
Physics Skill Manual

R. Dawson Baker



Copyright c© 2013 R. Dawson Baker

PUBLISHED BY PUBLISHER

BOOK-WEBSITE.COM

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the “License”).
You may not use this file except in compliance with the License. You may obtain a copy of the License at
http://creativecommons.org/licenses/by-nc/3.0. Unless required by applicable law or agreed
to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.

First printing, March 2013

http://creativecommons.org/licenses/by-nc/3.0


Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Contact Information 7

1.2 Resources 7

2 Typesetting documents in LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Getting LATEX – compilers and editors 10

2.2 Getting started immediately 11
2.2.1 A basic document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Commands and environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 How the existing rules work 12
2.3.1 The structure of a LATEX document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Anatomy of our basic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Basics continued: text & math modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Getting more packages 15

2.5 More basics: Tables, Figures and References 15
2.5.1 To make a table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 To add figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Templates in LATEX 17

3 More advanced features of LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Creating new commands and environments 19
3.1.1 Simple Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Functions with Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Installing REVTEX 19



4 The Basics of Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Experimental measurements and scientific results 21
4.1.1 Accuracy and precision: stating scientific results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Kinds of error 22

4.3 Error propagation 22
4.3.1 The concept of estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 How to estimate error in an algebraic formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 With statistical uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Fitting models to data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Curve-fitting concepts 27

5.2 The basics of linear least squares fitting 27

5.3 The linear fit (Part I): OLS regression with one dependent variable 28
5.3.1 Finding fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Finding uncertainties in fit parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 The linear fit (Part II): using error bars in a linear fit (WLS or χ2 regression) 30
5.4.1 Matrices help to make solving fits faster (especially WLS) . . . . . . . . . . . . . . . . . . . . . . 31
5.4.2 Uncertainties in χ2 fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Nonlinear fitting 32
5.5.1 Nonlinear fitting guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.6 Evaluating Fits – reduced χ2 35

6 Mathematica, MATLAB, and Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Computational tools in physics 37

6.2 Learning these programs fast 37

7 Using Mathematica for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 Running commands 39
7.1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2 Loading data 40

7.3 Plotting numerical data 41
7.3.1 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Tables and Grids 43

7.5 Fitting arbitrary functions to data 44

8 Using MATLAB for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.1 Introduction 45
8.1.1 Scripts – what makes MATLAB so popular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1.2 Syntax & functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.3 Loading data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.4 Plotting functions and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



8.1.5 Saving pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1.6 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Books 51

Articles 51





Contact Information
Resources

1 — Introduction

This document was originally created by R. Dawson Baker as a basis for the skills students need to excel
in the “Modern Lab” or “Junior Lab” PHY 353L course at the University of Texas at Austin. It is currently
maintained by the local chapters of the Society of Physics Students and Sigma Pi Sigma, the physics
honors society.

1.1 Contact Information
Find an error in this document? Or something that needs to be updated? Instructions unclear? Code not
compiling? Let us know! You can email the officers of SPS at spsofficers@gmail.com or express your
concerns to your TA and they will pass them along.

1.2 Resources
The Society of Physics Students maintains some additional resources that may be found at http://www.
ph.utexas.edu/~sps.

In particular, a handy template for use in the Modern Lab (originally created by UT Physics stu-
dent Johnathan Blair) can be found at http://www.ph.utexas.edu/~sps/resources/Modern_Lab_
LaTeX_Template.tex

http://www.ph.utexas.edu/~sps
http://www.ph.utexas.edu/~sps
http://www.ph.utexas.edu/~sps/resources/Modern_Lab_LaTeX_Template.tex
http://www.ph.utexas.edu/~sps/resources/Modern_Lab_LaTeX_Template.tex




Getting LATEX – compilers and editors
Getting started immediately

A basic document
Commands and environments

How the existing rules work
The structure of a LATEX document
Anatomy of our basic example
Basics continued: text & math modes

Getting more packages
More basics: Tables, Figures and Refer-
ences

To make a table
To add figures
References

Templates in LATEX

2 — Typesetting documents in LATEX

LATEX(pronounced “lah-tech” or “ lay-tech”) is a mark-up language that allows an author to specifically,
precisely and easily specify how layout and content are combined. It is based on Dr. Donald Knuth’s
TEXtypesetting system with two goals in mind:

1. It should be easy a require only a “minimal amount of effort” for the author to produce high-quality
documents, and

2. It should run on every operating system.

Both these goals have been essentially accomplished, resulting in wide-spread use among the scientific
community. At this point – while there are alternatives for typesetting scientific documents – LATEX can
easily be considered a basic tool that every physicist should get to know well. Besides making equations
look good, the mark-up language is commonly used for:

1. Making digital and hard-copy media. This book itself was typeset in LATEX.
2. Making navigable documents by using hyperlinks in a pdf. This means that you can click on

certain words in the document and it will take you to another place in the document, another
document, or even a website.

3. Making high quality documents whose fonts and images can be scaled to be printed on many
different kinds of printers.

These features, combined with the fact that the language is open-source and free to use, have made LATEX
a staple in the world of publishing and scientific journals. For instance, many scientific journals prefer or
exclusively accept documents in LATEX code because it is so easy to get to a finished product, and LATEX
documents contain all the information necessary to render the product regardless of platform. If you are
considering submitting something to the ArXiv (a well known open-access database for preprints) at some
point, you should know LATEX . While you could get by without it, very few people do.

To help you get to know LATEX, this book will focus on three things: (1) explaining the basics
in what is hoped is a concise way, (2) pointing you towards good online resources on the subject
if you’re confused and (3) (if you’re up to it) helping you to get started with REVTEX, a package
tailored specifically to the needs of physicists.



10 Typesetting documents in LATEX

2.1 Getting LATEX – compilers and editors
To use LATEX, you need to (1) download the compiler for your operating system, then (2) download a
LATEX editor that you like. The compiler is the program which does the actual typesetting by creating a
.pdf file, and it is different for every operating system:

1. Microsoft Windows =⇒ MikTeX: http://miktex.org/
2. Mac OS =⇒ MacTeX: http://tug.org/mactex/
3. Linux =⇒ look for the texlive package in your package manager.

There are many LATEX editors, each of them has its own advantages and disadvantages. Some of the
favorites at UT are 1:

TeXShop
M

Texmaker
L,M,W

TeXworks
L,M,W

Emacs
L,M,W

Latexian
M

Vim
L,M,W

TeXnic
Center
W

Notepad++
W

TeXstudio
L,M,W

LATEX Editor

0

1

2

3

4

5

6

7

8

St
ud

en
ts

Popular LATEX Editors

Figure 2.1: A Facebook survey was taken of other UT SPS students’ LATEX editor preferences. The plot
above documents the results. Under each editor name, the italicized capital letters show which operating
systems the programs are compatible with: L for Linux, M for Mac OS X, and W for Windows. If you
choose one of these, you are most likely to find someone else who knows about the editor you’re using (in
case you get lost). Note: Emacs, Vim, and Notepad++ are text editors that can be modified to run LATEX
code. If you’re a serious programmer you may already know what these are. If you’re new to LATEX , it
might be best to try something else first.

A good compare and contrast of some of the different LATEX editors out there can be found at
http://en.wikipedia.org/wiki/Comparison_of_TeX_editors

1This book was typeset using Texmaker. The hotkeys and structure manager came in very handy when working through a lot
of code and trying to manage multiple chapters.

http://miktex.org/
http://tug.org/mactex/
http://en.wikipedia.org/wiki/Comparison_of_TeX_editors


2.2 Getting started immediately 11

2.2 Getting started immediately

This section is intended to be short and the absolute minimum to get you started with writing a paper in
LATEX. If you are more interested in a comprehensive introduction you should certainly check out these
two much more complete guides:

The LATEX Wikibook Found at http://en.wikibooks.org/wiki/LaTeX, this is probably the best
organized and easiest to navigate website. It is slightly more encyclopedic and useful for trou-
bleshooting.

The Not So Short Introduction to LATEX2e If you’re interested in having a .pdf or book reference,
http://tobi.oetiker.ch/lshort/lshort.pdf is a great document that has a lot in common
with The LATEX Wikibook, but is typeset entirely in LATEX and has a bit more of an attitude.

Both of these references are very similar, and are very enlightening. For a more full understanding of
LATEX (it would be senseless to try to compete with them) you should definitely spend a few hours reading
through them. To get writing immediately refer to the document and explanation below.

2.2.1 A basic document

An example of a simple yet functional basic document that has title, abstract, some organization and an
equation:

% This is a comment because nothing after a % sign can be displayed.
\documentclass{article}
\title{This is a title}
\author{Name}
\date{\today}

\begin{document}
\maketitle
\begin{abstract}
This is my abstract
\end{abstract}
\begin{section}{This is a section}
\begin{subsection}{This is a subsection}
Here is text and below is an equation:
\begin{equation}
\hat H = - \frac{\nabla^2}{2} - \frac{1}{x}
\end{equation}
\end{subsection}
\end{section}
\end{document}

This code needs to be run for the compiler to yield a document. When run in a LATEX editor the code
produces output that looks like this:

http://en.wikibooks.org/wiki/LaTeX
http://tobi.oetiker.ch/lshort/lshort.pdf


12 Typesetting documents in LATEX

2.2.2 Commands and environments
To understand how this file made it to output, let’s look at the general features of the file. First of all,
notice that every word that has a \ in front of it is not displayed. This is because commands in LATEX
start with a backslash. Commands represent blocks of code in TEX , the underlying language that is run
to create and render all of the typeset objects that you see in the output document. Second, notice that
every time there is a command of the form \begin{ environment }, there is another of the form \end{
environment } some time later. This is because these commands delimit ( set the bounds of ) blocks of
code called “environments". Environments are spaces in which all code is interpreted in a specific way.
Some commands and environments therefore only make sense or can be used within certain kinds of
environments. By thinking in terms of commands and environments, LATEX translates a few words into a
lot of specific TEX commands that we would really rather not see (because they are incredibly tedious).
This is why the system is so powerful: you only need to give LATEX your content, and it does all the
formatting according to rules you can understand and tinker with. Learning how to use the system well
is therefore really just a matter of understanding how the existing rules work and how new rules
are made.

