
Scalable Simple Random Sampling and Stratified Sampling

Xiangrui Meng ximeng@linkedin.com

LinkedIn Corporation, 2029 Stierlin Court, Mountain View, CA 94043, USA

Abstract

Analyzing data sets of billions of records has
now become a regular task in many compa-
nies and institutions. In the statistical analy-
sis of those massive data sets, sampling gen-
erally plays a very important role. In this
work, we describe a scalable simple random
sampling algorithm, named ScaSRS, which
uses probabilistic thresholds to decide on the
fly whether to accept, reject, or wait-list an
item independently of others. We prove, with
high probability, it succeeds and needs only
O(
√
k) storage, where k is the sample size.

ScaSRS extends naturally to a scalable strat-
ified sampling algorithm, which is favorable
for heterogeneous data sets. The proposed al-
gorithms, when implemented in MapReduce,
can effectively reduce the size of intermediate
output and greatly improve load balancing.
Empirical evaluation on large-scale data sets
clearly demonstrates their superiority.

1 Introduction

Sampling is an important technique in statistical anal-
ysis, which consists of selecting some part of a popu-
lation in order to estimate or learn something from
the population at low cost. Simple random sampling
(SRS) is a basic type of sampling, which is often used
as a sampling technique itself or as a building block for
more complex sampling methods. However, SRS usu-
ally appears in the literature without a clear definition.
The principle of SRS is that every possible sample has
the same probability to be chosen, but the definition
of “possible sample” may vary across different sam-
pling designs. In this work, we consider specifically
the simple random sampling without replacement:

Definition 1. (Thompson, 2012) Simple random
sampling is a sampling design in which k distinct items

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

are selected from the n items in the population in such
a way that every possible combination of k items is
equally likely to be the sample selected.

Sampling has become more and more important in
the era of big data. The continuous increase in data
size keeps challenging the design of algorithms. While
there have been many efforts on designing and im-
plementing scalable algorithms that can handle large-
scale data sets directly, e.g, (Boyd et al., 2011) and
(Owen et al., 2011), many traditional algorithms can-
not be applied without reducing the data size to a
moderate number. Sampling is a systematic and cost-
effective way of reducing the data size while maintain-
ing essential properties of the data set. There are many
successful work combining traditional algorithms with
sampling. For instance, (Dasgupta et al., 2009) show
that with proper sampling, the solution to the sub-
sampled problem of a linear regression problem is a
good approximate solution to the original problem
with some theoretical guarantee.

Interestingly, even the sampling algorithms themselves
do not always scale well. For example, the reservoir
sampling algorithm (Vitter, 1985) for SRS needs stor-
age for k items and reads data sequentially. It may
become infeasible for a large sample size, and it is not
designed for running in parallel or distributed comput-
ing environments. In this work, we propose a scalable
algorithm for SRS, which succeeds with high probabil-
ity and only needs O(

√
k) storage. It is embarrassingly

parallel and hence can be efficiently implemented for
distributed environments such as MapReduce.

Discussing the statistical properties of SRS and how
SRS compares to other sampling designs is beyond the
scope of the paper, we refer readers to (Thompson,
2012) for more details. For a comprehensive discus-
sion of sampling algorithms, we refer readers to (Tillé,
2006). It is also worth noting that there are many work
on the design of sampling algorithms at a large scale,
for example, (Toivonen, 1996; Chaudhuri et al., 1999;
Manku et al., 1999; Leskovec & Faloutsos, 2006). The
rest of the paper will focus on the design of scalable
SRS algorithms in particular. In Section 2, we briefly



Scalable Simple Random Sampling and Stratified Sampling

review existing SRS algorithms and discuss their scala-
bility. In Section 3, we present the proposed algorithm
and analyze its properties. We extend it to stratified
sampling in Section 4. A detailed empirical evaluation
is provided in Section 5.

2 SRS Algorithms

Denote the item set by S which contains n items:
s1, s2, . . . , sn. Given a sample size k ≤ n, let Sk be
the set of all k-subsets of S. By definition, a k-subset
of S picked from Sk with equal probability is a simple
random sample of S. Even for moderate-sized k and
n, it is impractical to generate all

(
n
k

)
elements of Sk

and pick one with equal probability. In this section,
we briefly review existing SRS algorithms, which can
generate a simple random sample without enumerat-
ing Sk, and discuss their scalability. The content of
this section is mostly from (Tillé, 2006).

The näıve algorithm for SRS is the draw-by-draw al-
gorithm. At each step, an item is selected from S with
equal probability and then is removed from S. After k
steps, we obtain a sample of size k, which is a simple
random sample of S. The drawbacks of the draw-by-
draw algorithm are obvious. The algorithm requires
random access to S and random removal of an item
from S, which may become impossible or very ineffi-
cient while dealing with large-scale data sets.

