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Abstract

We present a new haplotype-based approach for inferring local genetic ancestry of indi-

viduals in an admixed population. Most existing approaches for local ancestry estimation

ignore the latent genetic relatedness between ancestral populations and treat them as in-

dependent. In this paper, we exploit such information by building an inheritance model

that describes both the ancestral populations and the admixed population jointly in a uni-

fied framework. Based on an assumption that the common hypothetical founder haplotypes

give rise to both the ancestral and admixed population haplotypes, we employ an infinite

hidden Markov model to characterize each ancestral population and further extend it to gen-

erate the admixed population. Through an effective utilization of the population structural

information under a principled nonparametric Bayesian framework, the resulting model is

significantly less sensitive to the choice and the amount of training data for ancestral pop-

ulations than state-of-the-arts algorithms. We also improve the robustness under deviation

from common modeling assumptions by incorporating population-specific scale parameters

that allow variable recombination rates in different populations. Our method is applicable to

an admixed population from an arbitrary number of ancestral populations and also performs

competitively in terms of spurious ancestry proportions under general multi-way admixture

assumption. We validate the proposed method by simulation under various admixing sce-

narios and present empirical analysis results on worldwide distributed dataset from Human

Genome Diversity Project.
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INTRODUCTION

The problem of inferring genetic ancestries in a population has been widely investigated for

various applications such as disease gene mapping and population history inference. For ex-

ample, the inferred ancestry information has been used in correcting the confounding effect

by population stratification in association studies (Wang et al. 2010; Price et al. 2006).

The examination of loci that have elevated probabilities of a specific ancestry has also given

critical clues in selecting out potential causal variants of certain diseases in admixture map-

ping (Zhu et al. 2011; Cheng et al. 2010; Cheng et al. 2009). Broadly, two different problem

settings have been commonly considered for ancestral structure analysis (Alexander et al.

2009), one on the ‘global ancestry’ that considers the average proportion of each contributing

population across the genome in an ‘un-supervised’ way (i.e., ancestral labeling of the study

population is unknown) (Alexander et al. 2009; Patterson et al. 2006; Falush et al.

2003); and the other on the ‘local ancestry’ that is more concerned with a locus-by-locus

ancestry given reference population data (Price et al. 2009; Pasaniuc et al. 2009; Tang

et al. 2006). In this paper, we consider the problem of estimating the local ancestry in an

admixed population. As a common scenario of this problem, consider the decomposition of

chromosomes of modern African Americans into blocks that have either African or European

ancestry given the reference population data close to ancient African and European popula-

tions, which we call ancestral populations. The populations of CEU and YRI are the most

typical choices for such ancestral population data when an admixed population of African

Americans is considered. We present a new haplotype-based method for local ancestry esti-

mation that can deal with an arbitrary number of ancestral populations in a non-parametric

Bayesian framework.

A natural approach to this problem involves a Hidden Markov Model (HMM) that traces

the ancestry of each individual along the markers on a chromosome. Most previous ap-

proaches using HMM can be largely categorized into two families depending on how they

encode the ancestral population. The first family of methods uses a population-specific allele
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frequency profile to characterize each ancestral population. Such an allele frequency profile

has been typically used as the latent component that generates population data in traditional

admixture studies for global ancestry estimation (Falush et al. 2003; Pritchard et al.

2000; Huelsenbeck and Andolfatto 2007; Alexander et al. 2009). When adopted in

the local ancestry estimation problem as in LAMP (Pasaniuc et al. 2009; Sankararaman

et al. 2008), it has the general advantages of low computational cost and availability of such

frequency profiles in representative datasets. However, the correlations between loci are re-

flected only by the variation in such allele frequencies and not by the actual recombination

events at the chromosome level, so it is rather unnatural to model Linkage Disequilibrium

(LD) structure between tightly linked SNPs. Therefore, either a subset of markers in low LD

has to be selected in a preprocessing step, or a recombination process needs to be indirectly

embedded to utilize a denser set of markers (Patterson et al. 2004; Tang et al. 2006;

Pasaniuc et al. 2009). The representation power of this family of methods thus tends to

diminish when the correlations between markers are not carefully considered (Price et al.

2008).

Another family of methods are based on haplotype data that may contain richer informa-

tion. These methods utilize representative haplotypes taken from each ancestral population

data as reference information for the local ancestry estimation (Sundquist et al. 2008;

Price et al. 2009). Each haplotype in an ancestral population, which we call an ancestral

haplotype, constitutes a hidden state in an HMM and the basic transition mechanism in-

volves traversing among these ancestral haplotypes. Therefore, these approaches provide a

more natural way to reflect the underlying admixing process by simulating recombinations

at a real chromosome level. However, the inference result can be rather sensitive to the size

and the choice of such ancestral haplotype data because the admixed haplotype is directly

compared with the ancestral haplotypes. Moreover, few existing methods make use of the

genetic relatedness between ancestral populations resultant from ancient population history

and therefore the populations have been typically treated as independent. To improve the
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robustness and the accuracy in light of these issues, HAPMIX (Price et al. 2009) introduces

a ‘miscopying’ parameter that allows a small possibility for an allele to be copied from pop-

ulation 2 even when it is assumed to be originated from ancestral haplotype in population

1. In this way, it prevents unnecessary transitions among ancestral populations during in-

ference and the allelic information in one population can be naturally borrowed by another

population. However, this method is limited to two-way admixture that involves only two

ancestral populations, and it is not trivial to generalize this model to consider more general

demographic scenarios.

We propose a new Bayesian approach for local ancestry estimation that uses the multi-

population haplotype data in a more systematic way. Our method is built on the assumption

of a common pool of hypothetical founder haplotypes from which the ancestral haplotypes

in multiple ancestral populations are to be inherited, and from which in turn the individuals

in an admixed population are generated as well by the admixing process between ancestral

populations. Motivated by the population model called SPECTRUM in (Sohn and Xing

2007), we model the ancestral population data by an infinite hidden Markov model in which

the hidden states correspond to the unknown number of hypothetical founder haplotypes.

The recombination and mutation events are then modeled with respect to these founders

as transition and emission process. For an individual in an admixed population, we extend

the hidden state space to a joint space of founder haplotypes and ancestral populations.

That is, we incorporate a hidden state variable consisting of two indicator variables at each

marker, one for selecting the ancestral population, and the other for selecting the hypothet-

ical founder haplotype. The hidden state variable corresponding to the ancestral population

determines the local admixing status and hence defines the local ancestry along the markers.

Furthermore, population-specific scale parameters are incorporated to allow variable recom-

bination probabilities in different populations. These scale parameters can be interpreted as

being proportional to two major factors that affect the recombination probabilities in the

corresponding populations: the effective population size, and the hypothetical time since
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the hypothetical era of founder haplotypes. We observe that this parameterization also en-

hances the robustness of our model under scenarios that deviate from the common modeling

assumption that all the populations participate in the admixture simultaneously.