2.3 How the existing rules work

The undisputed best way to understand how the rules of LATEX work is to actually try to write some files.
While this is true, it is handy to know about the basic structure and conventions of a .tex document when
searching for documentation and for imitating examples found online. This section will therefore cover
the structure of LATEX through the lens of the basic document above.

2.3.1 The structure of a LATEX document
Every document starts by choosing what class of document it is (is it an article? a letter? a book?) . This is
done in the example with the \documentclass{article} command. When LATEX sees this command it
looks for a specific .cls file that has all of the basic formatting information. In the example, it looked for
article.cls and obtained valuable information like the paper size, font sizes, and other environments
and commands used in the document. This roughly constitutes the ‘lowest-level’ of code, and contains a
lot of TEX code. You do not want to mess with these class files unless you have a lot of practice and no



2.3 How the existing rules work 13

existing project can be modified to suit your needs (very rare).
In general, the class file will also load packages in the .sty file format. These are higher level files that

are usually task-specific and contain even more commands and environments. For instance, hyperref is a
package which allows for hyperlinks to websites, files, or other parts of the document. Packages are loaded
using the \usepackage{} command (e.g. \usepackage{hyperref}) between the \documentclass{}
command and \begin{document} in what is referred to as the top matter or preamble. The preamble is
very important because it is where all of the extra functions you might want to use are added. For instance,
if you want to change the way the title formatting looks or want to define a function to get rid of the
tedium or repeating code, the preamble is the place to put this code.

Once the compiler sees \begin{document} the preamble is over and everything it reads is doc-
ument content – no more commands and environments may be added or defined. When it gets to
\end{document}, that’s the end of the file and the LATEX compiler will not evaluate anything past it.

2.3.2 Anatomy of our basic example

Commands used in the example
\documentclass[]{} loads the class file for the document which contains the basic informa-

tion (commands and environments) the program needs to start type-
setting your code and is at the start of every LATEX document. This ba-
sic information is information like what size paper you’re using, whether
you’re writing something long like a book or short like a letter, and
whether you’ll be using a lot of complicated symbols. All these things
have an impact on what kinds of tools the program will need to do the
job correctly. In general, the class file will therefore have options that
you put in the [] for these kinds of things and so it will look more like
\documentclass[11pt, letterpaper]{article}.

\title{} stores the title information so that the \maketitle command can use it
later.

\author{} stores the author information so that the \maketitle command can use it
later.

\date{} stores the date information so that the \maketitle command can use it
later.

\today retrieves the current date and outputs according to a certain format. This
command can be put anywhere that text can be placed.

\maketitle renders a title using information from \title{}, \author{}, \date{}

\hat puts a hat symbol over the next symbol in the equation : e.g. α̂ , 3̂, r̂

\frac makes a fraction with the first {} defining the numerator, and the second {}
defining the denominator

\nabla makes a del (nabla) symbol that looks like ∇



14 Typesetting documents in LATEX

Environments used in the example
document contains the contents of the document. This means it contains the other environments.

It also means that anything after \end{document} will not be typeset.
abstract interprets its contents as text that contains the abstract of an article. As an environment

it formats the contents to look a certain way: changes the margins and font to look
like an abstract.

section interprets its contents as body material and makes a title for the section based on
the number of sections before it. The environment assumes that the first {} it sees
contains the title for the section. Therefore, since no section preceded the one in the
example, the section was formatted as ‘1 This is a section’.

subsection interprets its contents as body material and makes a title for the subsection based on
the number of subsections before it and the section it’s in.

equation interprets its contents in math mode. This means that it interprets text as a string of a
variables unless it is a command like \hat or \frac{}{}.

2.3.3 Basics continued: text & math modes
In text mode, you delimit the math environment by using $ signs. This means that whenever you want to
put in a symbol, subscript, or equation into a sentence you can easily do that by wrapping the content in
dollar signs.

Code Example 2.1 — Math in text mode.

Einstein’s famous equation $ E = mc^2$ was not rigorously proven by
Einstein, but rather by the mathematician Felix Klein.

produces

Einstein’s famous equation E = mc2 was not rigorously proven by Einstein, but rather by the
mathematician Felix Klein.

Some environments, like the equation environment we saw before, will be in math mode automatically.
If you want to put text inside an equation, use the \text{} or \mbox{} commands to get into text mode.

Code Example 2.2 — Text in math mode.

\begin{equation}
\Delta E = E_{\text{Final}} - E_{\mbox{Initial}}
\end{equation}

produces



2.4 Getting more packages 15

∆E = EFinal−EInitial (2.1)

As you can see, both \text{} or \mbox{} are effective in putting text into the equation, but only
\text{} properly does subscripts and superscripts.

Whichever mode you’re in, extra spaces and extra line breaks are ignored. This helps reduce syntax
ambiguity and helps writers visually organize separate content in the .tex without impacting how the file
output looks when file is run.

2.4 Getting more packages
As we’ve seen so far, LATEX is just a way of automating the underlying TEX language by use of commands
and environments that summarize a lot of dirty work we don’t want to do. There are a lot of writers over
the years who have decided do more work to create and increasing number of packages full of more
commands and environments to make their lives easier. The good news is that since LATEX is open source,
everyone can use and has access to those packages. These packages are used for inserting pictures, doing
complicated referencing, and even making animations. This is partially why LATEX is so great for scientists
– it’s open, automates repetitive tasks, and continuously improves.

Since you probably have to make use of these packages, you will have to use the \usepackage
command mentioned briefly in section 2.3.1. When you installed LATEX however, you might not have
installed all the packages you need. This is natural and unavoidable since new packages are written
every day. To get at these packages though, the easiest thing to try first is just to use the by far is to use
\usepackage command. If you have a good package manager, it will go find the package for you and
install it. If you do not have such luck, you can access the package managers directly:

1. MiKTEX’s package manager is called MiKTEX Package Manager (MPM) appropriately enough.
You can get to it through the start menu (it’ll say “Browse Packages”) on PC.

2. MacTEX’s package manager is called TEX Live Utility, and can be accessed through the Applications
folder on a mac.

2.5 More basics: Tables, Figures and References
Now that you know how to write math in text mode and text in math mode, you are essentially ready to
write papers. The three most common things you’ll probably want to know about after that are (1) how to
make tables, (2) how to put figures in a document and (3) how to reference things (other papers, figures,
equations, etc.). For this you may need to use some new packages as explained in

2.5.1 To make a table
Look at the code examples at http://en.wikibooks.org/wiki/LaTeX/Tables#Basic_examples.
The gist of it is that you have to give LATEX some instructions about how to align and seperate the columns,
and tell it where each cell is (using the & alignment character) and where each line ends (using \\ ). You
can divide up rows using the \hline command.

2.5.2 To add figures
In LATEX, you either import some picture file by grabbing it with some code, or you create a picture with
some code. The most common thing physicists do is import picture files, since making pictures is very
complicated. The easiest thing to do to import pictures is to make a folder with the picture files in it, and
then put it in the same folder as your .tex file. That way, wherever the folder containing your document
goes, your pictures will follow.

http://en.wikibooks.org/wiki/LaTeX/Tables#Basic_examples


16 Typesetting documents in LATEX

There are a few picture formats you can use, but you want to use .pdf or .eps since they are vector
graphics and don’t look cruddy when you change their scale factor.To learn how to use figures, read
http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions and use one of their
examples.

R One of the most common problems people have with figures is getting them to go in the right place.
LATEX by default searches for a good place to put it based on the density of text you have, but you
can make it bend to your will by using placement specifiers:
http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions#placement
Basically, with the float package you can tell LATEX to put the figure exactly where you say.
Sometimes this doesn’t look so great, since the spacing isn’t optimized for word density, but
sometimes it’s necessary.

2.5.3 References
One thing LATEX makes easy for scientists is citing references, making footnotes2, referring to equations
and figures in their documents, and referring to websites.

Referencing other parts of your document
The most general and versatile command for labelling things for referencing is \label{marker}:
http://en.wikibooks.org/wiki/LaTeX/Labels_and_Cross-referencingWith this labelling com-
mand you can label just about anything. To use it all you have to do is give whatever you’re labelling a
name (a marker) and then use the \ref{marker} to reference it later. For instance if you have an equation
below:

Ĥcore(1) =−1
2

∇
2
1−∑

α

Zα

r1α

(2.2)

You can label it like so:

\begin{equation}\label{1ecorehamiltonian}
\hat H^{\text{core}}(1) = -\frac{1}{2}\nabla^2_1 - \sum_\alpha \frac{Z_\alpha}
{r_{1\alpha}}
\end{equation}

Now whenever you say \ref{1ecorehamiltonian} anywhere in text mode, “2.2” shows up. With
this method, no matter how many equations you have, the equation number will be matched to the
reference and you won’t have to go through and tweak the numbers.

R When you label a figure, be sure to put the label command after the \includegraphics{} com-
mand, or else the numbers will be screwed up!

Citing other authors
Citing authors can be complicated, but the LATEX wikibook online has very good coverage of this topic:

1. If you’re looking for something easy, use the thebibliography environment found at
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management#Embedded_system

2. If you’re looking for a professional solution, use BibTEX
http://en.wikipedia.org/wiki/BibTeX.

2Making footnotes is as easy as putting \footnote {some text} exactly where you want the footnote to show up on the
page.

http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions
http://en.wikibooks.org/wiki/LaTeX/Floats,_Figures_and_Captions#placement
http://en.wikibooks.org/wiki/LaTeX/Labels_and_Cross-referencing
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management#Embedded_system
http://en.wikipedia.org/wiki/BibTeX


2.6 Templates in LATEX 17

2.6 Templates in LATEX
The easiest way to get started with a new proiect is to download an appropriate template and to experiment
with it. A very basic template for writing papers was written by Jonathan Blair and can be found at the
SPS website – http://www.ph.utexas.edu/~sps/. More complicated templates can be found all over
the internet.

