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Abstract

Neuromodulation is thought to be one of the underly-
ing principles of learning and memory in biological neural
networks. Recent experiments have shown that neuroevo-
lutionary methods benefit from neuromodulation in simple
grid-world problems. In this paper we investigate the per-
formance of a neuroevolutionary method applied to a more
realistic robotic task. While confirming the favorable effect
of neuromodulatory structures, our results indicate that the
evolution of such architectures requires a mechanism which
allows for selective modular targetting of the neuromodula-
tory connections.

1. Introduction

An autonomous agent — be it a biological organism or
an artifact like a robot — can adapt to the contingencies of
its environment by adjusting its behavioral strategy accord-
ing to the consequences of its present and past behavior. If
the consequences of the current behavioral strategy are sat-
isfactory according to a suitable measure that depends on
the agent’s goal or purpose, the strategy can be maintained.
Otherwise, a learning process must be activated to alter it.
This implies in particular that the agent must be able to ac-
tivate, to deactivate, and, more generally, to link the extent
of the learning to the above-mentioned measure of satisfac-
tion.

When the agent’s control system is realized by a neural
network (NN), the learning can be implemented by mod-
ifying the synaptic weights w according to the following
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generalized Hebbian plasticity rule [7]
Aw = n[Azy + Bx + Cy + D]

where 7 is a fixed learning rate, x and y are the activation of
the presynaptic and postsynaptic neuron, respectively, and
A, B, C, and D are parameters that determine the relative
importance of the different types of learning (correlated,
presynaptic, etc). When a neuron receives at least two in-
puts this plasticity rule permits the heterosynaptic control
of learning. For example, in Figure 1 the activity z2 of one
presynaptic neuron can influence the activity y of the post-
synaptic neuron and thus it can also influence the synaptic
plasticity of the other presynaptic neuron. This mechanism
permits the implementation of the link between learning and
behavioral outcomes described above, in terms of the con-
trol of the learning process of one part of the network by
another part of the network which assesses the value of the
behavioral outcomes. This type of heterosynaptic plasticity,
however, has a potential problem. The control of learning
can interfere with the processing of information in the post-
synaptic neuron, since both depend on the activation of the
postsynaptic neuron.

A mechanism of plasticity control that avoids this diffi-
culty is based on neuromodulation. The idea is to separate
the control of plasticity from the signal processing by using
the following modified plasticity rule

Aw =mn[Azy + Bz + Cy + D] (1)

where the new multiplicative term m represents a modu-
latory signal produced by a specialized modulatory neuron
(Figure 2). There is abundant evidence that biological or-
ganisms use, among other things, neuromodulatory control
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Figure 1. Using Hebbian learning the plastic-
ity of the synapse between a pre- and a post-
synaptic neuron can be affected by a signal
produced by another presynaptic neuron.
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Figure 2. Using neuromodulation the plastic-
ity of the synapse between a pre- and a post-
synaptic standard neuron (white circles) can
be affected by a modulatory signal produced
by a modulatory neuron (gray circle) without
interfering with the information processing of
the standard neurons.

of synaptic plasticity based on similar principles [1]. One
possible explanation for the existence of this mechanism in
nature is that the use of neuromodulatory control of synap-
tic plasticity in place of plain Hebbian plasticity facilitates
the evolutionary synthesis of complex adaptive neural struc-
tures. In [11] we presented results that corroborate this con-
jecture in the context of the artificial evolution of adaptive
neural structures, showing that in some cases, the use of
neuromodulation allows to evolve high-performing neural
controllers, whereas plain Hebbian plasticity does not. This
is in line with results from other experiments with related
approaches (e.g., [10, 3]).

The recourse in [11] to artificial evolution for the synthe-
sis of the neuromodulatory architectures is justified by the
fact that it is difficult to hand-design both the underlying
standard neural network and the additional neuromodula-
tory network that controls the learning of the former. In [12]
we showed how an evolved neural architecture is typically
more compact, while outperforming architectures designed
by hand using the best neural networks and reinforcement
learning practices. Recent results [5, 8] suggest that the use
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Figure 3. The T-maze experimental setup.
Starting from the bottom of the maze, the e-
puck robot must navigate to the left or the
right reward zone. The robot can use infrared
distance sensors to avoid colliding with the
walls of the maze and a camera to detect when
it arrives at the turning point.

of an implicit genetic encoding in place of a more conven-
tional direct encoding endows the evolutionary process with
several advantages, such as increased performance of the
evolved structures, a more compact genome, and the possi-
bility of complexification and simplification of the architec-
ture via evolutionary duplication and mutation.

