
Design Patterns for Parsing

Dung (“Zung”) Nguyen and Stephen B. Wong
Dept. of Computer Science

Rice University
Houston, TX 77005

dxnguyen@rice.edu, swong@rice.edu

Abstract

We provide a systematic transformation of an LL(1)

grammar to an object model that consists of:

¶ an object structure representing the non-terminal symbols

and their corresponding grammar production rules,

¶ a union of classes representing the terminal symbols

(tokens).

We apply the visitor pattern to the above union of token

classes to model a predictive recursive descent parser on

the given grammar. Parsing a non-terminal is represented

by a visitor to the tokens. The abstract factory pattern,

where each concrete factory corresponds to a non-terminal

symbol, is used to manufacture appropriate parsing visitors.

Our object-oriented formulation for predictive recursive

descent parsing eliminates the traditional construction of

the predictive parsing table and yields a parser that is

declarative and devoid of conditionals. It not only serves to

teach not only standard techniques in parsing but also as a

non-trivial exercise of object modeling for object-first

introductory courses.

We implement our design in Java and make extensive

applications of the powerful concept of closure via

anonymous inner classes.

1 Introduction

The 2001 ACM Computing Curricula lists the object-first

approach as a legitimate way to teach object-oriented

programming (OOP) in introductory computer science

courses [1]. OOP educators would concur that in order for

such courses to be effective, they must progress normally

yet quickly to cover topics that are complex enough to

make a compelling case for OOP (see for instance, [2][3]).

A wealth of problems in various phases of a compiler can

be appropriately modeled as object-oriented systems.

However, such problems are rarely discussed at the

introductory level in current computer science curricula.

A quick tour of web sites and extant textbooks [4][5][6][7]

seems to indicate that context-free grammars (CFG) and

their related topics are usually relegated to upper division

courses in programming languages and compiler

construction. Efforts have been made to introduce object-

oriented design patterns such as the composite and visitor

patterns into such courses at the semantic analysis phases

but not at the syntax analysis phase [5][8]. Perhaps

because it is considered well understood, the current

treatment of predictive recursive descent parsing (PRDP),

typified by the construction of a predictive parsing table

and the use of a large stack of conditionals on the token

type to select the appropriate production rule, offers no

innovation and incorporates no object-oriented concepts.

Such a procedural approach does not scale, is rigid and

cannot easily adapt to change: a small modification in the

grammar such as adding a new production rule for an

existing non terminal symbol will require a complete

rewrite of the code.

We present in this paper an object-oriented formulation of

PRDP for LL(1) grammars that is flexible and extensible,

yet simple enough to be taught in a CS2 object-first course.

The key design element is to equip the tokens with the

capability to perform an open-ended number of tasks and to

shift the responsibility of determining what production rule

to parse to the tokens themselves. This calls for the visitor

pattern [9]. The details of how it used to model the

terminal symbols (tokens) of a grammar are described in

Section 2.

We also need to model the non-terminal symbols of a

grammar and their corresponding production rules, which

define the form (syntax) for all sentences generated by the

given grammar. Section 3 illustrates via a simple example,

a systematic transformation of a given LL(1) grammar to

an equivalent grammar where each non terminal symbol

translates to a class/interface whose production rules are

expressed in terms of “has-a” and “is-a” relationships. The

composite pattern [9] is used extensively here, resulting in

an object model that represents the meta-structure of the

parse tree.

With the object model for the complete grammar in place,

section 4 shows how the tokens parse by “accepting”

concrete visitors, each of which corresponds to a leaf class

in the parse tree structure or a union of other such visitors.

This approach lacks modularity and requires looking deep

into the parse tree structure thus breaking its encapsulation.

The result is tightly coupled visitor code that leaves no

room for changes in the grammar.

To decouple the parsing visitors and achieve a much higher

level of modularity, we apply the abstract factory pattern

[9] and relegate the manufacturing of parsing visitors to

appropriate concrete factories instead. Section 5 explains

how such a design helps produce a robust object-oriented

predictive recursive descent parser that requires only local

knowledge of each grammar rule and as a result is flexible

and readily extensible.

