g KTH

% VETENSKAP
o@ OCH KONST 9%

‘0%)‘((_4&%?"

Computation of Capacity on Railway Networks

Malin Forsgren

June 4, 2003

SICS
Swedish Institute of Computer Science, Kista

Master of Science Project Report

Supervisor (SICS): Jan Ekman
Supervisor (KTH): Thomas Sjoland

Examiner: Thomas Sjéland

Abstract

Banverket, the Swedish National Rail Administration, is interested
in the development of a standard regarding how to assess capacity on
railway networks. Jan Ekman and Per Kreuger at SICS AB propose that
capacity on a section of a railway network for a specific traffic pattern can
be assessed by computing its cycle time.

This report covers an account of my implementation of Ekman and
Kreuger’s cycle time algorithm. It also describes my suggestion of an
algorithm that transforms an intuitive representation of a traffic pattern
to a graph that can be used as input to the cycle time algorithm. My
major contribution to the project is to facilitate the computation of the
cycle time of a traffic pattern by having designed a bridge between the
description of a traffic pattern and the format suitable for Ekman and
Kreuger’s algorithm.

The execution of these two tasks are important for an eventual con-
tinuation of the main project. My results constitute an important piece
in a work that has the potential of making a real difference in the way in
which capacity related issues in this field are handled.

CONTENTS CONTENTS

Contents
1 Introduction 1
1.1 Capacity asaconcept oo 1
1.2 The need for capacity assessment 1
1.3 Capacity and cycle time, 2
1.3.1 Definition of capacity 2
1.3.2 Trafficpatterns 3
1.3.3 Constructing graphs, . 3
1.3.4 Critical cycles and condition graphs 4
1.4 Problem statements 5
1.5 An outline of thisreport, 5
2 Background 6
2.1 Related methods oo 6
2.2 Related work oo 6
2.2.1 Railway Research initiated by the EU 7
2.2.2 Existing tools and methods 8
2.3 Theintendedreader 9
3 Method 10
3.1 Implementation o 10
3.2 Providing suitableinput o000 10
3.21 The condition graph 10
3.2.2 Identifying redundant arcs 11
4 The Maximum Mean Cycle Problem 12
4.1 Some graph notation o 12
42 Eventgraphs o 12
4.2.1 Discrete event systems oL, 13
4.2.2 The maximum cyclemean 13
4.2.3 Firing times and cycle time 14
4.2.4 The maximum profit to time ratio 14
4.3 Condition graphs 15
4.4 Karp’s Algorithm 16
441 Karp’sTheorem 16
4.4.2 Proof of Karp’s Theorem 16
5 SICStus Prolog 20
5.1 The logic programming paradigm 20
5.2 Prologbasics 20
5.3 Listso 22
54 Unification 23
5.5 Searchtrees 23
5.6 Backtracking 24

ii

CONTENTS CONTENTS
6 Collapsing a graph 25
6.1 Thesplitgraph L 25
6.2 split/6 27
6.2.1 Input and output arguments 27
6.2.2 Association lists o 27
6.2.3 Accumulating parameters 29
6.2.4 Exploiting ruleorder 31
6.25 Redandgreencuts. 33

6.3 Thecollapsed graph 35
6.3.1 A naive graph-collapsing algorithm 37
6.3.2 Improving the graph-collapsing algorithm 38

6.4 collapse/7 o i i i 40
6.4.1 process_base_nodes/8 42

7 Cycle time computation 44
7.1 Unfolding 45
7.2 DG1 . . .o e e e 46
7201 dgl/3 .« o i 46
7.2.2 process_graph/12. 49

7.2.3 compute_mean/6 51
7.2.4 Selecting a suitable source 53

8 The condition graph 56
8.1 Describing a traffic patterno 56
8.1.1 Signals and track segments 56
81.2 Clearedpaths 57
8.1.3 The boundaries of a railway section 58
8.1.4 Notationalissues 61
81.5 Precedence 63

8.1.6 Graphrepresentation. 64
8.1.7 Definition of a traffic pattern 65

8.2 Traffic pattern graphs vs. condition graphs 65
8.2.1 Equivalent condition graphs 65
822 Arcweights Lo oL 66

8.3 Finding a set of sufficient conditions 66
8.3.1 Divide and Conquer 67
8.3.2 Subsections of a railway section 67
8.3.3 Examining subsections 0oL 69
8.3.4 Waiting points L L. 72
8.3.5 Irrelevant conditions, 73
8.3.6 Relevant conditions, 75
8.3.7 Logcovered conditions, 76
8.3.8 Thealgorithm 77
839 Anexample o 78

8.4 Eliminating redundant arcs 81
8.4.1 Dismissingarcs 82

iii

CONTENTS CONTENTS

84.2 \Verifyingarcs 86
9 Analysis and conclusions 87
References 88

iv

LIST OF FIGURES

LIST OF FIGURES

List of Figures

DU W N -

10
11
12
13
14
15

16
17

18
19
20
21
22
23
24
25

26

27

A simple condition graph Lo
The split condition graph of Figure 1
The code for split/6
The code for make_top_nodes/3 and make_top_nodes/5.
The code for decide_arcs2/3 (and decide_arcs2/4)
A second version of decide_arcs2/3, this time independent of

ruleorder
A third version of decide_arcs2/3, this time efficiently imple-

mented with a helper procedure is_member/3
The code for is_member/2
The code for collapse/7
Pseudo-code for DG1
Prolog-like pseudo-code fordg1/4.
The code for process_graph/12
The code for compute_mean/8.
The code for karps_theorem/8
A simple railway section, illustrating the problematic term end

SegMent e e e e e e e e e e e e
Problematic placement of beginning and closing signals
A traffic pattern exemplifying where the main signals will always

be assumed tobe located oL,
Two identical cleared pathsaand b
The traffic pattern of a comprehensive example
The subsections of the traffic pattern in Figure 19
The traffic pattern graph of the traffic pattern in Figure 19

A simple traffic pattern involving oppositely directed movements
The subsections of the traffic pattern in Figure 22
The condition graph of the traffic pattern in Figure 22
The output shown as a condition graph, when the algorithm of

Section 8.3.8 is run on the traffic pattern of Section 8.3.3

A traffic pattern that renders redundant arcs when the algorithm

of Section 8.3.8 is applied
The subsections of the traffic pattern in Figure 26

1 INTRODUCTION

1 Introduction

Two problems and their solutions constitute the subject for this report. Both
are extensions of problems that are introduced and discussed in the report “En
analytisk metod for utredning av kapacitet vid signalprojektering”! by Jan Ek-
man and Per Kreuger at SICS AB [9]. The report is a result of the project
“Beslutsstdd for utredning av kapacitet vid signalprojektering”? for Banverket,
the Swedish National Rail Administration.

This report is thus a consequence of that same project, but can be read
independently of Ekman and Kreuger’s report. Its focus is the implementation
of the main results in the latter, as well as an examination into how to transform
a description of a traffic pattern into a form suitable for capacity computation.

1.1 Capacity as a concept

There does not yet exist an accepted definition of capacity on railway networks.
Capacity related issues in this context are accordingly treated in ad hoc ways.

Historically, capacity on railway networks (in any plausible meaning of ca-
pacity) has not always been a problem. There either were tracks connecting
points a and b, or there were not. Today, railway traffic in Sweden is largely
dependent on what goes on at the so called “wasp waist” — a bottleneck located
in Stockholm, the capital of Sweden. It dictates what traffic can run on large
portions of the rest of the railway network in the country.

In Sweden, capacity related questions in the context of railway networks
have mainly surfaced in the last two decades. This explains why research on
capacity issues appears to have been neglected: the problems have not become
urgent until very recently. They are yet to be dealt with in more systematic
ways. For a brief overview of related research conducted in other countries, see
Section 2.2.

1.2 The need for capacity assessment

The laying of new railway tracks to meet future demands is an activity that
has to be preceded by a certain amount of planning. The overall requirements
are, due to various reasons, often vague. Different alternatives are evaluated by
hand or by the use of simulation programs in order to find at least seemingly
acceptable solutions.

Solutions done by hand are time-consuming and often hard to verify. Ban-
verket presently relies on simulation® to get answers to some of their questions.
However, simulation is not suitable for all kinds of questions to which answers
are desirable, since the simulation model often addresses specific problems [13].

IThe title can be translated to “An analytical method for assessing capacity during signal
engineering”.

24Decision support for capacity analysis in signalling design”

3The simulation program used is called SIMON.

1 INTRODUCTION 1.3 Capacity and cycle time

Simulation is also a time-consuming task, both when it comes to gathering data
needed as input, and the actual run-time on a computer.

In connection to this I should mention that new tracks, and the reorganiza-
tion of existing ones, are usually measures taken to satisfy a specific time table.
Generally, the inevitable future changes to that time table are given little or
even no thought.

Apart from the short-term economic reason, this approach has practical
reasons. There is no standardized method of assessing capacity. Even verifying
timetables is not a clear-cut task. What are the criteria for a timetable that
'works’? If this question cannot get a satisfactory answer, and we cannot say
what is meant by capacity, how can we possibly say what a section of a railway
network should look like to be adaptable to future changes in the time table?
The only tracks built are therefore those that seem to be immediately justified
by the time table planned for.

An analytic method of assessing capacity naturally has many advantages
over the ad hoc ways used to assess capacity today. Simulation is the only
structured method used, and its purpose is mainly to verify time tables. An
analytic approach has the potential of being able to provide detailed, accurate
answers to specific questions as well as verifying time tables, and doing this
relatively fast. Wisely implemented, an analytic method outperforms simulation
and opens doors to new and more efficient routines in the various phases of
railway traffic planning.

1.3 Capacity and cycle time

For a detailed description of the algorithm that computes the cycle time of a
traffic pattern, see Section 7. The purpose of this section is to give an overview
of the area, and I assume the reader to be familiar with elementary graph and
set theory. A quick review of the graph theory used in this report is nevertheless
given in Section 4.1.

Until now, I have used the term traffic pattern in its intuitive sense, ’a
pattern of traffic’. Ekman and Kreuger introduces a term, trafikering (Swedish),
to denote the repetition of a pattern of traffic on a railway section [9]. From
this point on, traffic pattern will always refer to a repeated pattern of traffic,
and will be given a more exact definition later in the text. A pattern of traffic’
will be used when I need to say something more general about the traffic and
its behaviour.

9

1.3.1 Definition of capacity

Ekman and Kreuger view capacity of a traffic pattern on a section of a railway
network as the inverse of the minimum time that has to elapse between the
starts of two consecutive cycles of the traffic pattern. According to this point
of view, capacity on a railway section is possibly (even most likely) different for
different traffic patterns. Capacity is thus defined as the throughput of trains

1 INTRODUCTION 1.3 Capacity and cycle time

on a particular section of the railway network for a specific, cyclic pattern of

traffic.

1.3.2 Traffic patterns

I will return to Ekman and Kreuger’s definition of traffic pattern, and other
important definitions, in Section 8.1. For the time being, it is sufficient to
describe a traffic pattern as consisting of

e a set of train movements?, on the specified section of the railway network,
that make up one cycle of the traffic pattern, and

e 3 partial order on the set of movements that make up two consecutive
cycles of the traffic pattern, called the precedence relation®, representing
how the movements are related to each other with regard to precedence

If two movements are related with regard to precedence, it means that one of
them has higher priority, or precedence, than the other. Partial refers to the
fact that the priorities among two arbitrary movements are not necessarily com-
parable. The precedence relation is transitive, which means that if movements b
and ¢ have higher precedence than movement d (denoted b < d and ¢ < d), and
a has higher precedence than b and ¢, then a precedes b, ¢, and d. However, b
and ¢ remain unrelated, unless further information is given.

A traffic pattern is a pattern of traffic repeated an indefinite number of times,
where the pattern of traffic can be described by one cycle of the traffic pattern.
This explains why the definition of the precedence relation is not limited to
the movements of just one cycle of the traffic pattern. For all traffic patterns
with one or more movements per cycle, any movement in cycle n has higher
precedence than its corresponding movement in cycle n+m, where m =1,2,...

If the precedence relation is decided manually, it represents which trains
are supposed to wait for which other trains on the railway section, and where.
Another useful approach should be to automatically generate a lot of different
sets of precedence relations and analyze what happens with the capacity. In
particular, experimenting with different locations for the trains to meet or over-
take each other, keeping the number and types of trains constant, should give
interesting and useful results.

1.3.3 Constructing graphs

A traffic pattern can be expressed in a condensed way by letting the set of
nodes® of a directed graph represent the set of movements of one cycle of the

4A movement is, from this point and onward, always a train movement unless otherwise
specified, and will be defined formally in Section 8.1.2.

5A relation R on a set X is defined as a property which may or may not hold between two
arbitrary elements of X. The relation is completely determined by the set of pairs that satisfy
it. [5]

6 Nodes are sometimes called vertices, and arc is a common term for a directed edge in a
graph. For an overview of the graph theory used in this text, see Section 4.1.

1 INTRODUCTION 1.3 Capacity and cycle time

pattern, and the set of arcs of the graph represent the precedence relation on
the set of movements. To distinguish precedence over movements in the same
cycle from precedence over movements in subsequent cycles, two types of arcs
are used: straight arcs stand for the former type and bowed, or curved, arcs for
the latter.

As suggested in the previous section, the number of pairs of movements
that define the precedence relation in any traffic pattern is theoretically infi-
nite. First of all, the relation is transitive. In addition to this, any movement
has precedence over the corresponding (’the same’) movements in subsequent
cycles. This means that the train undergoing movement a in cycle n must start
before the train (possibly physically another train than that of the first cycle)
undergoing a in cycle n + 1 can start, that is (a,n) < (a,n + 1) always holds.

An inevitable consequence of movement a in cycle n having higher precedence
than a movement b in cycle n+ 1, is that a in cycle n also has higher precedence
than movement b in cycle n + 2. Thus, there is no need to introduce arcs that
represent precedences over movements of any other cycles than the following
cycle.

A traffic pattern graph represents the traffic pattern. It only shows the
so called direct precedence relation, meaning that there are no arcs between
any two movements for which the precedence relation can be deduced from the
transitivity property.

All precedences can easily be derived from a graph displaying only the direct
precedence relation. A movement represented by the node a has higher prece-
dence than all other movements whose nodes there are walks to, from a, in the
graph. Every bowed arc passed means that a new cycle, with respect to the
movement that a represents, is entered.

1.3.4 Critical cycles and condition graphs

A graph displaying only the direct precedence relation is an unambiguous and
compact way of describing the priorities of the different movements involved in
a traffic pattern. Relationships other than direct precedences are expressed in
graphs of similar appearances, called condition graphs by Ekman and Kreuger.
The (weighted) condition graph is the most important type of graph when it
comes to computing the cycle time, and finding the critical cycle, of a traffic
pattern.

I now have to summarize some of the assumptions that Ekman and Kreuger
make about the train movements if the following account is going to make sense.
In short, they assume that all trains always move at the highest allowed (and
possible) speed, and that a movement never starts until the train in question
can complete the whole movement without any other train blocking its path or
in any other way impeding its advance [9].

The nodes of a weighted condition graph represent the movements of the
traffic pattern as above, but the arcs serve an additional purpose on top of the
one already mentioned. The weight of the arc from node a to node b expresses
how many time units must pass after movement a has started before move-

1 INTRODUCTION 1.4 Problem statements

ment b is allowed to start, with the assumptions mentioned above taken into
consideration.

In other words, an arc in the condition graph represents a condition that
must be met by the traffic of the traffic pattern. The set of arcs of a condition
graph represents all such conditions that must be met.

The weight of a path is the sum of the arc weights in the path. Ekman and
Kreuger define the cycle time of a weighted graph representing a traffic pattern
to be the maximum cycle mean of the cycles in the condition graph, where the
cycle mean of each individual cycle is found by dividing the weight of the cycle
by the number of bowed arcs in the cycle. The cycle with the greatest cycle
mean, or cycles if more than one cycle has the same (maximum) mean, is called
the critical cycle.

1.4 Problem statements

With the introduction to the area of research fresh in mind, here are the prob-
lems I have solved:

1. Write a computer program that, given a weighted condition graph, com-
putes the cycle time of the traffic pattern represented by the graph.

2. Given a traffic pattern, find an algorithm that transforms the description
of it to a condition graph, suitable for the algorithm implemented in the
previous problem.

1.5 An outline of this report

This introductory section is followed by Section 2 that briefly describes what
has already been done in this field, and also mentions some ongoing projects
that are related to my work. Methodological considerations are discussed in
Section 3. Section 4 provides an overview of the mathematical concepts used to
compute the capacity on a railway network.

The description of the implementation (Sections 6 and 7) is preceded by a
brief summary of what SICStus Prolog is, and how logic programming differs
from other programming paradigms (Section 5). A suggestion on how to deal
with the second problem (see Section 1.4) is given in Section 8. An analysis of
the solutions — with an emphasis on the second problem — and the conclusions
I can draw from this, are presented in Section 9.

2 BACKGROUND

2 Background

As I have already mentioned in the introduction, this field of research is fairly
young. Analyzing bottlenecks and planning for increased railway traffic and
improved capacity on established stretches are however not problems unique to
Sweden. Although the method developed by Ekman and Kreuger is brought
into line with the needs of Banverket and the operation of railway traffic on
the Swedish national railway network (as opposed to for instance the subway
network of Stockholm), capacity issues for all traffic carried by tracks share
important characteristics.

2.1 Related methods

For small networks that are built for, and used by, a small number of different
types of vehicles, capacity analysis might not be hard to carry out by hand.
Naturally, the procedure differs from nation to nation (and from company to
company), but the basic approach is similar independently of who carries out
the analysis.

Capacity analysis and time-tabling walk hand in hand on small networks
since it in this case is possible (even desirable) to consider the whole network
at once. An assessment of capacity can be done in connection with the simul-
taneous performance of train assignment and time-tabling by considering an
unlimited asset of trains and setting the goal to be ’as heavy traffic as possible’.
Note that capacity and ’heavy traffic’ needs to be defined before the assessment
can be really useful.

When it comes to larger networks, for which capacity analysis, train assign-
ment and time-tabling are all really complicated tasks, efforts have been made
in the development of simulation programs. This is a world-wide trend, and
Banverket currently uses the simulation program SIMON7 to assess capacity
(among other things).

Simulation in the context of capacity assessment is briefly discussed in “Rail-
way Capacity Assessment, an Algebraic Approach” [8]. The report says that
simulation is a strong tool for evaluating time tables, but provides less insight
than analytical tools, which makes it less suitable for optimizations than ana-
lytical methods. Time consumption is also an issue: the more details required,
the more time it takes to model the simulation and the more time the actual
simulation takes.

2.2 Related work

The technical development in the railway industry has kept pace with the rest
of the technical advances made in the last century. There is a huge difference
between steam trains and the train models of today, as well as between the
manual operation of train meets of the past and the advanced signalling systems
of today.

"SIMON is not the same system as Simone, developed in the Netherlands [14].

2 BACKGROUND 2.2 Related work

As opposed to the areas just mentioned, that have received continuous at-
tention and improvements, railway capacity assessment has emerged as an in-
creasingly troublesome problem only in the last 30 years or so. There does not
exist any accepted method for capacity assessment. There does not even exist
an accepted definition of capacity. Nevertheless, this subject has been addressed
several times in the past, with various results.

2.2.1 Railway Research initiated by the EU

The European Union is currently funding a significant number of research
projects in the railway sector, of which IMPROVERAIL — IMPROVEed Tools
for RAILway capacity and access management — is one. The project spans over
two years and is divided into eight work packages. One of the overall objectives
of IMPROVERALIL is to provide improved methods for capacity and resource
management. One of the work packages, WP5%, is focused on exactly these
questions.

The final report from WP5, a project that should have been finished in
the autumn of 02 according to the latest updated schedule, is yet to be de-
livered. The expected result from WP5, according to the inception report of
IMPROVERAIL written in October 01, is “a number of planning methods
reflecting best practices and best research results” [21]. This result is to be
obtained by examining scientific literature emanating from research about ca-
pacity management as well as evaluating capacity management methods that
are actually used on railway networks in different countries.

IMPROVERALIL gives an overview of literature and various methods relevant
to WP5 in a report called “State of the Art in Railway Infrastructure Capacity
and Access Management”, delivered in April 2002 [20]. The report establishes
that a common objective to very many studies undertaken has been to find a
suitable definition of capacity. The definition chosen obviously determines the
characteristics and usefulness of the developed method or tool.

The methods examined range from simulation to analytic models, and com-
mon to most of them is that they give their results as percentages of total
capacity, or in number of trains for a given time period. Although they gen-
erally take into account many different parameters, IMPROVERAIL concludes
that most seem to fail when it comes to providing a broad perspective of ca-
pacity for the whole network. The solution might be to refine and separate the
scopes and the different needs of each model, and to use different models for
different purposes:

Concerning capacity assessment, it can be said that long term and
medium/short term capacity evaluations lead to two different mod-
els, as each planning horizon needs its proper set of information.
Moreover, one certainly expects more in-depth results from a short
term than from a long term evaluation method. Thus two separate
models should be developed within WP5. [20]

8The 5th work package, “Methods for capacity and resource management”.

2 BACKGROUND 2.2 Related work

2.2.2 Existing tools and methods

Of the different tools reviewed by IMPROVERAIL, there are a few that are
used in several countries. VIRIATO (developed by SMA and Partner, 2001) is
at least used in former Czechoslovakia, Denmark, the U.K., Portugal, France,
Finland, Italy and Estonia. It is mostly a time-tabling tool, but allows the user
to determine the level of saturation of a specified line, in percent. CAPRES takes
into account junctions and station characteristics, and determines capacity on a
railway network, not just on a single line [6]. It is used in Switzerland, France,
Italy, and the U.K..

Another tool worth mentioning is RAILCAP, developed by Stratec, a con-
sulting company in Belgium. The initial software that was developed requires
detailed description of the tracks (down to block level), the position of switches,
crosses, and signals (including their type) as well as the speed limits. The suc-
cession of trains is described by their routes across the network, the stops they
make, and the length, maximum speed, and acceleration rate of each train. The
method measures, through simulation, how much of the available capacity on
different sections of the network that is actually used, by computing during how
much of the available time the specified section is occupied by trains.

The great detail of analysis of bottlenecks enabled by RAILCAP has one
major disadvantage in the fact that the modelling requires a lot of effort. Stratec
developed another model in 1999 that makes simulations less time-consuming
to prepare. According to Stratec, results from the simplified model have been
counterchecked with the more sophisticated Railcap model and proven to come
very close to those obtained with the latter [17].

The research program named “Seamless Multimodal Mobility” (SMM) at
the Netherlands Research School for Transport, Infrastructure and Logistics
(TRAIL) is surprisingly enough not even mentioned in IMPROVERAIL’s over-
view of current research. The main objective of the research program is to
“provide tools for the design and operation of attractive and efficient multi-
modal passenger transport services” [8]. Project 3 of the research program,
“Dependable Scheduling”, has given rise to several reports, among which “Rail-
way Capacity Assessment, an Algebraic Approach” is the most relevant to my
work. SMM is still an active research program, and the latest results from it
were recently presented at the TRAIL Congress (November 26, 2002) [8, 10, 11].

The algebraic approach presented by TRAIL is based on maxplus algebra.
The authors of “Railway Capacity Assessment, an Algebraic Approach” point
out that the algebraic approach can be used as a simulation model, but that
it was developed primarily as an analytic tool. Throughput and punctuality
are investigated in a deterministic way while the train movements are fixed.
Network capacity and robustness are not entirely separated. Instead the former
is optimized by finding a set of buffer times that obeys robustness constraints
and maximizes the throughput.