Template websites
http://publish.aps.org/revtex The standard class file for in publishing
http://www.latextemplates.com/ Best for books and modern styling.
http://www.howtotex.com/templates/ More templates – more of the same
https://www.sharelatex.com/
templates/

Great assortment of article styles

http://www.ph.utexas.edu/~sps/
http://publish.aps.org/revtex
http://www.latextemplates.com/
http://www.howtotex.com/templates/
https://www.sharelatex.com/templates/
https://www.sharelatex.com/templates/




Creating new commands and environ-
ments

Simple Substitutions
Functions with Parameters

Installing REVTEX

3 — More advanced features of LATEX

3.1 Creating new commands and environments
Since LATEX is a programming language, you can make new commands.

3.1.1 Simple Substitutions
Use the

\def\function_name{value}

command in the preamble to define a simple substitution. Anywhere LATEX sees

\function_name

, value will appear.

3.1.2 Functions with Parameters
Use the

\newcommand{\cmnd_name}[num_vars]{...#n...}

in the preamble. Again, \cmnd_ name is the new function name, but you can tell LATEX how many
variables you want, then use them to create a full“macro" to substitute, using # n to get the value of the
n-th variable.

� Example 3.1 — Dirac Notation.
Say for instance you were doing a lot of quantum mechanics and you wanted to be able to write bras, kets,
and brakets very simply. You might want to do this since you might like your equations to be easy to read
when you write them and writing it out is somewhat verbose. To make a braket command, you could type.

3.2 Installing REVTEX
By now, if you have written a bit of code and browsed the wikibook, you probably have a pretty basic
and functional understanding of LATEX and can format papers in the article class pretty well. To make
it easier for physicists to write papers and to standardize formatting in the APS and AIP journals, APS
has released a package they call REVTEX. The samples in this public package both look great, and have



20 More advanced features of LATEX

excellent documentation embedded in the documents. To install:

1. Look in your package manager (section 2.4) and install REVTEX. It probably shows up in your
package manager as revtex4-1.

2. Go to the SPS webpage and download the UTSPS REVTEX Sample Pack.
3. When you unzip this file, it will contain three folders

aapm contains a sample aapmsamp.tex and a template aapmtemplate.tex from the American
Association of Physicists in Medicine.

aip same documents instead from the American Institute of Physics
aps same documents instead from the American Physical Society.

After you are done unpacking, these files can be excellent references for producting high-quality reports
and can be very valuable all-encompassing references if you are just writing a paper. The wikibook is a
great way to learn LATEX in general, but these official APS and AIP documents are excellent templates for
PHY 353L or PHY 474.



Experimental measurements and scientific
results

Accuracy and precision: stating scientific
results

Kinds of error
Error propagation

The concept of estimator
How to estimate error in an algebraic for-
mula
With statistical uncertainties

4 — The Basics of Error Analysis

There are many books on error analysis, but no physics research guide would be complete without at least
an introduction to errors and experimental uncertainty. If you’re interested in a more in-depth approach,
some good references with exercises are:

1. Dealing with Uncertainties: a Guide to Error Analysis by Manfred Drosg, 2007 – more of a
‘philosophically correct’ approach

2. A Student’s Guide to Data and Error Analysis by Herman J. C. Berendsen, 2011 – a more instructive
and concise approach

3. Data Reduction and Error Analysis for the Physical Sciences by Bevington & Robinson, 2003 – a
more encyclopedic approach

4.1 Experimental measurements and scientific results

“[T]here can be no scientifically relevant data without uncertainty”
– M. Drosg (2007, pg. 1)

The goal of error analysis is to understand exactly how accuracy and precision affect the result of an
experiment, and to use this information to devise better experiments and avoid fallacious conclusions.
Understanding error is essential for any physicist who wants to test the theory in the “real world”.

In a perfectly accurate and precise experiment, there is no error analysis to speak of. Since there are
no perfectly accurate or precise scientific instruments, a large part of the validity of experimental work
revolves around quantifying how inaccurate and imprecise experimental observations are.

There is no such thing as an exact number in science 1, so it is important to know how to represent
experimental results in terms of accuracy and precision.

4.1.1 Accuracy and precision: stating scientific results
The difference between accuracy and precision can be portrayed well by the statement:

Accuracy is how close measurements of a physical quantity come to predicting the true value,
whereas precision is how close measurements of a physical quantity are to eachother.

1For good philosophical discussions of uncertainty in science see Karl Popper’s The Logic of Scientific Discovery (2002) or
M. Drosg’s Dealing With Uncertainties (2007)



22 The Basics of Error Analysis

In an experiment, results must always be written as a value with an associated uncertainty (value
± uncertainty). The value, if you compare it to the accepted value or some other measurement, will
give you some idea of your accuracy – the uncertainty will tell you your precision. One of the most
important habits to get used to is quoting your error and precision in a way that makes sense. Writing
3.452673± .1 or 3.5± .128619 makes no sense – the right number of significant digits must be used to
convey to what extent you know your accuracy and your precision. Neither of these expressions works
because the first (3.452673± .1) has useless digits in the accuracy because the precision is too low and
the second (3.5± .128619) gives useless digits in the precision because the accuracy isn’t high enough for
the millionths place precision to be useful.

A good result has an appropriate number of significant figures in the value and the uncertainty that
makes every digit of the result useful. When quoting uncertainty, the default is the standard deviation or
root-mean-square error of the estimated probability distribution.

� Example 4.1 An abstract reads “We measure the frequency of oscillation of a comatose squirrel
strapped a swingset and calculate a value of ω0 = 1.34± 0.07 Hz. This is consistent with classical
predictions..."

Here, the correct interpretation of±0.07 is that it is the standard deviation (in Hz) of a set of measured
frequencies.

4.2 Kinds of error

In experimental, there are two basic categories of error:
1. Systematic Errors: These are reproducible (but may be time dependent, watch out!) errors that

cannot be reduced through statistical analysis. Common instances of this are calibration errors and
false assumptions about the operation of the apparatus. These errors cannot be eliminated as there
is always uncertainty in the system specificied that yields the data.

2. Statistical Errors (Random Errors): These are errors that can be accounted for using statistical
analysis. The typical example is a measurement which fluctuates in a gaussian or normal way about
some mean. It is impossible to eliminate these errors but it is theoretically always possible to make
these errors smaller than the systematic error with enough data. At some point the uncertainty as to
what ‘identical conditions’ are dominates.

Roughly speaking, systematic error has to do with accuracy and statistical error has to do with
precision. Of course this is not necessarily the case: there can be nonisolatable systematic errors which
yield higher uncertainties in your analysis, as well as statistical effects which

4.3 Error propagation

4.3.1 The concept of estimator

In experiment, there is a crucial difference between the number that you calculate from some statistical
formula, and the parameter you’re estimating by using that formula. Because there are no exact numbers
in experiment, there will necessarily be some uncertainty as to what the “true” value is. It is so important
not to get confused between true parameters and estimates that in the following sections and in the next
chapter, I denote estimates with hats ˆ and leave the true parameters alone.

This is common practice in statistics, and for a proper understanding of the formulae in physics it is
essential. For instance, the definition of variance σ2

a is that in equation 4.7, but as experimenters we are
limited to using an estimator of that value (σ̂2) given in equation 4.10. Other authors sometimes choose
s2

a to denote “sample variance”, but I find the latin-to-greek convention there somewhat obfuscating. For
every true parameter x that exists in a theoretical model, I call the formula for it that uses experimental
data “x̂, the estimator of x."



4.3 Error propagation 23

4.3.2 How to estimate error in an algebraic formula

R The equations in this section are convenient for those cases in which you are either:
1. forced to estimate uncertainty without the use of statistics
2. sure that the uncertainty in your input is approximately the same over the range over the range

of your dataset

Whenever you have a variable which is equal to some formulation of measured variables ( an equation,
for instance P = nRT/V ), the deviation in that variable (P) will depend on the deviation in the other
variables from their expected values. That is, if each of the variables in a formula have some uncertainty
to them, the result will also have an uncertainty. Remember that in an experiment this is always true since
whatever you are calculating is by definition a formulation of your measurements and all measurements
have uncertainty if they are scientifically relevant. Under the assumption that the function is well-behaved
(continuous and differentiable) in the region of parameters you’re looking at, a simple approach to this
deviation is simply to use a Taylor expansion of the formula and propagate error.

Say for instance that you have some function f (a,b) of some parameters a and b, which have errors
which you expect to be about δa and δb large, respectively. The resulting deviation can typically be
represented well by using a Taylor expansion:

|δ f (a,b)|=
∣∣∣∣∂ f
∂a

δa
∣∣∣∣+ ∣∣∣∣∂ f

∂b
δb
∣∣∣∣ (4.1)

This equation serves as a good estimate of maximum error or deviation, but it is not a good estimate
of uncertainty. This is because the equation estimates the deviation of output based on deviation in input.
Since measures of uncertainty are quoted in standard deviations and measures of statistical dispersion, an
estimate of ‘maximum deviation’ is not sufficient and will often overstate the actual error. As an example
of this, consider the function f = αa+βb, where α and β are constants:

δ f =
∣∣∣∣∂ f
∂a

δa
∣∣∣∣+ ∣∣∣∣∂ f

∂b
δb
∣∣∣∣= |αδa|+ |βδb| (4.2)

Now let’s suppose that these δa and δb were actually fairly close to being good descriptors of standard
deviation – that is, σa ' δa. Assuming that the data in a and b were independent, the error would be:

σ f =

√(
∂ f
∂a

)2

σ2
a +

(
∂ f
∂b

)2

σ2
b =

√
α2σ2

a +β 2σ2
b (4.3)

This is substantially different than eq. 4.2, since
√

x2 + y2 < x2 + y2 for any two positive x and y. In
short, eq. 4.2 is only a conservative bound for error which serves as a starting point in an experiment or
calculation.

In summary, if you have a good estimate of the uncertainties in a function input, use (4.2) if you are in
a rush and (4.3) if you want to be thorough and have a reason to believe the input errors should not be
correlated.

4.3.3 With statistical uncertainties
Often, it is necessary to look at errors statistically. This is especially true fluctuations in the measured
values vary beyond uncertainty for what are ostensibly the same experimental conditions. While it is
often possible to estimate uncertainties using device specifications there is no surer method of obtaining
information about random error than by repeating an experiment and getting more data.