A subtle issue in the proposed representation is how to choose the number of founders and

how to construct them efficiently across multiple populations. Näıvely, we may assume K

founders per ancestral population, but under this setting, not only one has to employ a non-

trivial model selection process to determine K, but also there is in general no correspondence

between the K founders in one population and another set of K founders in a different

population. This problem would not only result in serious identifiability and multi-modality

issue that can severely slow down inference, but also, it will restrict the information sharing

across populations and hence compromise the accuracy of ancestry estimation as well. On

the other hand, if we are to use one shared set of K founders, the representational power of

population-specific HMM can also be limited. A non-parametric Bayesian framework using

an infinite hidden Markov model gives a natural solution for this (Teh et al. 2010; Beal

et al. 2002). Under an infinite HMM, an unbounded number of founder haplotypes can be

systematically handled to describe a study population. If we employ multiple such infinite

HMMs defined over the same set of founders, one infinite HMM per population, then it allows

the founders to be shared between populations, while different populations do not have to

include all these founders and can have a unique set of founders with its own frequency

and recombination patterns among them. The number and the haplotypes of the founders

are recovered as a result of posterior inference from data. Under a Dirichlet process prior,

the posterior typically yields a parsimonious set of founders. This non-parametric Bayesian

framework allows us to exploit the genetic relatedness between populations in a principled

way by describing the ancestral populations in terms of a common set of founder haplotypes.

In (Sohn and Xing 2009), a similar approach using a hierarchical Dirichlet process has

been successfully used for the problem of haplotype inference from multi-population data.

However, the recombination process was not explicitly modeled in that work and a rather
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heuristic approach was employed to handle the linkage disequilbrium structure.

In our comparative study with two state-of-the-arts methods of LAMP (Pasaniuc et al.

2009; Sankararaman et al. 2008) and HAPMIX (Price et al. 2009), we show that the pro-

posed method, which we call mSpectrum (admixture model based on multiple SPECTRUM

representations), enjoys enhanced robustness and accuracy, evidenced by its substantially

less sensitivity to the choice and the amount of ancestral population data. In particular,

our method shows very competitive performance even when the sample size of the ancestral

population data is very small. This highlights the potential usefulness of this method in

the analysis involving underrepresented populations of limited data availability. In addition,

the compact population characterization by an infinite hidden Markov model improves the

model flexility over existing haplotype-based approaches so that it can naturally handle an

arbitrary number of ancestral populations instead of only two in HAPMIX. It is also robust

even under deviation from the common modeling assumption that multiple populations par-

ticipate in the admixture at the same time as in (Pasaniuc et al. 2009). The performance

of our model is superior in terms of the proportion of spuriously estimated ancestries under

general multi-way admixture assumption as well.

In the remainder of this paper, we first describe the statistical model and the inference

method. Then we validate the proposed method through simulation study and show empir-

ical analysis result using Human Genome Diversity Panel data (Jakobsson et al. 2008). A

discussion follows and concludes the paper.

METHODS

Problem setting We consider an admixed population in which J ancestral populations

have mixed since G generations ago. For example, if we are to recover the local ancestry of

individuals in a Latino population (admixed population), we can incorporate J = 3 popula-

tions of ancient African, European, and Native American as our ancestral populations. In

our problem setting, we assume that the haplotypes composed of single nucleotide polymor-
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phisms are given for the ancestral populations and the admixed population. We will recover

the pool of hypothetical founder haplotypes and their associations to individuals by statis-

tical inference. The association of admixed individuals to the ancestral populations will be

recovered along with their association to the founders, which would lead to the estimation

of local ancestry.

Overview of admixture model based on founder haplotypes The choice of repre-

sentation about how to characterize a population is the crucial starting point in admixture

modeling. Unlike most previous approaches that use allele frequency profiles (Pasaniuc

et al. 2009; Sankararaman et al. 2008) or representative ancestral haplotypes in their

raw forms (Sundquist et al. 2008; Price et al. 2009), we employ a new haplotype-based

method that builds on an assumption of hypothetical founder haplotypes of unknown car-

dinality. The founder-based population model with explicit recombination modeling has

been introduced in (Sohn and Xing 2007) with the application to population structure

and recombination analysis. Under this approach, each individual in a population is gen-

erated from the hypothetical pool of founders via a series of recombination and mutation.

An individual haplotype can then be viewed as a mosaic of the founders whose pattern is

determined by the association with founders. This mosaic process could be modeled as a

Hidden Markov model in which the founders correspond to the hidden states, the individual

haplotypes correspond to the observation sequences, the transition process is modeled by

the recombination process, and the emission process by the mutation from founders to the

individuals. By employing an infinite hidden Markov model, the number and the haplotypes

of the founders can be recovered through posterior inference rather than being pre-specified,

and the local inheritance association between the founders and the study individuals can

also be derived.

Now we further extend this population model to describe admixture events from an

arbitrary number of ancestral populations. When the ancestral populations start to mix and
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form an admixed population, each individual haplotype in the admixed population can be

decomposed into blocks with distinct ancestry. For each of these blocks, we can trace back

the source of the genetic materials to a haplotype in the corresponding ancestral population.

Now, recall that this ‘ancestral haplotype’ is modeled as a mosaic of its founders. This means

that each ancestry block in an admixed individual is further dissected into a finer-grained

mosaic of founders. Therefore, the admixed inheritance process is a composite process with

two different resolutions, one from the founders to ancestral haplotypes, and the other from

the ancestral haplotypes to the admixed individuals. A graphical illustration of the proposed

model is shown in Figure 1. A variant of the infinite hidden Markov model is employed

to make the choice of founders and the ancestral populations at the same time along the

chromosome.

[Figure 1 about here.]

Statistical model for generating ancestral and admixed population data We now

describe in detail the admixed inheritance model as a generative process of the individual

haplotypes in ancestral populations and an admixed population with respect to a set of

hypothetical founders.

