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Abstract

We present a method whereby a robot with no prior
knowledge of its sensors, effectors or environment
can learn to recognize places with high accuracy, in
spite of perceptual aliasing (different places appear
the same) and image variability (the same place ap-
pears differently). Previous work showed how such
a robot could learn from its experience a useful
set of sensory features, motion primitives, and lo-
cal control laws to move from one distinctive state
to another. Such progressive learning of a hierar-
chical representation is calledbootstrap learning.
The first step in learning place recognition elimi-
nates image variability in two steps: (a) focusing
on recognition of distinctive states defined by the
robot’s control laws, and (b) unsupervised learning
of clusters of similar sensory images. The clus-
ters defineviewsassociated with distinctive states,
often increasing perceptual aliasing. The second
step eliminates perceptual aliasing by building a
cognitive map and using history information gath-
ered during exploration to disambiguate distinctive
states. The third step uses the labeled images for
supervised learning of direct associations from sen-
sory images to distinctive states. We evaluate the
method using a physical mobile robot in two en-
vironments, showing large amounts of perceptual
aliasing and high resulting recognition rates.

1 Bootstrap Learning
Suppose an agent awakes in an unknown environment with
an uninterpreted set of sensors and effectors. How can it learn
the nature of its own sensorimotor system and then learn the
structure of its environment?

This problem is important in practical terms because we
want robots with very rich sensorimotor systems to be able to
adapt to new senses or to changes in its existing sensors. Fu-
ture robot sensors based on MEMS technology may also have
irregular structures similar to biological sensors, rather than
being (for example) a rectangular array of pixels. This prob-
lem is an aspect of the fundamental question of how symbols
in a knowledge representation gain their meaning by being
grounded in sensorimotor interaction with the world.

Pierce and Kuipers[1997] explored how such an agent
could progressively learn: (1) properties of its sensors, (2) a
basis set of motor commands, (3) sets of sensory features use-
ful as local state variables, and (4) control laws for trajectory-
following and hill-climbing. These control laws are suffi-
cient to support travel amongdistinctive states(dstates), and
hence to support creation of the causal, topological and met-
rical levels of the Spatial Semantic Hierarchy (SSH)[Kuipers
& Byun, 1991; Kuipers, 2000]. We use the termbootstrap
learning for this kind of progressive creation of a hierarchy
of representations.

In this paper, given that the agent has learned to move re-
liably among distinctive states, we ask how it can learn to
recognize places.

2 Place Recognition
We want a robot to learn from experience to recognize the
place it is at and its orientation at that place. Together, the
robot’s position and orientation constitute itsstatein the en-
vironment. Without contextual information, this recognition
problem is unsolvable even with perfect sensors, since differ-
ent places may have identical sensory images. Realistically,
sensors are imperfect, so even if subtle distinguishing fea-
tures are present, they may be buried in sensor noise. There
are two difficulties that must be overcome for effective place
recognition.
� Perceptual aliasing: different places may have similar or

identical sensory images.

� Image variability: the same position and orientation may
have different sensory images on different occasions, for
example at different times of day.

These two difficulties trade off against each other. With rel-
atively impoverished sensors (e.g., a sonar ring) many places
have similar images, so the dominant problem is perceptual
aliasing. With much richer sensors such as vision or laser
range-finders, discriminating features are more likely to be
present in the image, but so are noise and dynamic changes,
so the dominant problem for recognition becomes image vari-
ability.

3 A Hybrid Solution
In order to bootstrap to an effective solution to the place
recognition problem, we combine several different learning
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Figure 1: Bootstrap learning of place recognition. Solid ar-
rows represent the major inference paths, while dotted arrows
represent feedback.

methods (Figure 1). We start by attacking the problem of
image variability, first by focusing on distinctive states and
second by clustering to eliminate noise. Then we apply a
relatively expensive deductive and exploration method to dis-
ambiguate perceptual aliasing, some of which may be caused
by the first step. And finally, we use our expensively-bought
knowledge of distinctive states to learn direct associations
from sensory images to dstates. The resulting association
may not be perfect, in the case of dstates with identical sen-
sory images, but the more expensive contextual methods re-
main available.

The steps of our solution are the following.

1. Restrict attention to recognizingdistinctive states
(dstates). Distinctive states are well-separated in the
robot’s state space, and their sensory images tend to be
either well-separated or very similar.

2. Apply an unsupervised clustering algorithm to the sen-
sory images obtained at the dstates in the environment.
This reduces image variability by mapping different im-
ages of the same place into the same cluster, even at the
cost of increasing perceptual aliasing by mapping im-
ages of different states into the same cluster. We de-
fine each cluster to be aview, in the sense of the SSH
[Kuipers & Byun, 1991; Kuipers, 2000].

