred bundle of player j. The as-
sociated winner determination problem, also
called the social welfare maximization prob-
lem, asks for an allocation of the items to
the players that maximizes the total valuation.
The model has been used in the formulation
of the weighted set packing problem. It is

well known that the WDP cannot be approx-
imated better than O(n) or O(

√
m) in poly-

nomial time unless P=NP [23, 18]. The gen-
eralized problem in which each item may have
multiply copies is called the multi-unit WDP.
Define Bi(≥ 1) to be the copy number of item i
and B to be the minimum of all Bi’s, Bartal et
al. develop an O(B ·m 1

B−2 )-approximation al-
gorithm [2]. For the case in which Bi’s are uni-
form B, the approximation threshold is known
to be O(m

1
B+1 ) [2, 6, 20, 24].

The minimization model that we develop in
this paper can be generalized to solve the mul-
tiway cut, set cover, non-metric UFLP, metric
labeling and hub location problems. It is well
known that the non-metric UFLP and set cover
problems are NP-hard to approximate within a
factor less than O(log n), where n is the num-
ber of clients in the UFLP and the number of
elements in the set cover problem [17]. The
hub location problem [8, 21, 14] is a classical
model of hub-and-spoke networks in operations
research. In such networks, traffic is routed
from cities of origin to specific destinations
through hubs. A solution to the problem needs
to specify which hubs to open and the alloca-
tions of cities to hubs. Demands between two
cities have to be routed through hubs to which
they are assigned to. The objective function
includes the hub opening cost, the hub-to-city
connection cost and the (quadratic) interhub
cost.

The geometric rounding provides an approx-
imation algorithm with a constant approxima-
tion ratio for a special case, the FHSAP, of
the hub location problem in the work by Ge
et al. [14]. The FHSAP has also been found
to be mathematically identical to the metric
labeling problem studied in the computer sci-
ence community[19, 11]. The hub location
problem is harder than the non-metric UFLP
since its cost function involves the quadratic
interhub cost in addition to the opening and
connection costs. All published work on the
hub location problem mainly focuses on prac-
tical heuristics while providing no theoretical

2



bounds [10, 21, 22]. In this paper, we prove
that the GRA gives the first non-trivial approx-
imation ratio for the hub location problem.

Our contributions are summarized as fol-
lows:

1. Define r to be the maximal cardinality
of Sj ’s, i.e., r = maxj∈P |Sj | in a single-
minded combinatorial auction. We prove
that the geometric rounding is a random-
ized r-approximation algorithm for the as-
sociated WDP. This is the first approxi-
mation algorithm with an approximation
ratio that is independent of the number of
players and items.

2. Combined with the bin packing technique,
our geometric rounding algorithm achieves
for the multi-unit WDP an expected per-
formance guarantee that depends only on
r as well. This demonstrates that the
GRA is also a powerful tool applicable for
general multi-assignment problems. We
also present a sequential GRA for the uni-
form multi-unit WDP with an expected
performance guarantee approaching the
optimal when the number of copies in-
creases.

3. We prove that the geometric rounding is a
randomized O(log n)-approximation algo-
rithm for the hub location problem if dis-
tances between hubs are uniform, which is
the first approximation ratio for this hard
problem. The same expected performance
guarantee also applies to the set cover and
non-metric UFLPs.

The outline of the paper is as follows. In Sec-
tion 2, we introduce the details of the geometric
rounding and apply it to the WDP. In Section
3, we propose two geometric rounding-based
algorithms for multi-unit WDPs and establish
their theoretical bounds. In Section 4, we con-
duct a probabilistic analysis of the geometric
rounding with the application to minimization
problems. And in Section 5, we conclude the
paper.

2. The geometric rounding
and winner determination
problems

In this section we consider the weighted set
packing and WDPs. We start to introduce the
geometric rounding with the WDP in a single-
minded combinatorial auction. In this problem
a set of players, P = {1, 2, · · · , n} and a set
of items, I = {1, 2, · · · ,m}, are given. Each
player is interested in precisely one subset of
items. Each item has only one copy. A feasi-
ble assignment allocates each item to at most
one player. The problem can be described by
a well-known integer program [12].

maximize
∑

j∈P

v(Sj)xSj

subject to
∑
∀j:i∈Sj

xSj ≤ 1, ∀i ∈ I,

xSj ∈ {0, 1} , ∀j ∈ P.