Transition and emission probabilities For ease of description, we assume that the individuals

are haploids. Let individual haplotypes in an admixed population be indexed by i, ancestral

populations by j, and the markers by t. And let Hit ∈ {0, 1} and Fkt ∈ {0, 1} represent

the allele of individual i and founder k at marker t, respectively. We introduce a set of

hidden state variables Sit = (Cit, Zit) where Cit ∈ {1, 2, ...} and Zit ∈ {1, ..., J} represent the

indicator variables that select a founder haplotype and an ancestral population, respectively,

on an i-th admixed haplotype at marker t. For each ancestral population j, let νjk be the

initial and background probability of founder k, and let πj
k′k be the transition probability

that determines the probability of switching from copying founder k′ to founder k. We also
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introduce a set of scale parameters Tj ∈ (0,∞) that scale the recombination rate in each

population j by Tj. The role of these parameters is to take into account the difference

in the hypothetical time since the founder population and also the effective population

sizes of different ancestral populations. Let η = (η1, ..., ηJ) denote the global admixing

proportion such that ηj is the expected proportion of ancestral population j in the admixed

population, let G ∈ [0,∞) represent the time since admixture in the admixed population,

r = (r1, r2, ...rT ) and d = (d1, . . . , dT ) represent the recombination rate and the physical

distance between each neighboring markers, respectively. The final transition probabilities

and the emission probabilities are defined as follows:

P (Si,0 = (k, j)) = P (Zi,0 = j)P (Ci,0 = k) = νjkηj

P (Sit = (k, j) | Si,t−1 = (k′, j′)) = (1− e−rtdtG)νjkηj +

e−rtdtGe−rtdtTjI(k = k′)I(j = j′) +

e−rtdtG(1− e−rtdtTj)πj
k′kI(j = j′) (1)

P (Hit | Sit = (k, j), Fkt) = δ
I(Hit 6=Fkt)
k (1− δk)I(Hit=Fkt) (2)

where I(·) represents an indicator function such that I(i = j) = 1 if i = j, and 0 otherwise.

We assume a founder-specific mutation parameter δk that determines the probability of

mutation during the inheritance from a founder k to individuals.

The overall idea underlying this representation is the two-layered inheritance framework,

one from the time of hypothetical founders to ancestral populations, and the other from

those ancestral populations to the admixed population. If we set G = 0 in Equation (1),

this two-layered framework is reduced to the model of the first layer that characterizes the

ancestral populations with respect to the founder haplotypes. Under the reduced model,

each population is associated with its own hidden Markov model parameters and the recom-

bination rate scaled by Tj. Suppose (Ci,t−1, Zi,t−1) = (k′, j′) which means i-th haplotype has

inherited from founder k′ at marker t − 1 in ancestral population j′. At the next marker
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t, it either selects a new founder k with probability (1 − e−Tjrtdt)πj
k′,k and set Cit = k, or

no recombination takes place with the remaining probability and Cit = Ci,t−1. If we trace

the values of Cit across all the t, it will decompose the haplotype i into blocks with distinct

associated founders. Therefore, each chromosome can be thought of as a mosaic of such

founders.

Now, at the second layer which involves the admixture, this sequential process for select-

ing founders Cit occurs within the same ancestral population with probability e−rtdtG so that

Zit = Zi,t−1. Or with probability (1− e−rtdtG), a new population j as well as a new founder

k is chosen jointly with a probability proportional to the product of admixing proportion

ηj and the background probability νjk. Therefore, haplotypes both in the ancestral popula-

tions and in the admixed population are modeled as mosaics of founders determined by the

sequence of Cit. In addition, each admixed individual i is associated with another resolution

of mosaic determined by the sequence of Zit across t. The estimation of local ancestry can

be done by tracing the posterior probability of Zit along the markers.

Note that even when no admixing is assumed, we still have the flexibility of choosing a

different founder haplotype. This feature helps to control the number of transitions among

populations effectively so that the hidden state doesn’t need to change excessively. Moreover,

although we assume the J populations participate in the admixture simultaneously, the

population-specific scale parameters would explicitly allow heterogenous resolution of the

genetic mosaics in different ancestral populations to be generated. This greatly improves

robustness of the model against the violations of such modeling assumption as well as the

accuracy of the ancestry estimation.

The cardinality of the founder space Instead of fixing the number of hypothetical founders

by doing statistical model selection, we adapt a more flexible non-parametric approach using

an infinite hidden Markov model (iHMM) (Beal et al. 2002; Teh et al. 2010). Recall that

if we consider a finite, say K, hidden states, the transition probabilities will be represented
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as a K ×K matrix. Each row k of this matrix sums to one and defines the probabilities of

switching from a source state k to all the target states.

Now, if we consider an infinite hidden state space, each row of the transition matrix would

be an infinite dimensional vector which sums to one. Dirichlet Process (DP) (Blackwell

and MacQueen 1973; Ferguson 1973) has been effectively used to describe such prob-

ability distribution. A DP is defined by two parameters: the base measure (‘mean’ of the

DP) and the scale parameter that controls the concentration around the mean. To ensure

all the row-specific DPs built on the same state space, another Dirichlet Process is shared

as a common base measure at a top level. This model for the hidden Markov transition

probabilities actually corresponds to a hierarchical Dirichlet Process (Teh et al. 2010). We

omit the statistical details of an infinite hidden Markov model formulation in terms of a

hierarchical Dirichlet process here (see (Teh et al. 2010; Beal et al. 2002; Sohn and Xing

2007) for more details). Basically, (k, k′)-element of the transition matrix πj defines the tran-

sition probability from state k to state k′ in population j, and for a given source state k, the

target state index k′ can increase as large as needed by the given data. Infinite-dimensional

vector of initial probabilities νj can be defined in a similar way under the same hierarchical

Dirichlet process framework. Since we consider multiple such infinite HMMs for multiple

populations, we let the same base measure shared across all the populations. This infinite

HMM-based framework leads to a very simple solution to how many founders to consider

and how to construct the founder space across multiple populations. The iHMM parameters

of our admixture model thus can be summarized as follows:

νj ∼ DP (α0, β), πj
k ∼ DP (α0, β), β ∼ GEM(γ)

where α0 and γ define the scale parameters for the population-specific DPs and the top level

DP, respectively.
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Other parameter description We assume Dirichlet distribution prior for the population pro-

portion parameter η ∼ Dirichlet(ξ1, ..., ξJ) and Beta prior for each of the mutation param-

eters δk .

For simplicity of inference, we transform the variables such that rt and Tj are combined

as grjt = rtTj. Similarly, we use the notation Gr
t := rtG. We assume these variables are i.i.d

under Gamma prior. Then Equation (1) is transformed as follows:

P (Sit = (k, j) | Si,t−1 = (k′, j′)) = e−G
r
t dte−g

r
jtdtI(k = k′)I(j = j′) +

e−G
r
t dt(1− e−grjtdt)I(j = j′)πj

k′k +

(1− e−Gr
t dt)νjkηij (3)

In summary, infinite hidden Markov model parameters combined with population genet-

ics parameters are used to capture different characteristics in populations and to describe

admixture event from an arbitrary number of ancestral populations. While we assume an

infinite number of founders a priori, the posterior inference usually produces a small number

of founders and this leads to a compact representation of a population for the admixture

analysis.