Last but not least, there is research that aims to bridge the gap between
simulation that requires detailed modelling, and analytic tools that tend to
focus on local problems and thus fail to give a broad assessment of capacity. The

2 BACKGROUND 2.3 The intended reader

Canadian National Railway has developed a parametric model that measures
theoretical, practical, used, and available track capacity. These four types of
capacity, and numerous parameters identified as affecting capacity, are defined.

Theoretical capacity works as an upper bound of capacity: it “assumes all
trains are the same, with the same train consist, equal priority, and are evenly
spaced throughout the day with no disruptions. It ignores the effects of vari-
ations in traffic and operations that occur in reality” [12]. Some parameters
affecting traffic are Intermediate Signal Spacing Ratio (ISSR), Percent Double
Track (% DT), and Traffic Peaking Factor (TPF).

All parameters are given fairly exact definitions, although the choice of def-
inition sometimes seems arbitrary. The Traffic Peaking Factor is for instance
defined as the ratio between the maximum number of trains dispatched in a
4-hour period and the average number of trains for that time period. According
to the Canadian National Railway, this model can be used to identify bottle-
necks and sections of excess capacity. I have however not found any evidence
of the actual application of the model, and can therefore not say whether the
model was abandoned or actually used.

2.3 The intended reader

Although this report can serve as a teaser to Prolog, its intention is not to
give a comprehensive introduction to this programming language. Sections 6
and 7, that is, the part of this report that describes the implementation of
the results, require some programming skills to be meaningful. The reader’s
programming experiences do not necessarily have to include Prolog or any other
logic programming language, though.

The reader also has to be familiar with linear algebra, and some concepts
of discrete mathematics (especially graph theory) in order to fully understand
this text.

Furthermore, this report can be read independently of the report written
by Ekman and Kreuger, [9]. Areas that are of great interest also to my work,
are covered in both reports. Most issues — especially the details — from Ekman
and Kreuger’s report that are not relevant to my study, have however been
omitted in my report. To fully understand the context, I recommend the reader
to read their report as well (the report is in Swedish). The problems that I have
solved are extensions to the problems tackled by Ekman and Kreuger, and are
naturally accounted for only by me.

3 METHOD

3 Method

3.1 Implementation

My philosophy when it comes to programming is that the highest priority in any
programming project should be a stable and well-documented program. Most
optimization considerations can stand aside while this first goal is met: code
can always be optimized, but there is no use in optimizing a code that does not
do what it is supposed to do.

There is no need to be deliberately careless in the choice of overall approach,
however, since this in itself can render the entire (though well-documented) code
more or less useless because the most natural and effective optimization would
be to change approach altogether.

Once a reasonable approach has been chosen, it might for many purposes be
wise to initially make the implementation easy to follow instead of focusing on
finding ways to save some running time and space. These potential optimizations
might of course become important later in the project, but writing code is to a
great extent similar to writing a text: there is always room for improvement, and
it is really up to the author to decide when — if ever — the code/text is finished.
My experience is that it is better to make a program, or text (to continue the
analogy), work as a whole entity, instead of aiming to perfect every part before
putting the pieces together.

As a direct consequence of my philosophy described above, a large portion
of my implementation is true to the ideas presented by Ekman and Kreuger in
their report in an almost literal sense. I chose to use the approach described
by Ekman and Kreuger (although I was of course free to use any approach that
solved the problem) because it is easy to follow, and because its complexity is
low. Even if there might exist an approach with lower overall complexity, the
difference between such an approach and Ekman and Kreuger’s approach would
not be very dramatic, and there was thus no great risk involved with embracing
their approach.

3.2 Providing suitable input
3.2.1 The condition graph

There are, as I see it, three major reasons for using and implementing Ekman
and Kreuger’s approach towards capacity assessment. The one I mention last
below is directly connected to one of the problems I was asked to look at (see
Section 1.4), and the way in which I approached that problem is described in
the next subsection, 3.2.2.

The first reason for favouring Ekman and Kreuger’s approach is that it pro-
vides an exact result, with respect to the input. Provided the input is ’exact’
in a sensible sense, it is straight-forward and unambiguous what the method
measures. This is for example not the case with simulation. Note that, in this
context, I have adopted Aurell and Ekman’s view that simulation is synony-
mous with a numerical experiment [1]. Their motivation for this assumption is

10

3 METHOD 3.2 Providing suitable input

basically that very few people that use simulation programs know exactly what
the programs do on a detailed level. Using a simulation program can therefore
be likened to performing an experiment.

The second reason is that the complexity of all algorithms used by the ap-
proach is fairly low. Time is spent on defining the traffic pattern, feeding the
definition of the traffic pattern into the program, and finding the weights of the
arcs of the resulting condition graph — not on waiting for the computer program
to return a result.

Last, but not least, the definition of the traffic pattern governs how much
data, and exactly what data, that needs to be collected. It is obvious that
a reliable capacity assessment with Ekman and Kreuger’s approach cannot be
obtained in any other way than by generating weights of the arcs of the condition
graph that correspond to how the train movements in the traffic pattern would
affect each other in real life. Finding these arc weights is a laborious task, and
it is therefore of uttermost importance that as few of the arcs in the condition
graph as possible are redundant — preferably none.

If no arcs (or possibly a negligible number of arcs) are redundant, then it
is reasonable that the cycle time of the traffic pattern in question cannot be
found with significantly less effort than the effort that is asked from us by this
approach.

3.2.2 Identifying redundant arcs

Of course the goal should be to provide a way of translating a description of a
traffic pattern to a condition graph representing precisely the conditions — one
per arc — that are necessary for the computation at hand. No more and no less.
If this goal cannot be met, the only feasible alternative is to generate (possibly
too many) arcs while being able to conclude that the ones that are generated
form a sufficient set on which a computation of the cycle time can be based.

Finding a set of arcs that is sufficient to correctly compute the cycle time of
the traffic pattern is actually not hard at all. The most naive and obvious choice
is to let every pair of movements related with regard to precedence (see Section
1.3.2), among all movements in any two consecutive cycles, result in an arc. A
sufficient set of conditions is of course represented by the set of arcs generated
in this way.

T used a better approach. I noted that certain categories of conditions are
at a very early stage easily judged as generating obviously redundant arcs, and
can be dismissed immediately during the process in which the first set of arcs
for the condition graph is generated. Having done that, it is then possible to
examine the relationships between the movements a bit closer and eliminate
more redundant arcs.

The more redundant arcs that can be eliminated, the better. But the elimi-
nation of redundant arcs must be carried out in such a way that there does not
exist any risk of eliminating an arc that must not be eliminated, ’by accident’.

11

4 THE MAXIMUM MEAN CYCLE PROBLEM

4 The Maximum Mean Cycle Problem

Although there are a few different approaches to computing the cycle time of a
traffic pattern, the approach that I have investigated concludes with computing
the maximum cycle mean of a so called collapsed graph. The maximum cycle
mean of a directed graph is, loosely speaking, the average weight of an arc in
the cycle with the largest average arc weight in the graph.

4.1 Some graph notation®

Let D be a weighted, directed graph (digraph) with nodes V, arcs A, and a
weight function w : A — R, where R denotes the real numbers. A is a set of
ordered pairs of nodes. In graph literature, a walk W in D is commonly defined
as an alternating sequence W = z1a1220223 ... Tk—1a5_12f of nodes x; and
arcs a; from D, in which every arc a; starts at node x; and ends at node ;1.
Neither the arcs nor the nodes in W have to be distinct.

The length of a walk equals the number of arcs in it. A walk can be of zero
length, in which case the walk consists of a single node, W = z;. A node y is
reachable from a node z in a digraph D if there exists a walk from z to y. A
digraph D is strongly connected if and only if every node of D is reachable from
every other node of D.

A path is a walk in which nodes as well as arcs are all distinct. If nodes and
arcs are distinct in a walk W except for the starting node and ending node being
the same, and the length of W is at least two, W is a cycle. A loop is a walk of
length one consisting of an arc from a node to itself. It is usually not defined as
a cycle, but will from this point on, in the context of computing the maximum
cycle mean of collapsed graphs, be regarded as if were it in fact a cycle. The
justification for this is that loops in collapsed graphs generally represent cycles
in the associated original graphs, and that we are of course equally interested
in all cycles when we compute the cycle means.

A weighted digraph — in this text, all graphs of interest are directed graphs —
has a (real numbered) weight associated with every arc. The weight of a walk is
the sum of the weights of the arcs the walk traverses, the weight of a particular
arc counted every time the arc is traversed if the arc occurs more than once in
the walk.

4.2 Event graphs

The terminology in this section is taken from an article by Ali Dasdan and Ra-
jesh K. Gupta called “Faster Maximum and Minimum Mean Cycle Algorithms
for System Performance Analysis” [7]. Other authors may of course use differ-
ent names for the properties and quantities defined here, although Dasdan and

9This section provides a short summary of graph concepts that T will use in this report.
There is nothing unconventional about the notation introduced here, but for reference, I have
mainly used [3, 4].

12

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.2 Event graphs

Gupta’s terminology seems to coincide with the prevalent terminology in this
field.

4.2.1 Discrete event systems

Discrete event systems can be modeled by directed, weighted graphs (event
graphs) whose nodes and arcs represent the events and the interactions between
them. The events are repetitive, and we may assume the graph to be strongly
connected without loss of generality'© .

The arcs and their weights together hold information about when events are
allowed to fire (for example start) in relation to each other: an arc with weight
w starting at node z and ending at node y, says that event y must not fire
earlier than w time units (for instance minutes) after event z fired. In some
systems, an event can fire when one of its predecessors enables it. For other
systems — such as the one in focus for this report — an event has to wait until
all its predecessors have enabled it.

In the simple model just referred to, it is not possible to make a firing time
of an event dependent on earlier firing times of its predecessors other than just
the latest ones. By associating with every arc another value (in addition to the
arc weight), called the occurrence index offset and denoted by 7, it is possible
to let event firings depend on a longer history. To see how this works, compare
the different ways of computing the firing times of individual events in the two
different models in the sections below.

4.2.2 The maximum cycle mean

The cycle mean of a cycle C in a weighted digraph D is defined as the weight
of C divided by the length of C'!. Accordingly, the mazimum cycle mean is
defined as the maximum of the cycle means over all cycles in the digraph D,
including the loops. Let A(C) denote the cycle mean of cycle C, and A (D) the
maximum cycle mean of a digraph D. Then A (D) can be expressed as

A(D) = max {A(C)} .

10Any graph G that is not strongly connected consists of a number of strongly connected
components that can be considered separately. If the maximum cycle mean of G is to be com-
puted, the answer simply equals the largest maximum cycle mean of the different components
of G.

1 Compare this definition with the definition of cycle mean in Section 1.3.4. They differ, and
the reason is that the latter is Ekman and Kreuger’s definition of cycle mean in a condition
graph, which is actually equivalent to the profit to time ratio. See Sections 4.2.4 and 4.3 for
definitions and the background to this confusion of terms.

13

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.2 Event graphs

4.2.3 Firing times and cycle time

To determine the earliest possible firing time of an event in a system in which
every event has to wait for all its predecessors to enable it before it can fire,
Dasdan and Gupta provide the maz-causality rule:

Sl(k) = jeg%(i) {S](k — 1) + 'lsz'}, k> 0.

In the expression above, s;(k) is the firing time of event ¢ when it fires for
the (k + 1)st time, Pred(i) denotes the set of the immediate predecessors of i,
and wj; is the weight of the arc from j (a predecessor of 7) to ¢. The immediate
predecessors of ¢ are the events whose nodes have arcs to .

Every event fires independently of each other the first time, so s;(0) is de-
termined separately. Dasdan and Gupta call this property the independence
rule.

The cycle time of a single event ¢ in a system abiding by the independence
and max-causality rules above is defined as

T, = lim si(k)
k—-+o00 k‘

Loosely speaking, T; says with what time interval event i fires, on average, in
the system described by the event graph. The cycle time 7' of the whole system
is in fact equal to T3, since T; = T for any events ¢ and j.

Dasdan and Gupta claim that the cycle time of the system that the event
graph models is the same as the maximum cycle mean of the event graph. This
is part of the reason why the maximum mean cycle problem is of such great
importance for performance analysis.

4.2.4 The maximum profit to time ratio

If the model includes the quantity 7 introduced in Section 4.2.1, the max-
causality rule is given by
si(k) = max {s;j(k—7j)+wj}t,k>71>0
i(k) jePred(i){ i(Tji) + wiit, k> 750 > 0,
which should be compared to the first version of the max-causality rule given
in the previous section.
The equivalent of cycle mean in a model governed by the max-causality rule
incorporating the 7-quantity is the profit to time ratio, defined as

_w(0)
p (C) - T (C) I
where w (C) still is the weight of the cycle C, and 7(C) is the sum of the 7
values around C.

The cycle time of a system modeled with the 7-quantity is now obtained by
the mazimum profit to time ratio p (G) of the event graph G, defined by

p(G) = max {p(C)} .

vCeG

14

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.3 Condition graphs

4.3 Condition graphs

Condition graphs are not simple event graphs, for which the definition of the
maximum cycle mean in Section 4.2.2 applies without modifications. Condition
graphs are instead event graphs where every arc a;; is associated with an oc-
currence index offset 7;; (see Section 4.2.1). The 7 values in a condition graph
are however restricted to be either 0 or 1.

In other words, the firing of an event ¢ in a condition graph is enabled by
events in its own cycle (in cases where 7;; is 0 for the arc from i’s predecessor
node j to ¢ itself) and/or by events in the preceding cycle (in cases where the
7 value in question is 1). This suggests that bowed arcs in the condition graph
should be associated with a 7 value equal to 1, and straight arcs with the 7
value 0, which is of course correct.

Ekman and Kreuger recognize that the cycle time of a traffic pattern, as
modeled by the condition graph, equals the maximum profit to time ratio (see
Section 4.2.4) when bowed and straight arcs are given 7 values 1 and 0 re-
spectively, as indicated above. However, they choose to call the property the
mazimum cycle mean of a condition graph rather than maximum profit to time
ratio, since the former term better signals what is being calculated.

Ekman and Kreuger let m (C) denote the cycle mean of a cycle C in a
condition graph Gc,p,. m (C) is defined to be the weight of the cycle C, w (C),
divided by the number of bowed arcs, b(C), in C, that is

m(C):Z}((—CC).

~—

The maximum cycle mean of a condition graph G on, m (Geon), is accord-
ingly given by

m (Gcon) - Vcnelg*};n {m (C)})
and is the same as the cycle time of the traffic pattern represented by the
condition graph.

The maximum cycle mean, as defined in Section 4.2.2, is obviously the same
as the maximum profit to time ratio with every 7 value set to 1 (see Section
4.2.4). Although there are efficient algorithms that compute the maximum profit
to time ratio, the corresponding ones that compute the maximum cycle mean
are always faster!2.

Ekman and Kreuger’s strategy is to transform the condition graph G,
to a so called collapsed graph G, in such a way that the maximum cycle
mean of the collapsed graph, A(G.) , equals the maximum cycle mean of the
condition graph m(G.opn). The reason is of course that it is then possible to use
an algorithm for computing the maximum cycle mean that is known to be very
efficient, directly on the collapsed graph, and still get the desired answer.

12This is obvious, since timesaving and simplifying assumptions can be made in the latter
ones.

15

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.4 Karp’s Algorithm

Ekman and Kreuger provide a concise proof of why the maximum cycle mean
of a collapsed graph is the same as the maximum cycle mean of the condition
graph that is the basis for the collapsed graph in [9]. I do not account for it
here, but nevertheless gives a convincing argument why it is true in Section 6,
in connection with my explanation of the procedure that actually collapses the
graph.

4.4 Karp’s Algorithm

There exist quite a number of algorithms that can be used to compute the
maximum cycle mean, or its dual problem, the minimum cycle mean. Many of
these are based on Karp’s Algorithm. The basis of Karp’s Algorithm and its
variants is Karp’s Theorem. It provides a handy expression for the maximum
cycle mean.

4.4.1 Karp’s Theorem

Let D be a strongly connected digraph with n nodes, and select any node in
D to be the source, or s for short. For all v € V, and all £k =0,1,2,...,n, let
Dy, (v) represent the maximum weight of a walk of length k from s to v. If no
walk of length & from s to v exists, Dy (v) is considered to have the value —oo.
Now, Karp’s Theorem can concisely be expressed as

A(D) = max min —Dn(v) ~ Di(v) .
vEV 0<k<n—1 n—k

There is a concise and elegant proof of Karp’s Theorem in [2]. T intend to
elaborate on that proof and explain every step carefully. Comprehending this
proof is important since an essential part of my implementation rests on the fact
that Karp’s Theorem can indeed be used in the computation of the maximum
cycle mean.

4.4.2 Proof of Karp’s Theorem

The proof of Karp’s Theorem is not dependent on the choice of the source. Any
node of D can be selected as source node, and this will be explicitly demon-
strated later in the proof.

First, Karp’s Theorem is proven for digraphs whose maximum cycle mean
is 0. Of course, this is only one possible case out of infinitely many possible
ones (since the weights on the arcs are real numbers), but proving this will pave
the way for proving Karp’s Theorem for strongly connected digraphs having
arbitrary maximum cycle means.

Case 1 So, let us assume that the maximum cycle mean of D is 0. This
prompts me to show that

16

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.4 Karp’s Algorithm

max min —Dn(v) ~ Di(v)

=0
veV 0<k<n—1 n—k ’

for the digraph D in question. Following this assumption, there must be at
least one cycle in D whose cycle mean is 0, and no cycles (or loops) in D can
have positive weights. Trivially, we can assume that there are arcs in D whose
weights are negative, or else all arcs in D have weight 0 which leaves me with
nothing to prove.

For every node v of D, there is a walk of maximum weight from the source
node s to it, its weight equal to

Xsv = max Dy (v).

Remember that Dy (v) represents the maximum weight of a walk of length
k from s to v, and amounts to —oo if no such walk exists.
Note that D, (v) is always smaller than, or equal to, Xy, for all v, that is

D, (v) € Xsv,Vv E V.

Although not altogether intuitively comprehended, this newly defined value
Xsv 18 finite for every v of D. A walk of greater length than n — 1 in a digraph
D with n nodes, passes through a number of nodes exceeding n, and thus has
to contain at least one cycle. This is due to the fact that there is at least one
node that gets visited twice in a walk of such a length. The walk must contain
at least the one cycle starting and ending at that node. No cycle can add to
the weight of the walk, since, according to the assumption, none of these have
positive weights. Thus xs, can be found, for every v of D, by restricting k to
non-negative integers smaller than n.

The revised expression now reads: for every node v of D, there is a walk of
maximum weight from the source node s to it, its weight equal to

= D .
Xsv k:O,I{I,?fnfl k()

The fact that D,(v) is always smaller than (or equal t0) xsy, leads to the

following expression:

D,(v) — xsy = min an(v) — Di(v) <0.

=0,1,...,n—

The replacement of the max operator by the min operator is a natural con-
sequence of the following (trivial) equality:

17

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.4 Karp’s Algorithm

—(max 1Dk(v))= min — (Di(v)) .

k=0,1,....n— k=0.1,...,n—1

The expression inside the parentheses on the left side of the equality above
is of course the definition of g, -

Since n is always larger than any k, dividing the inequality by n — k does
not alter it. Hence,

Dn(v) - Dk(v)

<0.
k=0,1,...,n—1 n—=k -

Note that equality in the expression above will hold only if D, (v) = Dg(v).
A node v such that this is true, exists in every digraph whose maximum cycle
mean is 0. This is really the first and last thing that needs to be proven in order
to show that Karp’s Theorem is correct when A (D) = 0.

Let ¢ be a cycle of weight 0 in D. Let [be a node in the cycle {, and Py be
a path of maximum weight from s to [. Create a walk W, by extending F;; with
a number of repetitions of the cycle (, enough to make the length of W, greater
than or equal to n. ¢ has weight 0, so W, is just like Py a walk of maximum
weight from s to [.

I now claim that the walk consisting of the first n nodes of W,, ending at
node !' — obviously also a node in the cycle ¢ — is a walk of maximum weight
from s to I'. This is true simply because a subwalk of any walk of maximum
weight is of maximum weight itself. Furthermore, this subwalk W of W, has
the same weight as the path P, of maximum weight from s to I’. The path Py
is constructed by appending to P, those arcs and nodes in the cycle ¢ that make
I reachable from I. (Any reader still skeptical should convince him- or herself
that Py is indeed a path, and that it has maximum weight, before reading on.)

So, without having made any assumptions about the source node s or the
nodes [or I', other than that ! (and consequently ') is in the cycle (, it has in
this way been shown that there is, in every strongly connected digraph whose
maximum cycle mean is 0, a node v playing the role of I’ above, and that
D, (") = xsir- Therefore we get

max min —Dn(v) — Di(v)

=0
vEV |k=0,1,...,n—1 n—k ’

and the first part of the proof, with A(D) = 0, is completed.

Case 2 Proving the case when A (D) is any real number can be treated in ex-
actly the same way as when \ (D) is 0, making one simple observation. Suppose
that a constant ¢ is subtracted from (or added to) the weight of every arc in
D. By definition, this will of course change the value of A(C) and thus of A (D)
with that same constant. Also, Dy (v) will change with kc for the same reason.

18

4 THE MAXIMUM MEAN CYCLE PROBLEM 4.4 Karp’s Algorithm

The following explicit steps, show that A (D) does indeed change in the
above-mentioned way (using subtraction by ¢ from every arc weight to exem-

plify):

[Dn (v)—nc]—[Dy(v)—kc] — Dy (v)—Dg(v)—nc+ke —
n—~k n—k

D, (v)—Dy(v) _ nc—kc _ Dy (v)— Dy (v) —c
k n—k n—k)

Clearly, both sides of the equality in the definition of Karp’s Theorem are
affected in the same way, that is, reduced by the constant ¢, if ¢ is subtracted
from every arc weight in D. Selecting a ¢ such that A (D) becomes 0 makes the
first part of this proof, when A (D) = 0, applicable again. Supposing that A (D)
is 0 apparently imposes no real restriction on the proof, since every case can be
reduced to this. Thus, Karp’s Theorem is proven for arbitrary values of A (D).

19

5 SICSTUS PROLOG

5 SICStus Prolog'?

This section provides a very quick introduction to Prolog. Its major aim is
to enable readers familiar with programming in general, but not with Prolog
programming, to follow the description of my implementation in the following
sections. For more comprehensive coverage of the Prolog language, I encourage
the interested reader to turn to regular textbooks on the subject.

5.1 The logic programming paradigm

[Logic programming] is based on the belief that instead of the human
learning to think in terms of the operations of a computer [—] the
computer should perform instructions that are easy for humans to
provide. [16]

Even though I am a fan of the computer language C, I understand why many
people who have programmed in C tend to curse pointers. Especially those
who have not had the time or interest to really delve deeply into the task of
programming, for example those who have attended programming courses as a
compulsory part of their education without being genuinely interested in pro-
gramming, seem to resent pointers and other structures of various programming
languages that require knowledge about how the computer program is actually
executed at a lower level.

One of the intentions with logic programming was to hide hardware specific
details from the programmer, without forgoing the efficiency of programs written
in languages of other paradigms. Logic programming, as it stands today, is far
from this ideal, since it is desirable — sometimes even necessary — to be aware
of how the execution mechanism works to be able to write efficient and correct
code.

Nevertheless, in comparison with C and many other common programming
languages, programming in Prolog is at least in some aspects at a higher level.
Prolog is a declaration-free, typeless language. The contents of an initialized
logical variable cannot change, as opposed to the contents of variables in con-
ventional languages. This means that logical variables more closely resemble
what we mean by variables in the mathematical sense of the word. Moreover,
data manipulation is achieved entirely by what is called unification (see Section
5.4). And the basic approach when writing a program is writing axioms (rules)
and defining relationships between objects.