From a robotics point of view the limitation of the re-
sults presented in previous experiments of neuromodula-
tory evolution such as [7, 12, 11] is the use of simplified
tasks based on grid-like worlds and a choice between a fi-
nite, small set of actions. It is therefore important to extend
those results and the insights gained through them, to more
realistic robotic scenarios. To this end, in this paper we
investigate a more realistic neuromodulatory evolutionary
scenario where a simulated robot is required to navigate and
collect rewards in a T-maze, using the information provided
by infrared sensors for obstacle avoidance. Our results show
that the unrestricted application of neuromodulation in evo-
lution can create difficulties due to the interference between
the easily evolved basic navigation strategies and the more
sophisticated reward-collecting strategies. We show how a
hand-designed modularization of the effects of neuromod-
ulation permits the preservation of the advantages of neu-
romodulation without interfering with evolution, thus sug-
gesting to design neuroevolutionary systems that can reap
both the architectural benefits of evolution and the adaptive
benefits of neuromodulation.

2. Experimental setup

We consider an e-puck robot [2] which is placed in a
simulated T-maze (Figure 3). At the end of each arm of the
T-maze (left and right) there is either a high or a low reward
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Figure 4. An example of an evolved neural
network with a modulatory neuron (gray cir-
cle) and a standard neuron (white circle). The
neural networks can use an infrared distance
sensor input (/RI-IR2), a camera input (CAM),
a reward signal (Reward), and an end zone de-
tector (End) in addition to a bias unit (Bias) to
control the behavior of the robot in the maze.

(R and r, with a value of 10 or 1 correspondingly). Starting
from the bottom of the T-maze and facing in the direction of
the turning point with a random angle v € [—m/4, 7/4], the
task of the robot is to navigate in the maze and to collect one
of the rewards by driving into the end-zone of either the left
or the right arm. When the robot reaches either end-zone,
it is awarded the respective reward and repositioned at the
starting point.

The robot is controlled by an evolved artificial neural
network with neuromodulation (see Figure 4). The modu-
latory signal m (see equation (1)) for all incoming synapses
of each postsynaptic neuron is computed for each modula-
tory neuron as the product of the output of the respective
modulatory neuron and the connection weight between the
modulatory neuron and the postsynaptic neuron (see [12]
for more details). Synapses leading to postsynaptic neurons
which are not connected to a modulatory neuron do not un-
dergo synaptic plasticity.

The network is connected to two continuous infrared dis-
tance sensors (which are merged into one sensory input
IR1 — IR2 € [—1,1]). A turning point marker is placed
in the middle of the maze. A camera sensor connected
to the neural network (CAM € {0,1}) indicates that the
turning point marker is in the field of view of the robot.
Additionally, the robot can sense when it reaches the end-
zone (END € {0, 1}) and how big the obtained reward is
(Reward € {1,10}).

The output o of the evolved neural network is used to
control the behavior of the robot as follows: if the abso-
Iute value of the output is smaller than a threshold value
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(lo] < o¢ = 0.3) the robot drives straight. If the output is
smaller than the threshold value (0 < —o;) the robot rotates
counterclockwise, and likewise, if the output is larger than
the threshold (o > o), the robot rotates clockwise.

The fitness of the robot is calculated as the average of the
total rewards the robot collects in two trials of 300s each. At
the beginning of the first trial, the high reward is in the right
arm of the maze. At a random time 7, uniformly selected
from the interval [125s, 175s], the reward position is flipped
to the left arm. In the second trial, the reward is initially
positioned in the left arm of the maze and is flipped to the
other side at the same time 7.

Thus, as in the grid world experiments presented in [11],
the artificial neural network must adapt to the changing po-
sition of the higher reward and change its strategy in order
to gain maximal fitness.

However, unlike the grid world experiments described in
[11], in this setup the evolved neural networks must control
both the collision avoidance and the navigation of the robot
in the maze. The more efficiently the robot avoids colliding
with the walls, the more rewards, high or low, can be col-
lected. The more efficiently the neural network adapts its
behavior when the reward position changes, the higher the
ratio of high rewards to low rewards that can be collected.
While the collision avoidance behavior can be obtained us-
ing only the infrared distance sensors as an input, an adap-
tive navigation strategy requires connections from the other
inputs. Under these circumstances, starting from an initial
population of random networks, it is likely that simple col-
lision avoidance networks, which use the infrared distance
sensors and do not rely on synaptic plasticity, will appear
early in evolution. This means that the neuromodulatory
circuits which provide the reinforcement learning-like prop-
erties needed for adaptively switching navigation strategies,
have a good chance of being forced to integrate themselves
with the existing collision avoidance circuit.