Posterior Inference To overcome the drawbacks of slow convergence in traditional Gibbs

sampling, we employ a variant of beam sampling proposed for infinite HMM (Van Gael

et al. 2008). Basically, it extends the well-known dynamic programming technique of forward-

backward algorithm in a finite state HMM to an infinite state space case. It exploits the

property that in an observation sequence of finite length, the number of actually realized

hidden states is finite at each iteration step. Therefore, the number of states to be considered

in forward-backward algorithm can be adaptively changed over iterations. More specifically,

a set of auxiliary variables u are sampled conditional on S such that given u1, ..., uT , the

number of states K having positive forward probabilities is finite. More details of the beam
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sampling scheme for the proposed model are described in Supplementary Material .

Since the entire inheritance process from founders to ancestral populations and then the

admixed population is modeled in a single Bayesian framework, it allows the exact posterior

inference by putting the ancestral and admixed population data together in a single series

of beam sampling iterations (see A1 in Supplementary Material). However, this is not

optimal in terms of time complexity as we often favor to run multiple test sets after we

extract reference information about the ancestral populations. Therefore, we split the whole

inference process into two phases: 1) training phase where the model parameters about

ancestral populations are learned, and 2) ancestry estimation phase that actually recovers

the ancestry of admixed individuals.

One caveat of this decomposition is that we may not fully take advantage of the flexibility

of the infinite model. This is because we need to constrain the hidden state space somehow

as a finite space when the output from the training phase is returned. As an n-th posterior

sample from Bayesian inference of the training phase, we get a finite number K(n) of founder

haplotypes and the related HMM parameters of π(n) and ν(n) with g
r(n)
j for each j. Averaging

these results as one training output is not straightforward as K(n) can be different across

different n. A plausible approach would be to keep multiple, say N posterior samples S =

{F(n), π(n), ν(n)}n=1,...,N and run the ancestry estimation routine N times using each of these

parameters in S. Then the N posterior distributions of the ancestry indicator variable Z

can be easily averaged to form the final posterior distribution since Z is defined over a fixed

number of populations J unlike C or other parameters that depend on K. Note that g
r(n)
j

does not depend on K, so we can use the posterior mean of g
r(n)
j as the final estimate for it.

Another practical approach would be to select a single output from the training phase such

as a MAP solution, and estimate the local ancestry based on the single set of parameters.

Empirically, we observe that the performance degradation by this MAP solution with respect

to the first approach is relatively small.
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Training phase For an individual in an ancestral population j, we can set the time since

admixture G to be zero and the population indicator variables Z to be observed as constant.

Then the hidden state variable Sit = (Cit, Zit) can be replaced with a Cit indicating the

founder and Equation (3) is reduced to the followings :

P (Ci0 = k) = νZi0k

P (Cit = k | Ci,t−1 = k′) = e−g
r
Zi0t

dtI(k = k′) + (1− e−g
r
Zi0t

dt)πZi0

k′k

We infer the variable C through the Beam sampling algorithm described in A2 in Supple-

mentary Material, and the other variables through the standard Gibbs sampling.

Note that the contribution of transition at each neighboring loci t − 1 and t to the

parameter π and grjt is not all equal because of the self-transition probability forced by the

recombination model in Equation (3). We handle this by sampling auxiliary binary variables

Mit ∼ Bernoulli(1− e−g
r
Zi0t

dt) to indicate whether the jump occurs in the transition or not.

The transition probability can be decomposed as follows:

P (Cit | Ci,t−1) = P (Mit = 0)δ(Cit = Ci,t−1) + P (Mit = 1)πj
Ci,t−1,Cit

Then we sample Mit given Cit and Ci,t−1 backward in forward-backward process from

P (Mit|Cit = (k, j), Ci,t−1) ∝ P (Mit)P (Cit = k | Ci,t−1 = k′,Mit)

Now, π can be sampled as in (Van Gael et al. 2008), but conditional on M , which involves

the transitions with Mit = 1 only. grjt can also be sampled conditional on M using P (grjt |

{C:t, C:,t−1,M:t}) ∝ P (grjt)
∏

i∈Pop j P (Ci,t | Ci,t−1,Mit). The overall sampling procedure is

summarized in Algorithm 1.
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Algorithm 1 Procedure for training iHMMs in reference populations

Input: Haplotype data H for ancestral populations
Output: N posterior samples of founders and the related HMM parameters
{F(n), π(n), ν(n),gr(n)} for n = 1, . . . , N

1: repeat
2: for each individual chromosome i do
3: Sample the auxiliary variables uit for t = 0, ..., T − 1.
4: Sample Cit | u,H, F using the beam sampling algorithm
5: Sample Fk,t and δk
6: Sample parameters ν, π, β and gr.
7: end for
8: until convergence

Ancestry estimation phase As the variables F, gr, ν, π are returned in the training stage,

the unknown variables now are the global admixing proportion η, the generations since

admixture G, the mutation rate δk of founders, and S = (C,Z) for the admixed individuals.

We re-sample δk in the ancestry estimation phase instead of getting it from the training step

because δk can reflect additional information about the admixed population by describing

it in terms of the discrepancy between founders and the population. As we now deal with

a finite number of hidden states obtained from the training phase, it is not necessary to

incorporate the auxiliary variable u to sample S in the ancestry estimation phase. The

variables Sit thus are sampled through a standard forward-backward algorithm. As in the

training stage, the transition probability at each marker can be decomposed into two parts,

depending on whether the jump process for admixture occurs or not. We use the similar

technique to sample Gr by introducing an auxiliary variable Lit ∼ Bernoulli(1 − e−G
r
t dt).

The overall sampling scheme is summarized in Algorithm 2.

If the time since admixture G, admixing proportion η, and the recombination rate r is

assumed to be known as is often the case in admixture analysis, we can omit the second step

of parameter sampling (line 5 in Algorithm 2) and re-use δk that can be returned from the

training stage. Then it is also possible to get an approximate solution by use of a posterior

decoding from forward-backward steps in a finite dimensional HMM.
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Algorithm 2 Procedure for estimating local ancestry in an admixed individual

Input: Haplotype data H for an admixed population, estimated parameters
{F(n), π(n), ν(n),gr(n)}
Output: Posterior distribution of Z = (Zit) .

1: for n = 1, . . . , N do
2: repeat
3: for each individual chromosome i do
4: Sample Sit = (Cit, Zit) | H,F using the forward-backward algorithm
5: Sample δk, η, and Gr .
6: end for
7: until convergence
8: Keep S posterior samples of Z
9: end for

10: Average N · S posterior samples and return the final posterior distribution of Z

RESULT

Simulation design To validate the proposed method, we simulated admixed haplotypes

using the Human Genome Diversity Project (HGDP) data genotyped on Illumina Infinium

HumanHap550 BeadChips (Jakobsson et al. 2008). Considering previous results that have

revealed distinct genetic characteristics across different continents, we selected the following

reference populations that would serve as putative ancestral populations: YRI for African,

CEU for European, JPT and CHB for East Asia, and Maya for Native American ancestry.