By introducing assignment variable xi,j that
indicates whether item i is assigned to player
j or not, we derive a new IP formulation:

maximize
∑

j∈P

v(Sj)xSj

subject to
∑

j∈P

xi,j = 1, ∀i ∈ I,

xSj ≤ xi,j , ∀i ∈ Sj , j ∈ P,

xSj , xi,j ∈ {0, 1} , ∀i ∈ I, j ∈ P.

An optimal solution to the LP relaxation
provides a relaxed optimal fractional assign-
ment of items to players. The key of a rounding
is then to make a feasible assignment pattern
while preserving as much the information car-
ried by fractional assignment vectors as possi-
ble. We demonstrate the effectiveness of the
geometric rounding on the WDP. The follow-
ing introduction (until Lemma 1) is a simple
repetition of Ge et al.’s work [14] for readers’
convenience.

The assignment vector for item i satis-
fies the relation

∑
j∈P xi,j = 1. So vector
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(xi,1, · · · , xi,n) is a point in (n − 1)-dimension
standard simplex ∆n:

{w ∈ Rn|w ≥ 0,

n∑

j=1

wj = 1}.

A fractional assignment vector of item i cor-
responds to a non-vertex point in simplex ∆n.
Our goal is to round any fractional solution to
a vertex point of ∆n, which is of the form:

{v ∈ Rn|vj ∈ {0, 1},
n∑

j=1

vj = 1}.

It is clear that ∆n has exactly n vertices. We
denote the vertices of ∆n by v1, v2, · · · , vn.
Vertex vi is the vector with 1 on the ith co-
ordinate and 0 on others.

For a point x ∈ ∆n, connect x with all ver-
tices v1, . . . , vn of ∆n. Denote the polyhedron
with vertices {x, v1, . . . , vi−1, vi+1, . . . , vn} by
Ax,i. Thus simplex ∆n can be partitioned into
n polyhedrons Ax,1, . . . , Ax,n, and the interiors
of any pair of these n polyhedrons do not
intersect.

Algorithm: The Geometric Rounding
Algorithm(GRA):

1. Solve the LP relaxation of the problem to
get an optimal solution x.

2. Generate a random vector u, which follows
a uniform distribution on ∆n.

3. For each xi = (xi,1, . . . , xi,n), if u falls into
Axi,s, let x̂i,s = 1; otherwise let x̂i,s = 0.

Remark. There are several methods to gen-
erate a uniform random vector u from the stan-
dard simplex ∆n. One of them is to generate
n independent unit-exponential random num-
bers a1, ..., an, i.e., ai ∼ exp(1). Then vector
u, whose ith coordinate is defined as

ui =
ai∑n
i=1 ai

,

is uniformly distributed on ∆n.

(1,0,0)

 (0,1,0) (0,0,1)

x x21

V

V

1

V2
3

z

u Az1

Figure 1: Player 1 gets both item 1 and 2 when
u falls into Az,1.

Lemma 1 presents a method to decide which
polyhedron vector u falls into for the last two
steps of the GRA.

Lemma 1. [14] Given w = (w1, w2, . . . , wn) ∈
∆n, vector u in ∆n is in the interior of poly-
hedron Aw,s only if s minimizes ul

wl
, 1 ≤ l ≤ n.

Lemma 1 reveals the computational advan-
tage of the GRA in implementation. Given
k points in ∆n, the rounding procedure has
a worst-case complexity bound on the number
of arithmetic operations: it stops within 2nk
operations.

2.1 Approximating the WDP

Now we analyze the theoretical performance of
the GRA for the WDP in a single-minded com-
binatorial auction. Before continuing with fur-
ther analysis, let’s consider the simple example
in Figure 1. There are 3 single-minded players
and 2 items in this example. Assume player 1’s
preferred bundle S1 = {1, 2}. An optimal so-
lution of the LP relaxation is shown in Figure
1. Then player 1 gets his preferred bundle if
and only if both points x1 and x2 are rounded
to vertex 1 in the figure. This happens when
vector u in the GRA falls into polyhedron Az,1.