The selection-rejection algorithm (Fan et al., 1962),
as in Algorithm 1, only needs a single sequential pass
to the data and O(1) storage (not counting the out-
put). This algorithm was later improved by many re-

Algorithm 1 Selection-Rejection (Fan et al., 1962)

Set i = 0.
for j from 1 to n do

With probability k−i
n−j+1 , select sj and let i = i+1.

end for

searchers, e.g., (Ahrens & Dieter, 1985; Vitter, 1987)
in order to skip rejected items directly. Despite the
improvement, the algorithm stays sequential: whether
to select or reject one item would affect all later de-
cisions. It is apparently not designed for parallel en-
vironments. Moreover, both k and n need to be ex-
plicitly specified. It is very common that data comes
in as a stream, where only either k or the sampling
probability p = k/n is specified but n is not known
until the end of the stream.

(Vitter, 1985) proposed a sampling algorithm with
a reservoir, as in Algorithm 2, which needs storage
(with random access) for k items but does not re-
quire explicit knowledge of n. Nevertheless, the reser-

Algorithm 2 Reservoir (Vitter, 1985)

The first k items are stored into a reservoir R.
for j from k + 1 to n do

With probability k
j , replace an item from R with

equal probability and let sj take its place.
end for
Select the items in R.

voir algorithm is again a sequential algorithm. Like
the selection-rejection algorithm, it reads data sequen-
tially in order to get the item indexes correctly, which
may take a very long time for large-scale data sets.

A very simple random sort algorithm was proved
by (Sunter, 1977) to be an SRS algorithm, as pre-
sented in Algorithm 3. It performs a random permuta-

Algorithm 3 Random Sort (Sunter, 1977)

Associate each item of S with an independent vari-
ableXi drawn from the uniform distribution U(0, 1).
Sort S in ascending order.
Select the smallest k items.

tion of the items via a random sort and then pick the
first k items. At the first look, this algorithm needs
O(n log n) time to perform a random permutation of
the data, which is inferior to Algorithms 1 and 2. How-
ever, both associating items with independent random
variables and sorting can be done efficiently in paral-
lel. As demonstrated in (Czajkowski, 2008), sorting a
petabyte-worth of 100-byte records on 4000 computers
took just over 6 hours. Moreover, it is easy to see that
a complete sort is not necessary for finding the small-
est k items, which could be done in linear time using
the selection algorithm (Blum et al., 1973). Though
Algorithm 3 scales better than Algorithms 1 and 2 in
theory, it needs an efficient implementation in order
to perform better than Algorithms 1 and 2 in prac-
tice. As we will show in the following section, there
exists much space for further improvement of this ran-
dom sort algorithm, which leads to a faster and more
scalable algorithm for SRS.

3 ScaSRS: A Scalable SRS Algorithm

In this section, we present a fast and scalable algo-
rithm for SRS, named ScaSRS, which gives the same
result as the random sort algorithm (given the same
sequence of Xi) but uses probabilistic thresholds to
accept, reject, or wait-list an item on the fly to reduce
the number of items that go into the sorting step. We
prove that ScaSRS succeeds with high probability and
analyze its theoretical properties. For the simplicity of
the analysis, we present the algorithm assuming that



Scalable Simple Random Sampling and Stratified Sampling

both k and n are given and hence the sampling prob-
ability p = k/n. Then, in Section 3.4, we consider the
streaming case when n is not explicitly given.

3.1 Rejecting Items on the Fly

The sampling probability p plays a more important
role than the sample size k in our analysis. Qualita-
tively speaking, in the random sort algorithm (Algo-
rithm 3), if the random key Xj is “much larger” than
the sampling probability p, the item sj is “very un-
likely” to be one of the smallest k = pn items, i.e., to
be included in the sample. In this section, we present a
quantitative analysis and derive a probabilistic thresh-
old to reject items on the fly. We need the following
inequality from (Maurer, 2003):

Lemma 1. (Maurer, 2003) Let {Yj}nj=1 be indepen-

dent random variables, E[Y 2
j ] < ∞, and Yj ≥ 0. Set

Y =
∑

j Yi and let t > 0. Then,

log Pr{E[Y ]− Y ≥ t} ≤ − t2

2
∑

j E[Y 2
j ]
.

Theorem 1. In Algorithm 3, if we reject items whose
associated random keys are greater than

q1 = min(1, p+γ1 +
√
γ21 + 2γ1p), where γ1 = − log δ

n
,

for some δ > 0. The resulting algorithm is still correct
with probability at least 1− δ.