5.2 Prolog basics

The term is the single data structure in logic programs. A term is a constant,
or a compound term. A compound term consists of a functor and one or more
arguments. A functor is characterized by its name and arity (its number of
arguments). A functor with name f of arity n is denoted £/n. Two functors can

13The two main sources for this section about Prolog are [16] and [15].

20

5 SICSTUS PROLOG 5.2 Prolog basics

have the same name, but they are considered to be different functors if their
arities differ.

A constant is an integer or an atom. The latter is symbolized with any
sequence of characters as long as the first letter is lowercase (or else the sequence
needs to be quoted to show that it is indeed an atom).

Variables begin with an uppercase letter or the underline character . A
variable can be bound to a structure, a constant, or another variable. Terms
that do not contain variables are called ground, and terms that do are called
nonground. The name of a functor must be an atom. It cannot be a variable.

A Prolog program is mainly made up of three kinds of basic constructs
called Horn clauses, or clauses for short: facts, rules, and queries. Facts are
sometimes called predicates. A fact, or predicate, holds information about the
relation between objects. If there is an arc from a node a to a node b in a graph,
this could be represented as

arc(a,b).

arc is the name of the functor of this compound term, and the arity of the
functor is 2. The functor can thus be denoted arc/2. As in any programming
language, the syntax is important. A fact must end with a period.

If the variable is indicated solely by the underline character, the variable
is anonymous. Anonymous variables in the same clause are treated as distinct
variables.

Variables in facts are implicitly universally quantified. Compare the follow-
ing sets of facts, where each set of facts comprises a separate, possible program
(called “Program 1” and “Program 2”):

Program 1

times(0,0,0).
times(0,1,0).
times(0,2,0).
times(0,3,0).

Program 2
times(0,X,0).

The meaning of the second program is, as summarized by one single fact, that
zero times any number is zero, which probably is exactly what the writer of the
first program wanted to say in the first place.

Queries are syntactically identical to facts, but are used to extract infor-
mation from logic programs. I subscribe to Sterling and Shapiro’s model that
distinguishes between facts and queries by ending the former with a period and
the latter with a question mark to avoid confusion. Without the period or ques-
tion mark, the entity is called a goal. Thus P. says that the goal P is true, and
P? asks whether the goal P is true.

21

5 SICSTUS PROLOG 5.3 Lists

The answer to a ground query is yes if the query is a logical consequence of
the program. Otherwise the answer is no. A nonground query is answered with
the substitution that makes the query a logical consequence of the program, if
such a substitution exists.

In a simple program consisting of the single fact arc(a,b) ., the answer to
the query arc(a,b)? is for instance yes. The answer to arc(X,b)? is X=a,
since the replacement of every occurrence of X by a in the query results in a
match of a fact in the program. arc(a,X) 7 gives X=b, arc(X,Y) 7 gives X=a and
Y=b. arc(X,X)? simply gives no. The variable X cannot be both a and b.

Rules define relationships in terms of existing relationships. Consider the
following program:

arc(a,b).
arc(b,c).
arc(c,d).
arc(e,f).

connected(X,X).
connected(X,Y) :- arc(X,Z), connected(Z,Y).

The second version of connected/2 is a rule, defined in terms of the arc facts
and itself. It displays a simple example of recursion, which I assume the reader
is familiar with!4. connected(X,Y) is the head, and the conjunction of the two
goals arc/2 and connected/2 after the head, that is, after “:-”, is called the
body of the rule. The goals of the body are separated by commas, and the rule
is concluded with a period.

A procedure is a collection of rules with the same predicate as head, and is
the equivalent of a procedure, or a function, in other programming languages.
The base case, or base fact, of the procedure connected/2is connected(X,X),
which says that anything is connected to itself. The procedure says that X is
connected to Y if X and Y are the same thing or if there is an arc from X to Z,
and Z is connected to Y.

5.3 Lists
A list in Prolog is a binary structure. The first argument is an element, and
the second argument is the rest of the list. The functor for lists is ”.”, and the

empty list is denoted []. The list of a single element a is thus . (a, [1). Thanks
to syntactic sugar, the same list can be written as [a]l. The first element of a
list, the head, and the rest of the list, the tail, are always separated. . (X,Y) is
denoted [X|Y], where X is an element and Y another list of elements (possible the
empty list)ls. If Yis [b,c], then [a|Y] and [a,b,c] and .(a,.(b,.(c,[1)))
are three different ways of representing the same list.

143ee Section 8.3.1 for a short discussion about recursion in a general context.
15For readers familiar with Lisp, [X|Y] and a cons pair are the same thing. The head and
tail in Prolog correspond to car and cdr in Lisp.

22

5 SICSTUS PROLOG 5.4 Unification

5.4 Unification'®

A substitution making two terms identical is called a unifier, and two terms are
said to wnify if they have a unifier. The substitution {Y=[b,c]} thus unifies
[alY] and [a,b,c]. {Y=[b,c]} also happens to be the most general unifier,
which is unique!” (apart from the names of the variables, which may differ).

Loosely speaking, the most general unifier (mgu) comprises the least number
of assumptions that make the two terms in question unify. To illustrate this
point, consider what makes foo(X,Y) and foo(Y,Z) unify. The substitution
{X=Y,Y=Z7} is the minimum requirement, and thus a mgu. {X=Y,Y=Z,X=1} is
also a unifier, but gives more information than what is required to make the
two terms unify. Thus it is not a mgu.

The mgu is the substitution that the Prolog engine provides as the result of
a unification. For a more comprehensive account of mgu’s, I direct the reader
to textbooks on Prolog, for example [16].

5.5 Search trees

When a logic program is executed, the Prolog engine basically tries to prove
the given goal statements with the aid of the facts and rules of the program at
hand. Proving in this context basically means succeeding to unify all relevant
terms. This process can be represented by a search tree.

Sterling and Shapiro give the following definition: “A reduction of a goal G
by a program P is the replacement of G by the body of an instance of a clause
in P, whose head is identical to the chosen goal” [16]. A search tree of goal G
is made up of nodes that represent goals, or conjunctive goals, with one goal
selected. The root of the tree is goal G. Edges represent reductions. Every
possible reduction of a goal in the search tree generates an edge.

If variable bindings are created due to the unification operation, these bind-
ings are associated with the edge representing that unification (the reduction).
If the selected goal at a node cannot be further reduced, a failure node is cre-
ated, which becomes the leaf of that particular branch. A proof (the result of a
successful search), is a path from the root, the initial goal G, to a success node
in the tree.

A success node is reached if goal G is proven. G is proven when no more
subgoals of G need to be reduced. The variable bindings collected along the
branch constitute the proof. A proof is the result of the execution, since the
execution is equivalent to constructing a proof. Once bindings are created, they
apply to the rest of the branch and summarize what must hold for this branch
if it is to end with a success node; the proof of a query G? is presented to the
user as the variable bindings that make the proof valid.

16 According to Sterling and Shapiro, there are various definitions of unifiers [16]. T base
this section on their definition of unification, which they claim is nonstandard. Just like they
do, I believe that this simplified definition of unification serves its purpose better here than a
more comprehensive exposition would.

17T do not intend to prove this here.

23

5 SICSTUS PROLOG 5.6 Backtracking

5.6 Backtracking

During the actual execution, goals are being reduced in a specific order by the
Prolog engine. The process can be visualized as searching for a success node in
the search tree using depth-first, left-to-right search with backtracking.

Backtracking means that as soon as a failure node is reached, the engine
undoes the computation to the last choice made and tries a different path in
the search tree. Variables can in this way change state from bound to unbound.
Unless the search tree contains an infinite branch!®, all solutions are eventually
found, if any solution at all exists. Otherwise the goal G fails.

It is possible to prevent backtracking in a controlled way, by using the (non-
logical) primitive predicate !, called cut. For example, it is sometimes possible
to know in advance that if a certain condition holds, other alternatives do not
even need to be tried since they cannot possibly succeed. A cut in a program
commits Prolog to all choices it made from the point at which it matched a query,
or subgoal, to the head of the clause containing the cut. Prolog is however free
to backtrack at previous choices if the remainder of the clause is not satisfiable.

In the following example, G, C, X and Y represent parts of a program. G for
instance represents the head of a rule, and C, X and Y represent one or more
goals each. Here, Y will not even be tried if C succeeds. Part of the reason for
this is the rule order. When approached by the query (or subquery) G?7, the
Prolog engine first tries the first rule named G. But without the cut, Y might be
tried at some point even if C succeeded, regardless of rule order.

G :- C,!,X.

G :- Y.

The interpretation of the clauses above reads: "To satisfy G, if C is true, then
satisfy X. Otherwise satisfy Y”.

181n particular, if the infinite branch is tried before all solutions are found, all solutions will
not be found by the Prolog engine.

24

6 COLLAPSING A GRAPH

6 Collapsing a graph

A condition graph G.., is transformed into a collapsed graph G, (also a
strongly connected digraph) in two steps. First G.op, is transformed into an
acyclic digraph called the split graph, S(Geon). Then S(G.op) is in turn trans-
formed into the collapsed graph G, in which the existence of an zy-path in
the condition graph that includes exactly one bowed arc is represented by an
arc agy. The weight of that arc is the maximum weight of all such paths from
z to y (paths from z to y including exactly one bowed arc) in Geop.-

6.1 The split graph

The condition graph consists of a node set V', a set of straight arcs A;, a set of
bowed arcs A and a weight function w associating every arc in A, and Ap with
a real-numbered (possibly negative) weight.

The split graph S(Gcon) has three node types: base nodes B, top nodes T
and simple nodes N. BU N is exactly the node set V' of the original condition
graph G,,: the base nodes B are those nodes that are hit by bowed arcs in
Gon, and the simple nodes N are the rest of the nodes in G,,. For every base
node z € B there exists in the split graph a clone in the shape of a top node
z' € T. The split graph thus has more nodes than the condition graph it is
based on.

S(Gcon) has only one kind of arc, here simply denoted A. Every arc a in
Geon, a € As U Ay, corresponds to an arc in S(Go), and the latter has the
same weight w as it has in G.op:

e a straight arc from z to y with weight w in G, gives rise to an arc from
z to y in S(Gon) with weight w

e a bowed arc from z to y with weight w in G, gives rise to an arc from
z to y' with weight w in S(Gon), where y' is the top node in the split
graph corresponding to y in the condition graph

There are additional arcs in the split graph. An arc from a node z to a node
y with weight w in the condition graph, where both z and y are hit by bowed
arcs, that is, z and y are base nodes in the split graph, gives rise to not only an
arc from z to y with weight w in S(Geon), but also to an arc from z’ to ¢’ with
weight w in S(Geon)-

e a straight arc from z to y with weight w in Gcon, where z,y € B in
S(Geon), gives rise to an arc from z' to y' in S(Geon) with weight w,
where z',y’ € T, in addition to the arc from z to y with weight w in

S(GCOTL)

Figure 1 shows a small condition graph G, and Figure 2 what the split graph
S(G) would look like.

25

6 COLLAPSING A GRAPH 6.1 The split graph

Figure 1: A simple condition graph

Figure 2: The split condition graph of Figure 1

26

6 COLLAPSING A GRAPH 6.2 split/6

6.2 split/6

My implementation of split/6 is straightforward with respect to the definition
of the split graph. Here is an overview of what it does. The condition graph is
given as input.

1. The base nodes are identified.
2. The top nodes are identified.

3. The arcs that the bowed arcs in the condition graph give rise to are de-
cided.

4. The arcs that the straight arcs in the condition graph give rise to are
decided.

The code I have written is available in its entirety only to Banverket and SICS
AB. T will not quote, or go into details about, every piece of code that I have
written. But for the purpose of explaining my commenting style, I will explain
split/6 fairly thoroughly. This makes the rest of the code easier to follow —
both the parts that are included in the report, and the parts that are not.

Figure 3 (see page 28) displays what split/6 looks like in Prolog code,
including my comments about it.

6.2.1 Input and output arguments

First of all, split/6 has six arguments. The only one that is used as input
is the first, called Graph. The plus sign in front of the first argument (argl)
means that it is intended as input, as opposed to the last five arguments that
are preceded by minus signs to indicate that they are the output arguments
of split/6. Input arguments should be instantiated, while output arguments
must not be instantiated.

Some procedures have arguments that can be either instantiated or uninstan-
tiated depending on what the user wants from the procedure. Such arguments
are suitably preceded by a question mark to indicate that the user has this
choice.

6.2.2 Association lists

Arg2, arg3, argd and argb are all represented by lists of names (or definitions) of
the nodes, arcs, base nodes and top nodes in question. An arc is denoted by the
fact a(X,Y,W), where the existence of such a fact states that there is an arc from
node X to node Y with weight W. BaseTopNodeRelations is an association list,
which is a structure provided by the Prolog library. Predicates in the Prolog
library are not built-in, and needs to be explicitly loaded. In this case, the
following line loads the association lists package:

:- use_module(library(assoc)).

27

6 COLLAPSING A GRAPH

6.2 split/6

Tl oloToToToTotoToTo oo o ToToToto To o o o ot To oo TaToTo T o To o o o ot oo oo

hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hih

Tl oloTotoToTotoToToTo oo TaToTo o T o o o o ot ToTo o TaTo T o To o o o ot oo o o

split (+Graph,-Nodes,-Arcs,-BaseNodes,
-TopNodes, -BaseTopNodeRelations) <--

The graph Graph is defined with four
arguments:
g(Name,Nodes,StraightArcs,BowedArcs).
Graph is a condition graph. The last
five arguments of split/6 specify the
split graph corresponding to Graph.

Nodes, Arcs, BaseNodes, and TopNodes are
just what they seem. BaseTopNodeRelations
is an association list with top nodes as
keys and the nodes they originate from as
values. This relation is needed by
collapse/7.

split(G,V,A,B,T,BT) :-

g(G,Nodes,StrA,BowedA),
make_base_nodes(BowedA,B),
make_top_nodes(B,T,BT),
decide_arcsi1(BowedA,BT,Al1),
decide_arcs2(StrA,B,A2),
append (A1,A2,4),

append (Nodes,T,V).

Figure 3: The code for split/6

28

6 COLLAPSING A GRAPH 6.2 split/6

An association list is a list of key-value pairs. In Prolog it is implemented as
a balanced tree!®. Lookup, insertion and deletion in the association list are all
O(log n) operations (in the worst case). The purpose of BaseTopNodeRelations
is to keep track of what base node a specific top node corresponds to.

Condition graphs are specified by the fact g/4. Various definitions of graphs
(including condition graphs) are appropriately kept in a separate file where new
graph definitions easily can be inserted or deleted by manually modifying the
file. In my case, I call this file 'graphs.prolog’. Argl of g/4 is the name of the
graph, and is used as a convenient handle to get hold of a graph definition: G
unifies with argl in the first clause of the body of split/6, and thus (if G is
instantiated with a valid graph name) the nodes (arg2) of the graph with name
G, and its straight and bowed arcs (arg3 and arg4), unify with Nodes, StrA and
BowedA respectively.

6.2.3 Accumulating parameters

Almost all of the procedures I have defined are recursive in nature, but use
accumulating parameters to achieve better run-time characteristics. An accu-
mulating parameter is passed along all the recursive steps. When the base case
is reached, the value of the accumulator is transferred to the output variable.

A straightforward example is make_top_nodes/5 (Figure 4).
make_top_nodes/3is called from split/6, and make_top_nodes/3in turn calls
make_top_nodes/5: the single purpose of make_top_nodes/3 is to hide imple-
mentation specific details from the procedure that actually calls make_top_nodes.
All the procedure (in this case split/6) cares about is to get the top nodes in
question in return?°.

The two extra arguments added in make_top_nodes/5 are accumulating pa-
rameters. Arg2 is an empty list and arg4 an empty association list, represented
with [] and t respectively, as required by the SICStus assoc-library (see Section
6.2.2).

If the condition graph is correctly specified, argl is not an empty list when
make_top_nodes/3 is called: there is at least one base node in any condition
graph consisting of one or more nodes. The base case is thus not applicable to
the first call to make_top_nodes/5. Instead, B in [B|Bs] (in the head of the
second version of the rule make_top_nodes/5) will unify with the first element
in the list of base nodes. t(B) is, with the aid of add_to_relation/4, added to
the association list AccBT that keeps track of the base and top node relations,
putting t (B) as the key and B as the value in one of its key-value pairs. AccBT2
is the updated BaseTopNodeRelations association list.

After that, a recursive call on the rest of the list of base nodes, Bs, is made,
with the top node t (B) added to arg2, an accumulator collecting all top nodes
that have been identified so far.

19Balance in this context is defined by the Adelson-Velskii-Landis balance criterion: “A tree
is balanced iff for every node the heights of its two subtrees differ by at most 1” [18].

201t is of course a matter of taste how one uses accumulating parameters. I prefer to hide
them. I thus avoid adding accumulating parameters directly in the calls from other procedures.

29

6 COLLAPSING A GRAPH 6.2 split/6

Tl b b o b o o o o o o 1o 1o 0T T T T T o oo oo o o o oo o T o oo oo oo

%% make_top_nodes (+BaseNodes,-TopNodes,

N -BaseTopNodeRelations) <--
W

%h Every base node (see the

%h definition above) has a

he corresponding top node. Top
N nodes are here defined as
%h t(Node), i.e., the existence
W of the fact t(X) means that
ok there is a top node

ok Y == t(X), corresponding to
W the node X.

Tl b b o o 1616 1o 1o 1o o 1o ToTo T T o oo oo oo oo oo oo T o oo oo oo

make_top_nodes (B,T,BT) :-
make_top_nodes(B,[]1,T,t,BT).

make_top_nodes([],Top,Top,BT,BT). % Base case
make_top_nodes([B|Bs],AccT,Top,AccBT,BT) :-
add_to_relation(t(B),AccBT,B,AccBT2),
make_top_nodes (Bs, [t(B) |AccT],
Top,AccBT2,BT) .

Figure 4: The code for make_top_nodes/3 and make_top_nodes/5

30

6 COLLAPSING A GRAPH 6.2 split/6

When argl is the empty list, the base case is reached: the call to
make_top_nodes/5 unifies with make_top_nodes([],Top,Top,BT,BT). Here arg3,
hitherto uninstantiated, unifies with arg2. The same happens with argh, which
unifies with arg4. Although arg3 and arg4 have merely been passed along in
every recursive step, uninstantiated, they are of course the same variables in
every call. Once instantiated (by the base case), the result propagates all the
way back to the first call to make_top_nodes/5, where T and BT now are known.
Thus arg2 and arg3d of make_top_nodes/3 now also become instantiated.

6.2.4 Exploiting rule order

decide_arcs2/4, which is called from decide_arcs2/3, exemplifies some im-
portant aspects I have pointed out. Consider the code of decide_arcs2/4 in
Figure 5 (page 32).

The code for decide_arcs2/4 can be read as follows:

1. If argl an empty list, then the accumulating list of arcs is the final one,
so argd and arg4 should unify. This is the base case.

2. If not, we check to see if the start and end nodes, X and Y, of the arc first
in the list of arcs are both base nodes. If so, an arc identical to the one
examined is put in the accumulating list together with an arc between the
top nodes corresponding to X and Y, that is, from t (X) to t(Y). Then step
1 is applied to the rest of the list of arcs. If X and Y are not both base
nodes, proceed to step 3.

3. If nodes X and Y are not both base nodes, then as soon as this is discov-
ered (when either member (X,B) or member (Y,B) fails), the last rule of the
procedure is tried. It simply puts the arc as it is in the accumulating list
(arg3) and calls decide_arcs2/4 on the tail of the list of arcs: apply step
1 on the rest of the list.

The order of the rules of the procedure is crucial. The position of the base fact
can be arbitrarily chosen in this case, without changing the outcome of a call to
the procedure. Interchanging the positions of the other two decide_arcs2-rules
would, however, render 'wrong’ solutions. Wrong in the sense that the solution
is not what I intended from the procedure. In this case, it is fairly easy to see
why.

The first rule encountered would now, since no test is included in the body of
the rule, always succeed as long as argl is not an empty list, in which case only
the base fact would succeed. Since the solutions in the search tree are found
by a depth-first left-to-right search (see Sections 5.5 and 5.6), the first solution
suggested by the Prolog engine, arg3 (Arcs), would always be identical to the
original input argument, argl (StraightArcs). This solution is not interesting
to us.

The ’correct’ (intended) solution would sooner or later be found if we (the
user) kept asking the Prolog engine for more suggestions to solutions. On this

31

6 COLLAPSING A GRAPH 6.2 split/6

T T T T Tt Tl T o ot T T ot o o To T T o o To o Do T fo To Fo o Todo o o T Yoo Yoo Yo o
%% decide_arcs2(+StraightArcs,

%h +BaseNodes, -Arcs) <--

hh

%h A straight arc a(X,Y,W),

N connecting two base nodes,

Wh gives rise to an arc

%h a(XTop,YTop,W), where XTop is
%h t(X), i.e., the top node

hh corresponding to the node X,
hh and YTop is t(Y) -- as well
W as an arc identical to itself.

Tl el oo o 1o 1616 1o 1o 1o o ToToToTo o T o oo o oo oo oo T T T T o oo oo oo

decide_arcs2(S,B,Arcs) :-
decide_arcs2(S,B,[],Arcs).

decide_arcs2([],_,Arcs,Arcs). % Base case
decide_arcs2([a(X,Y,W) |As],B,Acc,Arcs) :-
member (X,B),

member (Y,B),
!,
decide_arcs2(As,B,
[a(X,Y, W) ,a(t(X),t(Y),W) |Acc],

Arcs) .

%% In case one of the nodes X and Y, or both,
%% are not base nodes, the straight arc in the
%% condition graph simply gives rise to an arc
%% in the split graph that is identical to

%% itself

decide_arcs2([a(X,Y,W) [As],B,Acc,Arcs) :-
decide_arcs2(As,B,[a(X,Y,W) |Acc],Arcs).

Figure 5: The code for decide_arcs2/3 (and decide_arcs2/4)

32

6 COLLAPSING A GRAPH 6.2 split/6

request, the Prolog engine backtracks to find the next possible solution. In
this case, the second rule (the one with the member-tests) would on a second
attempt be tried on at least one of the arcs.

At least one branch in the search tree ends with the success node we want,
that is, the one along which every arc that starts and ends in a base node
has been tried against the rule with the tests. The proof of this success node,
that is, the result of the execution, gives the desired output-arcs. If we put
the rule with the tests first (as I have in my implementation), this success
node will always be suggested first by the Prolog engine. Furthermore, the cut
after the tests prevent backtracking at those positions in the search tree where
member (X,B) ? and member (Y,B) 7 have succeeded, so this solution will be the
only one suggested.

6.2.5 Red and green cuts

In this very simple example, it is easy to see that the first solution is the only
solution we want. In other cases it might be a lot harder to see. And do we
really want to be dependent on rule order?

In a case like this, we know that there is a unique solution. An arc either
goes from a base node to a base node, or it simply does not. Depending on
what applies to a specific arc, we want to take one of two possible actions. Even
with the right rule order, the removal of the cut would make the Prolog engine
provide additional solutions on backtracking, all different from the single one
that is correct. The cut changes the declarative meaning of the program since
it actually cuts away success branches in the search tree.

Cuts like the one described are called red cuts, and should generally be
avoided. In a simple if-then-else case like this, when it is trivial to mind one’s
p’s and q’s, a red cut is justifiable since the code is still easy to follow and more
efficient than the alternatives.

To make the procedure independent of rule order, all rules (except the base
fact) would need tests in the body. This would result in a minimum of three
rules on top of the base fact: one that checks if both nodes X and Y in a(X,Y,W)
are base nodes, one that checks if X is a not a base node, and one that checks if
Y is not a base node.