2 Visitor Pattern for Tokens

We represent the abstract notion of a token with an abstract

class AToken. For our purpose, the only attribute we are

interested in is its string representation called lexeme.

Each token in a given grammar is simply a concrete

subclass of AToken. AToken and a collection of concrete

subclasses constitute what we called a “union” of token

classes. A tokenizer to extract tokens from an input stream

is represented by an interface called ITokenizer.

Parsing a finite sequence of tokens means asking the tokens

to determine whether or not their linear structure conform

to the syntax rules defined in a given grammar. Since the

same set of tokens can be used in different grammars,

tokens cannot have any knowledge about any grammar nor

any action one wants to do with them. To have any

“intelligence” at all, a token must then be equipped with a

hook for an open-ended extension of behaviors [10]. That's

where the visitor pattern comes in: the union of tokens

serves as the host and the tasks that one wants to perform

with these tokens are the visitors. The visitor interface,

called ITokenVis, will consist of a finite number of

methods; each corresponds to the behavior of a concrete

host token.

In the procedural approach, at any given stage of the

parsing, one must externally determine if the current token

is one of all the possible tokens and then decide what to do

based on its type. In contrast, with the visitor pattern, we

only need to write the behavior we want for each of the

tokens in a concrete ITokenVis, ask the current token to

“accept” the visitor and let polymorphism direct the control

flow. In practice, we expect to encounter only a handful of

tokens at any given stage and need to define specific

actions for only these tokens. The rest we can ignore and

throw an exception. Thus for convenience, all token

visitors are derived from an abstract implementation of

ITokenVis, called ATokenVis, whose default behavior is

to throw an exception. It is also convenient in practice to

add a special token called EOF to mark the end of the input

string. The visitor interface thus will need to have a

method for this EOF token as well.

Figure 1: Class diagram of the visitors to a token.

As an example, consider the classic CFG for infix

arithmetic expression:

E :: T + E | T
T :: num | num * T | (E)

The visitor interface will have a method for each of the

tokens +, *, (,), num and the special EOF token. The

UML class diagrams for the visitors and its abstract host

are depicted in Figure 1.

3 Composite Structure for Non-Terminals and
Production Rules

The grammar given in Section 2 is not LL(1) but can be

left-factored to yield the following equivalent LL(1)

grammar.

E :: T E’
E’ :: empty | + E
T :: num T’ | (E)
T’ :: empty | * T

This grammar isn’t quite ready to be modeled as classes

however. This is because there are still sequences of

symbols, such as “+ E” and “num T’”, that are not yet

associated with a unique symbol. So, we perform one more

grammar transformation where each distinct sequence of

two or more symbols on the right hand side of the

production rules is given a unique non-terminal symbol on

the left hand side of the rules. It is clear that this is an

equivalent grammar because it simply gives names to

existing sequences of symbols. Below, we have changed

the names slightly to remove the primes and create Java-

legal symbol names:

E :: T E1
E1 :: empty | E1a
E1a : +E
T :: T1 | T2
T1 :: num T1a
T1a :: empty | T1ai
T1ai :: * T
T2 :: (E)

In an object model, there are two fundamental types of

relationships, “is-a”, represented by inheritance, and “has-

a”, represented by composition. Thus, in order to create an

object model of our grammar, we need to see if these two

relations are expressed by the grammar. What we see is

that non-terminals with more than one production rule

(“branches”) can be represented with an “is-a” inheritance

relationship because the union of those production rules

says that any terms on the right hand side can be

represented by the left hand side. The second, fourth and

sixth rules above are branches. On the other hand, some

rules represent a sequence of terms, such as the first, third,

fifth, seventh and eighth rules above. The left hand side of

these “sequences” can be said to be composed of the right

hand side terms. Thus the distinct non-terminal sequences

can be represented by compositional relationships.