Each of the resulting ancestral populations contained 30, 30, 28, and 13 individuals, respec-

tively. In the simulation study, we first focus on chromosome 22 for computational efficiency

under diverse types of simulation scenarios.

To take into account the discrepancy between real ancestral populations and those used

in training, we generated admixed individuals using populations which are similar but not

identical to those used as ancestral populations. For example, individuals in Russian and

BantuKenya populations are mixed to simulate an admixed population and then the local

ancestries of these individuals are estimated with respect to CEU and YRI populations.

A simulation scheme similar to that in (Price et al. 2009) was used to generate admixed

haplotypes as follows. For each haplotype in an admixed population, we first sample the
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ancestry j ∈ {1, ..., J} at the first marker according to the probabilities η = (η1, . . . , ηJ)

and randomly select an ancestral haplotype in the corresponding population j to copy the

allele at the first marker. For the following markers, we either assign the same ancestry as

the previous marker with probability exp(−rtdtG) and copy the allele of the same ancestral

haplotype at the corresponding marker, or with probability 1 − exp(−rtdtG), we re-sample

the ancestry j′ among the J possible populations based on the probabilities η and randomly

re-select the ancestral haplotype for allele copy within the selected population j′. We use

a constant recombination rate of rt = 10−8 per base pair per generation as in previous

studies (Sankararaman et al. 2008). Note that our simulation data are not generated

under our modeling assumption basing on founder haplotypes, but in more general setting

that is commonly considered in previous admixture studies. For each simulation scenario

below, we generate 30 admixed individuals per dataset.

The performance is measured as the mean squared error rate of ancestry probabilities

along the loci. Specifically, let pijt denote the probability of ancestry j at a locus t in an

individual i. The average error rate of
∑J

j=1

∑T
t=1(p

true
ijt −pestijt )

2/T across all the individuals is

reported. We compare our results with the two state-of-the-art methods: LAMP (Pasaniuc

et al. 2009; Sankararaman et al. 2008), the method based on allele frequency profiles as ref-

erence information, and HAPMIX (Price et al. 2009) that uses representative ancestral hap-

lotypes. These methods appear to outperform other methods such as HAPPA (Sundquist

et al. 2008), SABER (Tang et al. 2006) or ANCESTRYMAP (Patterson et al. 2004) in

previous studies (Price et al. 2009). Since the benchmark algorithms require the param-

eters for recombination r, the admixture time G, and the population proportion η to be

specified as input, we provided the true values of these parameters to all the algorithms

in the simulation study. Additionally, each haplotype data for ancestral populations were

converted to allele frequency profiles and then LAMP was run with these frequency data as

input. For the analysis below, we used the MAP solution as our parameter estimation from

the training phase.
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Performance on two-way admixture The first simulation scenario considers two-way ad-

mixture of ancient European and African populations. We generate admixed individuals us-

ing BantuKenya and Russian population data with the admixing proportion of η = (0.5, 0.5)

and then the local ancestries of the admixed individuals are estimated with respect to YRI

and CEU. In Figure 7, we first display the true and the estimated local ancestry probabilities

of two sample individuals in an admixed population. The yellow color corresponds to YRI

(African) ancestry, and the dark green corresponds to CEU (European) ancestry. The length

of the vertical color bar at each chromosomal location along the x-axis is proportional to the

corresponding ancestry probability. While all the algorithms produce reasonable results in

general, the proposed method denoted by mSpectrum is especially effective in picking out

fine details of ancestry changes as can be seen in the example.

[Figure 2 about here.]

The overall performance of each algorithm across all the generated samples are shown

in Figure 3. Roughly, we can see that mSpectrum and HAPMIX perform comparably to

each other and tend to outperform LAMP in case of two-way admixture. Still, all the three

algorithms perform reasonably well as can be seen in the small overall error rates. For

example, the average error rates for G = 10 were 0.0077, 0.0086, and 0.0116 in mSpectrum,

HAPMIX, and LAMP, respectively.

[Figure 3 about here.]

Performance as a function of data size in training set To further evaluate each

method in terms of its performance with respect to the training data size, we varied the

number of available individual samples per ancestral population. We trained the model

using 3, 5, 10, 20, 30 individuals, hence, 6, 10, 20 40, 60 haplotypes, per ancestral population

and estimated the ancestries based on each of the trained model. The performance of each

algorithm is presented as a function of training data size in Figure 4 for two scenarios:
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(a) the two-way admixture scenario from BantuKenya and Russian populations of which

the result on the full dataset is shown in Figure 3, and (b) the admixture of YRI and CEU

populations where the individuals not contained in the training data are used to generate the

admixed individuals. It is clearly seen that the proposed method substantially outperforms

the other benchmark algorithms in both cases, especially when the data size is small. Even

when only a few ancestral haplotypes are available, it still gives very good estimates of the

local ancestries compared to the others. Therefore, our method can be especially useful

in the analysis of admixture effect involving non-traditional populations where the amount

of available genotypes is still limited. In addition, our method shows greater performance

gain over the other two methods when the discrepancy between the training population and

the one used in the simulation is large. This implies that the hierarchical structure put

on top of the ancestral population data allows more general description of the ancestral

populations and hence enhances the accuracy of the ancestry estimation even when the

ancestral population used for reference have diverged from the true ancestral populations.

[Figure 4 about here.]

Performance on three-way admixture We now consider the admixture involving more

than two ancestral populations. Analogous to the formation of Puerto Rican population

(Tang et al. 2007), we included CEU, YRI, and Maya as ancestral populations for African,

European, and Native American ancestry, and generated an admixed population using Rus-

sian, BantuKenya, and Pima with admixing proportion of 0.66, 0.18, and 0.16, respectively.

Figure 5 shows the resulting error rates across different values of G. Since HAPMIX

cannot handle more than two ancestral populations directly, we ran it in three different modes

such that each run tries to estimate the targeted ancestry versus the other two ancestries

as was done in its original paper (Price et al. 2009). For this reason, we compare the

performance on each ancestry separately. Overall, our method performs significantly better

than the other two in most of the analyzed cases.
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[Figure 5 about here.]

Robustness under deviation from admixture assumption The modeling assumption

that all the ancestral populations participate in the admixing simultaneously does not hold

in reality, especially in case of multi-way admixture involving multiple ancestral populations.