An example of how this can be done is displayed in Figure 6. Note that the
removal of the cuts now would only remove duplicate solutions to the correct
one, since there are more than one way to get to the one solution: if none of
X and Y in a(X,Y,W) is a base node, two rules can succeed, thus giving rise to
two success branches. The result is the same, since the two rules look the same
apart from the test. Although success branches are cut away if the cuts are
placed as in this code, the cuts here are green cuts: only duplicate solutions are
being removed.

To make the procedure independent of rule order and to minimize the num-
ber of cuts needed, four rules are required (apart from the base fact). All rules
need two tests in their bodies, placed before the recursive call on the tail of the
list. If A means “A is a base node”’, and Ax means “A is not a base node”, the

33

6 COLLAPSING A GRAPH

6.2 split/6

I T T I I T T e o To e T o o to Tt o T o o T o o T o o T o o Vo o o o o o T o o oo
%% decide_arcs2(+StraightArcs,

%h +BaseNodes, -Arcs) <--

N

%% A second version, this time independent of
%% rule order.

Tl o oo oo 1o 1o 1o 1o 1o oo ToToToTo o T o o o oo oo oo T T T T o oo oo oo

decide_arcs2(S,B,Arcs) :-
decide_arcs2(S,B, [],Arcs).

decide_arcs2([],_,Arcs,Arcs). % Base case

decide_arcs2([a(X,Y,W) |As],B,Acc,Arcs) :-

not (member (X,B)),

]
L)

decide_arcs2(As,B, [a(X,Y,W) |Acc],Arcs).

decide_arcs2([a(X,Y,W) |As],B,Acc,Arcs) :-

not (member(Y,B)),

!,

decide_arcs2(As,B,[a(X,Y,W) |Acc],Arcs).
decide_arcs2([a(X,Y,W) |As],B,Acc,Arcs) :-

member (X,B),

member (Y,B),

1

decide_arcs2(As,B,
[a(X,Y,W))
a(t(X),t(Y),W) |Acc],

Arcs).

Figure 6: A second version of decide_arcs2/3, this time independent of rule

order

34

6 COLLAPSING A GRAPH 6.3 The collapsed graph

four different rules should test AN B, AN Bx, AxNB and A xNBx respectively.
This time, there will be only one success node.

One inefficient way to implement the (almost) cut-free and rule order inde-
pendent version mentioned in the previous paragraph, is to check ANB, AN Bx,
AxNB and A * NBx in the same manner as in the code in Figure 6. If A and
Ax are decided afresh in every version of the rule, the result is a great many
unnecessary, costly calls. member/2 would be run from two times up to eight
times per arc instead of between one and two times per arc, as is the case in the
implementation I have decided to use (Figure 5).

Figure 7, on the other hand, shows an efficient way to solve this problem.
This version is independent of rule order and involves only one cut. The cut is
this time used by a helper procedure, is_member/3 (Figure 8), and it is green.

The number of calls to member/2 is minimized with the aid of is_member/3.
The purpose of this helper procedure is obvious. It checks whether a certain
element is a member of a certain list or not, and returns the result (’yes’ or 'no’)
to the calling procedure — here decide_arcs2/4. The result is then passed on as
a separate parameter to decide_arcs2/6. Each time the member property has
to be checked in a rule, the rule simply consults the boolean instead of calling
member/2. In this way, member/2 is called exactly two times per arc instead of
between two and eight times, as would be the case if member/2 were run afresh
every time the property needed to be checked.

6.3 The collapsed graph

In the beginning of Section 6, I defined the collapsed graph to be a strongly
connected digraph in which the existence of an zy-path in the condition graph
that includes exactly one bowed arc is represented by an arc a;,. The weight
w of that arc is the maximum weight of all paths from z to y in the condition
graph that includes exactly one bowed arc.

Consider what we are really after, and the collapsed graph is almost self-
explanatory. If the condition graph is viewed as a discrete event system subject
to the second max-causality rule defined in Section 4.2.4, every arc is associated
not only with a weight w, but also with a value 7 that is either 0 (for straight
arcs) or 1 (for bowed arcs). The cycle time of the system is, using Ekman and
Kreuger’s terminology, the maximum cycle mean of the condition graph, where
the mean of a cycle in a condition graph in this context is calculated as the sum
of the arc weights along the cycle, divided by the number of bowed arcs in the
cycle?!,

The goal of collapsing the condition graph is to get a graph that is equivalent
to the condition graph with respect to the cycle time, but simpler in structure
since its 7-values are all equal to 1.

21 As T have pointed out, Ekman and Kreuger’s definition of the maximum cycle mean in
a condition graph coincides with what others call maximum profit to time ratio. See Section
4.2.4 for a formal definition of this term, and Section 4.3 for an explanation to the confusion
of terms.

35

6 COLLAPSING A GRAPH 6.3 The collapsed graph

T Tt T Tt ot o To ot to oo o To o to T oo T o o T o To o o oo o o o o T o oo oo
%% decide_arcs2(+StraightArcs,

W +BaseNodes,-Arcs) <--

W

%% A third version, this time both independent
%% of rule order and efficient.

Tl b bl b b o o o o o 1o 1o o T T T T T oo oo oo o oo T o oo oo oo

decide_arcs2(S,B,Arcs) :-
decide_arcs2(S,B,[],Arcs).

decide_arcs2([],_,Arcs,Arcs). Y% Base case
decide_arcs2(S,B,Acc,Arcs) :-
S=[a(X,Y,_)I_1,
is_member (X,B,Xb), % Decide whether
% X is a base
% node or not
is_member (Y,B,Yb), % Is Y a base
% node?
decide_arcs2(S,B,Xb,Yb,Acc,Arcs) .

decide_arcs2([a(X,Y,W) |As],B,
Xb,Yb,Acc,Arcs) :-
Xb==yes, % Both X and Y
Yb==yes, % are base nodes
decide_arcs2(As,B,
[aX,Y,W) ,a(t(X),t(Y),W) |Acc],
Arcs) .

%% In case one of the nodes X and Y,
%% or both, are not base nodes, the

%% straight arc in the condition graph
%% simply gives rise to an arc in the
%% split graph that is identical to

%% itself

decide_arcs2([a(X,Y,W) |As],B,Xb,Yb,Acc,Arcs) :-
Xb==yes, % Only X is a
Yb==no, % base node
decide_arcs2(As,B,[a(X,Y,W) |Acc],Arcs).

decide_arcs2([a(X,Y,W) |As],B,Xb,Yb,Acc,Arcs) :-

Xb==no, % None of X and
Yb==no, % Y is a base
% node

decide_arcs2(As,B,[a(X,Y,W) |Acc],Arcs).
decide_arcs2([a(X,Y,W) |As],B,Xb,Yb,Acc,Arcs) :-
Xb==no, % Only Y is a
Yb==yes, % base node
decide_arch(As,B,[a(X,@@W)IAcc],Arcs).

Figure 7: A third version of decide_arcs2/3, this time efficiently implemented
with a helper procedure is_member/3

6 COLLAPSING A GRAPH 6.3 The collapsed graph

Tl e o o 1o 1o 1o o 1o oo ToToTo o T o oo oo oo oo T T T o T o oo oo o

%% is_member (+Element,+List,-Boolean) <--

hh

hh Boolean is set to ’yes’ if
W Element is a member of the
%h list List, and to ’no’ if it
W is not.

Tl b b o o o o oo 1o o ToTo T T T o oo oo o o o o T o o T o oo oo o

is_member (X,B,Boolean) :-

member (X,B),

1

Boolean = yes.
is_member(_,_,Boolean) :-

Boolean = no.

Figure 8: The code for is_member/2

6.3.1 A naive graph-collapsing algorithm

A naive way of collapsing a graph, would be to:

1. Find all distinct subpaths and cycles in the condition graph that contain
exactly one bowed arc

2. Find the weights of the subpaths (and cycles) found in step 1

3. For every ordered pair of nodes x and y (x,y) in the condition graph,
where x = y is allowed, for which there exists at least one subpath from
z to y found in step 1, make note of the weight of the heaviest one from
z to y (found in step 2)

4. Create a new, collapsed, graph with the same node set as that of the
condition graph, and with an arc from z to y with weight w if and only if
there exists a subpath from z to y from step 1. The weight w is that of
the heaviest subpath from z to y that has been noted in step 3

The first crux is: how do we find all distinct subpaths involving exactly one
bowed arc in an efficient way?

The second question at issue is that it is obvious that there will be redundant
arcs if the approach above is used. In step 4, all cycles involving only one
bowed arc will invariably give rise to one arc (a loop) per node in the cycle.
Some of these — all but one if the cycle in question is a critical cycle — will
clearly be redundant. Consider for example a traffic pattern involving only
two movements, a and b, for which (a,n) < (b,n) holds?2. Its condition graph

22Recall that (a,n) < (b,n) means that movement a of cycle n has higher precedence than
movement b of cycle n (see Section 1.3.2).

37

6 COLLAPSING A GRAPH 6.3 The collapsed graph

consists of nodes a and b, the straight arc a,p with weight w; and the bowed
arc ap, with weight wy. It is easy to see that one of the arcs created in step 4
is redundant. Two loops, aq, and app, spring out of the same cycle, and their
weights are of course identical, that is, w; = ws.

6.3.2 Improving the graph-collapsing algorithm

One single, important observation modifies step 1 and makes it less time-
consuming to perform. First I have to say that from this point on, I will use
the term base nodes also to refer to nodes in the condition graph that are hit
by bowed arcs, not just to the nodes in the split graph that correspond to the
nodes that are hit by bowed arcs in the condition graph.

The observation made, is that every cycle must include at least one bowed
arc. The consequence of this is that every cycle also must include at least one
base node: the one (or ones) hit by that bowed arc (or those bowed arcs).
It is thus possible to have base nodes as points of departure for the subpaths
identified in a modified version of step 1 in Section 6.3.1 above.

Note that a cycle can include a greater number of base nodes than bowed
arcs. The opposite is however not possible. In the following, when I reason
about a specific cycle and talk about base nodes, I am only interested in the
base nodes that are hit by bowed arcs that are included in the cycle in question.
Let B(C) denote the base nodes of cycle C that are hit by the bowed arcs that
are included in C to avoid confusion?3.

The only thing we really require from the collapsed condition graph is the
following: we need to be certain that the critical cycle (see Section 1.3.4) with
mean m in the condition graph G.., will be represented by a critical cycle in
the collapsed condition graph G, with the same mean m.

Let C.i be a critical cycle in G.o,,. Then there are two possible cases. The
first possibility is that C¢.;; includes exactly one base node b € B(C). The other
possibility is that C.r;; includes two or more base nodes, b1, ... ,b, € B(C), n =
2,3,....

Case 1 (.4 includes exactly one base node b € B(C). Compute the mean
of this cycle meri; by accumulating the arc weights along the cycle?* | starting
with the weight of the arc that leaves b. Represent the base node b in G,, with
anode v in G- The cycle C,.;; in the condition graph G, is then represented
by a loop from the node v in G.,;. The weight of the arc (the loop) is of course
Merit-

23Do not confuse this designation with b(c), that Ekman and Kreuger use to denote the
number of bowed arcs in a cycle ¢. The number of bowed arcs in a cycle, b(c), and the number
of base nodes, |B(C)|, in a cycle C is of course the same if ¢ = C, so these properties are
however related.

24The mean meyi; of the cycle is actually the result of adding all arc weights of the arcs
along the cycle and then dividing the result with one, the number of bowed arcs in the cycle.

38

6 COLLAPSING A GRAPH 6.3 The collapsed graph

Case 2 (.t includes two or more base nodes, by,...,b, € B(C),n =
2,3,.... by can be arbitrarily chosen among the base nodes B(C) in the cycle.
The base nodes are named in order of appearance so that by is first’, by 'next’,
etc. Compute the weights of the paths from b; to b;+1, 1 = 1,2,...,n, as well
as the weight of the path from b,, to b;. The weights of the paths are equal to
the respective sums of the weights of the included arcs in the paths. Moreover,
these paths include exactly one bowed arc each. Let the base nodes b, ...,b, in
Gon be represented by nodes vy, ..., v, in Gey, and let every path mentioned
above be represented by an arc in G, according to the following principle: a
path from b; to b; in G,y with weight w corresponds to an arc in Gy from v;
to v; with weight w.

It is now clear that it is sufficient to find all paths between base nodes that
include exactly one bowed arc. This is true because no specific assumptions
about the critical cycle or the base node (or base nodes) have been made in
the reasoning above. If every path between two base nodes results in an arc in
the collapsed condition graph (between the nodes that correspond to the base
nodes in the condition graph), at least one of the cycles in the collapsed graph
will be a critical cycle. The critical cycle (or cycles) in the collapsed graph will
have the same weight as the critical cycle (or cycles) in the condition graph.

The new wording of step 1 in the naive algorithm in the beginning of Section
6.3.1 becomes:

e Find all distinct paths in the split graph that start with a base node and
end with a top node.

If there are more than one critical cycle in the condition graph, they all have
the same weight (per definition). At least one of them will have a direct cor-
respondence in the form of a critical cycle in the collapsed graph. And this is
exactly what we need: no more, no less.

The purpose of the split graph is now obvious: the heaviest path between
any pair of base nodes in the condition graph that includes exactly one bowed
arc is represented by the heaviest path between the corresponding base node-top
node pair in the split graph.

The split graph is acyclic. The bowed arcs are in the split graph represented
by arcs to top nodes. Every top node corresponds to exactly one base node. A
path from any base node to any top node in the split graph corresponds to a
path in the condition graph that includes exactly one bowed arc. The starting
node in the condition graph is the base node, and the ending node is the base
node that the top node corresponds to.

Not only step 1 can be simplified. It is possible to combine steps 2 and 3
in the algorithm above. A couple of definitions are needed for the following
reasoning.

Definition The height of a node v, denoted height(v), in an acyclic graph
G is the length of the longest path P in G that ends with v.

39

6 COLLAPSING A GRAPH 6.4 collapse/7

Let wgy denote the weight of the arc from x to y.

Definition The maximum weight of a path P in the split graph S(G.on)
from node z to node y is denoted wpqtn (2, y) and is defined recursively in the
following way.

® Wpoep(z,y) is 0 if z = y. This is the base case.

e If x # y, for every arc a,, that hits y where z is reachable from x, compute
the sum wpaeh (T, 2) + Way. Wpan(2,y) is the maximum of these sums.

All paths from z to y in S(G.on) are finite in length since the split graph
is acyclic. wpaen(z,y) is thus well-defined as long as y is reachable from z.
Otherwise wpqen (z,y) is undefined.

If wpaen(x,y) is decided for every node y that is reachable from z in the
split graph in height order, the required wpqtp (2, y)-values are always explicitly
known when they are needed.

To find all the required paths and their weights, all wpn (2, y)-values for
every base node z in the split graph are needed.

Reformulation of step 2 and 3 gives

e For every base node z in the split graph, find wpe(z,y) for every top
node y.

The last step is now to create a collapsed graph, using the information gathered
in the improved steps 1 and 2, together with the original input (the condition
graph itself).

The wording now reads

o Let the base nodes of the condition graph/split graph form the node set
of the collapsed graph. Let every wpqn (2, y)-value computed in step 2,
where z is a base node and y is a top node, result in an arc from z to the
base node that y corresponds to, with weight corresponding to wpain(z,y).

6.4 collapse/7

To keep track of the wpqsn (x, y)-values, Iintroduce a new structure in collapse/7
(the code for collapse/7 can be found in Figure 9). Conceptually it can be
viewed as a matrix, called W[i, j], in which every base node corresponds to a
row, and every node (including the base nodes) corresponds to a column. The
Wpath (T, y)-values can be found in the matrix by translating node names to rows
and columns: the maximum weight of the path from base node a to the simple
node®® b, wyaen(a,b), can be found in the row that corresponds to a and the
column that corresponds to b.

25 A simple node is any node in the split graph that is not a base node or a top node, see
Section 6.1.

40

6 COLLAPSING A GRAPH 6.4 collapse/7

Tt ot o Toto o o To o o T To o o To T o o o T o o T T o o o o o o o o o o oo o o o o o
%% collapse(+Nodes,+Arcs,+BaseNodes,

hh +TopNodes,+BaseTopRelations,

%h -Nodes,-ArcsColl) <--

hh

%% Output from split/6 is suitably used as

%% input to collapse/7. Nodes and ArcsColl are
%% the lists of nodes and arcs that specify the
%% collapsed graph. (BaseNodes and Nodes are

%% actually identical lists.)

Dot toto o Toto o o To o o To To o o To T o o o T o o T T o o o T o o o o o o o o T o o o T

collapse(V,A,B,T,BT,B,ArcsColl) :-

init_wp_info(B,WpPrel),
list_heights(V,A,Heights),
process_base_nodes(B,V,A,

T,BT,

WpPrel,

WpInfo),
find_arcs(B,T,BT,WpInfo,ArcsColl).

Figure 9: The code for collapse/7

All entries in the matrix are not necessarily needed. It is hard to say whether
the matrix generally will be sparse or dense, but my guess is that it is a bit more
likely to be sparse — at least for large condition graphs. My implementation of
the wpaen (@, y)-structure is basically an adjacency-list representation, although
I use SICStus’ association lists instead of linked lists26.

The structure is called wp_info/2 in my program, where argl, MapNtoE, is
an association list that maps node names to element positions in arg2, an array
that I call Array0fAL. Array0fAL stores an association list corresponding to a
base node Node at every valid position: one position for every base node in the
split graph. Every path from Node to any other node in the split graph gives
rise to a key-value pair, where the key Key is a node name and the value Value
is the maximum weight of all paths from Node to Key in the split graph, that
is, the wpqtn (Node, Key)-value.

I have chosen to ’initialize’ wp_info/2 at the start of collapse/7 with the
procedure init_wp_info/2. Declarations of structures are not at all required
in Prolog, and this ’initialization’ is only a help for me, the programmer, since
the structure is more easy to use once it is prepared in the way init_d_info/2
prepares it.

list_heights/3 returns a list of node-height pairs, corresponding to nodes
and their respective heights in the split graph. It is sorted according to the

26See Section 6.2.2 for an account of what association lists are.

41

6 COLLAPSING A GRAPH 6.4 collapse/7

height-values in the node-height pairs, with the smallest height first. This list is
needed for the recursive computation of the wpatn (, y)-values, where the nodes
reachable from x need to be processed in height order.

process_base_nodes/8 takes care of one base node at a time, filling in all
the values in that base node’s particular row of the Wi, j]-matrix before moving
on to the next base node.

Finally, find_arcs/5 sifts out the relevant entries in Wi, j], that is, the
values in the columns that correspond to top nodes. The wpeen (2, y)-value for
a top node y reachable from a particular base node x gives rise to an arc in
the collapsed graph, with weight wpqn (2, y), from the base nodes z to the base
node that the top node y corresponds to.

6.4.1 process_base_nodes/8

A few words can be said about the clause in collapse/7 that ’administrates’
the filling of the Wi, j]-matrix: process_base_nodes/8.

process_base_nodes/8 calls max_weight_paths/4 on every base node in
the split graph, one at a time.

max_weight_paths/4 does the following with a base node b:

e Sets Wb, b] to 0, since the wpqen (x,y)-value is zero if = y. b is now the
source node, s, for this call to max_weight_paths/4.

e Identifies what nodes there are paths to from the source node s in the
split graph, and in what order their wpqp (2, y)-values should be computed
(with z = s), that is, determines the heights of the nodes reachable from
s.

e Calls find_paths/5

find_paths/5 does the following to each node v that there is a path to from
the source node s of the current call to max_weight_paths/4:

e Identifies all immediate predecessors of v that are reachable from s, that
is, every node who is the start node of an arc that ends in v and to which
there at the same time exists a path from s.

e Calls process_predecessors/6

process_predecessors/6 does the following with every immediate predeces-
sor pre of node v of find_paths/5:

o If pre is the first immediate predecessor of v to be treated by
process_predecessors/6, W/[s,v] has not yet got even a preliminary
value. W{s,v] is thus simply set to W[s, pre] + wyre,, for the time being,
where Wy, is the weight of the arc from pre to v.

42

6 COLLAPSING A GRAPH 6.4 collapse/7

e If W{s,v] has a preliminary value, meaning that another immediate prede-
cessor of v has already been treated, the sum W s, pre]+wpre,» is computed
and compared with the preliminary value in W{s,v]. If the sum is greater
than the preliminary value, W{s,v] is updated with it. Otherwise the old
value in W s, v] is kept.

process_predecessors/6 is done when all immediate predecessors to v that
are reachable from s have been processed, or treated, in the above-mentioned
way. The value in W s, v] is then the final wpaep (z,y)-value for z = s and y = v.

process_predecessors/6 then returns the updated wp_info/2-structure
to find_paths/5: one element in the W[i,j]-matrix has been determined.
find_paths/5 calls itself on the rest of the nodes in the list of nodes that
should be treated, to determine yet another element in the Wi, j]-matrix with
i=s.

When all wyqp (2, y)-values for z = s have been determined by find_paths/5
(and its ’helper’, process_predecessors/6), the updated wp_info/2-structure
is returned by find_paths/5 to max_weight_paths/5. When this occurs, the
row corresponding to the source node s in the Wi, j]-matrix contains the final
values. max_weight_paths/5 returns this to process_base_nodes/8.

process_base_nodes/8 calls itself on the rest of the list of base nodes, to
determine the values in the row corresponding to another base node in the split
graph, until all rows have been filled with their final values. Then find_arcs/5
is called. find_arcs/5 uses the relevant wpeep (,y)-values in the wp_info/2-
structure to create the arcs of the collapsed graph (see page 42).

43

7 CYCLE TIME COMPUTATION

7 Cycle time computation

Computing the maximum cycle mean of the collapsed graph is the only thing
left to do to find the cycle time of the traffic pattern, that is, the inverse of the
capacity as the term is defined by Ekman and Kreuger (see Section 1.3.1): the
maximum cycle mean of the collapsed graph is the cycle time of the condition
graph (see Sections 4.2.3 and 4.3).

There are, as I mention in the beginning of Section 4.4, many algorithms
that compute the maximum cycle mean of a strongly connected digraph. I
have chosen to use a variant of Karp’s algorithm that is suggested by Dasdan
and Gupta as basis for my implementation [7]. Karp’s Algorithm is one of the
most commonly used algorithms for the maximum (and minimum) mean cycle
problem, and also one of the fastest. The main reason for my choice of Dasdan
and Gupta’s algorithm is their use of a technique they call unfolding (see Section
7.1). It improves the running time of Karp’s Algorithm, and the result is a very
efficient algorithm for this problem.

The algorithm that computes the maximum cycle mean of G, resembles
collapse/7 (Section 6.4) up to a certain point. Once again, certain entries in
a matrix need to be determined. The values of these entries have similar origin
to those of the Wi, j]-matrix in the algorithm that collapses the split graph,
except that they say what the maximum weight of a walk of a certain length
from a certain node to another node is. Another difference is that the origin of
all such walks in this algorithm is the same node, the source node s, so the rows
and columns of the matrix now correspond to the lengths of the walks and the
nodes of the graph respectively. The source node s can be chosen arbitrarily,
but if it is selected with care, further running time can be saved (see Section
7.2.4).

This time, the data collected in the matrix (at least it is conceptually col-
lected in the matrix) is of course not used to create arcs in a collapsed graph
— it is used to find the maximum cycle mean via Karp’s Theorem. A proof of
Karp’s Theorem is given in Section 4.4.2.

The values needed for Karp’s Theorem are the Dy (v)-values mentioned in
Section 4.4.1, where Dy (v) represents the maximum weight of a walk of length
k from s to v. Let D[k, v] denote the matrix that holds these values. Let G be a
digraph — for example a collapsed condition graph — and let V' denote the node
set of G, and n the number of nodes in G. Then Karp’s Theorem says that

A(G) = max min Da(v) = Di(v) ,
vEV 0<k<n—1 n—=k
where A (G) is the maximum cycle mean of G.