In general, player j gets his preferred bundle
Sj if and only if vector u generated in the GRA
falls into the intersection of all Axi,j ’s for ev-
ery item i in Sj . Thus, the probability of this
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event turns out to be the volume of a specific
polyhedron in a high dimensional space.

Define r to be the maximal cardinality of all
Sj ’s. We have the following theorem.

Theorem 2. The GRA provides a feasible al-
location to the WDP in a single-minded com-
binatorial auction. Additionally, the solution
achieves at least max{1

r , 1
n−1} of the optimal

value.

Theorem 2 shows that the GRA delivers
a solid performance guarantee for the sparse
combinatorial allocation problem in which each
player is only interested in a small set of items,
which might be of practical significance con-
sidering that the size of an individual bidder’s
preferred bundle is usually limited in many real
scenes [7].

Before giving the proof we first present a ge-
ometric property of the rounding. Without loss
of generality, let’s consider player 1. The fol-
lowing lemma claims that the intersection of
all Axi,1’s has merely one single vertex in the
interior of ∆n.

Lemma 3. Define vj = maxi∈S1{xi,j

xi,1
}, and

zj = vj∑n
j=1 vj

for any j, 1 ≤ j ≤ n. We have

⋂

i∈S1

Axi,1 = Az,1.

Proof. For two arbitrary points p, q in ∆n, ac-
cording to Lemma 1, p ∈ Aq,1 if and only if
p1qj ≤ pjq1 for all 1 ≤ j ≤ n.

If a point q ∈ ⋂
i∈S1

Axi,1, we will have

qj

q1
≥ xi,j

xi,1
, ∀i ∈ S1, 1 ≤ j ≤ n.

Then,
qj

q1
≥ vj =

vj

v1
=

zj

z1
.

Therefore, q ∈ Az,1.
The proof can also be easily reversed to prove

that q ∈ Az,1 implies q ∈ ⋂
i∈S1

Axi,1.

Lemma 3 helps us make an estimation of the
volume of Az,1.

Theorem 4.

z1 ≥ max{ 1
n− 1

,
1
r
}min

i∈S1

xi,1.

Proof. Let a = mini∈S1 xi,1. We need to prove
that

v1∑n
j=1 vj

≥ max{ a

n− 1
,
a

r
}.

It is equivalent to

n∑

j=1

vj ≤ min{n− 1
a

,
r

a
}.

For all j ≥ 2, xi,1 ≥ a, so xi,j

xi,1
≤ 1−a

a . It
implies vj ≤ 1−a

a .
Recall that v1 = 1, we have

∑

1≤j≤n

vj ≤ 1 + (n− 1)
1− a

a

=
n− 1

a
− (n− 2) ≤ n− 1

a
.

Also, noticing that vj ≤
∑

i∈S1

xi,j

xi,1
, we have

∑

1≤j≤n

vj ≤
∑

1≤j≤n

∑

i∈S1

xi,j

xi,1
=

∑

i∈S1

1
xi,1

≤ r

a
.

Now we prove Theorem 2.

Proof. Denote the rounded solution by x̂.
We need to prove

E[
∑

j∈P

v(Sj)x̂Sj ] ≥ max{1
r
,

1
n− 1

}
∑

j∈P

v(Sj)xSj .

It is implied by the fact:

E[x̂Sj ]
= P (every xi is rounded to vertex j

by the GRA, ∀i ∈ Sj)

= zj ≥ max{1
r
,

1
n− 1

}xSj .
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3. Multi-unit WDPs

Now we examine the multi-unit WDP. In this
case each item may have multiple copies, that
is, Bi ≥ 1 for each i in I. Each player needs at
most one copy of an item. This problem can
be formulated as follows.

maximize
∑

j∈P

v(Sj)xSj

subject to
∑

j∈P

xi,j = Bi, ∀i ∈ I,

xSj ≤ xi,j , ∀i ∈ Sj , j ∈ P,

xi,j ≤ 1, ∀i ∈ I, j ∈ P,

xSj , xi,j ∈ {0, 1} , ∀i ∈ I, j ∈ P.

If Bi > 1, the multi-assignment constraint,∑
j∈P xi,j = Bi, restricts the implementation

of the geometric rounding. In order to work
around this issue, we revise the rounding by
integrating the bin packing technique. The ba-
sic idea is to pack all xi,j ’s into Bi unit-volume
bins. Each unit-volume bin corresponds to a
point in ∆n whose jth coordinate is xi,j if xi,j

is in this bin and 0 if not. Next, run the GRA
to allocate items to players by rounding these
newly created points in ∆n.