In the notation here, ā denotes the mean ∑ai/N, and all partial derivatives are evaluated at the mean
values (ā and b̄). It is important to keep in mind that using the statistical method of estimating uncertainties,
σ2

f is calculated for a single point in the parameter space which we assume is (ā, b̄)



24 The Basics of Error Analysis

To calculate σ2
f , instead of using δa we now just say that the deviations fi− f̄ are related by the same

Taylor expansion to the deviations in the input variables (ai− ā and bi− b̄) :

fi− f̄ ' ∂ f
∂a

(ai− ā)+
∂ f
∂b

(bi− b̄) (4.4)

Since standard deviations, means, and other standard statistical results are built out of these deviations,
such an expansion forms the theoretical basis for all error propagation statistics. Once a distribution of
devations fi− f̄ over the data set is obtained, then we can construct σ2

f , which is the uncertainty in our
result f :

σ
2
f = lim

N→∞

1
N ∑

i
( fi− f̄ )2 = lim

N→∞

1
N ∑

i

[
∂ f
∂a

(ai− ā)+
∂ f
∂b

(bi− b̄)
]2

(4.5)

Expanding equation 4.5,

σ
2
f ' lim

N→∞

1
N ∑

i

[(
∂ f
∂a

)2

(ai− ā)2 +

(
∂ f
∂b

)2

(bi− b̄)2 +2
(

∂ f
∂a

)(
∂ f
∂b

)
(ai− ā)(bi− b̄)

]
(4.6)

The variance of a parameter (e.g. a) is:

σ
2
a ≡ lim

N→∞

1
N ∑

i
(ai− ā)2 (4.7)

While the covariance between two statistics (e.g. a and b) is:

σ
2
a,b ≡ lim

N→∞

1
N ∑

i
(ai− ā)(bi− b̄) (4.8)

This means that equation 4.6 can be rewritten as

σ̂
2
f = σ̂

2
a

(
∂ f
∂a

)2

+ σ̂
2
b

(
∂ f
∂b

)2

+2σ̂
2
a,b

(
∂ f
∂a

)(
∂ f
∂b

)
(4.9)

This is a very important equation (often called the error propagation equation), because it tells you
how to propagate statistical error no matter your function is. Here the hats on the variances (e.g. σ̂2

a )
denote them as estimators of the true variances (they are also sometimes called ‘sample variances’). It is
impossible to measure an infinite number of data points, so we are limited to using 2

σ̂
2
a =

1
N−1 ∑

i
(ai− ā)2, σ̂

2
a,b =

1
N−1 ∑

i
(ai− ā)(bi− b̄) (4.10)

Some common examples of error propagation for different functions of x and y (c and d are constants):
To actually make this calculation, many programs have the ability to calculate what is called a

covariance matrix. This is the matrix:

2The N−1 in the denominator here is due to an important correction in statistics known as Bessel’s correction. Without
this correction the estimator would be biased and underestimate the true variance. Don’t be surprised if no one cares about this
correction, but it is the right way to do it. At N = 10, failing to use this correction will make these estimates of variance off by
about 10% on average



4.3 Error propagation 25

Function Propagation

f = cx+dy σ̂ f =
√

c2σ̂2
x +d2σ̂2

y

f = cx−dy σ̂ f =
√

c2σ̂2
x +d2σ̂2

y

f = cxy σ̂ f = c
√

ȳ2σ̂2
x + x̄2σ̂2

x

f = cx/y σ̂ f =
c
ȳ

√
σ̂2

x +
1
ȳ σ̂2

y

f = ce−dx σ̂ f = cde−dx̄σ̂x

Σ =


σ̂2

11 σ̂2
12 . . . σ̂2

1m
σ̂2

21 σ̂2
22 . . . σ̂2

2m
...

...
. . .

...
σ̂2

m1 σ̂2
m2 . . . σ̂2

mm

 .
Most of the time, this matrix will be essentially diagonal since the variables you will be looking at

will be independent. Sometimes though, these off-diagonal terms will be indicative of some physics you
haven’t taken into account (e.g. temperature fluctuations).

� Example 4.2 Let’s say that ` and κ are constants and you are calculating resistance across two
elements in series using the following formula:

R = `
V1

I1
+κ

V2

I2
(4.11)

To estimate the uncertainty in R at that point, one would first calculate the error propagation for the
equation. To do this we find the partial derivatives:

∂R
∂V1

=
`

I1

∂R
∂ I1

=−`V1

I2
1

∂R
∂V1

=
κ

I2

∂R
∂ I1

=−κ
V2

I2
2

and insert them into the error progation equation:

σ
2
R ' σ

2
V1

(
∂R
∂V1

)2

+σ
2
I1

(
∂R
∂ I1

)2

+σ
2
V2

(
∂R
∂V2

)2

+σ
2
I2

(
∂R
∂ I2

)2

+2σ
2
V1,I1

(
∂R
∂V1

)(
∂R
∂ I1

)
+2σ

2
V2,I1

(
∂R
∂V1

)(
∂R
∂ I1

)
+2σ

2
V1,I1

(
∂R
∂V1

)(
∂R
∂ I1

)
+2σ

2
V1,I1

(
∂R
∂V1

)(
∂R
∂ I1

)
+2σ

2
V1,V2

(
∂R
∂V1

)(
∂R
∂V2

)
+2σ

2
I1,I2

(
∂R
∂ I1

)(
∂R
∂ I2

)
This is a very large formula, but there are ways to calculate this faster using a computer. If you

have made n measurements of the state vector (V1, I1,V2, I2) at the same experiment settings, then you
should have your data in an n×4 matrix. If you’re using MATLAB and you’ve named your data matrix
data, the command to get this covariance matrix is simply cov(data). In Mathematica, the command is
similar: Covariance[data]. Though the equation that propagates the error may be huge, it can be easy
to calculate all at once if you’re clever about how you use your matrices.





Curve-fitting concepts
The basics of linear least squares fitting
The linear fit (Part I): OLS regression with
one dependent variable

Finding fit parameters
Finding uncertainties in fit parameters

The linear fit (Part II): using error bars in a
linear fit (WLS or χ2 regression)

Matrices help to make solving fits faster
(especially WLS)
Uncertainties in χ2 fitting

Nonlinear fitting
Nonlinear fitting guidelines

Evaluating Fits – reduced χ2

5 — Fitting models to data

5.1 Curve-fitting concepts
At the heart of all curve-fitting and regression techniques is an optimization problem:

Given a set of data with the associated uncertainties and a set of assumptions about the
physics of the system, what is the best mathematical model that describes the data?

The issue with this kind of statement is understanding what “best model” means. It is important to
recognize that while a model may fit the experimental data very well, it might not be very scientifically
descriptive. There are two extremes in analysis that the physicist must get used to avoiding:

1. Overcomplicating: Because of the way the math works, it is always possible to find a model
complex enough to account for all the data. For example, you could always find a fourier series or a
polynomial expansion which fits every point in the dataset. This is a big mistake because the goal is
not to fit the data with ad hoc assumptions that look nice but to explain the data well using physical
theories and principles.

2. Oversimplifying: It is easy to be afraid of overcomplicating the problem and go too far in the other
direction by ignoring other physical processes and opting for simple descriptions that don’t use the
data to their fullest potential. For example, you might be tempted cut out half of your data because
they are noisy or don’t fit well. This should be treated with caution since all errors are explainable
and may be indicative of different physics.

A good maxim to live by is “Everything should be made as simple as possible but no simpler” (attributed
to Einstein, but he only said something similar). The model you use should be justified by the physics of
the experiment. It is OK to model the things you don’t know much about, but this is always dangerous
territory and it is important to proceed with caution.

5.2 The basics of linear least squares fitting
In the foundations of scientific analysis some conventions have emerged that are handy both practically
and theoretically. For instance, one definition of “best” developed by Gauss in the 19th century is that of
the least squares criterion. This is the statement that under usual conditions (Gauss-Markov conditions)
the best fit of a linear model to data will be the one that minimizes the sum of squared errors. The main
Gauss-Markov conditions (assumptions) that guarantee this mathematically can be summarized below:

1. The situation the model describes actually is linear. If it’s not then more complicated work may be
required (e.g. nonlinear least squares).



28 Fitting models to data

2. The random error averages to zero – the noise in the signal does not push the data in any particular
direction on average.

3. The error or noise in the data is about the same size over the whole dataset. When this is not true
the data are said to be heteroskedastic and the model needs to be adjusted to focus on the more
precise data.

4. The noise in the data is independently distributed throughout the dataset. This means that for two
data points, no amount of information about one error can tell me anything about the other.

Even when these conditions aren’t strictly true, least-squares algorithms usually do very well, espe-
cially in physics where the data are often very consistent and noise isn’t that bad.

� Example 5.1 Let’s say you measure a voltage and it fluctuates around some value in some gaussian
way:

Vi =V0 + εi, εi ∼ N(µ,σ2
ε ) (5.1)

The equation above says that every measured voltage Vi is equal to some nominal voltage V0 with
some gaussian noise term εi. Since we can never know V0 with absolute certainty, we must come up with
an estimator for it. According to the least-squares logic this will be the V̂0 that minimizes the quantity
SSR (the sum of squared residuals):

SSR = ∑
i

ε̂
2
i = ∑

i
(Vi−V̂0)

2 (5.2)

Note that ε̂i is the estimator for εi expressed as ε̂i = Vi− V̂0. To find the optimal V̂0, just solve the first
order conditions:

∂SSR
∂V̂0

= 0 = ∑
i
−2(Vi−V̂0) =⇒ V̂0 =

1
N

N

∑
i

Vi (5.3)

Which is the same as the mean of the voltage data. This confirms something we have been using all our
lives – under the right conditions the sample mean is a good estimate of the true mean.

5.3 The linear fit (Part I): OLS regression with one dependent variable
The most typical example of an ordinary least squares (OLS) linear regression is that of the form:

yi = α +βxi + εi (5.4)

since it is the next simplest linear equation after (5.1).