Proof. Fix a q1 ∈ [0, 1] and let Yj = 1Xj<q1 . {Yj}nj=1

are independent random variables, and it is easy to
verify that E[Yj ] = q1 and E[Y 2

j ] = q1. Set Y =
∑

j Yj ,
which is the number of items whose associated random
keys are less than q1. We have E[Y ] =

∑
j E[Yj ] =

q1n. Apply Lemma 1 with t = (q1 − p)n,

log Pr{Y ≤ pn} ≤ − (q1 − p)2n
2q1

. (1)

We want to choose a q1 ∈ (0, 1) such that we can
reject item sj immediately if Xj ≥ q1, j = 1, . . . , n,
and with high probability doing this will not affect the
sampling result, i.e., Y ≥ pn. Given (1), in order to
have a failure rate of at most δ for some δ > 0, we
need

− (q1 − p)2n
2q1

≤ log δ,

which gives

q1 ≥ p+ γ1 +
√
γ21 + 2γ1p, where γ1 = − log δ

n
.

This completes the proof.

By applying the probabilistic threshold q1, we can re-
duce the number of items that go into the sorting step.

3.2 Accepting Items on the Fly

Given the analysis in Section 3.1, it is natural to think
of the other side: if the random key Xj is “much
smaller” than the sampling probability p, then the
item sj is “very likely” to be included in the sample.
For a quantitative analysis, this time we need Bern-
stein’s inequality (Bernstein, 1927):

Lemma 2. (Bernstein, 1927) Let {Zj}nj=1 be inde-
pendent random variables with Zj−E[Zj ] ≤M for all
j ∈ {1, . . . , n}. Let Z =

∑
j Zj and t > 0. Then with

σ2
j = E[Z2

j ]−E[Zj ]
2 we have

log Pr{Z −E[Z] ≥ t} ≤ − t2

2
∑

j σ
2
j + 2Mt/3

.

Theorem 2. In Algorithm 3, if we accept items whose
associated random keys are less than

q2 = max(0, p+γ2−
√
γ22 + 3γ2p), where γ2 = −2 log δ

3n
,

for some δ > 0. The resulting algorithm is still correct
with probability at least 1− δ.

Proof. Fix a q2 ∈ [0, 1] and let Zj = 1Xj<q2 . {Zj}nj=1

are independent random variables. It is easy to verify
that E[Zj ] = q2, Zj − E[Zj ] ≤ 1 − q2 ≤ 1, and σ2

j =

E[Z2
j ] − E[Zj ]

2 ≤ E[Z2
j ] = q2. Consider Z =

∑
j Zj ,

which is the number of items whose associated random
keys are less than q2. We have E[Y ] =

∑
j E[Yj ] =

q2n. Applying Lemma 2 with t = (p− q2)n, we get

log Pr[Z ≥ pn] ≤ −3(p− q2)2n

4q2 + 2p
.

The proof is done by similar arguments as in the proof
of Theorem 1.

By applying the probabilistic threshold q2 together
with q1 from Section 3.1, we can further reduce the
number of items that go into the sorting step.

3.3 The Algorithm

The scalable SRS algorithm we propose, referred to as
ScaSRS, is simply the random sort algorithm plus the
probabilistic thresholds introduced in Theorems 1 and
2. We describe ScaSRS in Algorithm 4.

Theorem 3. ScaSRS (Algorithm 4) succeeds with
probability at least 1− 2δ. Moreover, for a fixed δ and
with high probability, it only needs O(

√
k) storage (not

counting the output) and runs in O(n) time.

Proof. Adopt the notation from Sections 3.1 and 3.2.
The output of ScaSRS will not be affected by setting



Scalable Simple Random Sampling and Stratified Sampling

Algorithm 4 ScaSRS: Scalable SRS

Choose a small δ > 0 which controls the failure rate.
Compute q1 and q2 based on Theorems 1 and 2.
Let l = 0, and W = ∅ be the waiting list.
for each item sj ∈ S do

Draw a key Xj independently from U(0, 1).
if Xj < q2 then

Select sj and let l := l + 1.
else if Xj < q1 then

Associate sj with Xj and add it into W .
end if

end for
Sort W ’s items in the ascending order of the key.
Select the smallest pn− l items from W .

the probabilistic thresholds if we have both Y ≥ pn
and Z ≤ pn, i.e., we do not reject more than n − k
items and we do not select more than k items dur-
ing the scan. Then, by Theorems 1 and 2, we know
that ScaSRS succeeds with probability 1 − 2δ. Let
w = Y −Z be the final size of W . It is easy to see that
the storage requirement of the algorithm is O(w). Re-
member that a complete sort is not necessary to find
the smallest k − l items from W . Instead, we can use
the selection algorithm that takes linear time. There-
fore, the total running time is O(n + w) = O(n). In
the following, we prove that, for a fixed δ and with
high probability, w = O(

√
k). We have

E[Y ] = q1n = pn− log δ +

√
log2 δ − 2 log δ · pn

= k +O(
√
k),

E[Z] = q2n = pn− 2

3
log δ −

√
4

9
log2 δ − 2 log δ · pn

= k −O(
√
k).