In order to study the influence of modulated synaptic
plasticity on the collision avoidance behavior, we intro-
duced a factor o which adjusts the influence of synaptic
plasticity on synapses connecting only from the infrared
distance sensors. The synaptic weights of synapses w* from
the infrared distance sensors are updated by the modified
update rule

Aw* = amn[Azy + Bz + Cy + D]

with & € [0,1] where @ = 1.0 corresponds to the stan-
dard neuromodulatory update rule of equation (1) where all
synapses leading to the corresponding post-synaptic neuron
are affected by the synaptic plasticity, and o« = 0.0 corre-
sponds to the case where the evolved weights of synapses
coming from the infrared sensors are not plastic, while the
other synapses remain plastic.
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Figure 5. The average of the maximum pop-
ulation fitness of 10 evolutionary runs per-
formed in the three conditions oo = 0.0, « = 0.5
and o = 1.0 over 1000 generations. The error
bars every 100 generations indicate the stan-
dard deviations.

3. Evolutionary algorithm

As in [12], we used analog genetic encoding (AGE)
to represent the neural network topology and the synaptic
weights. The numerical parameters of both neurons and
modulatory neurons were locally encoded using the center
of mass encoding (CoME) [4] with search space intervals of
m € [0.5,5],n € [-10,10], {A, B,C, D} € [-1,1]* We
used a simple, generational genetic algorithm with a popu-
lation size of 1000 individuals, tournament selection (with
a tournament size of 2) and elitism (with an elite of size 1).
We initialized the population with the best of 100000 ran-
dom networks. The mutation probabilities used were 0.001
for nucleotide substitution, insertion, and deletion; 0.01 for
chromosome fragment duplication, deletion, and transposi-
tion; and the probability of inserting a random device (e.g.,
a neuron or a modulatory neuron) was (0.2. The probability
of recombination was 0.1. For more details on the algorithm
see [5].

4. Results and discussion

We carried out 10 runs of the evolutionary experiment
for the three different cases &« = 1.0, « = 0.5 and o = 0.0,
that is, for unrestricted neuromodulation, reduced neuro-
modulation to the synapses coming from the infrared sen-
sors, and absence of neuromodulatory plasticity for the
synapses coming from the infrared sensors, respectively.
Figure 5 shows that in the case of the unrestricted mod-
ulated plasticity (¢ = 1.0) the task was not consistently
solved within 1000 generations. We observed that while
some of the evolved networks display near optimal per-
formance, other networks fail to change strategy and end
up collecting many small rewards. On the contrary, in the
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Figure 6. Maximum population finesses af-
ter 1000 generations of 10 evolutionary runs
performed in the three conditions o« = 0.0,
a = 0.5 and o« = 1.0. The midline in each
box is the median, the borders of the box
represent the upper and the lower quartile.
The whiskers outside the box represent the
minimum and maximum values obtained, ex-
cept when there are outliers which are shown
as small crosses. We define outliers as data
points which differ more than 1.5 times the in-
terquartile range from the border of the box.
The notches permit the assessment of the
significance of the differences of the medi-
ans. When the notches of two boxes do not
overlap, the corresponding medians are sig-
nificantly different at (approximately) the 95%
confidence level [6].

runs where synaptic plasticity is restricted to the synapses
which are not connected to the infrared distance sensors
(oo = 0.0), the evolved networks consistently display near
optimal performance. In general, the fitness values obtained
with @ = 1.0 are significantly smaller than the fitness val-
ues obtained with « = 0.0, whereas the fitness values ob-
tained with &« = 0.5 lie in between those produced by the
other two cases. This difference is reflected in the signif-
icantly higher maximum population fitness obtained after
1000 generations with ae = 0.0, as shown in Figure 6.