3. Build the SSH causal and topological map — a sym-
bolic description made up of dstates, places and paths

Figure 2: Lassie explores a rectangular room whose only dis-
tinguishing feature is a small notch out of one corner. Image
variability arises from position and orientation variation when
Lassie reaches a distinctive state, and from the intrinsic noise
in the laser range-finder. Perceptual aliasing arises from the
symmetry of the environment, and the lack of a compass. The
notch is designed to be a distinguishing feature that is small
enough to be obscured by image variability.

— by exploration and abduction from the observed se-
quence of views and actions[Kuipers, 2000; Remolina
& Kuipers, 2001]. If needed to disambiguate the current
distinctive state, use history-based methods such as the
rehearsal procedure[Kuipers & Byun, 1991] or homing
sequences[Rivest & Schapire, 1989]. While theoreti-
cally tractable, these are expensive both in computation
and in additional travel. This is feedback path (a) in Fig-
ure 1.

4. Now the sequence of images is classified into views
and labeled with the correct dstate. Apply a super-
vised learning algorithm to learn a direct association
from sensory image to dstate. The added information
in supervised learning makes it possible to identify sub-
tle discriminating features that would be indistinguish-
able from noise by an unsupervised clustering algorithm.
This is feedback path (b) in Figure 1.

We describe the individual steps in more detail along with
a simple experiment. Lassie is an RWI Magellan robot. It
perceives its environment using a laser range-finder: each
sensory image is a point inR180. Although each image repre-
sents the ranges to obstacles in the180Æ arc in front of Lassie,
because we are doing bootstrap learning the robot does not
have this knowledge, so it cannot apply powerful spatial mod-
eling methods like occupancy grids[Moravec, 1988].

As Lassie performs clockwise circuits of its environment,
it encounters eight distinctive states, one immediately before,
and one immediately after the turn at each corner (Figure 2).

4 Focus on Distinctive States
The SSH[Kuipers, 2000] is a hierarchy of distinct but closely
related representations for knowledge of large-scale space. It
shows how the cognitive map can be robustly acquired during
exploration and used for problem-solving even in the face of
resource limitations and incomplete knowledge.

A distinctive state is the isolated fixed-point of a hill-
climbing control law. Travel among distinctive states elim-



inates cumulative estimated position error. A sequence of
control laws taking the robot from one dstate to the next is
abstracted to anaction.

For a typical mobile robot, the state variablex = [x; y; �]
is three-dimensional with components for position and orien-
tation, and a two-dimensional motor vectoru = [v; !] speci-
fies linear and angular velocities. In contrast, a realistic robot
of the present and future will have a very high-dimensional
sense vectors, including such sensors as binocular vision,
laser, sonar and IR range-finders, bump sensors, odometry,
compass and GPS.

In a qualitatively uniform segment of the environment, the
robot governs its behavior by selecting a reactive control law
�i. The robot and its environment, coupled through the sen-
sorimotor system, are described as a dynamical system which
evolves to a fixed-pointx (the distinctive state) where_x = 0.

_x = �(x;u) (1)

s = 	(x) (2)

u = �i(s) (3)

� represents the physics of the robot and the constraints
of the environment.	 represents the sensory system of the
robot.�i is the reactive control law for the current segment of
the robot’s behavior. We define animageas being the high-
dimensional sensory inputI = s = 	(x) whenx is a dis-
tinctive state.

Any implementation of the dynamical system (1-3) will
have finite tolerances, so the values ofx when _x = 0 on
different occasions will not be precisely equal. However, they
will be clustered very closely, and they will be separated from
other distinctive states by the basin of attraction of the sys-
tem (1-3). The same will be true of the dependent variable
s = 	(x).1

5 Cluster Images Into Views
An environment contains a relatively small discrete set of
dstates. In a high-dimensional sensory space, their sensory
images are likely to be well-separated, so a clustering algo-
rithm can eliminate amounts of variation that are small com-
pared with the separation between groups of images. When
images from different dstates happen to be very close (due
to highly structured environments or weak sensors), they can
simply be mapped to the same cluster, resulting in perceptual
aliasing.

Distinctive states are significantly easier to recognize than
places selected at regularly spaced intervals in the environ-
ment [Yamauchi & Langley, 1997; Duckett & Nehmzow,
2000]. Regularly spaced states are unlikely to be as well sepa-
rated in sensory space so it will be difficult to eliminate all im-
age variability by clustering without incurring large amounts
of perceptual aliasing.

The SSH assumes that each dstate is associated with a sin-
gle view, though different dstates may have the same view, so
clustering must eliminate image variability.