Choose a small positive number θ. Apply Lemma 1 to
Z =

∑
j Zj with t =

√
2 log θ · q2n,

Pr{Z ≤ q2n−
√

2 log θ · q2n} ≤ θ.

Since θ only appears in the log term of the bound, with
high probability we have Z = k − O(

√
k). Similarly,

by applying Lemma 2 to Y =
∑

j Yj , we can get Y =

k +O(
√
k) with high probability, and hence w = Y −

Z = O(
√
k) with high probability.

To illustrate the result, let n = 106, k = 50000, and
hence p = 0.05, and then compute q1 and q2 based
on n, p, and δ = 0.00005. We plot the probability
density functions (pdf) of Y and Z in Figure 1. We
see that with high probability, Y ≥ k, Z ≤ k, and
Y − Z = O(

√
k).

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

48000 48500 49000 49500 50000 50500 51000 51500 52000

n = 1e6, k = 50000, p = 0.05

pdf of number of unrejected items
pdf of number of accepted items

O(sqrt(k))

Figure 1. The probability density functions of Y , number
of unrejected items, and Z, number of accepted items.
With high probability, Y ≥ k, Z ≤ k, and Y −Z = O(

√
k).

From the proof, we see that, with high probability,
n−k−O(

√
k) items are rejected and k−O(

√
k) items

are accepted right after the corresponding random keys
{Xj} are generated. Only O(

√
k) items stay in the

waiting list and go into the sorting step, instead of n
items for the random sort algorithm. The improve-
ment is significant. For example, let us consider the
task of generating a simple random sample of size 106

from a collection of 109 items. The random sort al-
gorithm needs to find the smallest 106 items accord-
ing to the random keys out of 109, while ScaSRS only
needs to find approximately the smallest a few thou-
sand items out of a slightly larger pool that is still at
the order of a few thousand, which is a trivial task.

In ScaSRS, the decision of whether to accept, reject,
or wait-list an item sj is made solely on the value of
Xj , independent of others. Therefore, it is embarrass-
ingly parallel, which is a huge advantange over the se-
quential Algorithms 1 and 2 and makes ScaSRS more
favorable for large-scale data sets in distributed envi-
ronments. Even in the single-threaded case, ScaSRS
only loses to Algorithm 1 by O(

√
k) storage for the

waiting-list and O(
√
k) time for the sorting step. Sim-

ilar to the improvement that has been made to Algo-
rithm 1, we can skip items in ScaSRS. If Xj < q1, let
Tj be the smallest number greater than j such that
XTj

< q1. We know that Tj − j is a random number
follows the geometric distribution. Therefore, we can
generate Tj − j directly and skip/reject all items be-
tween sj and sTj . It should give a performance boost
provided random access to the data.

ScaSRS is a randomized algorithm with a certain
chance of failure. However, since δ only appears in



Scalable Simple Random Sampling and Stratified Sampling

the log terms of the thresholds q1 and q2, we can eas-
ily control the failure rate without sacrificing the per-
formance much. In practice, we set δ = 0.00005 and
hence the failure rate is controlled at 0.01%, which
makes ScaSRS a quite reliable algorithm. With this
setting, we have not encountered any failures yet dur-
ing our experiments and daily use.

3.4 ScaSRS in Streaming Environments

For large-scale data sets, data usually comes in as a
stream and the total number of items is unknown until
we reach the end of the stream. Algorithm 1 does not
apply to the streaming case. Algorithm 2 only needs
the sample size k to work at the cost of a reservoir of
k items. In this section, we discuss how ScaSRS works
in streaming environments. We consider two scenarios:
1) when the sampling probability p is given, 2) when
the sample size k is given.

If only p is given, we can update the thresholds q1 and
q2 on the fly by replacing n by the number of items
seen so far. Instead of fixed thresholds, we set

q1,j = min(1, p+ γ1,j +
√
γ21,j + 2γ1,jp), (2)

q2,j = max(0, p+ γ2,j −
√
γ22,j + 3γ2,jp), (3)

where

γ1,j = − log δ

j
, γ2,j = −2 log δ

3j
, j = 1, . . . , n.

It can only loosen the thresholds and therefore the
failure rate of the algorithm will not increase. How-
ever, this will increase the size of the waiting list. For
simplicity, we present the theoretical analysis for the
single-threaded case and then show how to get a near-
optimal performance in parallel environments. We
summarize the modified algorithm in Algorithm 5 and
analyze its properties in Theorem 4.