5.3.1 Finding fit parameters
To find estimators α̂ and β̂ of the true parameters α and β , we first find the sum of squared errors:

SSR = ∑
i
(yi− α̂− β̂xi)

2 (5.5)

and then solve the first order conditions:

∂SSR
∂ α̂

= 0 = ∑
i
−2(yi− α̂− β̂xi)

∂SSR

∂ β̂
= 0 = ∑

i
−2xi(yi− α̂− β̂xi) (5.6)

This gives us two equations with two unknowns. If the formula were more complicated and had n
unknowns, there would be n equations from first order conditions. For a linear fit like this there is always



5.3 The linear fit (Part I): OLS regression with one dependent variable 29

an analytic expression for the parameters that minimize the SSR. From the first equation we find that
α̂ = ȳ− β̂ x̄. Substituting to find β̂ we find:

0 = ∑
i

xi(yi− ȳ+ β̂ x̄− β̂xi)

0 = ∑
i

xiyi− xiȳ+ β̂ x̄xi− β̂x2
i

β̂ ∑
i

x2
i − x̄xi = ∑

i
xiyi− xiȳ

β̂ =
∑i xiyi− x̄ȳ
∑i x2

i − x̄2

This is how a least-squares algorithm will calculate the best fit:

β̂ =
∑i xiyi− x̄ȳ
∑i x2

i − x̄2 =
Cov(x,y)

Var(x)
=
〈xy〉−〈x〉〈y〉
〈x2〉−〈x〉2

α̂ =ȳ− β̂ x̄ = 〈y〉−〈x〉
[
〈xy〉−〈x〉〈y〉
〈x2〉−〈x〉2

]
(5.7)

5.3.2 Finding uncertainties in fit parameters
At this point it is useful to look back at the sum of squared residuals:

σ̂
2
ε =

1
N− k ∑

i
ε̂

2
i =

1
N−2 ∑

i
(yi− ŷ)2 (5.8)

where the N− k represents the number of degrees of freedom (k is the number of parameters). In this
case there are N−2 degrees of freedom, since if we knew N−2 of the residuals, we could solve for the
remaining two using the first-order conditions on α̂ and β̂ . This estimate is useful in finding the standard
error of the regression or root mean squared error given by:

σ̂ε =
√

σ̂2
ε =

√
1

N−2 ∑
i
(yi− ŷ)2 (5.9)

The standard deviation of β̂ can then be found as σ̂ε/Var(x). To see this, let’s look at β̂ again, substituting
in yi = α +βxi + εi and ȳ = α +β x̄+ ε̄:

β̂ =
∑i xiyi− x̄ȳ
∑i x2

i − x̄2 =
∑i xi(α +βxi + εi)− x̄(α +β x̄+ ε̄)

∑i x2
i − x̄2 (5.10)

which simplifies to:

β̂ = β +
∑i xiεi− x̄ε̄

∑i x2
i − x̄2 = β +

Cov(x,ε)
Var(x)

(5.11)

Ideally, the noise εi isn’t correlated with xi so that on average Cov(x,ε) = 0. In every dataset, no matter
how large, the sample covariance will not be zero and β̂ 6= β . Since it approaches zero in the limit of
large numbers, more data imply a better measure of β̂ . It is important to remember that β itself is not
random, but that only the estimator β̂ is distributed due the random error εi. At this point we are able to
use the familiar error propagation equation (eq. (4.9)) to find the standard deviation of our estimator (εi

and ε j are independent):

σ
β̂
=

√
∑

i

(
∂ β̂

∂εi

)2

σ2
εi

(5.12)



30 Fitting models to data

To do this we must obtain the partial derivative:

∂ β̂

∂εi
= 0+

∂

∂εi

∑i xiεi− x̄ε̄

∑i x2
i − x̄2 =

∂

∂εi

∑i εi(xi− x̄)
∑i x2

i − x̄2 =
xi− x̄

∑i x2
i − x̄2 (5.13)

Of course, in the sum this is where the facts that the error is identically distributed and that εi and ε j are
independent become very important:

σ
β̂
=

√
σ2

ε

∑i(xi− x̄)2

(∑i x2
i − x̄2)2 =

σε

∑i(x2
i − x̄2)

√
∑

i
(xi− x̄)2 (5.14)

=
σεi√

∑i(x2
i − x̄2)

(5.15)

Again, we can never know σε exactly. The best we can do is estimate (use the estimator σ̂ε ):

The uncertainty in σ
β̂

is therefore:

σ̂
β̂
=

σ̂ε̂i√
∑i(x2

i − x̄2)
=

√
1

N−2 ∑i(yi− ŷ)2√
∑i(x2

i − x̄2)
(5.16)

The uncertainty in α̂ can then be found by propagating the error in α̂ = ȳ− β̂ x̄:

σ̂α̂ =

√(
∂ α̂

∂ β̂

)2

σ2
β̂
= x̄σ̂

β̂
(5.17)

5.4 The linear fit (Part II): using error bars in a linear fit (WLS or χ2 regression)
So far, in using the least-squares method we’ve treated all datapoints as if they were of equal importance.
When you do an experiment and know some of the data points to higher precision than others, there
is a way to incorporate this into the analysis using something called weighted least squares regression
(WLS regression). Mathematically, this is the same as saying that at xi the error εi has a true standard
deviation σi, but at x j the error ε j has a true standard deviation of σ j where σi 6= σ j. Now it isn’t true
that the εi are identically distributed. When the error term is not identically distributed (your error bars
aren’t all the same size – i.e. heteroskedasticity), the OLS estimators will be unbiased but they will not be
minimum variance. That means that if you use the method in the last section, your estimates for
the parameters α and β will be as accurate but less precise on average.

To correct for this problem, instead of minimizing the sum of squared residuals (SSR), we instead
minimize a quantity called χ2;

χ
2(α̂, β̂ ) = ∑

i

(
yi− ŷi

σ̂i

)2

= ∑
i

(
yi− (α̂ + β̂xi)

σ̂i

)2

(5.18)

Here, the σ̂i are the values of uncertainty calculated from the characteristics of the apparatus (the error
bars). This is the same as saying that the data points with low uncertainty σ̂i (higher precision) are
weighted more highly in the fit than those with higher uncertainty (in a specific way). When the error εi is
corrected by σi, the error ε∗i = εi/σi is identically distributed and the problem is the same as before.

In the last section we went manually through the calculation to find the parameters α̂ and β̂ . In this
section we’ll use matrices which can make solving this problem a little bit easier on the computer. WLS
regression is exactly like OLS regression except each of the points is weighted.



5.4 The linear fit (Part II): using error bars in a linear fit (WLS or χ2 regression) 31

5.4.1 Matrices help to make solving fits faster (especially WLS)
Again, as before, minimizing χ2 is like minimizing SSR only the equation looks beefier since we have
weighted the terms according to their precision:

∂ χ2

∂ α̂
= 0 = ∑

i

−2(yi− α̂− β̂xi)

σ̂2
i

∂ χ2

∂ β̂
= 0 = ∑

i

−2xi(yi− α̂− β̂xi)

σ̂2
i

(5.19)

This leaves us with two equations and two unknowns (again) :

∑
i

yi

σ̂2
i
= α̂ ∑

i

1
σ̂2

i
+ β̂ ∑

i

xi

σ̂2
i

∑
i

xiyi

σ̂2
i
= α̂ ∑

i

xi

σ̂2
i
+ β̂ ∑

i

x2
i

σ̂2
i

(5.20)

This can be put into a matrix equation as:[
∑i

yi
σ̂2

i

∑i
xiyi
σ̂2

i

]
︸ ︷︷ ︸

~c

=

∑i
1

σ̂2
i

∑i
xi
σ̂2

i

∑i
xi
σ̂2

i
∑i

x2
i

σ̂2
i


︸ ︷︷ ︸

A

[
α̂

β̂

]
︸︷︷︸
~m

(5.21)

This matrix is in the form of A~m =~c. Here, ~m denotes the vector of model parameters , and the vector
~c and matrix A represent constraints derived from first order conditions,. It is extremely unlikely that the
matrix A will not be invertible, so the solution is simply A−1~c = ~m. Creating these vectors and matrices
may seem simple, but a really fast way of getting these matrices is to use a matrix representing the data
used in the regression:

XOLS =


1 x1
1 x2
...

...
1 xn

 XWLS = ~w�XOLS =


1/σ1 x1/σ1
1/σ2 x2/σ2

...
...

1/σn xn/σn

 (5.22)

Here � represents element-wise multiplication. In MATLAB for instance, multiplying vectors or
matrices (A and B) can be done element-wise with the command A.*B. When you use these matrices, it is
very easy to construct~c and ~A:

~c = Xᵀ~y A = XᵀX (5.23)

In summary, χ2 or WLS fitting uses exactly the same mathematics as OLS fitting, except that weighting
each point makes calculating fit parameters and uncertainties involve more operations. In general, you
should use the χ2 method of least-squares fitting because it is almost always true that the error
bars you use are not all the same size. If they are, it turns out that the χ2 method will give you the
same result as the OLS method. This is actually very easily provable:

σ̂i = σ̂∀i =⇒ χ
2 = ∑

i

(yi− ŷi)
2

σ̂2
i

=
1

σ̂2 ∑
i
(yi− ŷi)

2 =
SSR
σ̂2 (5.24)

Since σ̂i is the same size throughout the dataset, it can be factored out of the sum, yielding the sum of
squared residuals, the function to be minimized in OLS fitting. Dividing the SSR by a constant does not
change where the minimum is located, so the parameters you solve for must be the same.



32 Fitting models to data

5.4.2 Uncertainties in χ2 fitting
The uncertainty in fit parameters can be found in the χ2 fitting the same way as in the OLS case: that is,
we must propagate error. In the interest of brevity, the derivation will not be shown here. Using matrices,
a pattern emerges which is quite convenient (which you can derive if you want). As it turns out, the matrix
we already calculated from first-order conditions (A−1) contains all the information necessary to propagate
error.