The bin packing idea may not be feasible for
some i if xi,j ’s are indivisible. One remedy is to
shrink each xi,j by half. Denote the new xi,j by
x′i,j . A simple greedy algorithm will guarantee
that these x′i,j ’s can be encapsulated into at
most Bi unit-volume bins. Thus we can make
a partition of P , P = Pi1∪Pi2∪ . . .∪PiBi , such
that

1. Pik’s are mutually disjoint.

2.
∑

j∈Pik
x′i,j ≤ 1, ∀1 ≤ k ≤ Bi.

If
∑

j∈Pik
x′i,j < 1, we can stretch any

nonzero xi,j in Pik to increase the sum to 1.
It is easy to see that this modification only
increases the quality of the rounded solution.
Thus this partition generates Bi points in sim-
plex ∆n for item i.

Now we develop a multi-assignment GRA
with the bin packing idea.

Algorithm: The multi-assignment GRA.

1. Solve the LP relaxation of the multi-
assignment WDP to get an optimal frac-
tional solution x.

2. For item i, make the bin packing partition
and map Pi1, Pi2, · · · , PiBi to Bi points in
∆n as described above.

3. Generate a random vector u, which follows
a uniform distribution on ∆n.

4. Run the rounding in the same fashion as
the GRA for all newly created points in
∆n.

This algorithm provides a general approach
to allocation problems with multi-assignment
constraints. By following a similar proof of
Theorem 4 for the GRA, we have the following
theorem.

Theorem 5. The multi-assignment GRA
yields a feasible assignment to the multi-unit
WDP. Moreover, the solution recovers at least
max 1

2{1
r , 1

n−1} of the optimal value.

Factor 1
2 comes from the fact we shrink the

size of each xi,j by half during the bin packing.
This factor depends on how the associated bin
packing problem is approached. A slightly bet-
ter bound can be achieved if a more advanced
packing technique is implemented.

3.1 The uniform multi-unit WDP

A few O(m( 1
B+1

))-approximation algorithms
have been developed for the case in which all
Bi’s are uniform B [6, 20, 24] . In this sec-
tion we present a sequential geometric round-
ing technique to solve the uniform multi-unit
WDP. The solution that our algorithm gen-
erates recovers at least a max{ B

B+n−1 , 1
1+r}

fraction of the optimal value. In a uni-
form multi-unit WDP,

∑
j∈P xi,j = B implies
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(xi,1/B, xi,2/B, . . . , xi,n/B) ∈ ∆n, ∀i ∈ I.
Our algorithm sequentially run B rounds of the
GRA to allocate items to players, and the allo-
cation is decided in each round by running the
GRA on x/B.

The algorithm is stated as follows.

Algorithm: The uniform multi-
assignment GRA

1. Solve the LP relaxation of the uniform
multi-unit WDP to get an optimal frac-
tional solution x. Define x′ = x/B.

2. Choose a sequence of independent ran-
dom vectors u1, u2, . . . , uB, each of which
is uniformly distributed on ∆n. Run B
rounds of the GRA for x′ by using ul at
round l.

Intuitively, when B gets large, the possibil-
ity that a player gets his preferred bundle will
increase by our algorithm. Define binary vari-
able x̂l

i,j to indicate whether the ith item is
allocated to player j at round l. Naturally the
assignment variable x̂i,j = 1 if and only if there
exists some l, 1 ≤ l ≤ B, such that x̂l

i,j = 1. Let
x̂Sj = mini∈Sj x̂i,j . The following lemma gives
the estimation of the approximation ratio for
each round.

Lemma 6.

P (min
i∈Sj

x̂l
i,j = 1) ≥ max{ 1

rB
,

1
n− 1

}min
i∈Sj

xi,j

Proof. Theorem 4 directly implies that
P (mini∈Sj x̂l

i,j = 1) ≥ 1
rmini∈Sj{xi,j

B }.
For the other part of the bound, we use the

same concepts in Theorem 4. Noticing that
vj ≤ 1−a

a for any j ≥ 2 and v1 = 1, the proof is
essentially the same as the one for Theorem 4.