Algorithm 5 ScaSRS (when only p is given)

Choose a small δ > 0 which controls the failure rate.
Let l = 0, and W = ∅ be the waiting list.
for j = 1 to n do

Compute q1,j and qq,2 based on (2) and (3).
Draw a key Xj independently from U(0, 1).
if Xj < q2,j then

Select sj and let l := l + 1.
else if Xj < q1,j then

Associate sj with Xj and add it into W .
end if

end for
Sort W ’s items in the ascending order of the key.
Select the first pn− l items from W .

Theorem 4. Algorithm 5 succeeds with probability at
least 1 − 2δ. Moreover, for a fixed δ and with high
probability, it only needs O(log n+

√
k log n) storage.

Proof. Redefine random variables Yj = 1Xj<q1,j , j =
1, . . . , n and Y =

∑
j Yj . Hence, E[Yj ] = E[Y 2

j ] = q1,j
and E[Y ] =

∑
j E[Yj ] =

∑
j q1,j . Note that

n∑
j=1

1

j
≤ log n+ 1, ∀n ∈ N

and√
γ21,j + 2γ1,jp ≤ γ1,j +

√
2γ1,jp, j = 1, . . . , n.

With a fixed δ, we get the following bound of E[Y ]:

E[Y ] ≤
∑
j

(
p+ γ1,j +

√
γ21,j + 2γ1,jp

)
≤ pn+

∑
j

γ1,j +
∑
j

(γ1,j +
√

2γ1,jp)

≤ k + 2
∑
j

γ1,j +

√
2pn

∑
j

γ1,j

≤ k − 2 log δ(log n+ 1) +
√
−2k log δ(log n+ 1)

= k +O(log n+
√
k log n).

Then applying Lemma 2 to Y , we know that Y = k+
O(log n +

√
k log n) with high probability. By similar

arguments, we can obtain Z = k−O(log n+
√
k log n)

with high probability. So the size of W is O(log n +√
k log n) with high probability, which is slightly larger

than the size of the waiting list when n is given.

When we process the input data in parallel, it may
be too expensive to know in real time the exact j,
the number of items that have been processed. Fortu-
nately, the algorithm does not require the exact j to
work correctly but just a good lower bound. So we can
simply replace j by the local count on each process or a
global count updated less frequently to reduce commu-
nication cost. The former approach works very well in
practice, even with hundreds of concurrent processes.

If only k is given, we can no longer accept items on the
fly because the sampling probability could be arbitrar-
ily small. However, we can still reject items on the fly
based on k and j, the number of items that have been
processed. The following threshold can be used:

q1,j = min(1,
k

j
+ γ1,j +

√
γ21,j + 2γ1,j

k

j
), (4)

where

γ1,j = − log δ

j
, j = 1, . . . , n.



Scalable Simple Random Sampling and Stratified Sampling

Similar to the previous case, we redefine random vari-
ables Yj = 1Xj<q1,j , j = 1, . . . , n, and Y =

∑
j Yj .

Then compute an upper bound of E[Y ]:

E[Y ] ≤
∑
j

k

j
+ γ1,j +

√
γ21,j + 2γ1,j

k

j

≤ k(log n+ 1) +O(
√
k log n).

By Lemma 2, we know that with high probability, Y =
k(log n+1)+O(

√
k log n). We omit the detailed proof

and present the modified algorithm in Algorithm 6 and
the theoretical result in Theorem 5.

Algorithm 6 ScaSRS (when only k is given)

Choose a small δ > 0 which controls the failure rate.
Let l = 0, and W = ∅ be the waiting list.
for j = 1 to n do

Compute q1,j based on (4).
Draw a key Xj independently from U(0, 1).
if Xj < q1,j then

Associate sj with Xj and add it into W .
end if

end for
Sort W ’s items in the ascending order of the key.
Select the first k items from W .

Theorem 5. Algorithm 6 succeeds with probability at
least 1− δ. Moreover, for a fixed δ and with high prob-
ability, it needs k(log n+ 1) +O(

√
k log n) storage.

Compared with Algorithm 2, Algorithm 6 needs more
storage. However, it does not need random access to
the storage during the scan, so the items in the waiting
list can be distributively stored. Moreover, the algo-
rithm can be implemented in parallel provided a way
to obtain a good lower bound of the global item count
j. This can be done by setting up a global counter,
and each process reports its local count and fetches
the global count every, e.g., 1000 items.

4 Stratified Sampling

If the item set S is heterogeneous, which is common
for large-scale data sets, it may be possible to partition
it into several non-overlapping homogeneous subsets,
called strata, denoted by S1, . . . , Sm. By “homoge-
neous” we mean the items within a stratum are similar
to each other. For example, a training set can be parti-
tioned into positives and negatives, or web users’ activ-
ities can be partitioned based on the days of the week.
Given strata of S, applying SRS within each stratum
is preferred to applying SRS to the entire set for bet-
ter representativeness of S. This approach is called

stratified sampling. See (Thompson, 2012) for its the-
oretical properties. In this work, we consider stratified
sampling with proportional allocation, in which case
the sample size of each stratum is proportional to the
size of the stratum.