Dy, (v) is computed recursively in a way similar to wpeen (2,y) (see page 40).
Dy, (v) can be determined if the Dy_q(vp)-values for all predecessors v, of v,
reachable from s, are determined. Generally, not all entries in the D[k, v]-matrix
need to be determined in order to find A (G). To be able to know exactly what
entries that are actually needed for the computation, the principle of unfolding
(se Section 7.1) can be used.

44

7 CYCLE TIME COMPUTATION 7.1 Unfolding

7.1 Unfolding

The original version of Karp’s algorithm considers every entry in D[k, v], regard-
less of whether there is a walk from s of length k to v or not. The sparser the
graph, the more unnecessary work the algorithm performs. Unfolding, the tech-
nique explained below, ensures that only relevant entries in D demand action
by the algorithm?7.

First a few words about notation: if there exists an arc from node z to node
Y, ¥ is a successor of z. Let G denote a cyclic, weighted digraph with node set
V and arc set A. Let any node v € V be the source node, s, in the following
reasoning. Let) denote a queue that initially is empty. Let D be a [n,n]-
matrix, whose entries are all initialized to —oo, where n is the number of nodes
in G.

Put the level-node pair < 0,s > in the queue @), meaning that the source is
at level 0. The level k£ of a node is the same thing as the number of arcs away
from s the node is when the current walk is considered. Set D[s,0] to 0 in D,
meaning that Dg(s) = 0: the weight of the heaviest walk from s to s of length
0is 0.

Dequeue @ and let < k,v > denote the dequeued pair (when @ is dequeued
for the first time, v = s and k = 0). Do the following to every successor vs of v
if k < n, which is referred to as unfolding the graph G.

o If D[vs,k + 1] = —o0, then no walk from s to vs of length k + 1 has
previously been discovered. Set D[vs, k+1] to D[v, k] +wy,v, , where w, ,,
is the weight of the arc from v to v’s successor vs. Enqueue < k+1,vs >.

e Else, if D[vs, k + 1] has a value due to a previously discovered walk from
s to vs of length k + 1, call this value a and compute Dv, k] + wy o, -
If this sum is greater than a, update D[vs,k + 1] with a and enqueue
< k+ 1,vs >. Otherwise, let a stay as the value of D[vs, k + 1].

When all successors vs of v have been treated, dequeue @) and let the new
< k,v >-pair be the basis for the treatment described above, that is, treat all
successors of the newly dequeued v in the above-mentioned way.

Break when the first< k,v >-pair with £ = n is dequeued, since at this point,
D holds all the valid Dg(v)-values in G for k = 0,1,...,n. It is quite easy to be
convinced that unfolding correctly computes the Dy (v)-values for each v € V
and k =0,1,...,n. The following is an outline of a proof by induction.

All nodes at a certain level k are treated before any node at level k + 1 (or
any other level k + m where m > 1) is treated. Every level k is thus ezhausted
before the next level, k+1, is considered. To determine a value Dy (v), Dy—1(v;)
for all immediate predecessors v; of v that there are walks to from s must have
been determined: D[v;, k — 1], where all v; are reachable (see Section 4.1) from
s and v; are immediate predecessors of v, must hold the final Dj,_1(v;)-values
before Dy, (v) can be computed. How do we know that they do that?

2TThis is true except for the fact that every entry in the matrix is initialized to —oo.

45

7 CYCLE TIME COMPUTATION 7.2 DG1

There can be only one node at level 0, that is, the source node s. Dy(s) is of
course 0. For all nodes at level k = 1, we thus know that all relevant D[v, k —1]-
entries are final, since Dy(s) is 0 and final. A relevant D[v, k — 1]-entry in this
context is an entry corresponding to a node that is reachable from s, and a level
that is one less compared with the level we are currently looking at. For a node
v to be at level k, v has to be a successor of a node at level k — 128,

Let Vi denote the node set of all nodes at level k in a graph G. All nodes
v € V] are thus successors of s. Their D, (v)-values are equal to the arc weights
of the arcs going from s to the respective node??, since the first term in the
sum D[s,0] + ws,y, is 0. All D, (v)-values are obviously final. Level 1 is in this
way exhausted before level 2 is considered. All nodes v € V, are successors
of nodes at level 1 whose Dy (v)-values are final. Dy(v) for a specific v € Va
is max {D1(vp) + wy,,v | vp € Vi &ay,, € A}, where A is the set of arcs of the
graph G.

Generally,

Dy (v) = max {Dj_1(vp) + Wo, v | vp € Vik—1 & ay,s € A} .

Dy, (v) can always be determined if the Dy_1(vp)-values have already been
determined for all predecessors v, of v that are reachable from s. The base case
of the induction is that Dg(v) is 0, and that only s is at level 0.

7.2 DG1

Dasdan and Gupta call the algorithm that I have chosen to use for the maximum
cycle mean computation DG1%°. Pseude-code for the relevant parts of DG1 is
given in Figure 10, extracted from their article [7].

7.2.1 dgl/3

dg1/3 is the overall rule that manages the computation of the maximum cycle
mean of a collapsed graph in my implementation. argl of dg1/3 is the node set
V of the graph, arg2 the arc set A. arg3 is the output argument, that is, the
maximum cycle mean of the graph defined by V and A. dg1/3 is suitably called
with V and A equal to the output arguments, arg6 and arg?, of collapse/7.
dg1/3 calls dg1/4, where the extra argument is n, the number of nodes V'
in the graph G = (V, A). n provides the condition of when to break and apply

28 A node v can of course be at many levels at the same time, since there can be walks of
different lengths from s to v. Nevertheless, it is always true that v has to be a successor of a
node at level £ — 1 to be at level k.

29Multiple arcs between the same two nodes, in the same direction, are not allowed.

30T suppose that D stands for Dasdan, and G for Gupta. They also propose a second variant,
DG2, that they claim to be faster than DG1 in practice. They say that the approach in DG2
can be better optimized by a compiler. DG1 is however faster in theory (according to them),
without taking compiler optimization into consideration. I chose to implement DG1 since it
is easier to see what it does and since it is not obvious that the compiler optimization applies
to my Prolog code anyway: optimizing the code has not been given highest priority in my
implementation (see Section 3.1).

46

7 CYCLE TIME COMPUTATION 7.2 DG1

/* Head */

for each node v € V do
LastLevel[v] « -1

s < FindSource(G)

D[0,s] « O

Valid[0,s] « -1

LastLevel[s] < 0

Enqueue(Q,<0,s>)

/* Body */
<k,v> ¢« Dequeue(Q)
do
for each successor node u € AdjOut[v] do
if (LastLevell[u] < k+1) then
Enqueue(Q,<k+1,u>)
Valid[k+1,u] < LastLevel[u]
LastLevel[u] « k+1
D[k+1,u] + —o©
if (D[k+1,u] < D[k,v]+w(v,u)) then
D[k+1,u] « D[k,v]+w(v,u) /* max */
<k,v> < Dequeue(QR)
while (k < n)

/* Tail */
A+~ —©
for each node v € V do
if (LastLevel[v] = n) then
M[v] < +4oo /* the identity for min */
k « Valid[n,k]
while (k > -1) do
if(M[v]>(D[n,v]-D[k,v])/(n-k)) then
M[v] « (D[n,v]-D[k,v])/(n-k) /*minx/
k « Valid[k,v]
if (A < M[v]) then
A« M[v] /* max */
return A\

Figure 10: Pseudo-code for DG1

47

7 CYCLE TIME COMPUTATION 7.2 DG1

T ot to o to Tt To o to ot T T To Todo To o To Tt T o Voo Do T Voo Yoo Fo o Do Yo B Yoo Yoo Yoo
%% dgl(+Nodes,+Arcs,+N, -MeanCycle) <--
%h

%h N is the number of nodes in the list
W Nodes, and is used to signal to

%h process_graph/12 when to stop and

W return a result. dgl/4 does a few

YA initializations, creates a queue and
W then passes on to process_graph/12 and
YAA compute_mean/6 to do the rest of the
hh work.

T o b o oo ot o Toto Toto Toth Toto o Toto To s To s oo o To o Fo o o o o o o Fo o Fo 2o o
dg1(V,A,N,Meancycle) <-
select_source(V,S), % S can be any
% node in the
% node set V

%% initializations %%

create_queue(Q),

process_graph(S,0,V,A,N,Q,
LLPrel,DPrel,ValidPrel,
LL,D,Valid),

compute_mean(V,N,LL,D,Valid,Meancycle).

Figure 11: Prolog-like pseudo-code for dg1/4

Karp’s Theorem to the Dy (v)-values collected. dg1/4 first initializes the struc-
tures that are needed to keep track of all that must be documented in order to get
hold of the Dy, (v)-values and compute the maximum cycle mean efficiently. Once
again: declarations are not at all required in Prolog. Initializations are however
helpful, and T choose to initialize these structures although there are other ways
to achieve the same functionality®'. dgl1/4 then calls process_graph/12 to
compute all relevant Dy (v)-values, and finally compute_mean/6 that basically
applies Karp’s Theorem on the result of process_graph/12.

Figure 11 shows the basic design of dg1/4, in a Prolog-like pseudo-code. The
row denoted “initializations” refers to the initializations of several structures
that play important roles in process_graph/12 (see below).

A few words can be said about the structures that are introduced by Dasdan
and Gupta in DGI.

311nstead of initializing every entry in (a structure simulating) a matrix to the atom nil to
indicate the lack of a valid value in that particular position — an atom that could be called
null, or mumbojumbo for that matter, since nil/null is not defined in Prolog — there are other
ways of finding out that a certain entry has not yet received a valid value that I could have
chosen, but that I did not choose.

48

7 CYCLE TIME COMPUTATION 7.2 DG1

Q A queue with elements made up of level-node pairs. The queue is denoted
Q in my implementation.

LastLevel A structure holding key-value pairs, with the keys being node
names (of nodes in V) and the values the last level at which the node corre-
sponding to the key has so far been processed, or treated. Every node at a
particular level k is treated at that level before any node is treated at level
k + 1. This structure is denoted LL in my implementation.

D This structure can be viewed as a matrix D[k, v], keeping track of triplets,
each consisting of a level k, a node v and a value, or weight, w, where w =
D[k,v]. The semantic reading is that “node v has weight w at level k”. The
level represents how many arcs this particular walk from the source node (see
dg1/4) to the node v consists of. The weight is the maximum weight of all walks
of length k from the source node to v so far discovered, if there are more than
one. D in my implementation is the same as D[k, v].

Valid A structure similar to D in its construction, but holding triplets con-
sisting of a level k, a node v, and a value val with quite a different meaning
from D[k, v] above. wval, that is, Valid[k,v], is a value that states whether the
node v at level k is ’valid’ or not. Once Valid[k,v] is set, it means that the
node v actually has a value in D at level k. The actual value val, Valid[k,v],
is the previous level at which node v has a value in D. Valid[k,v] is set equal
to —1 if k is the first level for which D[k,v] has a value®*’. Using Valid, we
can easily find all valid entries in D. This structure is denoted Valid in my
implementation.

7.2.2 process_graph/12

The procedure that actually unfolds the graph (see Section 7.1) is
process_graph/12. The code — this time real code, not pseudo-code — is given
in Figure 12. Here follows a thorough explanation of it.

Input to process_graph/12 is, among other things, a node Node and a
level K, corresponding to a newly dequeued < k,v >-pair from the queue Q.
process_graph/12 does the work that is called “the body” in DG1 (see Figure
10).

process_graph/12 first calls 1list_successors/4 on v to get a list of all
successors of Node in the graph, and is the equivalent of AdjOut[v] in DGI.
The list of successors of Node is passed to do_successors/12, that treats every
successor, updates relevant structures and enqueues new < k,v >-pairs in the
manner previously described in the context of the unfolding of a graph (see
Section 7.1). do_successors/12 thus basically does the work of the for-loop in
the body of DG1.

32 Any value, or atom, that is not a possible level number could of course be used.

49

7 CYCLE TIME COMPUTATION 7.2

DG1

Tl oo oo o oo 1o 1o 16 1o 1o 1o oo ToToTo o T o o oo o oo oo T To o T o oo o oo o o

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

process_graph(+Node,+K,+V,+A,+N, +Queue,
+LLPrel,+DPrel,+ValidPrel,
-LastLevel,-D,-Valid) <--

LLPrel, DPrel and ValidPrel are the
structures updated with the latest
information, due to the <k,u>-pair latest
dequeued from Queue. (The meaning of K is
made clear from the description of the
structure D above). N is simply the number
of levels to exhaust (see above) before we
can be sure that LLPrel, DPrel and ValidPrel
reflect the contents of the whole graph. In
the base case, these three arguments (arg
7-9) unify with the output arguments,
LastLevel, D and Valid (arguments 10-12).

Tl oo oo o oo 1o 1o 1o 1o 1o 1o o ToToToTo o T o o o oo oo oo T o T o oo oo o oo

process_graph(_,N,_,_,N,_, % The base case

LL,D,Valid,
LL,D,Valid).

process_graph(Node,K,V,A,N,Q,

LLPrel,DPrel,ValidPrel,
LL,D,Valid) :-
list_successors(Node,V,A,Successors),
do_successors(Successors,Node,A,K,
Q,LLPrel,DPrel,ValidPrel,
QTemp,LLUpd,DUpd,ValidUpd) ,
dequeue (i (KNew,NodeNew) ,(Temp, QNew) ,
process_graph(NodeNew,KNew,V,A,N,QNew,
LLUpd,DUpd,ValidUpd,
LL,D,Valid).

Figure 12: The code for process_graph/12

50

7 CYCLE TIME COMPUTATION 7.2 DG1

When the preliminary D-, LL- and Valid-structures have been updated due to
the successors of Node, a new < k,v >-pair is dequeued, and process_graph/12
is called on the new Node and K.

process_graph/12is a recursive procedure (with accumulating parameters)
that treats one < k,v >-pair per call. V is the node set and A the arc set of
the graph. LLPrel, DPrel and ValidPrel are preliminary versions of the final
structures LL, D and Valid, updated with the information gained by processing
the last dequeued < k,v >-pair from Queue. The base case is reached when
N levels have been exhausted, where N is the number of nodes in the graph.
At that point, LLPrel, DPrel and ValidPrel reflect the contents of the whole
graph, and their values are passed on to the output arguments LL, D and Valid.

7.2.3 compute_mean/6

The only thing compute_mean/6 does, is pass on its input arguments to a call
to compute_mean/8. Of the input arguments to compute_mean/8, M and Lambda
are the extra arguments compared with the input arguments of compute_mean/6,
and they are also the only ones that have not already been used earlier in the
algorithm. M is an association list used to keep track of node-value pairs; M (v)
is the outcome of the minimization operation of Karp’s Theorem applied to v.

M (v) = min —D"(U) — Di(v) .
0<k<n—1 n—=k

Lambda simply holds the maximum M (v)-value discovered so far. When all
nodes in the graph have been processed by compute_mean/8, Lambda (arg7) is
equal to the maximum cycle mean and is in the base case made to unify with
the output argument (arg8). This corresponds to the maximization operation
in Karp’s Theorem (see Section 4.4.1).

The code for compute_mean/8 is shown in Figure 13. compute_mean/8 takes
care of one node at a time, and does the work of “the tail” in DG1 (see pseude-
code in Figure 10). The first version involves a test that checks whether the
last level at which the current node was processed in process_graph/12 was
equal to N, the number of nodes in the graph, or not. If this test succeeds, the
minimization operation of Karp’s Theorem is applied to that node. Otherwise,
the call to compute_mean/8 succeeds only in the second version (the cut in the
first version prevents the second version from being tried on backtracking on calls
for which the first version succeeds), whose task is to only call compute_mean/8
on the rest of the nodes of the graph.

Why does not M (v) need to be computed if there is no walk from the source
node to v of length n, where n is the number of nodes in the graph?

The reason can be found in the formulation of Karp’s Theorem. If D, (v) is
—oo for a particular v, M (v) is automatically —oo for that v. To see this, note
that the computation of M (v) involves a minimization operation. Nothing can
be smaller than —oo, which means that we can be sure that M (v) will be —oo
if the fraction (D, (v) — Dg(v))/(n — k) takes on this value for the current node
v for at least one k between 0 and n — 1.

51

7 CYCLE TIME COMPUTATION 7.2 DG1

Tl el b b o o o 1o 1o 1o 1601 To T To o T o oo oo oo o oo T T o T o oo oo oo

%% compute_mean(+Nodes,+N,+LastLevel,

W +D,+Valid,+M,+Lambda,

%h -MeanCycle) <--

T b b o oo To ot Toto To o Toth Toto o Toto Toths To s o o o To o Fo o o o Yo o o Fo o Fo o o

compute_mean([],_,_,_,_, % The base case
_,Res,Res).

compute_mean([V|Vs],N,LL,D,Valid,
M,Lambda,Res) :-

get_value(V,LL,

LLValue), % Find the last

% level at which

% node V was

% processed.
LLValue == N, % Apply the min

% operation of

% Karp’s Theorem on

% node V only if

% LLValue is equal

% to N
!,
karps_theorem(V,D,Valid,N,
Lambda,M,
Lambda?2,M2),
compute_mean(Vs,N,LL,D,Valid, % Process
M2,Lambda2,Res) . % next
% node
% in the
% list.

%% If the last level at which node V was

%% processed by process_graph/12 was not N

%% (i.e., the last level exhausted), do NOT

%% apply the min operation of Karp’s Theorem on
%% V. Just process the next node in the

%h list.

compute_mean([_|Vs],N,LL,D,Valid,
M,Lambda,Res) :-

compute_mean(Vs,N,LL,D,Valid,
M,Lambda,Res) .

Figure 13: The code for compute_mean/8

52

7 CYCLE TIME COMPUTATION 7.2 DG1

The only way for the fraction to equal anything else than —oo is if Dy (v)
also is —oo, for some k, in which case the fraction would possibly (but not
necessarily) take on a real value33. Dy (v) is probably —oo for several values
on k in an average graph, but M (v) will however only possibly take on a real
value if Dy (v) = —oo for all possible values on k. And this is not possible since
the underlying graph is strongly connected. In any strongly connected graph,
there must be at least one walk from any node to any other node of length n or
shorter. If the walk is not of length n, then it is imperative that there must be
a walk of shorter length between the two nodes in the graph. This ensures that
Dy,(v) has a real value for at least one k between 0 and n — 1 even when D,,(v)
does not, which in turn makes the fraction for that k equal —oco. Thus, M (v)
is —oo if D, (v) = —o0.

The maximum cycle mean of a strongly connected digraph G is the maximum
M (v)-value of G. As long as there are arcs in G, that value is real. Any real
value is greater than —oo, so if M (v) is —oo for all nodes v in the graph G for
which D, (v) is —oo, these M (v)-values do not affect the maximum cycle mean
of G.

Therefore, the fraction (D,,(v)—Dg(v))/(n—k) does not need to be computed
when D,(v) = —oco. The same applies to the case when D, (v) # —oo and
Dy, (v) = —o0, since the fraction will take on the value +o00, the identity for the
minimization operation of M (v), in those cases.

The purpose of the structure Valid is to keep track of those level-node com-
binations for which Dy (v) is a real number. The while-loop of the tail of DG1
from the previous section, here shown again, shows how the fraction is only com-
puted for the level numbers corresponding to levels at which D[k, v] contains a
real number.

k:=Valid[n,v]
while (k > -1) do
fraction:=(D[n,v]-D[k,v])/(n-k)
if (M[v] > fraction) then
M[v] :=fraction
k:=Valid[k,v]

Remember that the value of Valid[k, v] is equal to the 'next’ (previous) value of
k for which Dy (v) is defined, with Valid[k,v] equal to —1 if k is the first level
for which D[k, v] has a value. Valid and LastLevel are defined in Section 7.2.1.

In my implementation, the while-loop above corresponds directly to the pro-
cedure karp/7. Figure 14 gives the code for karps_theorem/8, called from
compute_mean/8.

7.2.4 Selecting a suitable source

As can be noted, the correspondence between Dasdan and Gupta’s DG1 [7]
and my implementation is almost total. What is left is to write a procedure

33This is because —oo — (—0o0) is not well-defined.

53

7 CYCLE TIME COMPUTATION 7.2

DG1

I T T I I T T e o To e T o o to Tt o T o o T o o T o o T o o Vo o o o o o T o o oo
%% karps_theorem(+V,+D,+Valid,+N,

hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh
hh

+Lambda, +M,
-LambdaNew, -MNew) <--

karps_theorem/8 initializes
M[V] to nil before sending
the node V along with
relevant structures to
karp/7. karp/7 finds the
appropriate value for M[V]
Lambda, a variable that holds
the so far largest value
encountered in the structure
M, is then passed to
update_lambda/4 that updates
Lambda, if needed.

Tl b b oo o o o o o o 1o 1o 1o 1o T T T T o oo oo oo o oo o T o oo oo o o

karps_theorem(V,D,Valid,N,

Lambda,M,
Lambda2,M2) :-
add_to_relation(V,M,nil,MNew), % nil is
% used to
% represent
h —oo
get_value(Valid,N,V,K),
karp(V,D,Valid,N,K,MNew,M2),
get_value(V,M2,M2value),
update_lambda(Lambda,M2value,Lambda?2) .

Figure 14: The code for karps_theorem/8

54

7 CYCLE TIME COMPUTATION 7.2 DG1

that selects a suitable source node. Choosing an arbitrary node works. My
implementation just picks the first node in the list of nodes. This is of course
not the most efficient way of computing the maximum cycle mean, since the
unfolded graph will contain a different number of arcs depending on the choice
of source node. The fewer, the better.

If finding the best source, or at least a good one, takes more time than
executing the algorithm with a badly chosen source, just picking any node to
be the source node is of course preferable. Dasdan and Gupta resorts to a
fast heuristic. They unfold the graph from each node for a given number of
iterations, and choose the node that leads to the fewest arcs.

It is of course possible to use another approach for the implementation of
DG1. Just like collapse/7 does, dgl/4 could use a procedure that computes
the “heights” of all nodes with regard to an arbitrarily chosen node, and then
use this information to optimize the rest of the algorithm. Then a queue would
not be necessary, and less unnecessary work would need to be performed. The
concept of height would however first need to be modified to agree with cyclic
graphs.

Ekman and Kreuger state that the complexity of finding the heights of the
nodes of the split graph S(Gcon) is O(m), where m is the number of arcs in
S(Geon) [9]- Computing the heights of the nodes of a graph is thus not par-
ticularily expensive, but not for free either. I have deemed it to be definitely
worthwhile in collapse/7 since the result of the one computation is used in
every call to max_weight_paths/4. In dgl/3, the technique of unfolding the
graph, with the potential of being combined with the identification of a really
suitable source, will at least suffice for now.

55

8 THE CONDITION GRAPH

8 The condition graph

This section deals with the second problem I was asked to look at: how can
a description of a traffic pattern be translated into a graph suitable for the
algorithm that computes the cycle time (the inverse of the capacity) of the
traffic pattern? In other words, my task has been to work out an algorithm that
finds the condition graph from a description of a traffic pattern.

In the following, note that the model does not take any operational issues into
consideration. No train movement is unpredictable in any way. The assessment
of capacity assumes a perfect, undisturbed, flow of trains.

8.1 Describing a traffic pattern

The first issue to resolve is what actually is required from the description of the
traffic pattern in order to build a ’correct’ condition graph. I will suggest, along
the lines that Ekman and Kreuger have set up (see [9]), a set of requirements
that allows me to define a clear-cut, although simplified, algorithm that should
be useful for Banverket.