Theorem 7. The uniform multi-assignment
GRA provides a feasible assignment to the uni-
form multi-unit WDP. Additionally, the solu-
tion recovers at least max{ B

B+n−1 , 1
1+r} of the

optimal value.

Proof. At each round one copy of each item is
assigned to some player, so the uniform multi-
assignment GRA always makes a feasible as-
signment after B rounds.

For the theoretical bound, it suffices to show
that E[x̂Sj ] ≥ max{ B

B+n−1 , 1
1+r}xSj for every

j.
We have

E[x̂Sj ] = P (x̂Sj = 1) = P (min
i∈Sj

x̂i,j = 1).

P (min
i∈Sj

x̂i,j = 1) = 1− P (min
i∈Sj

x̂i,j = 0)

≥ 1−
B∏

l=1

P (min
i∈Sj

x̂l
i,j = 0).

The last inequality uses the fact that ul are
independent and

min
i∈Sj

x̂i,j = 0 ⇒ min
i∈Sj

x̂l
i,j = 0, ∀1 ≤ l ≤ B.

Furthermore,we have

B∏

l=1

P (min
i∈Sj

x̂l
i,j = 0)

=
B∏

l=1

(1− P (min
i∈Sj

x̂l
i,j = 1))

= (1− P (min
i∈Sj

x̂l
i,j = 1))B.

Here again we use the independence of ul.
Define c = max{ 1

rB , 1
n−1}.

P (min
i∈Sj

x̂i,j = 1)

≥ 1− (1− P (min
i∈Sj

x̂l
i,j = 1))B

≥ 1− (1− c ·min
i∈Sj

xi,j)B.

Therefore, for any j,

E[x̂Sj ]
xSj

≥ 1− (1− c ·mini∈Sj xi,j)B

xSj

≥ 1− (1− c ·mini∈Sj xi,j)B

mini∈Sj xi,j
.

7



However, for any t ∈ [0, 1] (with 0 ≤ c ≤ 1),

1− (1− ct)B

t
=

1− (1− ct)
t

B−1∑

i=0

(1− ct)i

≥ c
B−1∑

i=0

(1− c)i

= 1− (1− c)B

≥ cB

1 + cB
,

where the last inequality follows from the fact
that

(1− c)B(1 + cB) ≤ (1− c)B(1 + c)B ≤ 1.

Recall that c = max{ 1
rB , 1

n−1}, the theorem
follows.

4. Approximating minimiza-
tion problems

In this section we discuss minimization prob-
lems with assignment constraints. It has been
proved that the GRA provides constant ap-
proximation ratios for the multiway cut, met-
ric labeling and FHSAPs. We start this sec-
tion by proving that the GRA also provides an
O(log n)-approximation algorithm for the hub
location problem. The same bound applies to
the set cover and non-metric UFLPs.

4.1 The hub location problem

We first state a quadratic programming formu-
lation for the hub location problem [21, 14]. We
define a set of potential hubs H = {1, 2, . . . , k}
and a set of cities C = {1, 2, . . . , n}. Demand
dij to be routed from city i to city j is given.
Define cis to be the distance from city i to hub
s; cst to be the distance from hub s to hub t;
and cs to be the opening cost of hubs. xi,s is
the assignment variable; and ys is the decision
variable indicating whether hub s is opened or
not. The formulation is given as follows.

minimize
∑

i,j∈C

dij

(∑

s∈H

cisxi,s +
∑

t∈H

cjtxj,t

+
∑

s,t∈H cstxi,sxj,t

)
+

∑
s∈H csys

subject to
∑

s∈H xi,s = 1, ∀i ∈ C,

xi,s ≤ ys, ∀i ∈ C, s ∈ H,

xi,s, ys ∈ {0, 1} ,∀i ∈ C, s ∈ H.

Assuming distances between hubs are uni-
form, similar to the model in [19], an LP relax-
ation of the problem can be written as follows.

minimize
∑

i,j∈C

∑

s∈H

cis(dij + dji)xi,s

+
∑

i,j∈C

dijyi,j +
∑

s∈H

csys

subject to ∑

s∈H

xi,s = 1, ∀i ∈ C,

yi,j =
1
2

∑

s∈H

yi,j,s, ∀i, j ∈ C, s ∈ H,

xi,s − xj,s ≤ yi,j,s, ∀i, j ∈ C, s ∈ H,

xj,s − xi,s ≤ yi,j,s, ∀i, j ∈ C, s ∈ H,

xi,s ≤ ys, ∀i ∈ C, s ∈ H,

xi,s, yi,j , yi,j,s, ys ≥ 0, ∀i ∈ C, s, t ∈ H.