Let p be the sampling probability and ni be the size of
Si, i = 1, . . . ,m. We want to generate a simple random
sample of size pni from Si for each i. For simplicity,
we assume that pni is an integer for all i. Extending
ScaSRS to stratified sampling is straightforward, since
stratified sampling is equivalent to applying SRS to
S1, . . . , Sm with sampling probability p.

Theorem 6. Let S be an item set of size n, which
is partitioned into m strata S1, . . . , Sm. Assume that
the size of Si is given, denoted by ni, i = 1, . . . ,m.
Given a sampling probability p, if ScaSRS is applied
to each stratum of S to compute a stratified sample of
S, it succeeds with probability at least 1 − 2mδ, and
for a fixed δ and with high probability, it needs at most
O(
√
mpn) storage.

Proof. To generate a stratified sample of S, we need
to apply ScaSRS m times. Therefore, the failure rate
is at most 2mδ. The total size for the waiting lists is

∑
i

O(
√
pni) ≤ O(

√
m

√
p ·
∑
i

ni) = O(
√
mpn),

with high probability.

In Theorem 6, we assume that n is explicitly given.
In practice, it is common that only p is specified, but
ni, i = 1, . . . ,m, and n are all unknown or we need to
make a pass to the data to get those numbers. Using
Algorithm 5, we can handle this streaming case quite
efficiently as well:

Theorem 7. If only the sampling probability p is given
and Algorithm 5 is applied to each stratum of S to
compute a stratified sample of S, it succeds with prob-
ability at least 1−2mδ, and for a fixed δ and with high
probability, it needs O(m log n+

√
mpn log n) storage.

We omit the proof because it is very similar to the
proof of Theorem 6. Similarly, using Algorithm 6, we
can handle the other streaming case when only k is
specified. However, since we do not know ki = kni/n
in advance, i = 1, . . . ,m, we cannot apply Algorithm 6
directly to each stratum. Suppose we process items
from S sequentially. Instead of (4), we can use the
following threshold for sj :

q1,j = min(1,
k

j
+ γ1,j +

√
γ21,j + 2γ1,j

k

j
), (5)



Scalable Simple Random Sampling and Stratified Sampling

where

γ1,j = − log δ

ji(j)
, j = 1, . . . , n,

i(j) is the index of the stratum sj belongs to, and ji is
the number of items seen from Si at step j. So we use
the global count to compute an upper bound of p and
use the local count as a lower bound of ni. It leads to
the following theorem:

Theorem 8. If only the sample size k is given and a
modified Algorithm 6 using the thresholds from (5) is
applied to S, it succeeds with probability at least 1−mδ,
and for a fixed δ and with high probability, it needs at
most (k +m)(log n+ 1) +O(

√
km log n) storage.

Proof. Note that the threshold from (5) is always
larger than the one from Theorem 1. Therefore, for
each stratum, the failure rate is at most δ and hence
the overall failure rate is at most mδ. It is easy to
derive the following bound:∑

j

1

ji(j)
≤ m

∑
j

1

j
≤ m(log n+ 1).

Similar to the proof of Theorem 5, we have

E[Y ] ≤
∑
j

k

j
+ γ1,j +

√
γ21,j + 2γ1,j

k

j

≤ (k +m)(log n+ 1) +O(
√
km log n).

Even if ki is given and hence we can directly apply
Algorithm 6 to each stratum, by Theorem 5, the bound
on storage we can obtain is∑

i

ki(log ni + 1) +O(
√
ki log ni)

≤ k(log n+ 1) +O(
√
km log n).

Usually, m is a small number. Therefore, the overhead
introduced by not knowing ki is quite small.

An efficient parallel implementation of the stratified
sampling algorithm using ScaSRS (when only k is
given) would need a global counter for each stratum.
The counters do not need to be exact. Good lower
bounds of the exact numbers should work well.

5 Implementation and Evaluation

We implemented ScaSRS (Algorithm 4) and its variant
Algorithm 5 using Apache Hadoop1, which is an open-
source implementation of Google’s MapReduce frame-
work (Dean & Ghemawat, 2008). We did not imple-
ment Algorithm 6 due to the lack of efficient near real-
time global counters in Hadoop and it is also because

1http://hadoop.apache.org/

that in most practical tasks p is specified instead of
k, especially for stratified sampling. The MapReduce
framework consists of three phases: map, sort, and re-
duce. In the map phase, input data is processed by
concurrent mappers, which generate key-value pairs.
In the sort phase, the key-value pairs are ordered by
the key. Then, in the reduce phase, the values associ-
ated with the same key will be processed by a reducer,
where multiple reducers can be used to accelerate the
process if we have multiple keys. The reducers’ output
is the final output. See (White, 2012) for more details.