We can now simply and directly create our object model of

the grammar. In , we see that all the non-

terminals are represented by classes or interfaces.

Branches are represented by interfaces, to allow multiple

inheritances, and sequences are represented by classes

because they require fields. In addition, all the terminal

symbols, which are the possible tokens, such as “+”, “*”

and numbers, are represented by their own classes. The

empty term is represented by its own class as is the end-of-

file token. The recursive nature of the grammar is

immediately evident as the composite design pattern in the

class structure.

Figure 2

Figure 2: Object model of the example grammar

If the above object structure is indeed a good representation

of the grammar it models, then it will contain all the

relationships, features and other information in that

grammar. Therefore, instead of doing a large-scale case

analysis over the entire grammar, if we let the object

structure drive the processing of a token stream, then all the

necessary case information will automatically be present.

4 Parsing with Concrete Visitors

The naïve first attempt at parsing an input token stream

using visitors involves instantiating the required visitors

and then executing the visitor for the start symbol on the

first token.

One quickly runs into trouble however. The problem with

directly defining and instantiating the parsing visitors is

that at any given stage, one must analyze the details of the

grammar to the level of knowing what are the possible

tokens at that stage. This analysis may require one to look

beyond the immediate relationships a class may have with

any other classes. For instance, to find the possible tokens

that could be the start of an “E” term, one must look 2

levels down to the “T1” class. In a good OO system

however, one wants to encapsulate and isolate each code

section from any other. The code to process an E term

should only be concerned with the fact that an E term is

composed of a T term and an E1 term, and not be

concerned with what the internal nature of the T, E1 or any

other terms.

In order to create a visitor that parses a branch, one must

create the union of all the visitors that parse the branch’s

subclasses. If the subclasses are all sequences, we are

forced to duplicate their methods, which correspond to their

respective first tokens in their sequences, in the visitor for

the branch. Luckily, an LL(1) grammar insures that there

are conflicts between methods because each token uniquely

determines a sequence. But if one of the branch’s

subclasses is also a branch, we must look further down to

find a sequence and then create the union of all those

visitors as well. This process is not unlike the traditional

PRDP methodologies that utilize a global case analysis to

deduce the prediction table. Thus, the direct instantiation

of the parsing visitors requires that we a) know exactly how

all the subclasses process their tokens and b) replicate their

code in any superclasses (branches).

Direct instantiation of the parsing visitors can be done and

does generate some very compact code. But in addition to

the above mentioned violation of encapsulation and

replication of code, the non-local analysis of our naïve

approach causes strong coupling in our system, which

limits its ability to scale to larger, more complex grammars.

Figure 3: Class diagram of the factories of the visitors
to a token.

5 Factories

To remedy this problem, one must re-think the instantiation

process of the visitors. The abstract factory design pattern

is very useful for abstracting and encapsulating the

construction of classes. Using factories to instantiate the

parsing visitors

1. Enables each term to be decoupled from any other

term by hiding the instantiation details.

2. Enables the construction of the union of visitors by

decoration, which is used to implement branches.

3. Enables the delayed construction of already installed

visitors which is needed to create circular

relationships.

Each non-terminal symbol (and its corresponding class) is

associated with a factory that constructs its parsing visitor

(See Figure 3). All factories adhere to a basic factory

interface which provides the methods to instantiate the

parsing visitors. For convenience sake, all the factories are

derived from an abstract factory, ATVFactory, that

provides access to the tokenizer.