The model parameters are given in order in a vector by ~m = A−1~c = (XᵀX)−1X ~Ty. With the residuals
defined as the difference between the data and the model (~ε =~y−X~m), the uncertainty in each parameter
is obtained as:

σ̂i = σ̂ε

√
(A−1)i,i where σ̂

2
ε = ∑

i

ε̂2

N− k
= ∑

i

(yi− ŷi)
2

N− k
(5.25)

Here the σ̂i is the estimated uncertainty in the i-th parameter (σ̂α = σ̂1 and σ̂β = σ̂2), the element
(A−1)i,i is the i-th element on the diagonal of the matrix A−1.

5.5 Nonlinear fitting
When you fit a curve to data – no matter how many linear variables you put in the formula – there is
an analytic expression for the fit parameters that minimizes the sum of squared errors (sum of squared
residuals SSR or χ2 in the weighted case). This must always be true, since when you have linear
combinations of parameters, the first-order conditions must generate a set of n equations with n unknowns.

However, when you have a nonlinear model, the first-order condition equations will most often not
yield closed solutions. As an example let’s say you have the model yi = αe−βxi + εi. When you solve
first-order conditions, you will find that they are identical:

∂ χ2

∂ α̂
= ∑

i

(yi− α̂e−β̂xi)e−β̂xi

σ2
i

=
∂ χ2

∂ β̂
(5.26)

What this means about nonlinear fitting is that it should be done numerically with the aid of a fitting
algorithm. These are simply algorithms that attempt to minimize the χ2 or SSR by looking for the best fit
parameters. Because these sums of squares depend very complexly on the parameters, it is possible for
these algorithms to diverge or stall out in a variety of ways.

5.5.1 Nonlinear fitting guidelines
Even when you have the right model, it is possible for your curve-fit to fail because you haven’t given the
computer enough the right information about where to look for a minimized χ2 value. Let’s say you have a
peak in some data that you would like to fit to a gaussian, and you are using the model y = a1e−((x−b1)/c1)

2

or f(x) = a1∗exp(−((x−b1)/c1)∧2) in MATLAB. For the data in figure 5.1, if you choose starting
points for these parameters of a1= 1,b1= 0,c1= 1, you will get a bad result because the algorithm has
not been looking in the right region for the minimum of χ2.

General model Gauss1:
f(x) = a1*exp(-((x-b1)/c1)^2)

Coefficients (with 95% confidence bounds):
a1 = 4.02550e+69
b1 = 0.00000



5.5 Nonlinear fitting 33

c1 = 1.00000

Goodness of fit:
SSE: 1.048e+06
R-square: -0.913
Adjusted R-square: -0.9944
RMSE: 149.3

Warning: A negative R-square is possible if the model
does not contain a constant term and the fit
is poor (worse than just fitting the mean).
Try changing the model or using a different StartPoint.

Good model with a bad fit

Figure 5.1: Fitting gaussian data generated on a computer with the function f(x) = a1 ∗
exp(−((x−b1)/c1)∧2) in MATLAB. Choosing initial conditions of a1= 1,b1= 0,c1= 1, the computer
algorithm that tries to minimize χ2 diverges.

To fix this problem, and in general whenever you start any nonlinear fit, it is a good idea to calculate a
ballpark estimate of where the parameters should end up. In the example above, we know that the peak



34 Fitting models to data

of the gaussian function should be about 300 high and located somewhere around 600 with a standard
deviation on the order of 200. If we just start with parameters decently close to their final outcome, e.g.
a1= 300,b1= 600,c1= 200, we get the following fit output:

General model Gauss1:
f(x) = a1*exp(-((x-b1)/c1)^2)

Coefficients (with 95% confidence bounds):
a1 = 296.88732 (290.61741, 303.15724)
b1 = 603.50693 (598.73503, 608.27883)
c1 = 276.73864 (269.98996, 283.48732)

Goodness of fit:
SSE: 3605
R-square: 0.9934
Adjusted R-square: 0.9931
RMSE: 8.758

And the plot looks much better:

Good model with a good fit

Figure 5.2: Fitting gaussian data generated on a computer with the function f(x) = a1 ∗
exp(−((x−b1)/c1)∧2) in MATLAB. Choosing initial conditions of a1 = 300,b1 = 600,c1 = 200,
the computer algorithm that tries to minimize χ2 settles to a good estimate.

Now that we have a good fit, how can we use the fit output in a physics paper or report? The output that
is produced is in the confidence interval format, which is a perfectly reasonable format to quote. For
example, you could say:



5.6 Evaluating Fits – reduced χ2 35

“After fitting the data with a gaussian using a trust-region nonlinear least squares algorithm
(default in MATLAB), we found the peak parameter b converged to a value of 604 within a 95%
confidence interval (599, 608)."

How do we decide what significant figures to use when the computer, when run long enough, could
calculate 95% confidence intervals out to 500 decimal places? It’s not the lowest number of significant
figures in the data, because the point of a fit is to reduce uncertainty by means of statistical analysis.
The answer is that the confidence interval (598.73503, 608.27883), as a measure of uncertainty,
determines to what extent the parameter value 603.50693 is useful. The confidence interval can be
expressed alternatively as 603.50693 (+ 5.7719, - 4.7719), at which point it becomes clear that
everything after the ones’ place is not useful (the uncertainty is of order 100. Now to get to an answer in
the usual format of µ̂± σ̂ must first convert to 68% confidence (1σ ) intervals by dividing the deviations
by 1.96. This is because a 95% of a normal distribution lies between −1.96σ and +1.96σ . So, enforcing
significant figures, the value of 604 ± 5 at the 95% confidence level becomes 604 ± 3 at the standard
68% confidence level.

In summary, if you are having problems with fitting, there are really only two things that
can go wrong: either you’re not looking for a minimized χ2 in the right place or you’re using
the wrong model.

5.6 Evaluating Fits – reduced χ2

If you don’t have the right model, how do you know in what way it’s wrong? Well, there are really only
two ways in which a model can be wrong.

1. The model oversimplifies the experiment. When you haven’t taken all of the physics into account,
and your model at best only roughly approximates the data you’ve collected, there will likely be no
combination of parameters that fit the data very well.

2. The model overcomplicates the experiment. When you have taken the physics of the experiment
into account, and use extra parameters to describe the data, you will likely find a few combinations
of parameters that work to describe the data very well. This means that the complexity of your
model is artificial and does not reflect reality.

To see whether the model is appropriate, physicists use a tool called reduced chi-squared (χ2
red). This

is a quantity which represents the ratio of the estimated uncertainty in the model fit to the estimated
uncertainty from experiment. Recall that χ2 was defined earlier as:

χ
2 = ∑

i

(
yi− ŷi

σ̂i

)2

(5.27)

Since yi− ŷi is the deviation of the data point yi from the model fit ŷi, and σ̂i is the uncertainty calculated
for the experiment at that data point, the contribution of any datapoint to χ2 is near one when the deviation
of the model is about the same size as the uncertainty. What this means is that if we divide χ2 by the
number of datapoints and get something close to one, then we can say that our model is good so long as
we are confident in our estimate of uncertainty. Just like with Bessel’s correction of the estimated standard
deviation however (eq. 4.10 ), we can’t simply divide by the number of data points we have – we have to
divide by the degrees of freedom ν = N− k−1.

χ
2
red =

1
ν

∑
i

(
yi− ŷi

σ̂i

)2

=
χ2

ν
(5.28)



36 Fitting models to data

As before, N is the number of data points and k is the number of parameters in the model. Of course, if
k+1� N, then this correction doesn’t make much difference (it is however formally correct). When
we accept χ2

red as a good estimate of the ratio of model deviation to expected deviation, we can evaluate
whether the model is good by examining the following cases:

1. χ2
red� 1 . When the reduced chi-squared of a fit is much larger than one, the only possible

ways for this to happen are for:

(a) the model to fit so poorly that (yi− ŷi)
2� (σ̂i)

2 on average.

(b) the uncertainty σ̂i to be so underestimated that (yi− ŷi)
2� (σ̂i)

2 on average, even though
the model fits fairly well. This is only practically possible if you think you have much
more precision on your individual measurements than you actually do.

2. χ2
red < 1. When the reduced chi-squared of a model fit is less than one, the only way for this to

happen is for the error in your fit to be overestimated so that (yi− ŷi)
2 < (σ̂i)

2 on average.



Computational tools in physics
Learning these programs fast

6 — Mathematica, MATLAB, and Python

6.1 Computational tools in physics

The next three chapters will be on the basic features of Mathematica, MATLAB and Python. These are
three of the most common platforms broadly used for data analysis in physics. There certainly are other
platforms that physicists use, but they are most often used in particular subfields (e.g. ROOT for high
energy physics) even if they are broadly applicable. This chapter will serve as a guide to Mathematica,
MATLAB, and Python because those platforms are available either in the PMCL and via student license
(Mathematica and MATLAB) or can be downloaded for free (Python).

Feature Mathematica MATLAB Python

Syntax Designed to be user-
friendly and ‘like english’,
but non-conventional and
maybe awkward at first

Inflexible but robust and
easy to use

More complicated (it’s
actually a programming
language) but relatively
straightforward.

Purpose All-encompassing primar-
ily symbolic platform for
mathematical sciences

All-encompassing primar-
ily numerical platform for
experimental and engi-
neering applications

A fast interpretted lan-
guage with broad function-
ality and a relatively shal-
low learning curve.

Coverage Covers most analysis tech-
niques but is somewhat
weak and the error mes-
sages can be difficult to in-
terpret.

Without the toolboxes, it
is only useful if you down-
load scripts or are will-
ing to write them yourself.
With the toolboxes ($$), it
is excellent.

Covers everything that
you would want to do with
data analysis, but requires
an understanding of the
language to use.

6.2 Learning these programs fast

The eternal rule of learning to use any technology is

Learn to use the documentation



38 Mathematica, MATLAB, and Python

Learning how to use the documentation in the program or device you are using is essential to making
progress with it. Reading about the platform is often the only alternative to guessing. Unfortunately

Sample0001.txt is a plain text file of numbers that can be downloaded from the SPS website.
The first column is time in some units. The rest of the columns have the x,y, and z components of the
position of a few particles from a simulation. In this exercise you will preform various calculations,
plots and analysis of this data.