ScaSRS fits the MapReduce framework very well. In
the map phase, for each input item we generate a
random key and decide whether to accept, reject, or
wait-list the item. If we decide to put the item onto
the waiting list, we let the mapper emit the random
key and the item as a key-value pair. Then in the
sort phase, the items in the waiting list are sorted by
their associated keys. Finally, the sorted items are
processed by a reducer, which selects the first k − l
items into the sample where l is the number of accepted
items in the map phase. It is technically possible to let
mappers output accepted items directly (using Multi-
pleOutputs), and the result we report here is based on
this approach. In our implementation, we also have
an option to let accepted items go through the sort
and the reduce phases in order to control the num-
ber of final output files and the size of each file, which
is a practical workaround to prevent file system frag-
mentation. If this option is enabled, we associate the
accepted items with a special key such that the reduc-
ers know that those items have been already accepted,
and we also use a random key partitioner which as-
signs an accepted item to a random reducer in order
to help load balancing. If only p is given, we use local
item counts to update the thresholds on the fly. We set
δ = 0.00005, which controls the failure rate at 0.01%
and hence leads to a reliable algorithm.

For comparison purpose, we also implemented Algo-
rithms 1 (referred to as SR), 2 (referred to as R) and
3 (referred to as RS) using Hadoop. For SR and R, we
use identity mappers that do nothing but copy the in-
put data. The actual work is done on a single reducer.
So, to be fair, we only use the time of the reduce phase
as the running time of the algorithm. Note that we
cannot use multiple reducers because the algorithms
are sequential. This single reducer has to go through
the entire data set to generate a simple random sam-
ple, which clearly becomes the bottleneck. For RS,
mappers associate input items with random keys. Af-
ter the sort, a single reducer output the first k items as
the sample. This is a näıve implementation of RS. We
did not implement the selection algorithm but simply



Scalable Simple Random Sampling and Stratified Sampling

use the sort capability from Hadoop. One drawback
of conforming to the MapReduce framework is that
the entire data set will be fed to the reducer though
we know that only the first k items are neccessary.
Instead of implementing a distributed selection algo-
rithm and plugging it into the MapReduce framework,
using ScaSRS is apparently a better choice. Recall
that ScaSRS, if it runs successfully, outputs the same
result as RS given the same sequence of random keys.

The test data sets we use are user-generated events
from LinkedIn’s website, which scales from 60 million
records to 1.5 billion. Table 1 lists the test problems.
By default, the number of mappers is proportional to

P1 P2 P3 P4 P5 P6

n 6.0e7 6.0e7 3.0e8 3.0e8 1.5e9 1.5e9
p 0.01 0.1 0.01 0.1 0.01 0.1
k 6.0e5 6.0e6 3.0e6 3.0e7 1.5e7 1.5e8

Table 1. Test problems.

the input data size. We use this default setting. For
problems P1 and P2 we use 17 mappers, for P3 and
P4 we use 85 mappers, and for P5 and P6 we use 425
mappers. Only one reducer is needed to process the
waiting list. Note that the number of mappers does
not affect the performance of SR and R, which can
only rely on a single reducer.

First, we compare the running times of SR, RS,
ScaSRS with n given, R with only k given, and ScaSRS
with only p given (referred to as ScaSRSp). Recall that
we only measure the running time of the reduce phase
for SR and R for fairness. Table 2 shows the running
times in seconds. The running time of each test is

P1 P2 P3 P4 P5 P6

SR 281 355 1371 1475 >3600 >3600
R 288 299 1285 1571 >3600 >3600
RS 513 581 1629 2344 >3600 >3600

ScaSRS 96 103 126 127 140 158
ScaSRSp 98 144 109 139 162 214

Table 2. Running times (in seconds). SR and R are se-
quential algorithms with linear time complexity and hence
their running times are approximately proportional to the
input size. RS could be scalable if we implemented a dis-
tributed selection algorithm. However, it is easier to use
ScaSRS instead, which scales very well across all tests.

based on a single run, and we terminate the job if the
running time is longer than one hour. The running
time of a Hadoop job can be affected by many fac-
tors, for example, I/O performance, concurrent jobs,
etc. We did not take the average out of several runs,
because the numbers are adequate to demonstrate the
superiority of ScaSRS, whose running time grows very

slowly as the problem scale increases.