We test the robustness of each method under deviation from such a modeling assumption

by generating admixed haplotypes from three ancestral populations that started to mix at

two different time points. More specifically, Russian and BantuKenya populations are mixed

for G1 generations with 50%/50% proportion. Then this admixed population is mixed with

the third population of Pima for G2 generations with 50%/50%, resulting in the overall

proportion of 0.5, 0.25, 0.25. We fixed G2 to be 10 and varied G1 to be 0, 2, 5, and 10

where G1 = 0 corresponds to the case in which the modeling assumption holds. The result is

summarized in Figure 6. In each plot, x-axis corresponds to the values of G1/G2 and y-axis

shows the error rates. The proposed method resulted in not only the lowest error rates, but

also the most stable performance across different values of G1/G2. For more quantitative

comparison of robustness across different algorithms, we calculated the linear regression

coefficient of G1/G2 versus the error rates. The resulting slopes were -0.0011, 0.0029, and

0.0074 for mSpectrum, HAPMIX, and LAMP, which again supports the superior robustness

of the proposed method.

[Figure 6 about here.]

Performance under four-way admixture assumption When it is unclear how many

or which ancestral populations have contributed to the given admixed population due to

unknown population history, one needs to run the local ancestry estimation under general

assumption of multi-way admixture involving all the candidate ancestral populations. In

this case, the proportion of spurious association to non-contributing population is also an

important measure for performance comparison in addition to the mean squared error rates
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for local ancestry estimation. Or when the contribution of certain population is extremely

small, we can test how sensitively each algorithm detects such small portion of ancestries. To

examine the behavior of each algorithm under such cases, we let each algorithm assume four

ancestral populations of CEU, YRI, Maya and JPTCHB and then estimate the ancestry of

admixed haplotypes generated from Russian, BantuKenya, Pima, and Yi populations with

admixing proportions of η(1) = (0.2, 0.8, 0, 0), and η(2) = (0.8, 0.15, 0.03, 0.02).

[Figure 7 about here.]

We first illustrate the true and the estimated local ancestry probabilities of two sample

individuals in each of the admixed populations generated using η(1) and η(2) in Figure 7 (a)

and (b). The red color corresponds to YRI ancestry, the black corresponds to CEU, the

yellow and the white correspond to Maya and JPT+CHB ancestries, respectively. We find

that mSpectrum shows the most accurate and stable result with the least amount of spurious

association in both cases.

The global admixing proportion η̂ computed as the average local ancestry proportion

across all the markers and all the individuals in the admixed population is summarized in

Figure 8 (a). For the first scenario using η(1) that involves only European and African an-

cestries, the mean proportion of spuriously estimated ancestries is 0.016, 0.016, and 0.051

for mSpectrum, HAPMIX, and LAMP, respectively∗. In case of the second scenario us-

ing η(2) where the true combined proportion of Maya and JPT+CHB populations is 0.036,

the estimated proportion of these ancestries in each algorithm is 0.03, 0.13, and 0.23, for

mSpectrum, HAPMIX, and LAMP. This result shows that our method is indeed effective

in preventing excessive transitions between ancestral populations and hence reducing the

∗For HAPMIX, since each ancestry proportion is estimated under two-way admixture assumption of one
ancestry versus all the others, the ancestry proportions across all the populations do not necessarily sum
to one. While the pie charts and the illustration in Figure 7 show the normalized results, we report the
numbers before normalization on the of the pie charts because we find this estimation is more accurate than
that after normalization.
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proportion of spurious estimations. Figure 8 (b) shows that mSpectrum significantly out-

performs HAPMIX or LAMP in terms of the mean squared error rates for the local ancestry

estimation as well.

For more detailed comparison of the proportion of spurious ancestries in different meth-

ods, in Figure 9, we show the overall distribution of the spuriously estimated ancestry mea-

sured over 50 datasets simulated by η(1) . We find that mSpectrum and HAPMIX estimate

similar proportions of spurious JPT+CHB ancestry which is substantially less than that

from LAMP. On the other hand, mSpectrum is the most accurate in preventing spurious

Maya ancestry.

[Figure 8 about here.]

[Figure 9 about here.]

Sensitivity analysis on model parameters Since the parameters of η and G were as-

sumed to be known in our simulation study in parallel with other methods, we also examine

how the performance of mSpectrum is affected by incorrectly specifying these parameters.

The performance is shown for the dataset simulated with G = 10 and η = (0.5, 0.5) with

respect to YRI and CEU ancestries in Figure 10. In each plot, x-axis shows the specified

parameters where the values are shown in log scale in case of G. We could see that there was

almost no effect when η was incorrectly set in the range from 0.2 to 0.8. When we examined

the result on G, the algorithm had the general tendency to favor a specified value G smaller

than the true value. The effect of mis-specified value of G was minimal when the discrepancy

was within a factor of 2. Even in the extreme case such as G varied by a factor of 5, the

error still remained within the twice of the error rates when the true value was given.

[Figure 10 about here.]
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Empirical analysis of HGDP data To illustrate our method on real data, we applied it

to 22 autosomes of the HGDP dataset (Jakobsson et al. 2008). Four ancestral populations

of YRI, CEU, JPT+CHB, and Maya were chosen as in the simulation study to represent

African, European, East Asian, and Native American ancestries. We then recovered the local

ancestries in the remaining 28 populations. Since the time since admixture is not available

for real data, we let our program estimate the parameters by posterior inference.

The mean ancestry proportion of each population estimated from our algorithm is sum-

marized in Table 1. Overall, the ancestry vector agrees very well with their geographical loca-

tions or known history. For example, populations such as Yoruba, Mandenka, BiakaPygmy,

or BantuSouthAfrica recovered pure African ancestries, Druze, Basque, Russian and Adygei

populations had dominant European ancestries (≥ 0.978), and Pima or Colombian popula-

tions resulted in almost pure Native American ancestries (≥ 0.983).

[Table 1 about here.]

More interestingly, the result also identifies the populations that have strong evidence of

admixing effect among multiple ancestries. For instance, the proportion of European ances-

try in Uygur population was 0.35, that of East Asian ancestry was 0.41, and the remaining

proportion of 0.24 in Native American ancestry. Although only one or two populations are

selected to serve as each putative ancestral population in our study and hence the interpre-

tation of this result needs to be done carefully, our result largely agrees with the previously

reported ancestry proportion in this population. For example, the analysis in (Xu et al.

2008; Xu and Jin 2008) claimed that Uygur had roughly 50–60% of European ancestry and

40–50% of East Asian ancestry from the analysis based on two-way admixture. More recent

study in (Li et al. 2009) showed evidences that the estimation of European ancestry in these

studies appear to be biased and suggested a newly estimated proportion of around 30%.

Our estimation of East Asian ancestry (41%) is similar to that in (Xu et al. 2008) and in

addition the estimation of European ancestry (35%) is closer to the more recent result in (Li
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et al. 2009) than (Xu et al. 2008). Considering its geographical location and the resulting

population history, our result suggests that Uygur population has about 35% of European

ancestry, 41% of East Asian ancestry, and the remaining proportions of ancestries in other

contributing populations that have greater similarity to Native American population.