1Note that	 cannot behave pathologically in the neighborhood
of a dstatex, or the dynamical system would not converge stably to
x, and it couldn’t be a distinctive state.

We cluster images intok clusters usingk-means[Duda,
Hart, & Stork, 2001], searching for the value ofk that maxi-
mizes our “internal measure” of clustering quality,

M =

"
k

kX
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i=1

jxc;i � �xcj
2

#�1
(4)

wherenc is the number of elements and�xc is the mean of
clusterc, andxc;i is theith element of clusterc. M rewards
tight clusters but penalizes larger numbers of clusters.

An “external measure” of cluster quality uses knowledge of
the true dstate associated with each image. Theuncertainty
coefficientU(V jS) measures the extent to which knowledge
of S predicts the viewV [Presset al., 1992, pp. 632–635].
(pi;j is the probability that the current view isVi and the cur-
rent dstate isSj .) The largest value ofk with U = 1 corre-
sponds to the greatest discriminating power while completely
eliminating image variability.

U(V jS) =
H(V )�H(V jS)
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In 50 circuits of the notched rectangle environment (Fig-
ure 2), Lassie experiences 400 images. Applying the internal
measure (4) of cluster quality, Lassie determines thatk = 4 is
the clear winner (Figure 3(a)). Figure 3(b) shows thatk = 4
is also optimal to the external measure.

The notch in the rectangle is clearly being treated as noise
by the clustering algorithm, so diagonally opposite dstates
have the same view. In this environment, the four views cor-
respond to the following table of distances perceived to the
robot’s left, front, and right.

left front right
V0 0.5 0.5 4.5
V1 0.5 4.5 2.5
V2 0.5 0.5 2.5
V3 0.5 2.5 4.5

6 Build the Causal and Topological Maps
As the robot travels among distinctive states, its continuous
experience is abstracted, first to an alternating sequence of
imagesIk and actionsAk , then images are clustered into
views Vk , and finally views are associated with dstatesSk.
The SSH Causal map can be represented as a simple tableau.

t0 I0 V0 S0
A0

t1 I1 V1 S1
...

...
...

...
An�1

tn In Vn Sn

(5)

Since clustering images into views has eliminated image
variability, but leaves perceptual aliasing, the problem is to
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Figure 3: After Lassie’s exploration of the notched rectangle,
k = 4 is selected as the best number of clusters by the internal
measureM (top), and is confirmed as optimal by the external
measureU (bottom).

determine the correct distinctive statesSk. We resolve this
ambiguity using the “rehearsal procedure”[Kuipers & Byun,
1991], or methods for learning deterministic finite automata
(DFA) [Rivest & Schapire, 1989], even in the face of stochas-
tic uncertainty[Basye, Dean, & Kaelbling, 1995]. However,
by focusing on distinctive states and clustering to eliminate
image variability, we believe that the remaining uncertainty
is not stochastic. Perceptual aliasing is simply different states
of the DFA having the same output (i.e., view).

The basic idea for identifying distinctive states is to as-
sume that two dstates with the same view are equal, unless
they can be proved to be different. They can be proved dif-
ferent with experiences stored in the SSH causal level when
the two dstates are directly linked by a non-null action. This
can also be done when the SSH topological level includes a
relation incompatible with dstate identity, for example when
the two dstates are associated with different places, or when
they must lie on different sides of a path serving as a dividing
boundary. In case discriminating information is not already
in the cognitive map, the rehearsal procedure proposes an ex-

ploratory sequence of actions likely to produce the relevant
experience.

At the SSH topological level, actions are classified asturns
and travels. Sets of distinctive states that are connected by
turns without travel defineplaces, and sets of dstates that are
connected by travels without turns (except TurnAround) de-
fine paths. The SSH causal and topological levels describe
the environment at the discrete set of distinctive states, when
the robot is at a dstateS, a placeP , and on a directed path
(Pa; dir), wheredir 2 fpos; negg is the one-dimensional
orientation along the path.

As Lassie explores the notched-rectangle environment, it
creates the following tableau of experience at the SSH causal
and topological levels. Note that the sequences of time-points
tk, imagesIk and actionsAk are not periodic. The sequence
of viewsVk has period four, but the sequence of distinctive
statesSk has period eight.

t0 I0 V0 S0 P0 Pa0 pos
A0 (turn � 90Æ)

t1 I1 V1 S1 P0 Pa1 pos
A1 (travel 4m)

t2 I2 V2 S2 P1 Pa1 pos
A2 (turn � 90Æ)

t3 I3 V3 S3 P1 Pa2 pos
A4 (travel 2m)

t4 I4 V0 S4 P2 Pa2 pos
A5 (turn � 90Æ)

t5 I5 V1 S5 P2 Pa3 pos
A6 (travel 4m)

t6 I6 V2 S6 P3 Pa3 pos
A7 (turn � 90Æ)

t7 I7 V3 S7 P3 Pa0 pos
A8 (travel 2m)

t8 I8 V0 S0 P0 Pa0 pos
...