It is easy to see that there always exists an
optimal solution to the LP relaxation satisfying
ys = maxi∈C{xi,s} for all i ∈ C and s ∈ H.
Assume (xi,s, ys) is in such an optimal solution.
Denote the rounded value of xi,s by x̂i,s; and
the rounded value of ys by ŷs.

Let Cs be the index set including cities who
have a positive portion assigned to hub i in
the optimal solution above. Thus, Cs = {i :
i ∈ C, xi,s > 0}.

Now we estimate the expected opening cost
for each hub separately.

Theorem 8. For each hub s in H, E[ŷs] ≤
ln |Cs| ∗ ys.
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Figure 2: Hub 1 is opened when u falls into the
shadow area.

Proof. Let’s consider hub 1. Suppose |C1| =
r. r could be as large as n in the worst
case. Without loss of generality, assume C1 =
{1, 2, · · · , r}.

Recall the process of generating a uniformly
distributed point in the geometric rounding.
The algorithm first generates k independent
exponentially distributed random variables ui’s
with parameter 1, i.e., ui ∼ exp(1).

That hub 1 is opened, equivalently ŷ1 = 1,
means that at least one city i in C1 is rounded
to vertex 1 in ∆k (See Figure 2 for an illustra-
tion). This case happens if and only if there ex-
ists some i ∈ C1, such that u1

us
≤ xi,1

xi,s
, ∀s ∈ H.

Equivalently,

u1 ≤ max
i∈C1

min
s≥2,s∈H

us
xi,1

xi,s
.

We also know us ∼ exp(1), ∀s ∈ H. Thus,

E[ŷ1]

=
∫

Rk
+

I
(u1≤maxi∈C1

mins≥2,s∈H us
xi,1
xi,s

)

dF (u1, u2, . . . , uk)

= 1−
∫

Rk
+

I
(u1>maxi∈C1

mins≥2,s∈H us
xi,1
xi,s

)

dF (u1, u2, ..., uk)

= 1−
∫

Rk
+

I
(u1>mins≥2,s∈H us

xi,1
xi,s

,∀i∈C1)

dF (u1, u2, ..., uk)

= 1−
∫

R+

P (u1 > min
s≥2,s∈H

us
xi,1

xi,s
,

∀i ∈ C1)dF (u1)

= 1−
∫

R+

P (u1 > min
s≥2,s∈H

us
1− xi,1

xi,s

· xi,1

1− xi,1
, ∀i ∈ C1)dF (u1)

≤ 1−
∫

R+

P (vi < αu1,∀i ∈ C1)dF (u1)

≤ 1−
∫

R+

(P (v1 < αu1) · P (v2 < αu1)...

· P (vr < αu1))dF (u1)

= 1−
∫

R+

e−u1(1− e−αu1)rdu1

where

α =
1−maxi∈C1 xi,1

maxi∈C1 xi,1
,

vi = min
s≥2,s∈H

us
1− xi,1

xi,s
∼ exp(1).

The first inequality comes from the fact that
α ≤ 1−xi,1

xi,1
for any i. The second inequality is

proved by Lemma 9 below. Also, because vi is
independent to u1, we have that

P (vi < αu1) = 1− e−αu1 .

Then, the approximation ratio satisfies

E[ŷ1]
y1

= (α + 1)E[ŷ1]

≤
∫

R+

(α + 1)e−u1
(
1− (1− e−αu1)r

)
du1.

By changing variables y = 1 − e−αu1 , β =
1/α, the right side of the above inequality be-
comes∫

0≤y≤1
(1 + α)(1− y)β(1− yr)β(1− y)−1dy

=
∫

0≤y≤1
[yr−1 + . . . + 1](1 + β)(1− y)βdy.
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Let z = (1 − y)1+β, and γ = 1/(1 + β), the
above value is equal to

∫

0≤z≤1
[(1− zγ)r−1 + . . . + 1]dz.