To further analyze each population data and the behavior of the proposed method, we

examined the empirical mutation parameter δ̃ of each study population computed as an

average discrepancy between individuals and corresponding founders within each of the pop-

ulations. Therefore, δ̃ can be viewed as reflecting the level of divergence from the founder

population. The result is displayed in Figure 11 where the colors of the bars are based on the

geographic location of the corresponding population. The ordering of populations by their

parameter values almost exactly agrees with the geographic locations out of Africa. That

is, all the populations in African continent had the largest values of δ, populations in Eura-

sia came next, and Oceanian populations were the third. Populations in East Asian region

formed the fourth cluster and then Pima and Colombian populations showed the smallest

values of δ. It is noteworthy that Yoruba, which appears to be the closest to the training

population of YRI, recovers a much larger value of mutation rate δ than all the populations

in geographic locations other than African continent. This comes from the nice property of

our model that we do not directly use the training haplotype data as our reference, we rather

infer the corresponding common founders across all the population data together and then

work in a framework dealing with founders and admixed individuals. Otherwise, it would be

impossible to obtain such a result because the discrepancy of Yoruba and its reference data

would be much smaller than most of the other populations.

[Figure 11 about here.]

DISCUSSION

Previous admixture studies have suggested that the world populations are not independent

of each other, but rather are structured through population admixing history and the re-
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sulting gene flow. Most existing approaches for local ancestry estimation have ignored such

relatedness and treated the populations as unrelated. We explore this dependency among

populations and efficiently utilize it by building a unified model that covers all the ancestral

populations and the admixed population together. As shown in our Results, this modeling

strategy is especially helpful when only a limited amount of data is available to represent the

ancestral populations. Since genetic information in one population can be naturally shared

by another population in such a framework, it effectively enhances the robustness of the

proposed model regarding the choice of the ancestral population data.

In our comparative study, HAPMIX appears to perform very well when enough amount

of data for ancestral populations are given and also for older admixture events. However,

this method does not allow one to analyze the admixing effect from more than two ancestral

populations. Instead, one ancestry versus all the other ancestries should be estimated. While

this setting may be fine for some applications, this constraint limits its applicability to

complex admixture scenarios and may compromise its ability to deal with older admixtures.

LAMP has slightly different focus: while its performance was shown to be worse than the

other two in general in our simulation study, it can deal with multiple ancestral populations

as our model. And computationally this method was significantly faster than the other two

haplotype-based methods. LAMP seems to be more suited for very recent admixture case,

and its performance tends to drop quite sharply as we consider more ancient admixture

events. On the other hand, in a very recent admixture case, LAMP tends to be less sensitive

to the amount of training data than HAPMIX as shown in Figure 4. Our approach is

more general and of more practical utility in that it can incorporate an arbitrary number

of ancestral populations with comparable or superior performance than HAPMIX under

various scenarios. In comparison of computation time with HAPMIX, our method requires

additional, but off-line computation time for model training, which is linear in the number of

individuals and the number of markers. For ancestry estimation phase, we would additionally

need a series of MCMC iteration time if we want to estimate the parameters of interest such
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as admixture time or mutation rates. As an example running time of our algorithm, it took

about 5 minutes to run on a dataset with 30 admixed individuals on chromosome 22.

In the proposed model, we adopted population-specific recombination rates by using a

scaling parameter of Tj that explains the different effect population size and the time since

the founder population. Although it makes sense to scale the mutation rate by Tj as well

in each of the ancestral populations, we found that the performance for the local ancestry

estimation did not improve in our experiments. This might be due to statistical reason.

During inference, it is observed that the algorithm tends to favor the ancestral population

with the smallest mutation rate excessively, so this might have created excessive bias toward

such an ancestral population instead of selecting the correct ancestry.

Although our method allows to estimate the admixture time parameter G instead of

requiring it as an input when inferring the local ancestry, the parameter estimation result

was not very accurate in general. Still, the local ancestry estimation performance was not

significantly affected by incorrect estimation of the parameter as implied from our sensitivity

analysis in Figure 10 (b). It appears that the likelihood surface from our statistical model is

relatively flat over the space of model parameters, so the single optimal point on the model

parameter space could not be achieved stably. When we let our program estimate G instead

of fixing it in the same scenario considered in Figure 10 (b), the estimate of G averaged over

50 repetitions was around 14 when the true value was G = 10. The ancestry estimation

accuracy was comparable to the case when we fixed G as 10.

It is worth mentioning some of previous approaches for global ancestry analysis as well

to position our method in context. STRUCTURE (Pritchard et al. 2000) has been one

of the most widely used softwares for admixture analysis, and more recently, other softwares

such as EIGENSTRAT (Patterson et al. 2006) and ADMIXTURE (Alexander et al.

2009) have also gain great popularity especially for their computational efficiency. In global

ancestry estimation problems, typically no prior information is provided for the ancestral

populations and the ancestries of given individuals are recovered as mean proportions of
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each possible ancestry. Therefore, it can be considered as an unsupervised problem. In

contrast, local ancestries are mostly estimated based on the given reference information

such as allele frequencies or genotypes of putative ancestral populations. There has been

more recent work that bridges the gap between these two approaches. For example, LAMP

can also run in an ‘unsupervised mode’ such that it recovers the allele frequency profiles of

ancestral populations as well as the local ancestries. Also, ADMIXTURE, which is for the

global ancestry estimation, recently added a new feature that the known ancestries of some

reference individuals can be exploited (Alexander and Lange 2011). For haplotype-based

approaches, this extension is not straightforward in general because one needs to deal with

a set of hidden haplotypes that results in a large number of parameters. Regarding this

aspect, our model for the local ancestry has the desirable property that it integrates out the

ancestral population data during the inference and work with the hypothetical founders and

the admixed population data. Therefore, we expect that the extension of the model to an

unsupervised case would also be a promising direction to pursue.