1. Load the data from Sample0001.txt into a matrix
2. Plot a few of the columns of data as a function of column 1 (the time).
3. Compute the mean and standard deviation of all the columns after the first.
4. Are the results for the x, y and z coordinates different? Are the results for the different particles

different? Answer this question quantitatively.
5. Make a histogram plot of columns 2 and 5. What is the connection between these plots and

question 2?
6. Make a parametric plot of columns 2 and 3 versus the time. The points in your plot should be

connected by lines.
7. Fit the plot from question (4) to a Gaussian function. Your can check your fit parameters since

they should have an obvious connection to the results from (2). Is a Gaussian a good fitting
function?

8. Your time series plots from question 1 have some clear oscillations. Take the Fourier transform
of this data and plot it.

9. Suggest what physical situation the data is computed for.
10. Do some other operation on the data of your choosing. For example, are there any correlations

between the position coordinates for particles 1 and 2?
11. Merit badge question: the parametric plot is messy because there are a lot of data points. Plot

the data such that the first batch of points is one color, the next batch is another, etc. A half
dozen colors should be enough: move across the spectrum, red to blue, as you plot the data.



Running commands
Conventions

Loading data
Plotting numerical data

Histograms
Tables and Grids
Fitting arbitrary functions to data

7 — Using Mathematica for Data Analysis

Besides being a great program for doing complicated algebraic calculations and working the calculus
we’re too lazy or pressed for time to slog through, Mathematica is a great program for basic plotting and
fitting, and has many built in features which can instantly render figures and tables for use in a paper or
lab report.

7.1 Running commands

R If you’ve never used Mathematica ever before in your life, it may be useful to read this section.

Mathematica is structured so as to act like a notebook you write down your equations in and manipulate
your theoretical ideas. To make the feel of this program work, the software does not run like an ordinary
scripting language. Instead of writing a program and executing a file, Mathematica evaluates one line at a
time. This has some advantages, as you can change everything on the fly, but it may be confusing at first
if you’ve never seen it before or are expecting to “compile” the whole program.

7.1.1 Conventions

When entering commands in Mathematica, a few command conventions hold:
1. Commands always begin with capital letters and use square brackets ([]) are used for command

arguments or as locations in a matrix when used twice ( e.g [[]])

� Example 7.1 Function arguments: ListPlot[], Table[]

� Example 7.2 Location in a matrix or “table": A[[1,2]] refers to the element in the first row
and second column of matrix A

2. Parentheses are used to group terms in an equation or an expression and are not used in functions or
denoting function arguments at all.

3. Greek letters like α , β , γ etc. are obtained by sandwiching the corresponding roman letters between
escape characters. For instance, press escape then the letter a followed by escape again – you should
get α .



40 Using Mathematica for Data Analysis

7.2 Loading data

Two common ways to import data are the Import["file.txt","Format"] and the
ReadList["file.txt","Format"] functions. On the computers in the PMCL, Mathematica
will look specifically in your Documents folder for the data file you specify. One way to check whether
this is true (it might not be) is to execute the command Directory[]: this command will tell you where
Mathematica is looking for files. However, if you give Mathematica the full file path, it will know exactly
where to go.

Once your data files are in this folder (e.g. "C:\Users\uteid\Documents"), you can simply use
Import[] and ReadList[] without providing the full file address. This is a fast way to work if you like
to download your files off of your email and continually send the updated versions to yourself. If you
have a flashdrive however, a much more efficient solution can be found in useful tip 7.1

� Example 7.3 rawdata = Import["Filewithdata.txt", "Table"];

� Example 7.4 rawdata = ReadList["Filewithdata.txt", Number, RecordLists→True];

Useful Tip 7.1 — Probably the most convenient solution to uploading data.
If you would like to change directories, for instance if you like to work off of a flash drive, you can
quickly access files that are in the same folder as your notebook by using the NotebookDirectory[]
command. The way to do this is by concatenating the notebook directory with the file name you’re
interested by using the <> between NotebookDirectory[] and "Filewithdata.txt". The string
you give Mathematica is then a complete filepath description of where the file is, and so this is very
robust and useful. For example:

� Example 7.5 If you have both your data file and your notebook file in a folder on a flash drive,
let’s call it Flashdrive Folder, and you want to import a text file with only comma-separated or
tab-delimited data, you can use the following command and obtain a matrix with all of the data:

rawdata = Import[NotebookDirectory[] <> "Sample0001.txt", "Table"];

Here, NotebookDirectory[] <> "Sample0001.txt" retrieves the string for the filepath
I:\Flashdrive Folder\Sample0001.txt. This means that every time you move Flashdrive
Folder, Mathematica will be able to find the data files and you won’t have any problems.

If the file contains non-number (strings) in any of the columns, it is more useful to use the
Readlist[] command as you can specify which columns don’t contain numerical data. Let’s say
you have three columns in your .txt file where your first column specifies the date and the second
and third contain numerical data. By putting the list {Word, Number, Number} in as an option,
Mathematica knows that the data in the first column are words and not numbers:

rawdata =
ReadList[NotebookDirectory[] <> "Sample0001.txt", {Word, Number, Number}];

In general, if you just want to input a datafile with only a matrix matrix, use:

rawdata =
ReadList[NotebookDirectory[]<>"Sample0001.txt", Number, RecordLists→True];



7.3 Plotting numerical data 41

7.3 Plotting numerical data

To plot two columns of numerical data against eachother in Mathematica, you can’t just give Mathematica
two lists of data to plot. This is because the program likes to think of plotting numbers in terms of {x,y}
pairs. Instead, if you have a matrix ( data) with columns of numerical values imported correctly, you
will have to construct a list of pairs. Once you get the hang of this, it can become reasonably intuitive. If
you’re used to Excel or MATLAB, it might be confusing at first though.

� Example 7.6 To plot data in column 1 against data in column 2 of an imported dataset data, use:
ListPlot[data[[All,{1,2}]], AxesLabel → {"Column 1", "Column 2"},
ImageSize → Large]

At the end of the command, AxesLabel and ImageSize are options that Mathematica has built-in
settings for. If you are ever confused about what these options do, search the documentation for the
function you’re using and click on “details” on that page. This should tell you everything you need to
know about what the function can do.

500 1000 1500 2000 2500 3000 3500
Column 1

-0.05

0.05

Column 2

Figure 7.1: A ListPlot[] of sample data. One thing you may notice about this plot is that it is rather
cluttered and doesn’t convey the fact that it is a timeseries very well. Also, the axes font isn’t very readable
at this scale.

To make the plot more readable, there are many options one can use in ListPlot[] or ListLinePlot[].
Some common options include:

1. Making axes font bigger: BaseStyle → {FontSize → 20}, or whatever pt font you would
like to use. The BaseStyle option includes ways of making the fonts bold or italic as well.

2. Titling plots: PlotLabel → "Title" PlotLabel → Style["Title", "Style"]. Mathe-
matica has a lot of style formats like “ Graphics” and “Section” which mimic Mathematica’s
typsetting features. These can look pretty good at times, but it’s a good habit to use LATEX for plot
titles if you can get that to work.

3. Adding grid lines: GridLines → Automatic. This puts grid lines on the plot in a basic unas-
suming way. To make the lines dashed use GridLineStyle → Dashed. You can also specify
where the grid lines are and change the color.



42 Using Mathematica for Data Analysis

Figure 7.2: As you can see, this plot is more easy to look at and showcases the basic plotting options.

7.3.1 Histograms
Making histograms is very straightforward using the Histogram[list, bins] command

Figure 7.3: A histogram of a column of data



7.4 Tables and Grids 43

7.4 Tables and Grids
In mathematica, it is fairly straightforward to make a table of data with formatted headers. What
mathematica needs to see is a matrix or list-of-lists of some form that can be put into a grid. In the
example below, the code creates a column of means and a column of standard deviations for 18 columns of
data, and then puts this information into a table with labelled columns and rows using the TableForm[]
command:



44 Using Mathematica for Data Analysis

7.5 Fitting arbitrary functions to data
If you have some data and you are interested in fitting it with some nonlinear function, mathematica can
do that without having to install a toolbox like MATLAB requires. The way to do this is to take some data
and use the NonlinearModelFit[] command. In the example below, the data used in figure 7.3 is fit
with a gaussian function. Because mathematica outputs a set of histogram bin edge positions instead of
bin centers, the first four lines of the example are used to prepare a dataset that can be fit with a gaussian.

This example again makes use of the TableForm[] command, useful for bundling the parame-
ters and confidence interval informations into a table for easy reading. The general idea here is that
NonlinearModelFit[] returns (creates) an object we decided to call fit.

Useful Tip 7.2 — Interpretting this data: why ConfidenceLevel is important.
The parameters and confidence intervals of this model have been estimated using a nonlinear least-
squares algorithm. This means that the uncertainties in the parameters have already been found,
assuming that the noise in the data is uniformly distributed. So, if we want to read off uncertainties in
the standard format of x̂± σ̂x, all we need to do to find σ̂x is divide the width of the confidence interval
by two (the confidence interval takes up 2σ̂ ). If ConfidenceLevel→ 0.95, then the confidence
interval would take up about 4σ̂ instead. This comes from the standard normal distribution.



Introduction
Scripts – what makes MATLAB so popular
Syntax & functions
Loading data
Plotting functions and data
Saving pictures
Histograms

8 — Using MATLAB for Data Analysis

MATLAB stands for “MATrix LABoratory”, which means that the program is on the one hand extremely
good at working with matrices and on the other somewhat limited to those problems that can be solved
using matrices. Naturally, if you spend some money and buy extra toolboxes it can do somewhat more
elaborate calculations. In particular, the curve fitting toolbox is excellent and can do most if not all of the
data analysis you might encounter in PHY 353L or PHY 474. In general though, if you are thinking about
a problem and you can think of a way to quickly solve it using matrices and vectors, MATLAB is a good
option.

R If you get MATLAB and think you might also buy the curve-fitting toolbox, you should get it at
the same time as the main program since Mathworks updates their product very frequently (usually
about twice per year), and if you have an academic license you can only get the most recent editions
of the toolboxes online.