...
...

...
...

...
...

(6)

t0 ! on(P0; Pa0)

t1 ! on(P0; Pa1)

t2 ! on(P1; Pa1) ^ PO(Pa1; pos; P0; P1)

...
...

...

The connectivity of the graph of places and paths is de-
rived from the tableau above. (on(P0; Pa0) means that place
P0 is on pathPa0, andPO(Pa1; pos; P0; P1) means that
in the place order associated with pathPa1 in the pos di-
rection, placeP0 precedesP1.) The detailed rules are be-
yond the scope of this paper. The concepts are described
in [Kuipers, 2000] and the formal axioms are given in[Re-
molina & Kuipers, 2001]. Roughly, we conclude thatS4 6=
S0 becauseS4 is atP2, which is to the right of boundaryPa0,
while S0 is atP0, which is onPa0. Similarly forS5, S6 and
S7. We conclude thatS8 = S0 by a minimality argument,
since there is no necessity for them to be different.

Thus, by constructing the SSH causal and topological
maps, Lassie determines that the four views correspond to
eight distinctive states, four places and four paths.
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Figure 4: Learning curve (using 10-fold cross validation) for
nearest neighbor classification of dstates given sensory im-
ages for (a) the notched-rectangle environment, or (b) second
floor of Taylor Hall. In both cases, recognition is approxi-
mately 90% after 90 training examples.

7 Supervised Learning to Recognize Dstates
With unique identifiers for dstates, the supervised learning
step quickly learns to identify the correct distinctive state di-
rectly from the sensory image with high accuracy. The su-
pervised learning method is the nearest neighbor algorithm
[Duda, Hart, & Stork, 2001]. Experienced images are rep-
resented in the sensory space, labeled with their true dstate.
When a new image is experienced, the dstate label on the
nearest stored image in the sensory space is proposed, and the
accuracy of this guess is recorded. Then the image is stored
with its correct dstate label. Figure 4 shows the rate of correct
answers as a function of number of images experienced. In
both cases, accuracy rises near 90% at about 90 images.

In general, of course, recognition of dstates from sensory
images cannot be done perfectly, since there can be different
dstates whose distinguishing features, if present at all, can-
not be discerned by the robot’s sensors. In such cases, the
robot can fall back on the historical context of its travel, or on
further exploration.

Figure 5: Taylor Hall, second floor hallway. The actual en-
vironment is 80 meters long and includes trash cans, lockers,
benches, desks and a portable blackboard.

8 A Natural Office Environment
A natural environment, even an office environment, contains
much more detail than the simplified notched-rectangle envi-
ronment. To a robot with rich sensors, images at distinctive
states are much more distinguishable. Image variability is the
problem, not perceptual aliasing.

Lassie explored the main hallway on the second floor of
Taylor Hall (Figure 5). It collected 100 images from 20 dis-
tinctive states. The topological map linking them contained
seven places and four paths. When clustering the images, the
internal measureM had its maximum atk = 8. The exter-
nal measureU confirms that this is optimal (Figure 6). By
building the causal and topological map the robot is able to
disambiguate all twenty distinctive states, even though there
are only eight views. Given the correct labeling with dstates,
the supervised learner reaches 88% accuracy within 90 trials
(Figure 4(b)).

9 Conclusion and Future Work
We have established that bootstrap learning for place recog-
nition can achieve high accuracy with real sensory images
from a physical robot exploring among distinctive states in
real environments. The method starts by eliminating image
variability by focusing on distinctive states and doing unsu-
pervised clustering of images. Then, by building the causal
and topological map, distinctive states are disambiguated and
perceptual aliasing is eliminated. Finally, supervised learning
of labeled images achieves high accuracy direct recognition
of distinctive states from sensory images.

The current unsupervised and supervised learning algo-
rithms we use arek-means and nearest neighbor. We plan
to experiment with other algorithms to fill these roles in the
learning method. Other clustering techniques may be more
sensitive to the kinds of similarities and distinctions present
in sensor images. Supervised learning methods like backprop
may make it possible to analyze hidden units to determine
which features are significant to the discrimination and which
are noise. Using methods like these, it may be possible to
identify and explain certain aspects of image variability, for
example the effect of time of day on visual image illumina-
tion.
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