In this paper, we assumed that phased haplotype data are given. In practice, a number

of softwares are available for haplotype phasing (Li et al. 2010; Browning and Browning

2009; Scheet and Stephens 2006), so the phase information can be readily available in

processing step. It is also possible to extend our model to deal with unphased genotypes. For

example, we may assume that the haplotypes of ancestral populations are given, and then

we allow unphased genotypes for admixed individuals, as in the setting considered in (Price

et al. 2009). The only additional computation then would be one more step in our posterior

sampling to recover the phasing of genotypes as well as the hidden states in the ancestry

estimation phase.
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SUPPLEMENTAL MATERIAL

Forward-backward algorithm for the proposed infinite HMM A variant of the beam

sampling algorithm for infinite HMM (Van Gael et al. 2008) is employed to improve the

convergence over standard Gibbs sampling. Specifically, we introduce auxiliary variables ut

for t = 0, ..., T − 1:

ui0 | Si0 = (k, j) ∼ Uniform(0, νjkηij)

uit | Sit = (k, j), Si,t−1 = (k′, j′) ∼ Uniform(0, qit) for t = 1, ..., T − 1

where

qit = e−G
r
t dte−g

r
jtdtI(k = k′)I(j = j′) + e−G

r
t dt(1− e−grjtdt)I(j = j′)πj

k′k + (1− e−Gr
t dt)νjkηj

For notational convenience, we omit the notation i. Let the forward probabilities be αt(k, j) =

P (St = (k, j) | H0:t, u0:t). Then

α0(k, j) ∝ P (S0 = (k, j), H0, u0) ∝ P (S0 = (k, j))P (u0 | S0 = (k, j))P (H0 | C0 = k)

= I(u0 < νjkηZ0)P (H0 | C0 = k)

αt(k, j) ∝
∑
k′,j′

P (St = (k, j), St−1 = (k′, j′), Ht, ut | H0:t−1, u0:t−1)

∝ P (Ht | Ct = k)
∑
k′,j′

P (ut | St = (k, j), St−1 = (k′, j′))P (St = (k, j) | St−1 = (k′, j′))αt−1(k
′, j′)

∝ P (Ht | Ct = k)
J−1∑
j′=0

∞∑
k′=0

I(ut < P (St = (k, j) | St−1 = (k′, j′)))αt−1(k
′, j′) (A1)

Given u0, ..., uT−1, the number of states k such that αt(k, j) > 0 for t = 0, ..., T − 1 is finite:

for t = 0, the number of k such that νjk > u0 is finite for any j since
∑

k νjk = 1 with

νjk ≥ 0, and recursively, we can see the number of k with αt(k, j) > 0 is finite. Therefore,

the infinite sum over the previous states in the calculation of forward probability reduces to
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a finite sum.

CT−1 and ZT−1 can be sampled from αT−1(k, j). Then for t = T − 2, ..., 0, we sample Ct

and Zt using

P (Ct, Zt | H0:T−1, u0:T−1, Ct+1, Zt+1) ∝ P (Ct+1, Zt+1 | Ct, Zt)αt(Ct, Zt)P (ut+1 | St, St+1)

If we reduce the model to the training phase, we can treat the variable Z as observed.

Therefore, the forward probabilities are written as follows:

α0(k) ∝ P (C0 = k,H0, u0) ∝ P (C0 = k)P (u0 | C0 = k)P (H0 | C0 = k)

= I(u0 < νZ0kηj)P (H0 | C0 = k)

αt(k) ∝
∑
k′

P (Ct = k, Ct−1 = k′, Ht, ut | H0:t−1, u0:t−1)

∝ P (Ht | Ct = k)
∑
k′

P (ut | Ct = k, Ct−1 = k′)P (Ct = k | Ct−1 = k′)αt−1(k
′)

∝ P (Ht | Ct = k)
∞∑

k′=0

I(ut < P (Ct = k | Ct−1 = k′))αt−1(k
′) (A2)

Once we get the trained parameters, we restrict the model to a finite state space, so we

don’t need to incorporate the auxiliary variables u, so the standard form of forward-backward

probabilities can be used.
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Figure 3: Boxplot for mean squared error rates of ancestry estimation for two-way admixture
of African and European populations since G generations ago
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Figure 4: Error rate as a function of the number of individuals per train population. Two-way
admixture of African and European populations since G generations ago using (a): Russian
and BantuKenya populations, (b): CEU and YRI populations.
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Figure 5: Boxplot for mean squared error rates of ancestry estimation. Three-way admixture
of African, European, and Native American populations since G generations ago. Since
HAPMIX is applicable to only two-way admixture case and was run to estimate each ancestry
versus the other two, we report the error rate on each ancestry separately.
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Figure 6: Robustness under deviation from the modeling assumption. The x-axis repre-
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Figure 7: True and estimated local ancestries of two sample individuals in an admixed pop-
ulation from African and European populations when the ancestry is estimated with respect
to four ancestral populations of YRI (red), CEU (black), Maya (yellow), and JPT+CHB
(white). The x-axis corresponds to chromosomal position and the the length of each colored
vertical bar is proportional to the corresponding ancestry probability)
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Figure 8: Performance under four-way admixture assumption when the admixed pop-
ulation is generated with admixing proportions of η(1) = (0.2, 0.8, 0, 0) and η(2) =
(0.8, 0.15, 0.03, 0.02) using Russian, BantuKenya, Pima, and Yi populations. We show two
performance measures of (a) the true and the empirical η estimated as the average local
ancestry proportions across individuals and markers, and (b) the mean squared error rates
of local ancestry estimation.
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Figure 9: Proportions of spuriously estimated ancestry proportions under four-way admix-
ture assumption when the admixed population is generated using Russian and BantuKenya
populations only, computed over 50 datasets each of which containing 30 individuals.
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Figure 10: Sensitivity analysis: boxplot for error rates as a function of specified parameter
values (a) η1 and (b) G when the true values are ηtrue = (0.5, 0.5), Gtrue = 10.
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Figure 11: The empirical mutation rate δ of each HGDP population computed as the average
discrepancy between individuals and their founders.
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Table 1: Estimated ancestry proportions of populations in HGDP dataset.
African European East Asian Native Amer

Yoruba 1.000 0.000 0.000 0.000
Mandenka 1.000 0.000 0.000 0.000
BiakaPygmy 1.000 0.000 0.000 0.000
BantuSouthAfrica 1.000 0.000 0.000 0.000
San 0.999 0.001 0.000 0.000
MbutiPygmy 0.999 0.000 0.000 0.001
BantuKenya 0.998 0.001 0.000 0.000
Mozabite 0.141 0.818 0.013 0.028
Bedouin 0.035 0.941 0.006 0.018
Palestinian 0.013 0.966 0.006 0.015
Basque 0.000 0.998 0.000 0.001
Russian 0.000 0.990 0.003 0.007
Druze 0.002 0.989 0.002 0.006
Adygei 0.000 0.978 0.008 0.014
Kalash 0.000 0.930 0.027 0.043
Balochi 0.015 0.888 0.031 0.066
Burusho 0.000 0.741 0.088 0.170
Uygur 0.000 0.348 0.414 0.239
Yakut 0.000 0.045 0.848 0.106
Mongola 0.000 0.006 0.960 0.034
Daur 0.000 0.004 0.972 0.024
Cambodian 0.000 0.004 0.977 0.019
Lahu 0.000 0.000 0.987 0.013
Yi 0.000 0.001 0.991 0.009
Melanesian 0.001 0.039 0.821 0.140
Papuan 0.002 0.081 0.733 0.185
Pima 0.001 0.012 0.004 0.983
Colombian 0.002 0.001 0.001 0.996

49