Next, we verify our claim in Theorems 3 and 4 about
the storage requirement, i.e., the size of the waiting
list, denoted by w for ScaSRS and by wp for ScaSRSp.
We list the result in Table 3. It is easy to verfiy

P1 P2 P3 P4 P5 P6

k 6.0e5 6.0e6 3.0e6 3.0e7 1.5e7 1.5e8
w 6.9e3 2.2e4 1.6e4 4.9e4 3.4e4 1.1e5
wp 5.8e4 1.8e5 2.9e5 9.1e5 1.5e6 4.5e6

Table 3. Waiting list sizes. The waiting list sizes of ScaSRS
confirm our theory in Theorem 3: w = O(

√
k). ScaSRSp

requires more (but still tractable) storage than ScaSRS.

that w < 10
√
k, which confirms our theory in The-

orem 3. We implement ScaSRSp using local counts
instead of a global count, which introduces an over-
head on the storage requirement. Nevertheless, the
storage requirement of ScaSRSp is still moderate even
for P6, which needs a sample of size 1.5e8.

Finally, we report a stratified sampling task we ran on
a large data set (about 7 terabytes), which contains
23.25 billion user-generated events. The stratum of
an event is determined by a field in the record. The
data set contains 8 strata. The ratio between the size
of the largest strata and that of the smallest strata is
approximately 15000. We set the sampling probability
p = 0.01 and use approximately 3000 mappers and 5
reducers for the sampling task. The job finished suc-
cessfully in 509 seconds. The total size of the waiting
lists is 4.3e7. Within the waiting list, the ratio between
the size of the largest strata and that of the smallest
strata is 861.2, which helps the load balancing.

6 Conclusion

We developed and implemented a scalable simple ran-
dom sampling algorithm, named ScaSRS, which uses
probabilistic thresholds to accept, reject, or wait-list
items on the fly. We presented a theoretical analysis of
its success rate and storage requirement, and discussed
its variants for streaming environments. ScaSRS is
very easy to implement in the MapReduce framework
and it extends naturally to stratified sampling. Em-
pirical evaluation on large-scale data sets showed that
ScaSRS is reliable and has very good scalability.

Acknowledgments

The author would like to thank Paul Ogilvie and An-
mol Bhasin for their valuable feedback on an earlier
draft. The author also wishes to thank the anony-
mous reviewers for their comments and suggestions
that helped improve the presentation of the paper.



Scalable Simple Random Sampling and Stratified Sampling

References

Ahrens, J. H. and Dieter, U. Sequential random sam-
pling. ACM Transactions on Mathematical Software
(TOMS), 11(2):157–169, 1985.

Bernstein, S. Theory of Probability. Moscow, 1927.

Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and
Tarjan, R. E. Time bounds for selection. Journal of
Computer and System Sciences, 7(4):448–461, 1973.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eck-
stein, J. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends R© in Machine
Learning, 3(1):1–122, 2011.

Chaudhuri, S., Motwani, R., and Narasayya, V. On
random sampling over joins. ACM SIGMOD Record,
28(2):263–274, 1999.

Czajkowski, G. Sorting 1PB with MapReduce, 2008.
http://googleblog.blogspot.com/2008/11/sorting-
1pb-with-mapreduce.html.

Dasgupta, A., Drineas, P., Harb, B., Kumar, R., and
Mahoney, M. W. Sampling algorithms and coresets
for `p regression. SIAM Journal on Computing, 38
(5):2060–2078, 2009.

Dean, J. and Ghemawat, S. MapReduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

Fan, C. T., Muller, M. E., and Rezucha, I. Devel-
opment of sampling plans by using sequential (item
by item) selection techniques and digital computers.
Journal of the American Statistical Association, 57
(298):387–402, 1962.

Leskovec, J. and Faloutsos, C. Sampling from large
graphs. In Proceedings of the 12th International
Conference on Knowledge Discovery and Data Min-
ing, pp. 631–636. ACM, 2006.

Manku, G. S., Rajagopalan, S., and Lindsay, B. G.
Random sampling techniques for space efficient on-
line computation of order statistics of large datasets.
ACM SIGMOD Record, 28(2):251–262, 1999.

Maurer, A. A bound on the deviation probability for
sums of non-negative random variables. J. Inequal-
ities in Pure and Applied Mathematics, 4, 2003.

Owen, S., Anil, R., Dunning, T., and Friedman, E.
Mahout in Action. Manning Publications Co., 2011.

Sunter, A. B. List sequential sampling with equal or
unequal probabilities without replacement. Applied
Statistics, pp. 261–268, 1977.

Thompson, S. K. Sampling. Wiley, 3 edition, 2012.

Tillé, Y. Sampling Algorithms. Springer, 2006.

Toivonen, H. Sampling large databases for associa-
tion rules. In Proceedings of the 22th International
Conference on Very Large Data Bases, pp. 134–145.
Morgan Kaufmann Publishers Inc., 1996.

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

Vitter, J. S. An efficient algorithm for sequential ran-
dom sampling. ACM transactions on mathematical
software (TOMS), 13(1):58–67, 1987.

White, T. Hadoop: The Definitive Guide. O’Reilly
Media, 2012.