8.1.1 Signals and track segments

The advance of a train through a track system is controlled by signals. The main
purpose of a railway signalling system is to maintain a safe distance between
trains, and to ensure the safe movement of trains over the entire network — even
in the event of equipment or system failure [19]. Safety is, and should be, the
highest priority when placing signals. The locations of the signals on a railway
section are however vital for the capacity on it.

The influence of one train on another is communicated through signals. The
advance of a specific train through a certain railway section can be uniquely
determined by specifying what signals that train passes and what track segments
the train traverses. The track segments alone, and the order in which they
are occupied by the train, do not necessarily specify the advance of the train
uniquely. This is due to the fact that a track segment can serve as a switch.
Since the actual path is determined by which one of the branches of the switch
the train uses, it is clearly not always enough to specify the track segments to
describe the path of a train.

Ekman and Kreuger define the term path in terms of both signals and track
segments. It is important to keep in mind what branch of a switch a specific
movement of the traffic pattern uses when it is time to find the arc weights of the
condition graph. Finding the actual arc weights is a completely different problem
from finding what arc weights that will be needed. For the latter problem, a
simplified definition of the term path suffices, since I am only interested in
whether a certain track segment is occupied by a specified movement or not.
What branch of a switch a specified movement uses is therefore not interesting.

With Ekman and Kreuger’s definition slightly modified, a path consists of
a finite number of track segments t,...,t, and two signals. t;, the beginning

56

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

segment, is preceded by the beginning signal, and t,,, the closing segment, has
a closing signal at its very end. The closing signal thus precedes the track
segment that succeeds the closing segment. If the path consists of a single track
segment, the beginning and closing segments coincide. Beginning and closing
segments will sometimes be referred to as end segments. A path has only one
end segment if and only if it consists of a single track segment.

I have no deeper knowledge of signal engineering. Instead of trying to speak
a language I do not know, I have chosen to look at the problem in an abstract
way. I realized that certain rules apply if a number of feasible assumptions
can be made. These rules are well-defined (they make the problem and its
solution unambiguous), and more importantly, the assumptions are compatible
with signal engineering. 1 base that conclusion on the fact that I only give a
suggestion on exactly how one determines that two movements are ’in conflict’
(see page 66). It is possible to introduce another definition (based on signals,
for instance), and the rest of my proposed algorithm will still be valid and
applicable.

8.1.2 Cleared paths

A stop and its duration are always planned, and should be distinguished from the
waiting that a train can be forced to do when another train is given precedence,
that is, has a higher priority on a section of the track that both trains want
access to at the same time.

Waiting point is an important concept. A waiting point can be viewed as
a conceptual point coinciding with the seam between two specified track seg-
ments. A specific train is only allowed to wait for trains with higher precedence
at waiting points that are associated with the movement that the train is un-
dergoing.

Physically, ’at a waiting point’ means that a train has to come to a full stop
before the specified seam, the waiting point, between the two track segments
is reached. Then the train must stand there and wait for other trains, whose
movements have higher precendence, to first occupy sections of the track that
it will need in the future.

The following defines Ekman and Kreuger’s term complete train movement:
a train path through a specified railway section, a train type, the track segments
on which the train makes (planned) stops and the durations of those stops. A
train path, or path for short, is in my report defined as a sequence of track
segments, in the order in which the train undergoing the specified movement
traverses them. The activity of a traffic pattern is represented by the set of
complete train movements of the traffic pattern.

The path of a complete train movement is partitioned by its waiting points
into several, consecutive paths, called cleared paths. The path of a complete train
movement that has zero waiting points is also a cleared path. A train movement
on a cleared path is from this point on simply referred to as a movement. Note
that a cleared path is, in my report, merely defined as a succession of track
segments. This means that two different movements of the same cycle might

57

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

use the same cleared path, or the same cleared paths. Situations where different
movements traverse the same cleared path will come up in every traffic pattern,
since a movement z in cycle n is a different movement from z in cycle n + 1
although they traverse the same track segments in the same order.

Note that a train can only wait before a certain movement starts. In other
words, a movement is not allowed to start if any other train will force the train
to wait somewhere along the cleared path. The movement can start earliest
at the instant at which the whole path of the movement, the cleared path, is
‘cleared’ in a conceptual sense: it does not need to be cleared of trains, but it
must be in such a state that the movement that is about to start start traversing
it can regard the path as if it were in fact cleared of trains. All the time a train
spends standing still, waiting for the cleared path that it is about to traverse to
be ’cleared’ in the way described above, is classified as waiting.

Contrast the definition of a cleared path with that of a train route. A train
route is a part of the railway section that must not be occupied by more than
one train at the same time. A cleared path might be occupied by more than
one train at the same time, as long as they do not interfere with each other in
any way.

The above correctly suggests that waiting occurs between movements. If
this were not the case, it would be impossible to find the weights of the arcs in
the condition graph, since they would include indeterminate waiting times®*.

The physical location of a train that is waiting is considered to be on the
cleared path associated with the movement of the same train that immediately
precedes the movement that is waiting to start (see page 63 for a definition
of predecessor movements). During the waiting, at least the front of the train
occupies the last track segment of the cleared path associated with the movement
that concludes at the waiting point, and no part of the train occupies the track
segment that succeeds the waiting point. This is compatible with the idea that
a train is not considered to be on the railway section before it is allowed to enter
it.

I illustrate with a simple example. Let a denote the path that is associated
with the complete movement undergone by train a. It should be obvious from
the context when a refers to the path and when it refers to the train. Imagine a
being divided into two cleared paths, here denoted a; and as, in that order, by
a waiting point called a; : as. It is straight-forward what the weight of arc a,, 4,
means: the time it takes for train a (in any cycle) to traverse, in the specified
order, all track segments included in the cleared path a;, including the planned
duration times of all stops by train a on a1, but ezcluding any waiting time for
train a at the waiting point a; : as.

8.1.3 The boundaries of a railway section

Where a complete train movement (defined in the previous section) actually
starts and ends is of course a dubious question. It is only obvious when a closed

34Recall that the weight of the arc from node a to node b expresses how many time units
must pass after movement a has started before movement b is allowed to start.

58

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

system is considered, in which every complete train movement starts where it
ends. The method for capacity assessment proposed by Ekman and Kreuger is
not intended for closed systems. Ekman and Kreuger’s suggestion on how to
define the boundary of the railway section that is about to be analyzed gives
rise to some difficulties that I have to resolve.

The number of movements of one cycle of a traffic pattern is finite. The
railway section concerned by the traffic pattern is made up of at least the track
segments that are included in a path of a complete train movement in the
traffic pattern. The railway section is deliberately vaguely specified by Ekman
and Kreuger. The reason is that slightly different patterns of traffic should be
made comparable by being said to concern the same railway section although
the paths of the different sets of complete train movements involved do not
necessarily cover the exact same track segments. It is however essential to my
algorithm to know exactly what track segments of the railway section will be
occupied by trains, and exactly what trains any of these individual track segment
will be occupied by.

The trains of every complete train movement must both enter the railway
section and legve it, and they can only do so at a limited number of locations.
As intuitive as this might seem, it is possible that a track segment serves as an
end segment for only some of the paths of which it is a part.

See Figure 15 for an example of this. It displays three track segments. The
middle one serves as a switch. There are three points at which a train can enter
or leave this railway section, marked L1, L2 and R in the figure. The segment
in the middle might serve as an ’interior’ track segment for a train entering at
L1 and leaving at R (or vice versa). But for trains either entering or leaving the
railway section at L2, it serves as an end segment.

[d—
l—@

Figure 15: A simple railway section, illustrating the problematic term end seg-
ment

Ekman and Kreuger define the boundaries of a railway section by identifying
its main signals. Every complete train movement must pass exactly two main
signals on its way through a railway section: one on its way in, and another on
its way out. A main signal serving as a beginning signal for one complete train
movement, cannot serve as a closing signal for another movement.

A complication of this definition is that a movement might physically traverse
track segments that are not part of its path-definition, but part of a path of an
oppositely directed movement and therefore one of the track segments used by
the traffic pattern. See Figure 16.

In Figure 16, sigl is the beginning signal of movement x, and sig?2 its closing
signal. sig3 and sig4 are the beginning and closing signals of movement y.

59

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

sigl si g4 X si g2 si g3
< = <

tl t2 t3
sigl si g4 sig2 sig3
<~ Y = <
e——

tl t2 t3

Figure 16: Problematic placement of beginning and closing signals

The cleared path of movement x consists of track segments ¢; and ¢,3%, and the
cleared path of y consists of t3 and t2. The train undergoing movement z must
traverse t3, and the train undergoing movement y must traverse t;, but these
track segments are still not formally included in the paths of their movements.

The track segments of a traffic pattern For the purpose of finding a
sufficient set of conditions, I need an exact definition of the boundaries of a
railway section. I require the main signals to be placed in such a way that all
track segments of the traffic pattern that a movement uses are always included
in the path definition of the movement. This requires a clear-cut definition of
what I mean by the track segments of a traffic pattern.

The track segments of o traffic pattern are exactly those track segments that
are used by at least one complete train movement of the traffic pattern. It always
suffices to look at the movements of one cycle of the pattern to determine what
track segments are used by the it.

Moreover, an end segment of a path of a complete train movement must
serve as end segment for every other path whose movement uses it, unless it is
a switch. If it is a switch, it might serve as an end segment for one complete
train movements and as an interior segment for another only if they use different
branches of the switch. See Figure 15.

Note that the restriction applies to end segments of paths of complete train
movements, not to end segments of just any cleared path. The distinction is
very important, since segments often serve as end segments of some cleared
paths but not for others.

The purpose of imposing this restriction is simply to force the user to decide
what track segments are used by the traffic pattern, and let all movements
that use a specified track segment have their path definitions include that track
segment. This is summarized by the following assumption.

35Track segments are denoted t1, t2, ... instead of t1,ta,... in the figure only because the
program generating the figures could not handle subscripts.

60

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

Important assumption I will assume that the main signals are always
placed in such a way that every path consists of all track segments of the traffic
pattern that the train that uses the path actually traverses.

The traffic pattern illustrated in Figure 16 can for example be defined in this
way (Figure 17).
sig4 sigl sig3 sig2
X <>
>
t1 t2 t3

sig4sigl sig3 sig2

= Y <>
64
tl t2 t3

Figure 17: A traffic pattern exemplifying where the main signals will always be
assumed to be located

The only difference from the previous figure is the location of the main
signals, that now adheres to the above-mentioned assumption: the position of
a main signal, acting as the beginning signal for a complete train movement in
one direction, is used also for a main signal acting as a closing signal for other
complete train movements, traversing the railway section in the other direction.

In the example, the two trains z and y still traverse the same track segments
as before, but now both paths formally include all three track segments instead
of two each (with only one coinciding). This shows more accurately what track
segments are used by what movements, and simplifies the following discussions
significantly.

8.1.4 Notational issues

Before proceeding to the next topic, I need to resolve some notational issues.

The path of complete train movements will from this point on be denoted
by lowercase letters. A complete train movement is not associated with any
specific cycle of the traffic pattern. The existence of a complete train movement
using path z, merely states that in every cycle of the traffic pattern in question,
a train of a specified type will occupy the track segments that are specified by
x, make stops of specified durations on specified track segments, and be allowed
to wait for other trains at specified locations (waiting points).

Waiting points partition the paths of complete train movements into cleared
paths. The cleared paths whose ’parent’ is the path of a complete train move-
ment z, will be named z;, s, ..., z,, in the order of appearance in one cycle of
the traffic pattern: z; starts with the beginning segment of the path of the com-
plete train movement x, and z,, ends with the closing segment of z. This means

61

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

that a cleared path can have many names — one per complete train movement
that uses the path.

A movement that uses a cleared path z; is denoted by (z;,n), meaning the
movement using the cleared path x; in cycle n of the traffic pattern. It is often
superfluous to specify the cycle of a movement when discussing properties that
apply to a movement using x; of any cycle. Therefore, I will sometimes use x;
to denote (z;,n), since it makes the account more easy to read. The movements
Z1,%2,...,2L, will sometimes be referred to collectively as the z-movements. It
will be clear from the context when z; refers to the cleared path and when it
refers to the movement using the cleared path x;. (x;,n) always refers only to
the movement of cycle n using the cleared path z;.

Regardless of whether certain things apply to the movement using z; of
any cycle or not, the movements (z;,n) and (z;,m) are always different unless
n = m. Different movements might be identical in every possible way, that
is, use the same cleared paths, make stops on the same track segments and
with the same duration, concern the same train type, and end or start at the
same waiting points. As a rule of thumb, two movements are considered to be
different as soon as it is physically possible that two different trains are used for
them.

Waiting points A seam between two track segment that serves as a waiting
point for one complete train movement of the traffic pattern, does not necessarily
serve as a waiting point for any other complete train movement (see Section 8.1.2
for a discussion about waiting points). A waiting point that serves as a waiting
point for only one complete train movement of the traffic pattern is simple.

Definition Let a path a of an arbitrary complete train movement be di-
vided by waiting points into the cleared paths aq,...,a,. If the seam between
a; and a;41 serves as a waiting point for the complete train movement using a,
but not for any other complete train movement in the traffic pattern, a; : a; 1 is
a simple waiting point. The movements a; and a; 1 are said to share a waiting
point.

Simple waiting points can be compared with joint waiting points. A joint
waiting point is a seam between track segment that serves as a waiting point
for more than one complete train movement of the traffic pattern.

Definition Let two different, arbitrary complete train movements use paths
a and b. The paths are divided by waiting points into the cleared paths
ai,---,ay and by,..., by, respectively. Imagine that some of the cleared paths
originating from a and b share end segments. Let one of the waiting points that
partitions a be also a waiting point of b. Let this waiting point be located at
the seam between the closing segment of a; and the beginning segment of a; ;.
If this seam corresponds to the seam between b; and b;;1, then a; : a;41 and
b; : bjy1 form a joint waiting point. It can be called either a; : a;1 or b; : bj4q.
The movements a;, a;+1, b; and b; 41 are all said to share a (joint) waiting point.

62

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

Successor and predecessor movements I will sometimes refer to move-
ments as the successor or predecessor movements of another specified movement.
Successor and predecessor movements do not refer to movements that simply
happen ’before’ or ’after’ a specified movement. (a;,n) is indeed initiated before
(a;,n+1), but the first will not be referred to as a predecessor movement of the
latter.

Definition Let a complete train movement use the path a, and let a be
divided into ay, .. .,a, by n — 1 waiting points. a; is a predecessor movement of
a; if and only if i < j; a; is a successor movement of a; if and only if ¢ > j. A
movement cannot be a predecessor or successor movement of a movement if the
two movements do not both originate from the same complete train movement,
or if they concern two different cycles.

8.1.5 Precedence

As soon as a situation in which the activity of one train affects the activity of
another train in the traffic pattern comes up, precedence has to be given to one
of the trains. If three or more trains all influence each other in an interfering
manner in the same railway section, a “pecking order” has to be decided, saying
what train is allowed to occupy the area of conflict first, second and third, and so
on. It is of course always enough to consider every pair of movements separately,
and the pecking order — a mathematically well-defined partial order on the set
of movements — will crystallize as a side effect.

In the previous paragraph, I have taken for granted not only that a pecking
order exists. I have also taken for granted that there is such a thing as a ’first’
movement. Alternatively that a whole set of movements that theoretically can
be undergone simultaneously can be thought of as occurring 'before’ all others,
but in no particular mutual order.

The traffic pattern is cyclic. This means that any movement (or set of
mutually independent movements, as described above) in the pattern can be
arbitrarily chosen to be “first’. The ’first’ movement (or set of ’first’ movements)
does however not play any other role apart from simply being a reference point,
indicating where the (arbitrarily chosen) cycle boundary is. This reference point
is needed in the following discussion.

Definition Let z; and y; be two arbitrary movements among the move-
ments originating from the set of complete train movements describing the ac-
tivities of the traffic pattern. A set of first movements F' of the traffic pattern
can be chosen in any way, as long as the following criteria are met

oF;é(Z)

e If z; € F, then y; € F if and only if the pecking order between z; and y;
is undefined.

63

8 THE CONDITION GRAPH 8.1 Describing a traffic pattern

Recall that the set of complete train movements of a traffic pattern describes
the activities of the traffic pattern by representing what happens in every cycle
of it.

8.1.6 Graph representation

The precedence relation on the set of movements of a traffic pattern can always
be found by separately considering all pairs of movements of two consecutive
cycles of it. Every two movements are not necessarily related, in which case the
pair in question does not give any new information about the pecking order.

Every movement of one repetition (one cycle) of the traffic pattern corre-
sponds to a node in the graph, whether it is the traffic pattern graph or the
condition graph. The precedence relation on the set of movements of just one
cycle, n, of the traffic pattern is represented by straight arcs in the graphs.
Bowed arcs represent precedences where a movement has higher precedence
than a movement in the next cycle.

A path in the graph, consisting of only straight arcs (possibly just one arc),
from node z to node y (where z # y), means that the movement corresponding
to z has higher precedence than the movement corresponding to y — in the same
cycle.

If, when looking at the pecking order among the movements of only one
cycle, movement z has higher precedence than y, denoted = < 335, but lower
precedence than z, denoted z < z, then the following is true

* (z,n) <(z,n) <(y,n)
o (z,n) <(z,n+1)
e (zn) <(y,n+1)

etc. The notation (x,n) is explained in section 8.1.4, Notational issues.

The purpose of the traffic pattern graph is to summarize the precedence
relation on the movements of a traffic pattern in a condensed way. A precedence
is therefore not represented by an arc in the traffic pattern graph if it is implied
by other precedences. For instance, (z,n) < (y,n) is implied by (z,n) < (z,n) <
(y,n) above, and there should not be an arc from the node corresponding to z
to the node corresponding to y in the traffic pattern graph, although (z,n) <
(y,n) surely holds. A precedence of the type (z,n) < (y,n) above is instead
represented by a path (of length greater than 1) in the traffic pattern graph.

All precedences of a traffic pattern can thus be derived from a traffic pattern
graph, since (x,n) has higher precedence than all movements whose nodes are
reachable from the node representing x, where every bowed arc that is passed
in the walk from z means that a cycle boundary has been crossed.

36T use the notational convention introduced by Ekman and Kreuger for precedences. = > y
might seem to be a more intuitive representation of x having higher precedence than y, but I do
not want to confuse readers that are already familiar with Ekman and Kreuger’s terminology
by reversing the symbol. “<” in £ < y indicates that the train undergoing movement x must
enter the area of conflict at an earlier point in time than the train undergoing movement y.

64

8 THE CONDITION GRAPH?2 Traffic pattern graphs vs. condition graphs

8.1.7 Definition of a traffic pattern

Now I have defined everything to be able to explain what kind of description of
the traffic pattern that is required in order to uniquely define a condition graph
based on the pattern.

e A set of complete train movements of (one cycle of) the traffic pattern and
their respective paths, describing all the activities of the traffic pattern.

e All waiting points of the traffic pattern, the resulting movements and
their cleared paths. Every movement must 'know its parent’, that is, it is
essential to keep track of what complete train movement a certain (sub-
Jmovement is associated with.

e A set of first movements F.

e The “pecking order” among the movements of two consecutive cycles of
the traffic pattern, that is, a partial order on the set of movements that
uniquely determines what movement is allowed to go first if any two move-
ments from two consecutive cycles need access to the same track section
at the same time.

The pecking order can be represented by a traffic pattern graph (see Section
8.1.6). I will always try to choose a set of first movements that is as small as
possible (preferably consisting of a single movement).

8.2 Traffic pattern graphs vs. condition graphs
8.2.1 Equivalent condition graphs

A weighted condition graph is defined by Ekman and Kreuger as a weighted
digraph in which the nodes represent the movements of a certain traffic pattern,
and the arcs and their respective weights represent conditions on the relative
starting times of the involved movements. There is a one-to-one correspondence
between the movements of one cycle of the traffic pattern in question and the
nodes in the condition graph.

As T said in Section 8.1.5, many different sets of movement in the pattern
can be chosen to be *first’, although once the decision is made, the set must not
be changed. The cycle time of the traffic pattern is obviously independent of
that choice. Luckily, the cycle time of the condition graph is also independent of
this. The choice only affects what arcs in the condition graph that are straight
and what arcs are bowed, since the bowed arcs indicate a cycle boundary. A
node representing a 'first’ movement of the pattern will be hit by at least one
bowed arc.

It is important to point out that any single cycle in a condition graph will
contain the same number of bowed arcs (with a minimum of one) regardless of
what set of movements is considered to be first in the pattern. Different choices
merely displaces the bowed arcs of the cycles. Note that if this were not the

65

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

case, the cycle time would not be the same for different choices of sets of first
movements, which would of course be absurd. The choice made only affects
what type — straight or bowed — any individual arc will belong to. The number
of arcs, their starting and ending nodes, and their respective weights will be the
same irrespective of the choice of set of first movements.

8.2.2 Arc weights

How to find the arc weights of the condition graph is beyond the scope of this
report. Ekman and Kreuger suggest in their report how arc weights can be
approximated. A summary of their account on this subject does not serve any
purpose here. I will in this section simply make it clear exactly what the weights
of the arcs of the condition graph represent.

Consider a precedence denoted by z < y. The relationship implicitly rep-
resents a condition, denoted ¢(z < y). The condition says that movement y
must not start in such a way it impedes movement z, and vice versa. Moreover,
track sections that z and y share, must be occupied by the train undergoing
movement x before they can be occupied by the train undergoing y.

Let start(xz) denote the point of time when movement x starts. Then the
arc representing c¢(x < y) has weight w, where

start(y) > start(z) + w

Note that y is not forced to start at time start(x) +w — it is allowed to start
earliest at this point of time.

8.3 Finding a set of sufficient conditions

The purpose of this section is to present a step-by-step algorithm that will
generate a set of conditions that can serve as a starting point for the arc set
of the final condition graph. The algorithm basically assesses every feasible
condition and lets every such condition give rise to an arc unless it is absolutely
clear that the arc in question is redundant. In this way, the algorithm never
misses a condition that should give rise to an arc, but returns a result that may
include some redundant arcs as well.

Feasible conditions are conditions that involve movements whose cleared
paths are ’in conflict’. The exact definition of ’in conflict’ is actually up to the
user of this algorithm. I give one suggestion of a definition below, on which I
base all my examples. But it is merely one of many possible definitions; the
algorithm is applicable irrespective of the exact formulation.

Proposed definition Two movements are in conflict if their cleared paths
coincide, or if their cleared paths share a part of the railway section. Two cleared
paths share a part of the railway section if they have at least one track segment
in common, or share a simple or joint waiting point (see Section 8.1.4).

66

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

8.3.1 Divide and Conquer

Divide and Conquer is a common concept that refers to a method of solving
problems in general, and a method of designing algorithms in particular. Algo-
rithms in this category split the instance of the problem to be solved into smaller
sub-instances of the same problem, and solve them independently. The solu-
tions to the sub-instances are then combined to form a solution for the original
problem instance.

The reason for dividing the problem instance into smaller parts is of course
that the smaller the problem is, the easier it is to solve. Recursion is a technique
that exploits this idea, and the problem instances are continuously divided until
a base case is reached. A base case is often the smallest possible problem
instance, and is trivial to solve.

Part of my algorithm is based on the idea behind divide and conquer. A pure
divide-and-conquer algorithm would work, but would treat too many obviously
irrelevant conditions as if they were relevant, since it is often essential to consider
larger contexts to discover that they are not relevant.

8.3.2 Subsections of a railway section

I will now define what I call subsections of a railway section, or simply subsec-
tions. They can in some sense be viewed as constituting the base cases of my
algorithm.