The constructors of factories for sequence terms (e.g. E,

T1, E1a & T1ai -- see Listing 1) will take in the factories

for their composed terms. Generally, they simply ask the

supplied factory to immediately make the required visitor

(using IFactory.makeVisitor()), which is then stored for

later use. Listing 1 shows how the use of anonymous inner

classes in the makeVisitor() method to instantiate the

parsing visitor, creates a closure that includes the stored

visitor, _parseE. Thus, even if the makeVisitor() or

makeDecVisitor() methods are called before _parseE has

been initialized, the generated visitors will run properly so

long as _parseE is initialized before they are used. This is

a powerful example to students of how closures enable one

to control objects to which one may not even have a direct

reference.

public class ParseE1aFactory extends ATVFactory {
 private ITokenVis _parseE;

 public ParseE1aFactory(ITokenizer tkz, ParseEFactory eFac){
 super(tkz);
 _parseE = eFac.makeVisitor(); }

 ;; the following constructor and settor used for circular relations
 public ParseE1aFactory(ITokenizer tkz){ super(tkz); }

 public void setParseEFactory(ParseEFactory eFac) {
 _parseE = eFac.makeVisitor(); }

 private E1a makeE1a(PlusToken host, Object inp) {
 return new E1a(host, (E)nextToken().execute(_parseE, inp)); }

 public ITokenVis makeVisitor() {
 return new ATokenVis() {
 public Object plusCase(PlusToken host, Object inp) {
 return makeE1a(host, inp); } }; }

 public ITokenVis makeDecVisitor(ITokenVis decoree) {
 return new TVDecVis(decoree) {
 public Object plusCase(PlusToken host, Object inp) {
 return makeE1a(host, inp); } }; }
}

Listing 1: Typical factory for a sequence parsing
visitor.

The constructors of factories for branch terms (e.g. T, E1,

& T1a -- see Listing 2) take in the factories for all the

branch’s subclasses. In this case, the supplied factories

themselves are stored. A visitor that parses a branch is the

union of all the visitors that parse its subclasses. Since the

grammar is LL(1), and each method of a visitor

corresponds to a particular token, none of the subclasses’

visitors utilize the same method for processing. Thus the

union of the subclasses’ visitors can be accomplished by

public class ParseTFactory extends ATVFactory {
 private ParseT1Factory _t1Fac;
 private ParseT2Factory _t2Fac;

 public ParseTFactory(ITokenizer tkz, ParseT1Factory t1Fac,
 ParseT2Factory t2Fac) {

 super(tkz);
 _t1Fac = t1Fac;
 _t2Fac = t2Fac; }

 public ITokenVis makeVisitor() {
 return _t1Fac.makeDecVisitor(_t2Fac.makeVisitor()); }

 public ITokenVis makeDecVisitor(ITokenVis decoree) {
 return _t1Fac.makeDecVisitor(

 _t2Fac.makeDecVisitor(decoree)); }
}

Listing 2: Typical factory for a branch parsing visitor.

using the decorator design pattern [9]. But since the

factory for the branch doesn’t know what methods are

utilized by the subclasses’ visitors, it is forced to delegate

the decoration process to once of the factories of the

subclasses. Hence, all factories provide a method to

produce a visitor that is the decoration of a supplied visitor

(IFactory.makeDecVisitor(IFactory decoree)). This

method simply overrides the appropriate method of a base

decorator class, TVDecVisitor (see Figure 1) whose

methods simply default to delegating to the corresponding

method of the decoree. The E and Empty terms are special

cases since they have defined behaviors for all token cases.

Thus these terms can only be decorated and cannot be used

to decorate another visitor.

The result is that instead of constructing the parsing visitors

directly, one now constructs the parsing visitor factories

(See Listing 3). Each factory’s construction only requires

the factories of those terms it is directly related to, either by

composition or by subclass. One thus need only know the

grammar one level at a time, no global knowledge of the

grammar is needed. This decoupling of the grammar terms

makes the system very robust with respect to changes in the

grammar.

6 Conclusion

We have created an object-oriented predictive recursive

descent parser by starting with an LL(1) context-free

grammar and applying a simple transformation. The

resulting equivalent grammar was directly modeled by a

class structure using inheritance to represent branches and

composition to represent sequences. Since the tokens

determine whether or not the input corresponds to the

grammar, the visitor design pattern was used to provide

direct dispatching to the appropriate parsing code, thus

eliminating conditionals. The code thus became

declarative in nature. The abstract factory pattern was

used to decouple the individual grammar elements from

each other and create a flexible, extensible system. The

traditional global case analysis, predictive parsing table and

attendant stack of conditionals gave way to a simple local

analysis and delegation-based behavior. Decorators were

used to model the union of parsing behaviors needed under

branching conditions. While it is beyond the scope of this

paper, the object structure of the parse tree can easily be

extended with its own visitors to enable semantic analysis

of the parsed input.