Noticing that this integral is increasing on
γ, and the max value is reached at γ = 1, the
bound is
∫

0≤z≤1
[(1− z)r−1 + . . . + 1]dz =

r∑

i=1

1/i ≤ ln r.

Lemma 9. For each fixed value u1,

P (vi ≤ αu1,∀i ∈ C1) ≥
∏

i∈C1

P (vi ≤ αu1).

Proof. See Appendix.

From Theorem 4 and 5 in [14], we know that
the connection cost and the interhub cost gen-
erated by the GRA is at most twice the optimal
value in expectation. Therefore, the GRA is a
randomized O(log n)-approximation algorithm
for this special case of the general hub location
problem.

The non-metric UFLP can be similarly for-
mulated with the assignment variables. There-
fore, this analysis with the proven performance
guarantee also applies to both problems.

Theorem 10. The GRA is a randomized
O(log n)-approximation algorithm for the hub
location, set cover and non-metric UFLPs.

5. Concluding Remarks

In this paper we study a generic method for al-
location problems. With an intensive analysis
of the intrinsic geometric structure and prob-
abilistic properties of the geometric rounding,
our paper expands its power for the approxima-
tion of a variety of allocation problems through
the unified approaches based on the geomet-
ric rounding of the optimal fractional solution.
Noticing that the computational complexity of

the algorithm mainly depends on solving the
LP relaxations of the mathematical formula-
tion of the problem, the geometric rounding
could be a computationally efficient approach
in real applications as well.

There are still many interesting problems
worth exploring in the future. First, since the
geometric rounding maintains the strong cor-
relation between assignment variables, it is po-
tentially useful even for problems with non-
linear objective functions. This requires fur-
ther exploration of the properties of the geo-
metric rounding. Noticing that the geomet-
ric rounding fails to ensure a feasible assign-
ment for the allocation problems with capac-
ity constraints such as the general quadratic
assignment problem and the capacitated facil-
ity location problem, generalizing the geomet-
ric rounding to handle the capacity constraints
will be a challenging task.
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APPENDIX

Proof of Lemma 9

Proof. The lemma can be derived from the fol-
lowing recursion:

P (v1 ≤ αu1, max
i≥2,i∈C1

vi ≤ αu1)

≥ P (v1 ≤ αu1)P ( max
i≥2,i∈C1

vi ≤ αu1).

Notice that for any event A1, A2 in a proba-
bility space, the inequality

P (A1 ∩A2) ≥ P (A1)P (A2)

is equivalent to

1− P (A1)− P (A2) + P (A1 ∩A2) ≥
1− P (A1)− P (A2) + P (A1)P (A2).

While the second inequality is equivalent to

P (Ac
1 ∩Ac

2) ≥ P (Ac
1)P (Ac

2).

Thus it suffices to prove the inequality:

P (v1 ≥ αu1, max
i≥2,i∈C1

vi ≥ αu1) ≥
P (v1 ≥ αu1)P ( max

i≥2,i∈C1

vi ≥ αu1).

The above inequality is equivalent to:

P ( max
i≥2,i∈C1

vi ≥ αu1| v1 ≥ αu1)

≥ P ( max
i≥2,i∈C1

vi ≥ αu1).

We prove this inequality by induction. Re-
call the definition of vi, we first consider the
probability conditioning on one variable us for
any s ∈ H.

For arbitrary positive reals a, b, we want to
prove:

P ( max
i≥2,i∈C1

vi ≥ a| us ≥ b) ≥ P ( max
i≥2,i∈C1

vi ≥ a).

By the memoryless property of exponential
distribution, the distribution of vector u condi-
tioning on us ≥ b is the same as u+ bes, where
es is a zero vector except that the sth coordi-
nate is 1. If we view v as function of u, for each
j we have that vi(u + bes) ≥ vi(u), therefore

P ( max
i≥2,i∈C1

vi ≥ a| us ≥ b)

= P ( max
i≥2,i∈C1

vi(u + bes) ≥ a)

≥ P ( max
i≥2,i∈C1

vi ≥ a).

The inequality above can be easily general-
ized to prove:

P ( max
i≥2,i∈C1

vi ≥ αu1| v1 ≥ αu1)

≥ P ( max
i≥2,i∈C1

vi ≥ αu1).
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