8.1 Introduction

Since MATLAB is designed to work predominantly with lab data, it has many features which are tailored
specifically to common tasks engineers and experimentalists do on a regular basis. For instance, the
program has a file organizing system which can be viewed at any time and graphical user interfaces
for common tasks like curve-fitting and importing data. Mathematica, on the other hand, is designed
to encompass a much wider range of problems and so often falls short of MATLAB when it comes to
convenience and ease of use in a laboratory setting.

8.1.1 Scripts – what makes MATLAB so popular

When you want to do anything in MATLAB, you will always either use the buttons in the menus, or you
will execute expressions through the ‘Command Window’. Because the expressions you might want to
execute might be complicated and long, MATLAB has a file type (‘.m’) that it interprets as a long chain
of commands. This is called a script and is used widely in the MATLAB community to do a wide variety
of computations. When you open MATLAB you will see a few open ‘panes’ in the program.
• Current Folder – This is where MATLAB looks for anything new (data, functions, scripts). If

you’re trying to load data make sure the ‘Current Folder’ is looking at the file you’re trying to use.
• Editor – This is where you can edit and create new scripts and functions.



46 Using MATLAB for Data Analysis

• Workspace – This is the pane that displays all variables and their basic characteristics. This is very
useful for checking up on variable characteristics.
• Command Window – This is where expressions are executed. The most common things are

functions, commands, and scripts.
• Command History – This is where past expressions are stored so that you can access them easily.

One very useful trick while coding in MATLAB is to press the ‘up’ key on the keyboard to access
the last command so you can edit it without having to write it out again.

The easiest ways to make a new script are (1) to press Ctrl+N while in the editor or (2) right-click on
the Current Folder window and choose the ‘New File→ Script’ option. Once you have a filename.m
file up, you can execute the entire file by simply typing filename in the command window.

8.1.2 Syntax & functions

In MATLAB, commands & functions are executed from the ‘command window’. Functions are of the
form functionName(arguments) in which case they call the functionName function; commands are
of the form command argument, in which case they run the command command. In MATLAB, function
inputs are always separated with commas and command inputs are always separated with spaces. Code is
always interpreted in this way, which makes it easy to read. For instance:

� Example 8.1 — Command syntax.
Some common examples of command syntax:

1. clear all -except var1 clears all variables except for the variable named var1.
2. load filename.mat loads the variables saved to the filename.mat file.
3. disp ‘This is a sentence which is also a string’ displays the sentence: This is a

sentence which is also a string

� Example 8.2 — Function syntax.
Some common examples of function syntax:

1. plot(x,y) plots the vector x against the vector y, connecting each successive pair of points with a
line segment note: these vectors must be the same size.

2. scatter(x,y) plots the vector x against the vector y in a scatter plot, rather than connecting points.
3. disp(a) displays the object a, which might be a string, a matrix or some other object.

To make a comment, just as in LATEX, you put a % sign at some point in a line. Everything after that %
sign but before the next line gets commented out.

� Example 8.3 — Comments and displaying variables.
Running the script:

% This is a comment and will not be displayed
a = [ 1 2 ; 4 5; 7 8]; % the matrix describing something important
b = [ 1 2 7 8]; % a vector describing something important
disp ’The important matrix is:’; disp(a);
disp ’The important vector is:’; b

yields the output:



8.1 Introduction 47

The important matrix is:
1 2
4 5
7 8

The important vector is:

b =

1 2 7 8

In this way, you can get a script to output the answer to a calculation in a convenient format.

8.1.3 Loading data

When you open the program, you will see a box on the left titled ‘Current Folder’. MATLAB can only
see the files in your current folder, so this is where all your data files should go. Once a data file is in
that folder, you can simply right-click the file and say ‘Import Data...’. Alternatively, you can go to the
‘File’ menu and choose ‘Import Data...’. In either case you will end up in the same import wizard. You
will be previewing the data to make sure it is in the right format. MATLAB is usually pretty good about
identifying what kind of data you have (e.g. ‘comma-separated’ or ‘tab-delimited’). Once you have your
data imported into a matrix (the most convenient) or into a collection of differently named vectors, you
can save the workspace into what is called a .mat file. This is MATLAB’s special file format for saving
workspaces. Now whenever MATLAB’s current folder contains the your data.mat (assuming you named
it data.mat), you can just use the load data command to import all the data that was in your workspace
when you saved it.

Useful Tip 8.1 — Importing multiple files .
If you have a lot of files of the same type and you want them all to import the same way, one way to do
that is to check the ‘Generate MATLAB Code’ box in the import wizard. What this does is generate
the code to import data of the form you specified in the prompt. If you save this code as ‘importfile’
once it comes up, you will be able to use this command to import files quickly and reliably in a script.

This way you don’t have to click through the wizard n times if you have n data files.

8.1.4 Plotting functions and data

While in Mathematica, it is easy to tell the computer to plot a function against a dependent variable (or
some other function of a dependent variable), MATLAB only understands vectors. This means that to
plot sin(x) against x for instance, you need to first decide which x points you want. After you have an
independent variable vector, and have the ability to construct a dependent variable vector (or if you already
have two vectors of the same length), you can easily make a plot by calling the plot(xdata,ydata)
function.

x = 0:1e-2:2*pi;
plot(x,sin(x));



48 Using MATLAB for Data Analysis

In the above code, the statement x = 0:1e-2:2*pi; creates a vector of increasing values starting at
0 and working up in increments of 1e-2 (1×10−2) until the point 2*pi= 2π is reached. Again, once the
domain of the function is created, it is easy to simply apply the sine function while creating the plot().
Note that a semicolon has been placed after each line – the first is to keep the variable x from being
displayed, the second is for aesthetics. In general there’s no harm in putting down a semicolon so use
them everywhere.

Figure 8.1: Plot of sin(x) against x, where x is a 1×629 vector from 0 to 2π .

To plot data, it is often most convenient to have all your data in a matrix. It is a good practice to
document your variables and how you name them somewhere. Documenting how the code you write is
relevant to the experiment can easily be done with comments in the same file as your analysis using % to
create comments just as in LATEX. In the code below, the data has already been imported using the import
data wizard mentioned in section 8.1.3 and titled data. Fig. 8.2 shows the result:

plot(data(:,1),data(:,2));
xlabel(’Column 1’);
ylabel(’Column 2’);
title(’Column 1 vs. Column 2’);

This is the most basic kind of plot. However, often you may want to plot your data as points (in
a scatter plot), rather than as a line plot. MATLAB has another function called scatter() which for
two vectors works in exactly the same way as plot(). As in Mathematica, these functions are highly
customizable.



8.1 Introduction 49

Figure 8.2: Plot of one column of data (data(:,1)) against another (data(:,2)).

R In MATLAB there’s a very nice way to customize plot which so long as you only have one plot is
very easy and efficient. It is called the property editor. You can get to it via the view menu if you
have a plot open. It is a graphical user interface (GUI) with many options for titling plots, changing
colors, sizes, line styles, etc.

8.1.5 Saving pictures

If you’re happy with your plot and want to put it into your paper you must first export it by going to
Export Setup. You can get to export setup through “File→ Export Setup" if you have an element on the
figure selected in the Property Editor, or in the Property Editor window.

Remember: you want to export files in the .pdf or .eps format as those do not have problems scaling
when incorporated into a LATEX document.

8.1.6 Histograms

To make a histogram of a vector or matrix of data, the simplest thing is simply to write hist(data). This
will create a histogram plot with a number of bins that MATLAB thinks is appropriate. However, you can
specify the number of bins with hist(data,bins) and if you would like to plot the bin centers against
the bin counts, you can assign the output of the hist to two vectors representing this as in the example
below:



50 Using MATLAB for Data Analysis

[count, bin] = hist(data(:,2),30);
subplot(2,1,1); plot(bin,count);
title(’Plot from Histogram Output’);
subplot(2,1,2); hist(data(:,2),30);
title(’Regular Histogram Plot’);

Figure 8.3: Plots of the same histogram portrayed in two different ways. (Top) Histogram data is stored in
two variables ([count, bin]) from the hist(data(:,2),30); command which is a 30 bin histogram
on data(:,2). (Bottom) The traditional histogram from hist(data(:,2),30);. As you can see,
hist(data(:,2),30); automatically outputs a plot unless you get output data from the function. If
you were interested in how the data were distributed, [count, bin] = hist(data(:,2),30); would
be most useful because you could fit the bin and count with some distribution function (a gaussian for
instance).



Bibliography

Books

Articles





Index

F

Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

P

Plotting in Mathematica . . . . . . . . . . . . . . . . . . . . 41


	Introduction
	Contact Information
	Resources

	Typesetting documents in LaTeX
	Getting LaTeX – compilers and editors
	Getting started immediately 
	A basic document
	Commands and environments

	How the existing rules work
	The structure of a LaTeX document
	Anatomy of our basic example
	Basics continued: text & math modes

	Getting more packages
	More basics: Tables, Figures and References
	To make a table
	To add figures
	References

	Templates in LaTeX 

	 More advanced features of LaTeX
	Creating new commands and environments
	Simple Substitutions
	Functions with Parameters

	Installing REVTeX

	The Basics of Error Analysis
	Experimental measurements and scientific results
	Accuracy and precision: stating scientific results

	Kinds of error
	Error propagation
	The concept of estimator
	How to estimate error in an algebraic formula
	With statistical uncertainties


	Fitting models to data
	Curve-fitting concepts
	The basics of linear least squares fitting
	The linear fit (Part I): OLS regression with one dependent variable
	Finding fit parameters
	Finding uncertainties in fit parameters

	The linear fit (Part II): using error bars in a linear fit (WLS or 2 regression)
	Matrices help to make solving fits faster (especially WLS)
	Uncertainties in 2 fitting

	Nonlinear fitting
	Nonlinear fitting guidelines

	Evaluating Fits – reduced 2

	Mathematica, MATLAB, and Python
	Computational tools in physics
	Learning these programs fast

	Using Mathematica for Data Analysis
	Running commands
	Conventions

	Loading data
	Plotting numerical data
	Histograms

	Tables and Grids
	Fitting arbitrary functions to data

	Using MATLAB for Data Analysis
	Introduction
	Scripts – what makes MATLAB so popular
	Syntax & functions
	Loading data
	Plotting functions and data
	Saving pictures
	Histograms


	Bibliography
	Books
	Articles