Recall that every traffic pattern can be said to concern a well-defined set of
track segments: the track segments of the traffic pattern (see Section 8.1.3). I
want to be able to consider smaller sections on which the precedence relation,
on the set of movements using the track segments of the section, is a total order
that applies to every track segment of the section in question.

This goal could be satisfied by separately considering each track segment
that is concerned by the traffic pattern. But there is often no need to consider
every single track segment of the railway section separately. Preferably, the
railway section is divided into as large sections as possible, for which the above
still holds.

Definition A subsection is the largest possible part of a railway section on
which every movement that uses the subsection occupies every track segment
that is part of the subsection.

Practical consequences and notational issues From the definition follows
that every movement that uses a specified subsection s is related to every other
movement that uses the subsection with regard to precedence. The same total
order applies to every track segment of s.

Every movement x; of one cycle of the traffic pattern that uses the subsection,
does so precisely once: if x; uses the subsection, it means that (z;,n) with
n=1,2,3,... all use the subsection exactly once.

67

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

The movements that use the subsection are from this point on referred to as
the subsection’s movements, movements belonging to the specified subsection, or
the movement of a particular subsection. The track segments that make up the
subsection of the railway are similarly referred to as belonging to the subsection,
or being the track segments of the subsection.

A track segment in the set of track segments of the traffic pattern (see Section
8.1.3) belongs to precisely one subsection. A single movement can belong to
many subsections, and in fact belongs to exactly those subsections that together
contain exactly the track segments that make up the path of the movement.

The ’first’ and ’last’ track segments of a subsection are called border seg-
ments. Since waiting points are not parts of cleared paths, they will need to
be considered separately. My algorithm presupposes the division of the railway
section into subsections, and waiting points (or waiting point-subsections). All
subsections and waiting points will be viewed both separately and as parts of a
larger context.

Every waiting point borders on exactly two subsections. The end segment
of a complete train movement marks the border of precisely one subsection.
A track segment serving as a switch will generally — unless extraordinary cir-
cumstances prevail (see below) — form a border segment if more than one of its
branches are used by the movements that use the subsection. If every movement
uses the same branch of a switch, the fact that the track segment in question
can serve as a switch can be ignored.

One of the ’extraordinary circumstances’, mentioned above, refers to the
situation illustrated in Figure 18. In the traffic pattern summarized by the figure
showing one cycle of the pattern, neither one of the track segments serving as a
switch is a border segment. The two cleared paths a and b are actually identical
according to my definition®’, since they consist of the same track segments, in
the same order. The railway section from L to R is in itself a single subsection
with regard to this traffic pattern.

o= My

SW2

//_ _\\ -

swl SW2

®]
Figure 18: Two identical cleared paths a and b

A subsection of a traffic pattern will in the following be described by

e The track segments that it consists of.

37See page 56 for a discussion on why a and b in this example are considered to be the same
cleared path.

68

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

e The set of movements M of one cycle of the traffic pattern, belonging to
the subsection, and the direction (one of two possible) of each movement
in M.

e The precedence relation — a total order — on M.

e Any neighbouring subsections, and what end of the subsection each one
of them borders on. If the border segment serves as a switch, the exact
branch that the neighbouring subsection borders on must be specified.

Most of the time, the descriptions will be graphical. Also, I will of course not
call any part of the railway section a subsection, if the ’subsection’ in question
does not agree with the definition given above.

8.3.3 Examining subsections

The algorithm rests on few but very important principles. One of them is the
division of the railway section into subsections. The other principles will be
explained soon enough, but first I need to say a few words about how some
steps of the algorithm are carried out. The exact steps of the algorithm are
given in Section 8.3.8.

The algorithm basically considers every movement of the traffic pattern one
at a time, in “pecking order”, starting with one of the movements in the set of
first” movements (see Section 8.1.5). For every movement that is scrutinized,
the subsections that the movement in question belongs to, and all waiting points
that it borders on, are examined, in chronological order.

The purpose of examining a subsection (possibly a so-called waiting point-
subsection) s, with regard to a specific movement (x;,n), is to get answers to
the following questions:

e what movement (y;,m) immediately precedes (z;,n) on s?
e is the condition ¢((y;,m) < (z;,n)) relevant on s?

The first question is trivial to answer, since the movements are totally ordered
on a subsection with regard to precedence. m in (y;,m) is either n or n — 1,
depending on where the cycle boundary is. y; = z; is a possible case, but only
ifm=n-1.

Note that since immediate precedence on a subsection s is such an important
concept, the fact that a movement y immediately precedes another movement
x on s will from now on be denoted y <, .

The second question is trickier to answer, and I will not yet tell you exactly
how this will be done. All that can be said at this point is that for every
subsection, for every movement that uses it, precisely one condition is looked
at. Only if it is deemed relevant, the condition gives rise to an arc in the
condition graph that the algorithm outputs.

The algorithm is not perfect, and might in some cases deem a condition
relevant on s even if its associated arc will be redundant in the output condition

69

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

graph. The opposite, that a condition whose arc will not be redundant in the
condition graph is missed, never occurs. Why this is the case, will be made clear
later in the text (see Section 8.4).

Example In Section 8.3.9, I will illustrate how the algorithm is used by ap-
plying it to a traffic pattern that is used as the major example in Ekman and
Kreuger’s report [9]. I describe the traffic pattern here, together with a (mainly
graphical) description of the subsections, to highlight the concepts that I have
introduced so far.

Let W and E be two stations. Between them is a railway section with three
other stations, mainly used to facilitate overtaking and train meets. The three
complete train movements of the traffic pattern are w, e, and f. One cycle of
the traffic pattern can be described by Figure 19. Movement w; (denoted w1 in
Figure 19), that is, the movement using the cleared path w;, is considered to
be first’. There are two simple waiting points: w; : wo and e; : es.

W LN SN
— N g
—
T A

Figure 19: The traffic pattern of a comprehensive example

The subsections How the railway section is divided into subsections is
indicated by Figure 20, where the seams now show where one subsection starts
and ends. I have labled the subsections s1, sa, ..., s7 so that I can refer to them
more easily later on. In the figure, they are denoted s1,s2,...,s7.

Note that only necessary details of the subsections are shown. One of the
stations thus ’disappears’, that is, appears as part of a single line in Figure 20,
since all trains in the traffic pattern occupy the same track segments of the
station. Also, at this point there is no need to keep track of where individual
track segments of the subsections start and end. That information is not needed
until the arc weights of the condition graph are about to be determined.

70

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

@ s1 “s3 s4 “s6 s7 {E‘

Figure 20: The subsections of the traffic pattern in Figure 19

The pecking order These are the movements belonging to the subsec-
tions 1-7, and their movements in pecking order.

1. e; < f <ws
2. w1

e1< f

s ow

wy <e < f

o

e1
6. wy < f
7. w1 < f<es

Note that the pecking orders refer to the movements’ mutual precedences within
a single cycle, with the set of first movements as a reference point. The pecking
order on for example s; should however be read as (e;,n) < (f,n) < (w2, n) <
(e1,m + 1) < ..., since the pattern on any subsection is cyclic. The pecking
orders on the other subsections should of course be interpreted in this way too.
The simple waiting points give rise to the following precedences: (wa,n) <
(w1:n+ 1)a (62,7’L) < (elan + 1)7 (wlan) < (w27n) and (elan) < (62,”).

The traffic pattern graph These pecking orders together give the traffic
pattern graph of Figure 21.

The procedure The algorithm will in this case start off by looking at
movement ws, since it is the ’first’ movement of the traffic pattern. The first
subsection that it will examine is s;. It would, due to the pecking order
displayed above, conclude that (ez,n — 1) immediately precedes (wi,n), de-
noted (e2,n — 1) K5, (w1,n), whereupon it would decide whether the condition
¢((ea,n—1) < (w1,n)) is relevant or not and take appropriate action. Next, the
algorithm examines sg, since sg is the subsection occupied next after sy by wi,
the movement which we are currently scrutinizing.

For a complete description of how the algorithm treats the traffic pattern
of this example, see Section 8.3.9. Before I can fully describe the algorithm, I
both need to tell how waiting points are viewed by the algorithm, and tell how
conditions are deemed relevant.

71

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

Figure 21: The traffic pattern graph of the traffic pattern in Figure 19

8.3.4 Waiting points

As far as the algorithm goes, waiting points work almost like subsections. Of
course a train that waits at a waiting point has to move out of the way, that
is, leave the waiting point, before another train can occupy it. In this regard, a
waiting point and a subsection are equivalent. The only difficulty involved with
waiting points at this stage, is the one resulting from the fact that a train is
considered to occupy part of the cleared path preceding the waiting point during
the actually waiting.

Simple waiting point A simple waiting point z; : x; 1, that is, a waiting
point that does not serve as the waiting point of any complete train movement
other than the one using path = (see page 62), gives rise to two conditions: one
per movement involved in the waiting point.

When (x;41,n) is scrutinized, the waiting point z; : x;41 gives rise to a
relevant condition, ¢((z;,m) < (ziy1,n)), where (z;,m) is the movement that
immediately precedes (z;y1,m). m is either n — 1 or n, depending on where
the cycle boundary is. No movement other than z; of cycle m can immediately
precede (x;41,n), since no overtaking is possible at a waiting point. The asso-
ciated condition ¢((z;,m) < (z;+1,n)) is always relevant, since the train that is
about to physically undergo (z;11,n) must of course complete movement (z;,m)
before (z;11,n) can start!

The other condition is the one that is considered when the simple waiting
point is examined during the scrutinizing of (z;,n). The previous train z (of
cycle m) must have left the waiting point x; : ;11 before a new train z (of cycle
n), can occupy it. This is summarized by the condition ¢((x;y1,m) < (z;,n)),
which might be deemed as relevant depending on whether the condition is an
immediate consequence of the relationships between other movements in the
traffic pattern or not. How this is judged will be explained in Section 8.3.6.

72

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

Joint waiting point A joint waiting point has multiple names. Joint waiting
points are not considerably more complicated than simple ones, since trains
must leave waiting points in the same order as they arrive at them due to the
fact that only one train at a time can occupy a waiting point.

The perspective from which a joint waiting point has to be viewed, depends
on what movement is currently being scrutinized. Let z; be the movement
currently being scrutinized, and let z; start at a waiting point that is shared
between two different complete train movements using paths z and y. The
resulting joint waiting point can be called either z;_; : z; or y;—1 : y;. To
decide what conditions might be needed due to this joint waiting point, create
a waiting point-subsection for movement x;.

The waiting point-subsection for a movement that starts at a waiting point
is always created by thinking of the movement in question, z;, and all move-
ments that belong to the subsection preceding® the waiting point, as being the
movements of an ordinary subsection, which is then treated in the same way as
all the other subsections. In this case, at least z;_1, z; and y;_; will belong to
the waiting point-subsection if z; and y; have the same direction. If they are
oppositely directed, the movements of the waiting point subsection will instead
be (at least) z;—1, ; and y;. Read Section 8.1.4, Notational issues, again if this
confuses you.

If a movement ends at a waiting point, the movements belonging to the
waiting point-subsection are the movement being scrutinized and all movements
belonging to the subsection succeeding the waiting point. The procedure above
is the same regardless of the number of complete train movements that share
the waiting point. It also works for simple waiting points.

8.3.5 Irrelevant conditions

In a traffic pattern, some relationships among movements are more easily ana-
lyzed than others. Precedences regarding oppositely directed movements belong
to this category.

Consider the schematic sketch of a traffic pattern in Figure 22. The traffic
pattern can be informally described as train a entering the railway section 'from
the left’ (at L), making a stop on the track segment between the track segment
serving as switch 1 (sw1) and the track segment serving as switch 2 (sw2), at
waiting point a; : ag, then leaving the railway section at R. Train b is then
allowed to enter at R, traversing the path from R to L without making any stops.
The traffic pattern involves four subsections, described by Figure 23.

The information about the stops is actually not essential to make the fol-
lowing observation, since it applies with or without stops by trains a and b: b
cannot enter the railway section at R before a has left it (at R). Moreover, the
a-train of a cycle cannot enter the railway section at L until b belonging to the
previous cycle has completed its movement and left the railway section at L.

38Preceding the waiting point with respect to the direction of the movement that is currently
being scrutinized.

73

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

o —
oSN\,

swl SW2 El

-

v _/____—El

swl SW2

Figure 22: A simple traffic pattern involving oppositely directed movements

s2

gt B

s3 s4

Figure 23: The subsections of the traffic pattern in Figure 22

The waiting point ay : as is superfluous in this case, since train a does not
wait for any train at this particular spot in this simple traffic pattern. But
nothing prevents the user from introducing superfluous waiting points, and the
algorithm must work even if such exist.

The key to identifying irrelevant conditions is the fact that once the condition
¢((az2,n) < (b,n)) has been established in a case similar to the one above, we can
be sure that a condition saying that movement (b, n) has lower precedence than
any predecessor movement of (a2,n) cannot be a relevant condition: ¢((ai,n) <
(b,n)) automatically holds in this case. The condition graph for the traffic
pattern in question is shown in Figure 24.

Figure 24: The condition graph of the traffic pattern in Figure 22
As can be seen in the condition graph (Figure 24), there is an arc from as to

b, but not from a;to b, although a; < b surely holds as well as as < b. The fact
that a1 < az and as < b together imply a; < b is however not alone sufficient

74

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

to deem the condition c(a; < b) irrelevant.

The reason for c¢(a; < b) being irrelevant in this case is that a and b have
opposite directions. Since as cannot start until a; has finished, and b cannot
start until ap has finished??, it is possible to exclude the possibility that a
train undergoing movement a; occupies subsection s; at the time when the
train undergoing movement b needs it. Thus the arc representing the condition
c(ag < b) is redundant in the presence of the other arcs given in the condition
graph in Figure 24.

Applying the principle In the example above, movement (b,n) has to wait
for (as,n) to complete before it can start. s4 is the first subsection in b’s path
that b shares with a (in this case as). Since sy is the first subsection in b’s path
that b and a share, s4 is also the only subsection that can give rise to a relevant
condition involving a-movements*® when b-movements (in this case only b itself)
are scrutinized.

In the traffic pattern of the example above, the only relevant condition on
the form ¢((a;, m) < (bj,n)) arises due to the first subsection that @ and b share,
84, and is of course ¢((az,n) < (b, n)).

In the algorithm, the movements are considered in pecking order. For every
movement, the subsections it passes through are examined, in chronological
order. Due to this, it is relatively simple to keep track of what subsection is the
first that two oppositely directed movements share — first with respect to the
movement that is currently being scrutinized. I will tell exactly how this can be
done in Section 8.3.7.

8.3.6 Relevant conditions

As usual, the purpose of examining a subsection s during the scrutinizing of
a movement (z;,n) is to see whether the movement (y;,m) that immediately
precedes (z;,n) on s gives rise to a relevant condition or not. Now it is time to
say exactly what deems a condition relevant on s.

Consider a subsection s and two movements (z;,n) and (y;, m). Let (y;,m) <,
(x;,n) hold. The interesting condition at this point is therefore ¢((y;,m) <
(zi,m)). It is deemed relevant if and only if the following is true:

e z; and y; are oppositely directed, and

e s, with respect to xz-movements, is the first subsection that z- and y-
movements share

or

e z; and y; have the same direction, and

39 A1l movements a1, az and b referred to here are of course in the same cycle, which is
implicit since I have not denoted the movements on the form (z;,n).

40Movements whose ’parent’ is the complete train movement that uses the path a — in this
case a1 and as2.

75

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

e s, with respect to (z;,n), is the first subsection on which (y;,m) is the
movement that immediately precedes (z;,n).

Observe that the last case is equivalent of saying that the condition ¢((y;, m) <
(zi,n)) can only be relevant if it has not already been considered and deemed
relevant at another subsection. In that case, the condition would already have
played its part.

I assume that a movement (z;,n) is preceded (and succeeded) by other
movements of the subsection, that is, that n is never to be viewed as the first
cycle. It is then always possible to identify the two movements (z;,n) and
(yj,m) on any subsection s. For instance, a possible scenario is that, during
one cycle of the traffic pattern, s is used by only one movement, x;. In that
case, (y;, m) in the reasoning above is equal to (z;,n — 1).

8.3.7 Log covered conditions

To be able to deem a condition relevant while scrutinizing a movement (x;,n),
the algorithm must keep track of what other movements have been encountered
on the various subsections that have already been examined on (z;,n)’s account.
Without a log of some kind, it is for instance impossible to say if the current
subsection is the first that an z-movement (a movement using the path z of a
complete train movement) shares with a y-movement.

Let R denote a set that will be used as a log by the algorithm. It is empty
when the algorithm starts off. The elements of R will eventually be so called
covered conditions, that is, conditions that have played their parts.

The purpose of R is to enable the algorithm to just have to look in R when
a subsection s is examined while scrutinizing x; on which y; <, z; holds, and
deem the condition ¢(y; < z;) relevant if and only if ¢(y; < z;) ¢ R.

When, and why is a condition ¢(y; < z;) put in R? Generally, a condition is
put in R when it is clear that it has played its part. A condition is for instance
always put in R when it has been deemed relevant on a subsection s, after it
has given rise to an arc. This prevents the same condition from giving rise to a
duplicate arc.

Similarly, once a condition ¢(y; < ;) involving two oppositely directed move-
ments ; and y; has been deemed relevant, not only ¢(y; < z;) is put in R. Due
to the reasoning in Section 8.3.5, we know that all conditions on the following
form are irrelevant from this point on:

o ¢(yj—q < ZTiyp), where p=0,1,...,and ¢=0,1,...

All such conditions are thus immediately put in R when c¢(y; < ;) is deemed
relevant and z; and y; are oppositely directed.

The last case that puts conditions in R occurs when 2, < y; < 2; holds on
a subsection s for any movements z, y; and x; during the scrutinizing of z;,
while z; and x; are oppositely directed, and s is the first subsection that z- and
z-movements share (with respect to the z-movements). All conditions on the

76

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

form ¢(zk—y < %itp), where p =0,1,..., and ¢ = 0,1,... are immediately put
in R, even though c¢(z, < ;) is clearly not deemed relevant by the algorithm
on s (zp <s ¢; does not hold). The reason is that no other subsection, during
the scrutinizing of x; can be the first subsection that z- and z-movements share,
since s is the first. Thus no condition on the form just mentioned will ever be
deemed relevant when z-movements are scrutinized.

8.3.8 The algorithm
The following algorithm will be thoroughly exemplified in the next section.

Input: a traffic pattern

Output: a condition graph (without arc weights), representing a sufficient set
of conditions

The procedure The algorithm scrutinizes the movements of one cycle, cycle
n, of the traffic pattern. Every movement will be completely scrutinized before
the algorithm goes on to the next movement in line. The order in which the
movements are scrutinized is any order that does not violate the partial order
on the set of movements of cycle n (with regard to precedence).

Let R denote the set of covered conditions, As the set of straight arcs, and
Ap the set of bowed arcs. R = A; = Ay = () when the algorithm starts.

Let (z;,n) denote the movement currently being scrutinized. Examine the
subsections belonging to (z;,n), and waiting points bordering on (x;,n), in
order of appearance. Create a waiting point-subsection for every waiting point
bordering on (z;,n). Examining a subsection s belonging to (z;,n), including
waiting point-subsections, involves the following:

e Identify the movement (y;,m) for which (y;,m) <, (z;,n) holds.

e For every movement (zx,l) for which (z;,n — 1) < (z,1) < (y;,m) <
(zi,n) holds on s, and 2 and z; are oppositely directed, check to see if
c((2k,1) < (x5,n)) € R. If not, put all conditions on the form ¢((25—q,1) <
(®itp,n)) in R, where p=10,1,...,and ¢ =0,1,....

o If ¢((y;,m) < (zi,n)) ¢ R, then

— add the arc a,,,, to the appropriate arc set: A if m =n, and Ay if
m=mn—1.

— If and only if x; and y; are oppositely directed, put all conditions
on the form ¢((y;_q,m) < (%i}p,n)), where p = 0,1,..., and ¢ =
0,1,...,in R.

— If z; and y; have the same direction, put ¢((y;,m) < (z;,n)) in R.

e Proceed to the next subsection (or waiting point-subsection) in the path
of movement (z;, n).

7

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

When all subsections (including waiting point-subsections) belonging to (z;,n)
have been examined, the algorithm is done with (z;,n), and the next movement
according to the pecking order is scrutinized.

When all movements of cycle n have been scrutinized, the algorithm outputs
the condition graph consisting of a node set V' with one node per movement that
was scrutinized, and the arc sets A; and Ap.

8.3.9 An example

I will now apply the algorithm to the traffic pattern described in Section 8.3.3.
All five movements will be scrutinized in the overall pecking order, starting with
w; since it was arbitrarily chosen to be ’first’ in the description of the traffic
pattern. ws and es can be scrutinized in any order, so I simply decide that I
will scrutinize wy before es.

Below is an account of what arcs the algorithm suggests for every scrutinized
movement, and the reasoning that leads to the suggestions. In the following,
As is the set of straight arcs of the output, and A, is the set of bowed arcs. If a
subsection sy, “gives as,,;, € A;”, it means that the straight arc a,,,, is added to
the output. I will not show the reasoning as detailed for all movements. After
a while, the procedure will be familiar.

Initializations R, A, and A; are all empty sets when the algorithm starts.

(w1,m) Subsection sy is examined first. (e2,n—1) immediately precedes (wy,n)
on s7, that is, (e2,n — 1) <, (w1,n) holds. Since R = (), the bowed arc aeuw,
is suggested: s7 gives Ge,uw, € Ap. Moreover, all movements of s; that occur
between (wq,n — 1) and (w;y,n) that are oppositely directed w;, receive special
treatment. The movements in question are (f,n —1) and (ea,n —1). The result
of the ’special treatment’ is that the following conditions are put in R:

o ¢((fin—1) < (w1,n))
o ¢((f,n—1) < (w2,n))
o ¢((e2,n —1) < (w1,n))
o c((e2,n —1) < (w2,n))
¢ c((er,n —1) < (wi,n))
o c((er,n —1) < (w2,n))

Of these, ¢((e2,n — 1) < (w1,n)) was deemed relevant on s; and gave rise to
an arc due to s7. But the circumstances now tell us that the conditions above
should not give rise to arcs during the rest of the procedure. Putting them in R
thus correctly prevents them from being deemed relevant in the future.

Next, sg is examined. (f,n — 1) < (w1,n) holds, but ¢((f,n — 1) <
(w1,m)) € R. The condition is thus not deemed relevant, and no new arc is

78

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

added to the output. There is no movement on s¢ occurring between (wq,n—1)
and (w1, n) which is oppositely directed wy, other than (f,n—1). Since ¢((f,n—
1) < (w1, n)) is already in R, no further action is taken due to sg.

s4 is next in line. The pecking order of this subsection, wy < e; < f,
introduces a new movement: (e;,n —1). (f,n —1) <, (wi,n) holds on s4
just like (f,n — 1) <, (w1,n) did on sg, but is ignored once again since the
associated condition is still in R. ¢((er,n — 1) < (w;,n)) € R also holds, so no
new conditions need to be put in R.

S2 Eives Ay, w, € Ap, and c((wy,n — 1) < (wy,n)) is put in R.

Finally, waiting point w; : ws needs to be examined. A waiting point-
subsection, consisting of movements (wy,n), (wz2,n—1), (e1,n—1) and (f,n—1),
is created: the movement being scrutinized, (wi,n), and all movements from
cycle n and n — 1 that precede (wq,n) and belong to the subsection succeeding
the waiting point: (ws,n — 1), (e1,n — 1), and (f,n — 1). What movement,
in this waiting point-subsection, immediately precedes (wi,n)? The answer is
(wg,n — 1). Since c¢((wz,n — 1) < (w1,n)) ¢ R, ausw, € Ap is suggested.
(e1,n—1) and (f,n— 1) are both oppositely directed (wy,n), but the conditions
associated with them are already in R, so we do nothing more at this stage.