ITokenizer tok = new Tokenizer(filename);

ParseT1aiFactory t1aiFac = new ParseT1aiFactory(tok);
ParseT2Factory t2Fac = new ParseT2Factory(tok);
ParseE1aFactory e1aFac = new ParseE1aFactory(tok);

ParseTFactory tFac =
 new ParseTFactory(tok, new ParseT1Factory(tok,
 new ParseT1aFactory(tok, t1aiFac,
 new ParseEmptyFactory(tok))), t2Fac);

t1aiFac.setParseTFactory(tFac);

eFac = new ParseEFactory(tok, tFac,
 new ParseE1Factory(tok, e1aFac,
 new ParseEmptyFactory(tok)));

t2Fac.setParseEFactory(eFac);
e1aFac.setParseEFactory(eFac);

ITokenVis parseEVisitor = eFac.makeVisitor();

Listing 3: Instantiation of the parsing visitor
factories, where circular references exist.

It is important to recognize that OO PRDP cannot be taught

in isolation. It must be carefully integrated into an objects-

first curriculum that emphasizes OOP/OOD, design

patterns, and abstract decomposition. At our institution,

this material is covered near the end of CS2, which an OO

data structures and algorithms course. At this point in the

curriculum, the students are already versed in basic

OOP/OOD practices, including all the design patterns

mentioned here. The PRDP formulation serves not only to

expose the students to fundamentals of syntactic analysis,

but also serves as a vehicle for teaching them how to

decompose a problem into flexible and extensible object

system.

References

[1] Computing Curriculum 2001, Computer Science

Volume, Dec. 15, 2001

(http://turing.acm.org/sigs/sigcse/cc2001/)

[2] Madsen, Ole, Keynote speech at OOPSLA 2002,

Seattle, WA, Nov. 7, 2002.

(oopsla.acm.org/fp/files/spe-concepts.html)

[3] Alphonce, C., Nguyen, D., Ventura, P. and Wong, S.,

“Killer Examples” for Design Patterns and Objects

First Workshop, OOPSLA 2002, Seattle, WA. Nov. 4,

2002.
www.cse.buffalo.edu/~alphonce/OOPSLA2002/KillerExamples

[4] Aho, A., Sethi, R., and Ullman, J., Compilers:
Principles, Techniques and Tools, Addison-Wesley,

1986.

[5] Appel, A., Palsberg, J., Modern Compiler

Implementation in Java, 2nd ed., Cambridge University

Press, 2002.

[6] Grune, D., Bal, H., Jacobs, C., and Langendoen, K.,

Modern Compiler Design, Wiley, 2000.

[7] See for instance:

inst.eecs.berkeley.edu/~cs164/

penguin.wpi.edu:4546/course/CS544/PLT4.4.html

www.cs.cornell.edu/courses/cs211/2000fa/materials/Lecture

09-Sept-26-Recursive-Descent-Parsing.pdf

www.cs.nyu.edu/courses/spring02/G22.2130-

001/parsing1.ppt

http://www.cs.rit.edu/~hpb/Lectures/20012/LP/

http://www.owlnet.rice.edu/~comp412/Lectures/09.pdf

[8] Neff, N., OO Design in Compiling an OO Language,

SIGCSE Bulletin, 31, 1, March 1999, 326-330

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

Design Patterns, Elements of Reusable Object-

Oriented Software, Addison-Wesley, 1995.

[10] Nguyen, D. and Wong, S. Design Patterns for

Decoupling Data Structures and Algorithms, SIGCSE

Bulletin, 31, 1, March 1999, 87-91.