In order to analyze the influence of modulated synap-
tic plasticity on the performance of the networks, we car-
ried out a series of tests using the best networks resulting
from the 10 runs under the condition v = 1.0. We evalu-
ated the performance of each network 100 times with un-
restricted neuromodulatory synaptic plasticity (« = 1.0)
with restricted neuromodulatory plasticity (o« = 0.0) and
without neuromodulatory plasticity on the whole network.
Figure 7 shows the statistics of the amount of reward col-
lected in the three conditions for the ten runs. In 9 out of
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Figure 7. The rewards collected by the best individuals of 10 evolutionary runs after 1000 generations
with unrestricted neuromodulatory plasticity, i.e., with « = 1.0. The networks were tested in 100 trials
each, with unrestricted neuromodulatory plasticity (o« = 1.0, columns A), with restricted neuromodu-
latory plasticity (o« = 0.0, columns B), and without neuromodulatory synaptic plasticity (columns C).
For the details of the boxplot format, see the caption of Figure 6.

the 10 cases, disabling the plasticity of the synapses com-
ing from the infrared sensors (i.e., setting a = 0.0, box in
columns B) on the networks evolved with a = 1.0 does not
significantly degrade the performance of the networks with
respect to their evolved performance (box in columns A).
When the neuromodulatory synaptic plasticity is disabled
completely (box in columns C), the two worst networks in
terms of evolved performance (runs 2 and 3) do not dis-
play a degradation in performance revealing that in these
cases the neuromodulatory synaptic plasticity does not con-
tribute to the performance. On the other hand, without neu-
romodulatory plasticity the networks produced by the other
eight runs show a substantial degradation of performance
with respect to their plastic counterpart. Of the networks
evolved in these eight runs, all but that produced by run 9
do not show a significantly different performance when the
synaptic plasticity is restricted, i.e. these networks seem to
have been evolved with a built-in restriction of the influence
of the synaptic plasticity on the synapses from the infrared
distance sensors. These results suggest a potential reason
for the improved performance of the algorithm when op-
erated with restricted neuromodulatory plasticity (i.e., with
o < 1.0). We can conjecture that in order to gain high per-
formance, the neuromodulatory synaptic plasticity needs to
be restricted to certain parts of the network. As random
mutations are very likely to disturb this restriction, lower
values of « strengthen the restriction, resulting in increased
evolvability.

In order to confirm that neuromodulatory synaptic plas-
ticity is instrumental to the performance of the networks
evolved with restricted plasticity, we further tested the best
networks resulting from the 10 evolutionary runs using the
condition @ = 0.0. We evaluated the performance of each
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network 100 times with the same restricted neuromodula-
tory plasticity used during evolution («« = 0.0), and with-
out neuromodulatory synaptic plasticity. Figure 8 shows
the statistics of the amount of reward collected in the two
conditions for the ten runs. The figure reveals that all net-
works display near optimal performance when neuromodu-
latory synaptic plasticity is active (box in columns B), while
suffering a significant degradation of performance when
neuromodulatory synaptic plasticity is deactivated (box in
columns C). Further analysis of these results revealed that
the degradation in performance is caused by the inability of
the robots controlled by the networks with deactivated neu-
romodulatory plasticity to switch strategies when the po-
sition of the reward changed. This reveals that the neuro-
modulatory plasticity is actually instrumental to the perfor-
mance of the evolved networks, and has not simply been
ignored by the evolutionary process which synthesized the
networks.

5. Conclusions

In this paper we have investigated the performance of a
neuroevolutionary method based on an implicit genetic en-
coding when applied to the synthesis of neuromodulatory
architectures for a realistic robotic task. The results of our
experiments confirm the favorable effects previously ob-
served in the experiments reported in [11] of the availability
of neuromodulation on the performance of the evolved net-
works, with respect to the case where only plain Hebbian
plasticity is available. However, these experiments, con-
ducted in a more realistic simulated robotic scenario than
those reported in [11], reveal that the presence of neuromod-
ulation can hamper evolution by interfering with already
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Figure 8. The rewards collected by the best individuals of 10 evolutionary runs after 1000 generations
with restricted nheuromodulatory plasticity, i.e., with « = 0.0 . The networks were tested in 100 trials
each, with restricted neuromodulatory plasticity (o« = 0.0, columns B), and without neuromodulatory

synaptic plasticity (columns C). For the details of the boxplot format, see the caption of Figure 6.

evolved behaviors that do not require synaptic plasticity.
We have shown that by restricting the effects of neuromod-
ulation it is possible to avoid this problem and reinstate a
satisfying evolvability into the system.

In more complex robotic problems it is unlikely that the
amount and topography of the required restriction can be es-
timated by human inspection. The results presented in this
paper must be interpreted as an indication that the evolu-
tion of neuromodulatory architectures requires a framework
capable of automatically evolving the required restriction
of the neuromodulatory effects, for example, by permitting
the modularization of the network and the selective modu-
lar targeting of neuromodulatory connections. This result
is fully compatible with and can provide a rationale for the
modular and targeted structure of neuromodulatory connec-
tions observed in biological organisms [9].
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