This concludes the scrutinizing of (w1, n).

(e1,m) First, s; is examined. (we,n — 1) <5, (er,n) holds. c¢((wz,n — 1) <
(e1,m)) ¢ R, so the bowed arc ay,e, is added to Ap. Since e; and ws are
oppositely directed and ¢((we,n — 1) < (e1,n)) ¢ R, the conditions ¢((wz2,n —
1) < (elan))a C((w27n_1) < (62,”)), C((wlan_l) < (el7n))7 and C((wlan_l) <
(ea,n)) are all put in R. No other oppositely directed movements that occur
between (e;,n — 1) and (e1,n) belong to s;.

On s3, (fyn—1) K5, (e1,n) . c((f,n —1) < (e1,n)) ¢ R, which gives
age, € Ap. ¢((f,n —1) < (e1,n)) is then put in R.

S4 BIVES Qyye, € As since c((wr,n—1) < (e1,n)) ¢ R. c((w1,n—1) < (e1,n))
is then put in R, along with ¢((wi,n — 1) < (e2,n)).

S5 Eives ae e, € Ap, and c((e1,n — 1) < (e1,n)) is put in R.

Now only the waiting point e; : e5 remains before the algorithm is through
with (e;,m). The waiting point-subsection this time consists of movements
(f,n —1), (e2,m — 1), (w1,n) and (e1,n). (wi,n) Ke:eo (€1,n) holds. The
associated condition is in R, so no new arc is suggested. No more conditions
need to be put in R.

(f,m) s1 gives ae, 5 € As. Putin R: ¢((e1,n) < (f,n)), c((w2,n — 1) < (f,n))
and ¢((w1,n — 1) < (f,n)).

s3 gives nothing new.

On sy, (e1,n) Kg, (f,n) holds, just like (e1,n) <5, (f,n) did on s;. This
time, ¢((e1,n) < (f,n)) is in R, so the condition is not relevant on s4. (w1,n) <
(f,n) holds on s4, (w1,n) and (f,n) are oppositely directed and c((w1,n) <
(f,n)) ¢ R. c((w1,n) < (f,n)) is therefore put in R*', but (w;,n) have no

41previously, c((w1,n—1) < (f,n)) has been put in R, but this does not prevent c((w1,n) <

79

8 THE CONDITION GRAPH 8.3 Finding a set of sufficient conditions

predecessors — and (f,n) no successors — so no more conditions need to be put
in R right now.

s¢ and s7 do not give any new arcs although (wy,n) <, (f,n) and (w1, n) <,,
(f,n) hold, since c((w1,n) < (f,n)) € R due to s4.

(f,n) is not involved in any waiting point, so the algorithm is done with it.

(w2,m) This movement starts at a waiting point. The waiting point-subsection
of wy : wy consists of (w2,n) and (wy,n), which of course gives ay,w, € As.
Remember that any movement z; that starts at a waiting point gives rise to
the arc a,,_,, — straight or bowed depending on the cycle boundary — since the
movement x; cannot possibly start before movement z; ; has been completed.

The condition that gave rise to the arc is put in R. (w2, n) only belongs to
one subsection, s1. It gives rise to afy, € As. Put in R: ¢((f,n) < (w2,n)) and
c((e1,n) < (wa,n)).

(e2,n) Last but not least, (e, n) is scrutinized. e; : ey gives ae,e, € Ag (see
the discussion about (ws : w2) above). s7 gives age, € As.

The output The following precedences of the traffic pattern give rise to
straight arcs:

o wi < e

e e < f

o w1 < W

o f<w

e ¢ < eg, and

o f<er
The following precedences of the traffic pattern give rise to bowed arcs:

e (e2,n —1) < (wy,n)

.

wy,n—1) < (w1, n)

e (wa,n—1) < (e1,n)

(

* (w2,n—1) < (wy,n)
(
(

€1,M) < (elyn)7 and

o (fin=1) <(e,n)

This means that the condition graph that the algorithm suggests is the one in
Figure 25.

(f,n)) from being put there. Had (w1,n) <s, (f,n) held, the condition in question would of
course have given rise to an arc. Do not confuse (wi,n — 1) with (w1, n)!

80

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

Figure 25: The output shown as a condition graph, when the algorithm of
Section 8.3.8 is run on the traffic pattern of Section 8.3.3

8.4 Eliminating redundant arcs

A set of infinitely many conditions — one per every possible pair of movements
defined by the precedence relation of the traffic pattern, of which infinitely many
exist — is reduced to a manageable set of sufficient conditions by the algorithm of
Section 8.3.8. Due to special circumstances, the arc sets of straight and bowed
arcs output from the algorithm possibly contain redundant arcs.

I will not provide any exhaustive algorithms for how to eliminate every re-
dundant arc from the output, since I cannot see how this can be done. Instead,
I will reason about possible ways of finding them, and give a couple of examples.
Before I do this, I need to define a few terms.

I claim that a set of sufficient arcs with regard to the traffic pattern used as
input, is output by the algorithm that I give in Section 8.3.8, since the algorithm
only dismisses conditions that would give rise to obviously redundant arcs. A
condition belonging to the set of sufficient conditions represented by an arc in
the condition graph output by the algorithm is simply a condition that at one
point in the algorithm was deemed relevant.

I have not yet properly defined what must apply to a condition that belongs
to the set of sufficent conditions.

Definition With respect to a specific traffic pattern, defined according to
the rules in Section 8.1.7, a set of sufficient conditions S is a set of conditions
for which the following statements all hold

e if c € S, ¢ is a condition that represents a relationship between two move-
ments of the traffic pattern that is in accordance with the precedence

81

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

relation

e if ¢ ¢ S and ¢ is a condition that represents a relationship between two
movements of the traffic pattern that is in accordance with the precedence
relation, then ¢ is an immediate consequence of the conditions in S

e if ¢ is not a condition that represents a relationship between two move-
ments of the traffic pattern that is in accordance with the precedence
relation, then ¢ ¢ S

Note that nothing in this definition says that the set of sufficient conditions has
to be the smallest possible set for which the three requirements of the definition
hold. Potentially, all precedences (infinitely many!) can be represented by
conditions in S. This leads me to define redundancy in the context of conditions
and sufficient conditions.

Definition If ¢ is an immediate consequence of the other conditions in S,
then the arc representing such a condition in the condition graph is redundant.

The cycle time of the traffic pattern can be computed from the set of suf-
ficient conditions, as I have defined the term above. This follows from what
Ekman and Kreuger calls the main statement of their report: the cycle time
of a traffic pattern is the maximum cycle mean of the condition graph of the
traffic pattern [9]. They provide a strict proof of their main statement. For my
purposes, it is sufficient to say that there is an available proof of this, and I refer
the interested reader to their report. A set of sufficient conditions enables the
computation of the cycle time of the underlying traffic pattern.

Ekman and Kreuger also point out that it is difficult to identify every redun-
dant arc, that is, all conditions that are immediate consequences of a smaller set
of sufficient conditions, but that the smaller the set of sufficient conditions is,
the better. Every condition, on which the computation of the cycle time will be
based, requires data from the user in terms of at least the time it takes for the
trains to travel certain distances. Redundancy should be avoided if possible.

8.4.1 Dismissing arcs

In the following, the arcs I refer to are the arcs that are output by the algorithm
given in Section 8.3.8, unless specified otherwise. Likewise, the railway section’
of course refers to the railway section of the traffic pattern, used as input to the
algorithm when the arcs were produced.

One way of eliminating redundant arcs is by considering larger portions
of the railway section than the subsections. Sometimes interesting relationships
between the movements can be found from this ’bird perspective’ — relationships
that render the arcs representing certain conditions redundant. In other words,
an approach that focuses on subsections can unfortunately deem conditions,
whose arcs in the condition graph are redundant, relevant.

An example of this is the bowed arc a.,., in the example of Section 8.3.9.
It is quite easy to convince oneself that this arc is redundant. The reason is

82

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

basically the same that renders the bowed arc a,,, redundant. The movement
(w1,m) needs to wait for (e2,n — 1) to finish before it can start. (e2,n — 1) in
turn needs to wait for (e;,n — 1) to finish before it can start. (e;,n), however,
cannot be allowed to occupy the part of the track that I call subsection 4, s4,
before (wy,n — 1) has occupied it.

The effect is that it is impossible to have a train still undergoing movement
(e1,m — 1) in s5 when the next train e during (e;,n) needs access to s5. sy is
the subsection that is occupied by e; alone, and therefore gave rise to the arc
in question. From this perspective, we can see that a.,., € Ap is redundant,
although the algorithm missed to identify the associated condition as irrelevant.

Why did the algorithm miss this one? Because on ss, (e1,n—1) <5, (e1,n)
certainly holds, since e; is the only movement ever using s;, and because
¢((er,n—1) < (e1,n)) is not in R at the time when (e, n) is scrutinized by the
algorithm and s; is examined on behalf of (e1,n).

Additional rules How do we discover redundant arcs of this kind? Are there
many other situations that are as obvious as this one? I cannot give a definitive
answer to the last one of these questions. There could be, but I have in that case
not been able to identify all of them. To the first question, I have a suggestion.

Let the path z of a complete train movement of a particular traffic pattern
include at least three subsections: sy, s¢, and s,. A train using path x occupies
these three subsections in the order specified above. Let y be the path of another
complete train movement of the same traffic pattern, and let y include the
subsections sp, and s, but not s;. A train using path y occupies subsection s,
before it occupies s,. This means that z- and y-movements on s, and s, are
oppositely directed.

Now, suppose that (y;,m) < (z;,n) holds on s, where m =n—1or m =n.
Suppose also that (yj—q,m) < (ziyp,n) holds on s,, where p = 0,1,... and
qg=0,1,.... Then we can conclude that a train undergoing the complete train
movement on path z cannot possible occupy subsection s; at a point in time
when a train undergoing the same complete train movement of the next cycle
needs access to it. The reason is that (z;4p,n — 1) must be completed on s,
before (y;_q,m) can start on s,. And before (z;,n) is allowed to start on sp,
(yj,m) has to finish on sp,.

In the reasoning above, s; represents an arbitrary subsection that is part of
the path of z but not part of y. All conditions that arise on subsections like
s¢, physically located between s, and s,, implying that any z-movement gov-
erns when another - movement can start, can be disregarded. The associated
conditions, ¢((Zitp,n — 1) < (Xitp,n)) and c((Titp+1,m) < (Titp,n)) (where
m =n—1or m =n), need to give rise to arcs only if the conditions are deemed
relevant on subsections that are not physically located between s, and s,, and
for which the above situation does not apply.

Refining the algorithm If this rule were part of the algorithm, it would
be necessary to incorporate a way of looking back on what actions any specific

83

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

subsection has previously demanded. Then the wording could be the following.

Suppose the following is true when (z;,n) is scrutinized:

e ¢((yj,m) < (z;,n)) is placed in R due to a subsection s, and for any
reason, where m =n — 1 or m = n.

e (y;,m) and (z;,n) are oppositely directed.

e In a later subsection s, (with respect to (z;,n)), (Yj—q,m) < (Xitp,n)
holds, where p=0,1,...and ¢ =0,1,....

Then no immediate precedence, considered due to any subsection s; physically
located between s, and s, (with regard to the z-movements), and on the fol-
lowing form (see below), could have given rise to a needed arc. The associated
arcs, generated due to any such subsections, should be dismissed.

b (mi+p7n - 1) <5, (':U’i+117n)7 where p= 07]-7 s
o (Tiyp,m) L5, (Xiyp—1,n), wherep=10,1,...and m=norm=n—1

Note that it is possible that other subsections call for the arcs in question. Such
arcs must not be dismissed. Ounly if the above holds for all subsections on which
the arc in question is given rise to, the arc is considered redundant.

The situation above of course applies to wi, e; and es in the example of
Section 8.3.9. If wy = z;, e = y;, sp = s7, and s, = 84, the rule above
says that arcs based on immediate precedences on a certain form — of which
(e1,n—1) <, (e1,m) is one example — given rise to due to subsections physically
located between s7 and s4 are redundant, although such arcs can be suggested
by the algorithm. The bowed arc ae,., from ss is in other words redundant.

There is also another, similar case to the one above, where conditions that
are deemed relevant by the algorithm afterwards can be identified as irrelevant,
and their associated arcs as redundant.

Suppose the following is true:

e a traffic pattern concerns, among others, three complete train movements
using paths z, y and z. The movements on x and y are oppositely directed
on the subsections that they share, while those on z and z have the same
direction.

o (z;,n) < (y;,m) < (2x,1) holds on a subsection sp, and (zip,n) <
(Yj—g,m) < (Zk+r,!) holds on s,, where p = 0,1,..., ¢ = 0,1,... and
r=20,1,....

Then the following conclusion can be drawn: whenever a condition considered
due to a subsection s; physically located between s;, and s, is deemed relevant,
it will give rise to a redundant arc if it is on the following form:

84

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

o ¢((Zitp,n) < (Zk4r,l)), where p=10,1,...and r =0,1,....

The reason is that y-movements (possible only one y-movement) of cycle m must
precede z-movements of cycle [, and succeed z-movements of cycle n, on both sp,
and s,. On a subsection s; located between s, and sy, (Titp,n) Ks, (Zktr,1)
might hold, with p = 0,1,... and r = 0,1,..... But we know that any arc,
given rise to on s; and going from a node representing an z-movement to a
node representing a z-movement (straight or bowed does not matter), would be
redundant, since an z-train cannot possibly linger in s; when a z-train needs
access to it.

An example on which this case applies is displayed in Figure 26. The four
subsections are shown in Figure 27.

e\ U
S e —
e\ U

Figure 26: A traffic pattern that renders redundant arcs when the algorithm of
Section 8.3.8 is applied

s2
[\
sl s3 s4

Figure 27: The subsections of the traffic pattern in Figure 26

Subsection sy, on which (z,n) <5, (2,n) holds, gives rise to an arc in the
algorithm. This is a situation for which the case just explained holds. Since
(y,n) has to precede (z,n) and succeed (z,n) on both s4 and s;, the additional
rule says that any condition associated with (z,n) <s, (z,n) when t = 2 or
t = 3 is irrelevant in this case. The train undergoing movement (z,n) has to
leave s4 before (y,n) can start, and the train undergoing movement (y,n) has
to leave s; before (z,n) can start. Thus, the start time of (z,n) cannot directly
be governed by (z,n).

It is, as I said in the beginning of this section, possible that there are more
rules of this kind that can be applied to the arc set that the algorithm outputs.

85

8 THE CONDITION GRAPH 8.4 Eliminating redundant arcs

I have not been able to prove that these rules eliminate all redundant arcs. I
will have to leave the quest for a perfect algorithm or set of rules to a future
project.

8.4.2 Verifying arcs

A similar, but still very different approach that can be used concerns the ver-
ification of conditions whose arcs are not redundant. The problem with this
approach is that it is risky to use it to actually eliminate arcs. The principle is
that a 'suspect’ arc can be examined by trying to prove that it is not redundant.
If this fails, the arc is probably redundant. But there is of course a possibility
that you only failed to prove something that is indeed provable, so you cannot
be completely sure that such an arc can be eliminated.

This principle should only be used when it might be easier to prove that an
arc is needed than it is to see that it is redundant, and the user desperately
wants the arc to be redundant — for instance because the arc weight of the arc
is very hard to calculate or approximate. If the user can be convinced that the
arc is definitely needed, he or she can at least stop trying to prove that it is
redundant and focus on gathering the needed data for its weight.

Conditions that generate loops seem hard for the algorithm of Section 8.3.8
to analyze. The necessity of these arcs is fairly easy to verify (for arcs that are
indeed not redundant). A relevant loop-condition ¢((z;,n + 1) < (z;,n)) gives
rise to a bowed arc that starts and ends at the same node, implying that a train
about to start its movement z; of cycle n + 1 might need to wait for the train
undergoing movement z; of cycle n to move out of its way.

T assume that the following is true, without attempting to prove it. If the cy-
cle time of a traffic pattern is computed without taking a specific loop-condition
on a movement x; into consideration, and the cycle time can be shown to be
independent of, say, the durations of a possible stop by the train undergoing
movement x;, the missing loop-condition ¢((z;,n + 1) < (z;,m)) is obviously
necessary for the computation of capacity. Otherwise, it would be possible to
let the duration of a stop by x; exceed the cycle time, which is of course absurd.

Generally, if a certain condition is excluded from the set of sufficient condi-
tions as output from the algorithm, and this makes the cycle time independent
of the duration of any possible stop by any train in the traffic pattern, the arc
representing the condition is not redundant. This is unfortunately not often as
easily shown as with the loop-condition in the example above, but is nevertheless
true.

86

9 ANALYSIS AND CONCLUSIONS

9 Analysis and conclusions

The method that Ekman and Kreuger have suggested can be used to assess
capacity on a railway network. It is analytical and provides exact answers with
respect to its input; there are no indeterministic aspects involved. Full-scale,
practical use of the method will not be utilized until there exists some kind of
computerized tool based on the method.

I have implemented the part of the method that performs the final computa-
tion of the cycle time of the traffic pattern, that is, the inverse of the capacity. I
have deliberately made the code easy to modify and optimize if this is desirable
before it is eventually incorporated in a future tool for capacity assessment; the
documentation of the code as given in this report is thorough.

The problem of translating an informal definition of a traffic pattern into a
condition graph suitable as input to my implementation showed to be harder
than T first thought. As I have mentioned, the algorithm given in Section 8.3.8
outputs arcs that represent a set of sufficient conditions that enables the com-
putation of capacity. This means that if all arcs are given their appropriate
weights, the result is a condition graph that can successfully be used as input
to the maximum mean cycle algorithm, DG1, given in Section 7.2.

Depending on what data of traversal times of trains and similar information
that is available, it might be valuable to prune the arc sets (bowed and straight
arcs) output by the algorithm further. Some redundant arcs can luckily be
eliminated quite easily, and this is illustrated in Section 8.4.1.

I have not been able to find a grammar that incorporates every aspect of
finding the smallest possible set of sufficient conditions. This was not my as-
signment, but I admit that it was what I aimed at. I cannot be sure of how
many different kinds of redundant arcs my algorithm and the extra rules given
in Section 8.4.1 miss. With ad hoc reasoning, any traffic pattern of reasonable
size can be carefully examined and verified by hand. I have carried out numer-
ous such verifications, and they have all shown that my algorithm and extra
rules seem to eliminate at least almost all redundant arcs.

The major result accounted for in this report is without doubt the approach
of finding a suitable input for the algorithm that performs the cycle time compu-
tation. It is not perfect, but definitely seems good enough. With it, Ekman and
Kreuger’s method should be of great use if a tool that uses it is appropriately
designed.

87

REFERENCES REFERENCES

References

[1] Erik Aurell and Jan Ekman. Kapacitet hos enskilda bangardar. Technical
Report L4i-99/341, Industrilogik, 1999. FoU-rapport, Banverket.

[2] F.L. Baccelli, G. Cohen, G.J. Olsder, and J.-P. Quadrat. Synchronization
and Linearity: An Algebra for Discrete Event Systems. Wiley: Chicester,

1992.
[3] Jorgen Bang-Jensen and Gregory Gutin. Digraphs: Theory,
Algorithms and Applications. Springer-Verlag, London, 2000.

http://www.imada.sdu.dk/Research/Digraphs/.

[4] Norman L. Biggs. Discrete Mathematics. Oxford University Press, New
York, revised edition, 1989.

[5] Peter Jephson Cameron. Combinatorics: topics, techniques, algorithms.
Cambridge University Press, Cambridge, U.K., 1994.

[6] Anne Churchod and Luigi Lucchini. Capres, general description of the
model. Online publication, June 2001. Swiss Federal Railways, document
LITEP 788/5_e.

[7] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cy-
cle algorithms for system performance analysis. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 17(10):889-899, 1998.

[8] Robert-Jan van Egmond. Railway Capacity Assessment, an Algebraic Ap-
proach. Number S99/2 in TRAIL Studies in Transportation Science. Delft
University Press, Delft, The Netherlands, July 1999.

[9] Jan Ekman and Per Kreuger. En analytisk metod for utredning av kapacitet
vid signalprojektering. Technical report, SICS AB, Kista, 2003. FoU-
rapport, Banverket.

[10] R.M.P Goverde and G. Soto Y. Koelemeijer. Performance Evaluation
of Periodic Timetables: Theory and Algorithms. Number S$2000/2 in
TRAIL Studies in Transportation Science. Delft University Press, Delft,
The Netherlands, September 2000.

[11] A.F. de Kort, B. Heidergott, R.J. van Egmond, and G. Hooghiemstra.
Train Movement Analysis at Railway Stations: Procedures € FEvaluation
of Wakob’s Approach. Number S99/1 in TRAIL Studies in Transportation
Science. Delft University Press, Delft, The Netherlands, February 1999.

[12] Harald Krueger. Parametric modeling in rail capacity planning. In P.A.
Farrington, H.B. Nembhard, D.T. Sturrock, and G.W. Evans, editors, Pro-
ceedings of the 1999 Winter Simulation Conference, pages 1194—2000, 1999.
http://www.informs-cs.org/wsc99papers/173.PDF.

88

REFERENCES REFERENCES

[13] Robert H. Leilich. Application of simulation models in capac-
ity constrained rail corridors. In D.J. Medeiros, E.F. Wat-
son, and M.S. Carson, J.S.and Manivannan, editors, Proceedings

of the 1998 Winter Simulation Conference, pages 1125-1133, 1998.
http://www.informs-cs.org/wsc98papers/153.PDF.

[14] Dick Middelkoop and Michiel Bouwman. Simone: Large scale train network
simulation. In B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer,
editors, Proceedings of the 2001 Winter Simulation Conference, pages 1042—
1047, 2001. nhttp://www.informs-cs.org/wscOlpapers/140.PDF.

[15] Thomas Sj6land. Course notes for logic programming, 2g1121. Laboratory
of Electronic and Computer Science, Kista, August 2001.

[16] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Program-
ming Techniques. MIT Press series in logic programming. The MIT Press,
Cambridge, Massachusetts, second edition, 1986. Fourth printing.

[17] Stratec. Railcap, a computer tool for studying capacity problems of railway
networks. Online publication. http://www.stratec.be/PlanGBrailcap.htm.

[18] Sicstus prolog - association lists. Website.
http://www.sics.se/sicstus/docs/3.7.1/html/sicstus_16.html#SEC190.

[19] The world of railway Signalling. Website. http://www.railwaysignals.com/.

[20] Peran van Reeven, Jan-Jaap de Vlieger, Robert Offermans, Hen-
ning Tegner, Peter Danzer, Dimitrios Tsamboulas, Yves Putallaz, José
Viegas, Rosario Macério, Fernando Crespo, Marques Carlos, Susana
Neves, Dominique Bouf, Pierre-Yves Peguy, Kjell Werner Johansen,
and Bjgrnar Andreas Kvinge. State of the art in railway infras-
tructure capacity and access management. Deliverable 1 of IM-
PROVEA tools for RAILway capacity and access management, April 2002.
http://www.tis.pt/proj/improverail/Downloads/D1Final.pdf.

[21] José Viegas, Rosario Macéario, Fernando Crespo Dui, Peran van Reeven,
Robin Hirsch, Will Adeney, Richard Anderson, Paola Cossu, Dimitrios
Tsamboulas, Antoaneta Ormandjieva, Robert Rivier, Yves Putallaz, Hen-
ning Tegner, and Kjell Werner Johansen. Inception report. Deliverable 0 of
IMPROVEA tools for RAILway capacity and access management, October
2001. nttp://www.tis.pt/proj/improverail/Downloads/DOFinal.pdf.

89

